JP2015205782A - Silica gel particles and manufacturing method therefor - Google Patents

Silica gel particles and manufacturing method therefor Download PDF

Info

Publication number
JP2015205782A
JP2015205782A JP2014085501A JP2014085501A JP2015205782A JP 2015205782 A JP2015205782 A JP 2015205782A JP 2014085501 A JP2014085501 A JP 2014085501A JP 2014085501 A JP2014085501 A JP 2014085501A JP 2015205782 A JP2015205782 A JP 2015205782A
Authority
JP
Japan
Prior art keywords
silica
particles
silica gel
slurry
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014085501A
Other languages
Japanese (ja)
Inventor
博道 小泉
Hiromichi Koizumi
博道 小泉
史朗 石川
Shiro Ishikawa
史朗 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2014085501A priority Critical patent/JP2015205782A/en
Publication of JP2015205782A publication Critical patent/JP2015205782A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Silicon Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To increase silica gel filled amount to a firing furnace per 1 patch by obtaining silica gel particles having reduced whole pore volume from a silica slurry having concentration easy to handle without increasing raw material cost of the silica gel using a fumed silica.SOLUTION: A silica slurry having the silica particle concentration of 25 to 35 mass% by mixing fumed silica particles having a specific surface area of 90 to 300 m/g and water. A silica dried body is obtained by adding ammonium water or ammonium carbonate solution to silica slurry so that the ammonia concentration or the ammonium carbonate in the slurry is 100 to 500 mass.ppm and mixing and removing moisture from the silica slurry. Silica gel particles are obtained by degrading, pulverizing and sizing the dried body.

Description

本発明は、シリコン単結晶の引上げ用るつぼ等の合成シリカガラス製品を製造する原料として用いられる合成非晶質シリカ粉末の前駆体に適するシリカゲル粒子及びその製造方法に関する。   The present invention relates to silica gel particles suitable as a precursor of a synthetic amorphous silica powder used as a raw material for producing a synthetic silica glass product such as a crucible for pulling up a silicon single crystal, and a method for producing the same.

従来、ヒュームドシリカ粒子を水の分散媒に分散させたシリカスラリーを乾燥させてシリカゲルを製造する方法及びシリカゲルが開示されている(例えば、特許文献1参照。)。しかし、この方法ではシリカスラリーをゲル化させてシリカゲルを作製する際に、ゲルの収縮が大きく、この収縮により欠けやひび割れが入り易いという問題があった。   Conventionally, a method for producing silica gel by drying a silica slurry in which fumed silica particles are dispersed in a water dispersion medium and a silica gel have been disclosed (for example, see Patent Document 1). However, this method has a problem that when silica gel is produced by gelling a silica slurry, the gel shrinks greatly, and the shrinkage and cracking are easily caused by the shrinkage.

また、この種のシリカゲル粒子を焼成炉に入れて焼成して、合成非晶質シリカ粉末にするときに、シリカゲル粒子内のポア(以下、細孔という。)の量が多いと、シリカゲル粒子のかさ密度が低くなり、焼成炉に一回に投入できるシリカゲルの量、即ち焼成炉への1バッチ当たりのシリカゲル充填量を多くできない不具合があった。これらの問題を回避するため、ヒュームドシリカ粒子の代わりに溶融シリカ粒子を使用することにより、シリカゲルを製造する方法が開示されている(例えば、特許文献2参照。)。   In addition, when this type of silica gel particles is placed in a firing furnace and baked into a synthetic amorphous silica powder, if the amount of pores (hereinafter referred to as pores) in the silica gel particles is large, The density was low, and there was a problem that the amount of silica gel that could be charged into the firing furnace at one time, that is, the amount of silica gel charged per batch into the firing furnace could not be increased. In order to avoid these problems, a method for producing silica gel by using fused silica particles instead of fumed silica particles has been disclosed (for example, see Patent Document 2).

この特許文献2に示されるシリカゲルの製造方法は、溶融シリカ粒子の濃度が60重量%以上の分散液より、分散媒を除去して該溶融シリカ粒子の凝集体を形成せしめる方法である。この分散液には、0.1μm未満の粒子径を有する溶融シリカ粒子が全粒子の5重量%以下、0.1〜5μmの粒子径を有する溶融シリカ粒子が全粒子の20重量%以上存在する。またこの方法で得られたシリカゲルは、溶融シリカ粒子の凝集体よりなり、水銀ポロシメーターで測定される細孔直径0.004〜10μmの細孔のうち、細孔直径0.05〜0.5μmの細孔の占める割合が、50%以上であって、全細孔容積が0.1〜0.5cc/gである特徴を有し、効率的なガス置換が可能なように細孔分布特性を最適化し、割れや欠けが起こり難い寸法安定性に優れるとされている。   The method for producing silica gel disclosed in Patent Document 2 is a method in which a dispersion medium is removed from a dispersion having a fused silica particle concentration of 60% by weight or more to form aggregates of the fused silica particles. In this dispersion, fused silica particles having a particle size of less than 0.1 μm are present in an amount of 5% by weight or less of the total particles, and fused silica particles having a particle size of 0.1 to 5 μm are present in an amount of 20% by weight or more of the total particles. . The silica gel obtained by this method is composed of an aggregate of fused silica particles, and among pores having a pore diameter of 0.004 to 10 μm measured by a mercury porosimeter, the pore diameter is 0.05 to 0.5 μm. The proportion of pores is 50% or more, and the total pore volume is 0.1 to 0.5 cc / g. The pore distribution characteristics are set to enable efficient gas replacement. It is said that it is optimized and has excellent dimensional stability that does not easily cause cracking or chipping.

特許文献2には、ヒュームドシリカ粒子とは異なる概ね球状の溶融シリカ粒子を使用することによって、ヒュームドシリカ粒子では達成し得なかった高いスラリー濃度の分散液を得ることができ、これを乾燥して得られるシリカゲルの欠けやひび割れを極めて効果的に抑制できることを見い出し、特許文献2の発明を完成するに至ったことが記載されている。   In Patent Document 2, by using substantially spherical fused silica particles different from fumed silica particles, it is possible to obtain a dispersion having a high slurry concentration that could not be achieved with fumed silica particles, and drying this. It has been found that chipping and cracking of the silica gel obtained in this way can be extremely effectively suppressed, and the invention of Patent Document 2 has been completed.

特表平5−505167号公報(請求の範囲)JP 5-505167 A (Claims) 特開2002−137913号公報(請求項1、請求項2、請求項7、要約、段落[0011])JP 2002-137913 (Claim 1, Claim 2, Claim 7, Abstract, Paragraph [0011])

特許文献2に示されるシリカゲルは、全細孔容積が0.1〜0.5cc/gであるため、かさ密度が高く、焼成炉への1バッチ当たりのシリカゲル充填量を多くできる利点はあるけれども、その製造に際しては、ヒュームドシリカ粒子とは異なる概ね球状の溶融シリカ粒子を使用して、60重量%以上の濃度を有する溶融シリカ粒子の分散液を調製する必要がある。この溶融シリカ粒子はヒュームドシリカ粒子と比べて複雑な製造工程を必要とし、シリカゲルの原料コストを押上げる欠点があった。また60重量%以上の濃度を有する溶融シリカ粒子の分散液を調製するには、高価な混練装置を必要とするうえ、この分散液は粘性が高すぎて、その取扱いが困難でシリカゲル粒子の生産性を高くできないな欠点があった。   Since the silica gel shown in Patent Document 2 has a total pore volume of 0.1 to 0.5 cc / g, the bulk density is high, and there is an advantage that the amount of silica gel charged per batch into the firing furnace can be increased. In the production, it is necessary to prepare a dispersion of fused silica particles having a concentration of 60% by weight or more by using substantially spherical fused silica particles different from fumed silica particles. The fused silica particles require a more complicated manufacturing process than the fumed silica particles, and have the disadvantage of increasing the raw material cost of the silica gel. In addition, in order to prepare a dispersion of fused silica particles having a concentration of 60% by weight or more, an expensive kneading apparatus is required, and the dispersion is too viscous to be handled. There was a disadvantage that the property could not be increased.

本発明の目的は、ヒュームドシリカ粒子を用いることにより、複雑な工程を必要とせず、簡便に調製した、取り扱いが容易である濃度のシリカスラリーから、全細孔容積を減じたシリカゲル粒子を得て、焼成炉への1バッチ当たりのシリカゲル充填量を多くすることができるシリカゲル粒子及びその製造方法を提供することにある。   An object of the present invention is to obtain silica gel particles having a reduced total pore volume from a silica slurry having a concentration that is easily prepared and easy to handle without using a complicated process by using fumed silica particles. An object of the present invention is to provide silica gel particles that can increase the amount of silica gel per batch into a firing furnace and a method for producing the same.

本発明者らは、従来より使用されているヒュームドシリカ粒子を用いて、シリカスラリーを調製するときに、アンモニア水又は炭酸アンモニウム水溶液を適度なアンモニア濃度又は適度な炭酸アンモニウム濃度で添加することにより、全細孔容積を減じたシリカゲル粒子が得られることを見出し、本発明に到達した。   The present inventors added ammonia water or an ammonium carbonate aqueous solution at an appropriate ammonia concentration or an appropriate ammonium carbonate concentration when preparing a silica slurry using fumed silica particles conventionally used. The present inventors have found that silica gel particles having a reduced total pore volume can be obtained, and reached the present invention.

本発明の第1の観点は、比表面積が90〜300m/gのヒュームドシリカ粒子と分散媒としての水とを混合して前記シリカ粒子の濃度が25〜35質量%のシリカスラリーを調製する工程と、前記シリカスラリー中のアンモニア濃度又は炭酸アンモニウム濃度が100〜500質量ppmになるように前記シリカスラリーにアンモニア水又は炭酸アンモニウム水溶液を添加剤として添加混合する工程と、前記添加剤を含むシリカスラリーから水分を除去してシリカ乾燥体を得る工程と、前記シリカ乾燥体を解砕した後、粉砕し分級してシリカゲル粒子を得る工程とを含むシリカゲル粒子の製造方法である。 According to a first aspect of the present invention, fumed silica particles having a specific surface area of 90 to 300 m 2 / g and water as a dispersion medium are mixed to prepare a silica slurry having a concentration of 25 to 35% by mass of the silica particles. And a step of adding and mixing ammonia water or an aqueous ammonium carbonate solution as an additive to the silica slurry such that the ammonia concentration or ammonium carbonate concentration in the silica slurry is 100 to 500 ppm by mass, and the additive A method for producing silica gel particles, comprising: a step of removing moisture from a silica slurry to obtain a dried silica product; and a step of pulverizing and classifying the dried silica product to obtain silica gel particles.

本発明の第2の観点は、水銀ポロシメーターで測定された粒子内の細孔直径が0.003〜3μmの範囲の全細孔容積が1.030〜1.173ml/gの範囲にあり、かつ前記粒子内の細孔直径が0.003〜3μmの範囲のうち、粒子内の細孔直径が0.01〜0.1μmの範囲にある細孔の占める割合が74.1〜80.5%の範囲にあるシリカゲル粒子である。   The second aspect of the present invention is that the total pore volume in the range of pore diameter in the range of 0.003 to 3 μm measured by mercury porosimeter is in the range of 1.030 to 1.173 ml / g, and Of the range of pore diameters in the particles of 0.003 to 3 μm, the proportion of pores in the range of pore diameters in the range of 0.01 to 0.1 μm is 74.1 to 80.5%. Silica gel particles in the range of

本発明の第3の観点は、第2の観点に基づく発明であって、合成非晶質シリカ粉末の前駆体であるシリカゲル粒子である。   A third aspect of the present invention is a silica gel particle according to the second aspect, which is a precursor of a synthetic amorphous silica powder.

本発明の第1の観点のシリカゲル粒子の製造方法によれば、シリカスラリーのヒュームドシリカ粒子濃度を25〜35質量%にするため、シリカスラリーの調製が簡便であり、その取り扱いが容易である。そして、適度なアンモニア濃度又は炭酸アンモニウム濃度のアンモニア水又は炭酸アンモニウム水溶液を添加することにより、シリカスラリー中のヒュームドシリカ粒子間に働く反発力が弱められ、粒子同士が接近しやすくなる。その結果、全細孔容積を減じたシリカゲル粒子が得られ、焼成炉への1バッチ当たりのシリカゲル充填量を多くすることができる。また、原料コストが高価な溶融シリカ粒子の代わりにヒュームドシリカ粒子を用いるため、シリカゲルの原料コストを押し上げない。   According to the method for producing silica gel particles of the first aspect of the present invention, since the fumed silica particle concentration of the silica slurry is 25 to 35% by mass, the preparation of the silica slurry is simple and easy to handle. . And the repulsive force which acts between the fumed silica particles in a silica slurry is weakened by adding the ammonia water or ammonium carbonate aqueous solution of moderate ammonia concentration or ammonium carbonate concentration, and it becomes easy for particles to approach. As a result, silica gel particles with a reduced total pore volume can be obtained, and the amount of silica gel charged per batch into the firing furnace can be increased. Further, since fumed silica particles are used instead of the fused silica particles, which are expensive in raw material cost, the raw material cost of silica gel is not increased.

本発明の第2の観点のシリカゲル粒子は、水銀ポロシメーターで測定された粒子内の細孔直径が0.003〜3μmの範囲の全細孔容積が1.030〜1.173ml/gの範囲にあり、かつ前記粒子内の細孔直径が0.003〜3μmの範囲のうち、粒子内の細孔直径が0.01〜0.1μmの範囲にある細孔の占める割合が74.1〜80.5%の範囲にあるため、焼成炉への1バッチ当たりのシリカゲル充填量を多くすることができる。   The silica gel particles according to the second aspect of the present invention have a total pore volume in the range of 0.003 to 3 μm and a total pore volume in the range of 1.030 to 1.173 ml / g as measured with a mercury porosimeter. And the ratio of the pores having a pore diameter in the range of 0.01 to 0.1 μm in the range of 0.003 to 3 μm of the pore diameter in the particle is 74.1 to 80 Since it is in the range of 5%, it is possible to increase the silica gel filling amount per batch into the baking furnace.

本発明の第3の観点のシリカゲル粒子によれば、焼成炉への1バッチ当たりのシリカゲル充填量を多くできるので、このシリカゲル粒子を焼成して合成非晶質シリカ粉末を製造すれば、合成非晶質シリカ粉末の生産性を高めることができる。   According to the silica gel particles of the third aspect of the present invention, the amount of silica gel charged per batch into the baking furnace can be increased. The productivity of the crystalline silica powder can be increased.

本発明の実施例1−1のシリカゲル粒子の細孔直径とlog微分細孔容積の関係を示す図である。It is a figure which shows the relationship between the pore diameter of the silica gel particle of Example 1-1 of this invention, and a log differential pore volume. 図1に基づくシリカゲル粒子の細孔容積を積算した積算細孔容積分布図である。FIG. 2 is an integrated pore volume distribution diagram in which the pore volumes of silica gel particles based on FIG. 1 are integrated.

次に本発明を実施するための形態を図面に基づいて説明する。   Next, an embodiment for carrying out the present invention will be described with reference to the drawings.

〔シリカゲル粒子の製造方法〕
本発明のシリカゲル粒子の製造方法は、比表面積が90〜300m/gのヒュームドシリカ粒子と分散媒としての水とを混合して前記シリカ粒子の濃度が25〜35質量%のシリカスラリーを調製する工程と、前記シリカスラリー中のアンモニア濃度又は炭酸アンモニウム濃度が100〜500質量ppmになるように前記シリカスラリーにアンモニア水又は炭酸アンモニウム水溶液を添加剤として添加混合する工程と、前記添加剤を含むシリカスラリーから水分を除去してシリカ乾燥体を得る工程と、前記シリカ乾燥体を解砕した後、粉砕し分級してシリカゲル粒子を得る工程とを含む方法である。
[Method for producing silica gel particles]
In the method for producing silica gel particles of the present invention, fumed silica particles having a specific surface area of 90 to 300 m 2 / g and water as a dispersion medium are mixed to obtain a silica slurry having a concentration of 25 to 35% by mass of the silica particles. A step of preparing, a step of adding and mixing ammonia water or an aqueous ammonium carbonate solution as an additive to the silica slurry such that an ammonia concentration or an ammonium carbonate concentration in the silica slurry becomes 100 to 500 ppm by mass, and the additive The method includes a step of removing moisture from the silica slurry, and obtaining a silica dried product, and a step of crushing the silica dried product and then pulverizing and classifying to obtain silica gel particles.

〔シリカスラリーの調製〕
先ず出発原料として、平均粒径D50が7〜20nmで、比表面積が90〜300m/g、好ましくは90〜120m/gのヒュームドシリカ粒子を用意する。なお、比表面積が小さくなるとフュームドシリカの一次粒子径は大きくなり、比表面積90m/g未満ではシリカスラリーが時間経過とともに、シリカと溶媒に分離する不具合があり、300m/gを超えると混合時に分散媒と混ざりにくい不具合がある。この平均粒径D50が7〜20nmで、比表面積が90〜300m/gであるヒュームドシリカ粒子を分散媒としての水と混合してシリカ粒子の濃度が25〜35質量%、好ましくは30〜35質量%のシリカスラリーを調製する。この調製は、大気雰囲気下で、室温の超純水にヒュームドシリカ粒子を、シリカ粒子の濃度が25〜35質量%になるように、添加し、混練機により攪拌をすることにより、超純水中に均一に混合することにより行われる。シリカ粒子の濃度が25質量%未満であると、乾燥効率が低下し、35質量%を超えるとスラリーの粘度が上昇し、取り扱いにくくなる。本明細書では、平均粒径D50とは、レーザー回折散乱式粒子分布測定装置(型式名:HORIBA LA-950)によって測定した粒子分布(直径)の中央値を3回測定し、この平均値をいう。
[Preparation of silica slurry]
First, fumed silica particles having an average particle diameter D 50 of 7 to 20 nm and a specific surface area of 90 to 300 m 2 / g, preferably 90 to 120 m 2 / g, are prepared as starting materials. When the specific surface area decreases, the primary particle size of fumed silica increases. When the specific surface area is less than 90 m 2 / g, there is a problem that the silica slurry is separated into silica and solvent with the passage of time. When the specific surface area exceeds 300 m 2 / g, There is a problem that it is difficult to mix with the dispersion medium during mixing. This average particle diameter D 50 of 7 to 20 nm, concentration of 25 to 35% by weight of water and mixed to the silica particles of the fumed silica particles is the specific surface area is 90~300m 2 / g as the dispersion medium, preferably A 30-35% by weight silica slurry is prepared. In this preparation, fumed silica particles are added to ultrapure water at room temperature in an air atmosphere so that the concentration of the silica particles is 25 to 35% by mass, and the mixture is stirred by a kneader. It is performed by mixing uniformly in water. When the concentration of the silica particles is less than 25% by mass, the drying efficiency decreases, and when it exceeds 35% by mass, the viscosity of the slurry increases and it becomes difficult to handle. In this specification, the average particle diameter D 50, a laser diffraction scattering type particle distribution measuring apparatus (model name: HORIBA LA-950) was measured by a particle distribution median (diameter) was measured three times, the average value Say.

〔シリカスラリーへの添加剤の添加〕
シリカ粒子の濃度が調整されたシリカスラリーにアンモニア水又は炭酸アンモニウム水溶液を添加剤として添加する。この添加は、大気雰囲気下で、室温のシリカスラリーに、シリカスラリー中のアンモニア濃度又は炭酸アンモニウム濃度が100〜500質量ppm、好ましくは200〜400質量ppmになるように室温のアンモニア水又は炭酸アンモニウム水溶液を添加することにより行われる。この濃度が100質量ppm未満であると、添加剤を添加する効果が不十分であり、500質量ppmを超えるとスラリーの粘度が上昇し、取り扱いにくくなる。なお、上記添加剤を上述した超純水に予め添加混合しておき、この添加剤を含む超純水にヒュームドシリカ粒子を添加混合してシリカスラリーを調製してもよい。
[Addition of additive to silica slurry]
Ammonia water or an aqueous ammonium carbonate solution is added as an additive to the silica slurry in which the concentration of silica particles is adjusted. This addition is carried out by adding the aqueous ammonia or ammonium carbonate at room temperature so that the ammonia concentration or ammonium carbonate concentration in the silica slurry is 100 to 500 ppm by mass, preferably 200 to 400 ppm by mass, in the atmosphere at room temperature. This is done by adding an aqueous solution. If this concentration is less than 100 ppm by mass, the effect of adding an additive is insufficient, and if it exceeds 500 ppm by mass, the viscosity of the slurry increases and it becomes difficult to handle. In addition, the said additive may be previously added and mixed with the ultrapure water mentioned above, and a fumed silica particle may be added and mixed with the ultrapure water containing this additive, and a silica slurry may be prepared.

〔添加剤を含むシリカスラリーからの水分除去〕
添加剤を含むシリカスラリーを上部が開口した乾燥用容器に移し、これを乾燥機に導入し、乾燥機内に好ましくは1〜20リットル/分の流量で乾燥空気を流しながら、200〜300℃の温度で12〜48時間乾燥させてシリカ乾燥体を得る。
[Removal of water from silica slurry containing additives]
The silica slurry containing the additive is transferred to a drying container having an opening at the top, and this is introduced into a dryer, and while flowing dry air at a flow rate of preferably 1 to 20 liters / minute in the dryer, Dry at a temperature for 12 to 48 hours to obtain a dried silica.

〔シリカ乾燥体からシリカゲル粒子の製造まで〕
得られたシリカ乾燥体を乾燥用容器から取り出し、これを石英製の櫛が回転する構造の解砕機により解砕し、ロールクラッシャー等の粉砕機を用いて粉砕する。ロールクラッシャーを用いる場合には、ロール隙間を0.5〜2.0mm、ロール回転数を3〜200rpmに調整して粉砕する。最後に粉砕したシリカ乾燥体を振動ふるい等を用いて分級することにより、シリカゲル粒子が得られる。
[From silica dried product to silica gel particle production]
The obtained dried silica is taken out from the drying container, crushed by a pulverizer having a structure in which a quartz comb rotates, and pulverized using a pulverizer such as a roll crusher. When a roll crusher is used, the roll gap is adjusted to 0.5 to 2.0 mm, and the roll rotation speed is adjusted to 3 to 200 rpm and pulverized. Lastly, the pulverized silica dried body is classified using a vibrating screen or the like, whereby silica gel particles are obtained.

〔シリカゲル粒子の物性値〕
得られたシリカゲル粒子は、200〜400μm、好ましくは300〜350μmの平均粒径D50を有し、水銀ポロシメーター(島津製作所製、型番Autopore IV9500)で測定された粒子内細孔直径が0.003〜3μmの範囲にある細孔のうち、粒子内細孔直径が0.01〜0.1μmの範囲にある細孔の占める割合Aが74.1〜80.5%の範囲にあり、全細孔容積が1.030〜1.173ml/gの範囲にある。全細孔容積が1.030ml/g未満であると後工程の焼成時において、焼成時の脱ガスに要する時間が長くなる不具合があり、1.173ml/gを超えるとシリカゲル粒子の石英るつぼへの充填性に不具合がある。同様に、割合Aが74.1%未満であると後工程の焼成時において、焼成時の脱ガスに要する時間が長くなる不具合があり、80.5%を超えるとシリカゲル粒子の石英るつぼへの充填性に不具合がある。上記割合Aが74.1〜80.5%の範囲において、本発明では全細孔容積が1.030〜1.173ml/gとなるように添加剤が添加される。
[Physical properties of silica gel particles]
The resulting gel particles may, 200 to 400, preferably have an average particle diameter D 50 of 300~350Myuemu, a mercury porosimeter (manufactured by Shimadzu Corporation, model number Autopore IV 9500) is measured intraparticle pore diameter 0.003 Among the pores in the range of ˜3 μm, the proportion A of the pores in which the pore diameter in the particles is in the range of 0.01 to 0.1 μm is in the range of 74.1 to 80.5%. The pore volume is in the range of 1.030 to 1.173 ml / g. If the total pore volume is less than 1.030 ml / g, there is a problem that the time required for degassing during firing is prolonged, and if it exceeds 1.173 ml / g, the silica crucible becomes silica crucible. There is a defect in the filling property. Similarly, when the ratio A is less than 74.1%, there is a problem that the time required for degassing during the subsequent process becomes long, and when the ratio A exceeds 80.5%, the silica gel particles are converted into a quartz crucible. There is a defect in filling property. In the present invention, the additive is added so that the total pore volume is 1.030 to 1.173 ml / g when the ratio A is in the range of 74.1 to 80.5%.

〔シリカゲル粒子の用途〕
得られたシリカゲル粒子は、焼成されて合成シリカ非晶質シリカ粉末となり、シリコン単結晶の引上げ用るつぼ等の合成シリカガラス製品を製造する原料として好適に用いられる。即ち、得られたシリカゲル粒子は合成非晶質シリカ粉末の前駆体に好適に用いられる。
[Uses of silica gel particles]
The obtained silica gel particles are baked to become a synthetic silica amorphous silica powder, which is suitably used as a raw material for producing a synthetic silica glass product such as a crucible for pulling up a silicon single crystal. That is, the obtained silica gel particles are suitably used as a precursor of synthetic amorphous silica powder.

次に本発明の実施例を比較例とともに詳しく説明する。   Next, examples of the present invention will be described in detail together with comparative examples.

〔シリカスラリーの調製〕
<実施例1−1〜1−6>
平均粒径D50が20nmで比表面積が90m/gのヒュームドシリカ粒子を用意した。25℃の超純水にアンモニア水を添加混合した水溶液に大気雰囲気下で上記ヒュームドシリカ粒子を添加し、連続混練機により攪拌してシリカスラリーを調製した。このときのヒュームドシリカ粒子及びアンモニア水の添加量は、次の表1のシリカ粒子濃度及びアンモニア濃度になるように添加した。
[Preparation of silica slurry]
<Examples 1-1 to 1-6>
Fumed silica particles having an average particle diameter D 50 of 20 nm and a specific surface area of 90 m 2 / g were prepared. The fumed silica particles were added to an aqueous solution in which ammonia water was added to and mixed with ultrapure water at 25 ° C. in an air atmosphere, and stirred with a continuous kneader to prepare a silica slurry. At this time, the fumed silica particles and the ammonia water were added so that the silica particle concentration and the ammonia concentration shown in Table 1 below were obtained.

<実施例2−1〜2−6>
平均粒径D50が20nmで比表面積が90m/gのヒュームドシリカ粒子を用意した。25℃の超純水に炭酸アンモニウム水溶液を添加混合した水溶液に大気雰囲気下で上記ヒュームドシリカ粒子を添加し、連続混練機により攪拌してシリカスラリーを調製した。このときのヒュームドシリカ粒子及び炭酸アンモニウム水溶液の添加量は、次の表1のシリカ粒子濃度及び炭酸アンモニウム濃度になるように添加した。
<Examples 2-1 to 2-6>
Fumed silica particles having an average particle diameter D 50 of 20 nm and a specific surface area of 90 m 2 / g were prepared. The fumed silica particles were added to an aqueous solution obtained by adding and mixing an ammonium carbonate aqueous solution to ultrapure water at 25 ° C. in an air atmosphere, and stirred with a continuous kneader to prepare a silica slurry. At this time, the fumed silica particles and the aqueous ammonium carbonate solution were added so that the silica particle concentration and the ammonium carbonate concentration in the following Table 1 were obtained.

<実施例3−1〜3−6>
平均粒径D50が7nmで比表面積が300m/gのヒュームドシリカ粒子を用意した。25℃の超純水にアンモニア水を添加混合した水溶液に大気雰囲気下で上記ヒュームドシリカ粒子を添加し、連続混練機により攪拌してシリカスラリーを調製した。このときのヒュームドシリカ粒子及びアンモニア水の添加量は、次の表1のシリカ粒子濃度及びアンモニア濃度になるように添加した。
<Examples 3-1 to 3-6>
Fumed silica particles having an average particle diameter D 50 of 7 nm and a specific surface area of 300 m 2 / g were prepared. The fumed silica particles were added to an aqueous solution in which ammonia water was added to and mixed with ultrapure water at 25 ° C. in an air atmosphere, and stirred with a continuous kneader to prepare a silica slurry. At this time, the fumed silica particles and the ammonia water were added so that the silica particle concentration and the ammonia concentration shown in Table 1 below were obtained.

<実施例4−1〜4−6>
平均粒径D50が7nmで比表面積が300m/gのヒュームドシリカ粒子を用意した。25℃の超純水に炭酸アンモニウム水溶液を添加混合した水溶液に大気雰囲気下で上記ヒュームドシリカ粒子を添加し、連続混練機により攪拌してシリカスラリーを調製した。このときのヒュームドシリカ粒子及び炭酸アンモニウム水溶液の添加量は、次の表1のシリカ粒子濃度及び炭酸アンモニウム濃度になるように添加した。
<Examples 4-1 to 4-6>
Fumed silica particles having an average particle diameter D 50 of 7 nm and a specific surface area of 300 m 2 / g were prepared. The fumed silica particles were added to an aqueous solution obtained by adding and mixing an ammonium carbonate aqueous solution to ultrapure water at 25 ° C. in an air atmosphere, and stirred with a continuous kneader to prepare a silica slurry. At this time, the fumed silica particles and the aqueous ammonium carbonate solution were added so that the silica particle concentration and the ammonium carbonate concentration in the following Table 1 were obtained.

<比較例1−1、1−2>
次の表2に示すように、アンモニア水を添加しない以外は、実施例1−1及び1−2と同様にしてシリカスラリーを調製した。
<Comparative Examples 1-1 and 1-2>
As shown in the following Table 2, a silica slurry was prepared in the same manner as in Examples 1-1 and 1-2 except that ammonia water was not added.

<比較例2−1、2−2>
次の表2に示すように、アンモニア水を添加しない以外は、実施例3−1及び3−2と同様にしてシリカスラリーを調製した。
<Comparative Examples 2-1 and 2-2>
As shown in the following Table 2, a silica slurry was prepared in the same manner as in Examples 3-1 and 3-2 except that ammonia water was not added.

<比較例3−1、3−2>
次の表2に示すように、シリカスラリー中のアンモニア濃度が90質量ppmになるようにアンモニア水を添加した以外は、実施例1−1及び1−2と同様にしてシリカスラリーを調製した。
<Comparative Examples 3-1 and 3-2>
As shown in the following Table 2, silica slurry was prepared in the same manner as in Examples 1-1 and 1-2 except that ammonia water was added so that the ammonia concentration in the silica slurry was 90 ppm by mass.

<比較例4−1、4−2>
次の表2に示すように、シリカスラリー中のアンモニア濃度が90質量ppmになるようにアンモニア水を添加した以外は、実施例3−1及び3−2と同様にしてシリカスラリーを調製した。
<Comparative Examples 4-1 and 4-2>
As shown in the following Table 2, a silica slurry was prepared in the same manner as in Examples 3-1 and 3-2 except that ammonia water was added so that the ammonia concentration in the silica slurry was 90 mass ppm.

<比較例5−1、5−2>
次の表2に示すように、シリカスラリー中の炭酸アンモニウム濃度が90質量ppmになるように炭酸アンモニウム水溶液を添加した以外は、実施例2−1及び2−2と同様にしてシリカスラリーを調製した。
<Comparative Examples 5-1 and 5-2>
As shown in the following Table 2, a silica slurry was prepared in the same manner as in Examples 2-1 and 2-2, except that an aqueous ammonium carbonate solution was added so that the ammonium carbonate concentration in the silica slurry was 90 ppm by mass. did.

<比較例6−1、6−2>
次の表2に示すように、シリカスラリー中の炭酸アンモニウム濃度が90質量ppmになるように炭酸アンモニウム水溶液を添加した以外は、実施例4−1及び4−2と同様にしてシリカスラリーを調製した。
<Comparative Examples 6-1 and 6-2>
As shown in the following Table 2, a silica slurry was prepared in the same manner as in Examples 4-1 and 4-2, except that an aqueous ammonium carbonate solution was added so that the ammonium carbonate concentration in the silica slurry was 90 ppm by mass. did.

<比較例7−1、7−2>
次の表2に示すように、シリカスラリー中のアンモニア濃度が550質量ppmになるようにアンモニア水を添加した以外は、実施例1−1及び1−2と同様にしてシリカスラリーを調製した。
<Comparative Examples 7-1 and 7-2>
As shown in the following Table 2, silica slurry was prepared in the same manner as in Examples 1-1 and 1-2 except that ammonia water was added so that the ammonia concentration in the silica slurry was 550 mass ppm.

<比較例8−1、8−2>
次の表2に示すように、シリカスラリー中のアンモニア濃度が550質量ppmになるようにアンモニア水を添加した以外は、実施例3−1及び3−2と同様にしてシリカスラリーを調製した。
<Comparative Examples 8-1 and 8-2>
As shown in the following Table 2, a silica slurry was prepared in the same manner as in Examples 3-1 and 3-2 except that ammonia water was added so that the ammonia concentration in the silica slurry was 550 mass ppm.

<比較例9−1、9−2>
次の表2に示すように、シリカスラリー中の炭酸アンモニウム濃度が550質量ppmになるように炭酸アンモニウム水溶液を添加した以外は、実施例2−1及び2−2と同様にしてシリカスラリーを調製した。
<Comparative Examples 9-1 and 9-2>
As shown in the following Table 2, a silica slurry was prepared in the same manner as in Examples 2-1 and 2-2 except that an aqueous ammonium carbonate solution was added so that the ammonium carbonate concentration in the silica slurry was 550 mass ppm. did.

<比較例10−1、10−2>
次の表2に示すように、シリカスラリー中の炭酸アンモニウム濃度が550質量ppmになるように炭酸アンモニウム水溶液を添加した以外は、実施例4−1及び4−2と同様にしてシリカスラリーを調製した。
<Comparative Examples 10-1 and 10-2>
As shown in the following Table 2, a silica slurry was prepared in the same manner as in Examples 4-1 and 4-2, except that an aqueous ammonium carbonate solution was added so that the ammonium carbonate concentration in the silica slurry was 550 mass ppm. did.

〔シリカスラリーからの水分除去〕
実施例1−1〜実施例4−6及び比較例1−1〜比較例6−2で得られた36種類のシリカスラリーは、スラリー中のシリカ粒子が二次粒子の状態まで分散されており、チューブポンプで容易に送液できるだけの流動性を有していた。これらのシリカスラリーをそれぞれ乾燥用容器であるパイレックス(商標)製の平皿に移し替え、定温乾燥機に入れた。この乾燥機の温度を200℃に設定して24時間放置し、水分量が0.5質量%以下になるまで乾燥して、28種類のシリカ乾燥体を得た。これらのシリカ乾燥体を平皿から取り出したところ、シリカ乾燥体はすべて殆ど収縮せずに平皿の形状を維持していた。
これに対して、アンモニア濃度及び炭酸アンモニウム濃度が550質量ppmの比較例7−1〜10−2の8種類のシリカスラリーは、スラリー粘度が上昇し過ぎて、流動性がなく、上記乾燥用容器に移し替えることができなかった。このため比較例7−1のみ樹脂製のスコップで平皿に移し変えて実施例同様に乾燥し、他7種類のシリカスラリーの乾燥は断念した。上記実施例1−1〜実施例4−6及び比較例1−1〜比較例10−2で得られた44種類のシリカスラリーの粘度をB型粘度計(東機産業社製、型番BM-II)でそれぞれ測定した。その結果を表1及び表2に示す。スラリー粘度が300cPを超えると流動性がなくなり、チューブポンプでの送液が実質的にできなくなる。
[Moisture removal from silica slurry]
In the 36 types of silica slurries obtained in Example 1-1 to Example 4-6 and Comparative Example 1-1 to Comparative Example 6-2, the silica particles in the slurry are dispersed to the state of secondary particles. The fluidity was such that it could easily be fed with a tube pump. Each of these silica slurries was transferred to a flat plate made of Pyrex (trademark), which was a drying container, and placed in a constant temperature dryer. The temperature of this dryer was set to 200 ° C. and left for 24 hours and dried until the water content was 0.5% by mass or less to obtain 28 types of dried silica. When these silica dried bodies were taken out from the flat dish, all the silica dried bodies maintained the shape of the flat dish with almost no shrinkage.
On the other hand, the eight types of silica slurries of Comparative Examples 7-1 to 10-2 having an ammonia concentration and an ammonium carbonate concentration of 550 ppm by mass have excessively increased slurry viscosity and are not fluid. Could not be transferred to. For this reason, only Comparative Example 7-1 was transferred to a flat dish with a resin scoop and dried in the same manner as in the Examples, and drying of the other seven types of silica slurry was abandoned. The viscosities of 44 types of silica slurries obtained in Examples 1-1 to 4-6 and Comparative Examples 1-1 to 10-2 were measured using a B-type viscometer (model number BM-, manufactured by Toki Sangyo Co., Ltd.). It was measured in II). The results are shown in Tables 1 and 2. When the slurry viscosity exceeds 300 cP, the fluidity is lost and liquid feeding with a tube pump becomes substantially impossible.

〔シリカ乾燥体の解砕から分級まで〕
36種類のシリカ乾燥体を各別に、解砕機により5〜20mm程度の塊に解砕した後、高密度ポリプロピレン樹脂製のロールクラッシャーで粉砕した。粉砕物をナイロン樹脂製の網で構成された振動ふるいにかけ、分級し、28種類のシリカゲル粒子を得た。すべてのシリカゲル粒子の分級の範囲は150〜600μmとした。
[From crushing to classification of dried silica]
36 types of dried silica were separately pulverized to a mass of about 5 to 20 mm by a pulverizer and then pulverized by a roll crusher made of high-density polypropylene resin. The pulverized product was passed through a vibration sieve composed of a nylon resin net and classified to obtain 28 types of silica gel particles. The range of classification of all silica gel particles was 150 to 600 μm.

〔シリカゲル粒子の物性値〕
(1) 36種類のシリカゲル粒子の細孔分布を水銀ポロシメーター(島津製作所製、型番Autopore IV9500)でそれぞれ測定した。測定した細孔分布から粒子内の細孔直径の範囲と粒子間の細孔直径の範囲を見極めた。粒子内の細孔直径の範囲は0.03〜3μmの範囲にあって、主たる細孔の直径は0.03〜0.04μmの範囲に存在することが分かった。また実施例1−1〜実施例4−6の24種類のシリカゲル粒子の細孔分布は互いにほぼ同等であった。図1に実施例1−1のシリカゲル粒子の細孔直径とlog微分細孔容積の関係を示す。
[Physical properties of silica gel particles]
(1) The pore distribution of 36 types of silica gel particles was measured with a mercury porosimeter (manufactured by Shimadzu Corporation, model number Autopore IV9500). From the measured pore distribution, the range of pore diameters in the particles and the range of pore diameters between the particles were determined. It was found that the pore diameter range in the particles was in the range of 0.03 to 3 μm, and the main pore diameters were in the range of 0.03 to 0.04 μm. The pore distributions of the 24 types of silica gel particles of Example 1-1 to Example 4-6 were almost equal to each other. FIG. 1 shows the relationship between the pore diameter of the silica gel particles of Example 1-1 and the log differential pore volume.

(2) また細孔分布の測定データから細孔直径と積算細孔容積の関係図を作成し、粒子内の細孔直径が0.003〜3μmの範囲の全細孔容積(ml/g)を求めた。更に粒子内の細孔直径の範囲である0.003〜3μmのうち、0.01〜0.1μmの細孔直径の細孔が占める割合A(%)を求めた。具体的には、0.01〜0.1μmの範囲の積算細孔容積を0.003〜3μmの範囲の積算細孔容積で除した値である。図2に図1に基づくシリカゲル粒子の細孔容積を積算した積算細孔容積分布図を示す。   (2) A relationship diagram between pore diameter and accumulated pore volume was created from the pore distribution measurement data, and the total pore volume (ml / g) in the range of pore diameter in the particle range of 0.003 to 3 μm Asked. Further, the ratio A (%) occupied by pores having a pore diameter of 0.01 to 0.1 μm out of 0.003 to 3 μm which is a range of pore diameters in the particles was determined. Specifically, it is a value obtained by dividing the cumulative pore volume in the range of 0.01 to 0.1 μm by the cumulative pore volume in the range of 0.003 to 3 μm. FIG. 2 shows an integrated pore volume distribution diagram in which the pore volumes of the silica gel particles based on FIG. 1 are integrated.

(3) 36種類のシリカゲル粒子をそれぞれ石英製の焼成用容器(有効容積:5リットル)に充填し、その質量(g)を求め、その質量を有効容積で除することにより、かさ密度(g/ml)を算出した。これらの結果、表1及び表2に示す。
(4) 36種類のシリカゲル粒子を充填した石英製の焼成用容器を焼成炉である電気炉に入れ、1250℃まで2時間で昇温し、20時間保持した後、自然冷却した。
(3) Each of 36 types of silica gel particles is filled in a quartz baking container (effective volume: 5 liters), its mass (g) is obtained, and the mass is divided by the effective volume to obtain a bulk density (g / Ml) was calculated. These results are shown in Tables 1 and 2.
(4) A quartz firing container filled with 36 types of silica gel particles was placed in an electric furnace as a firing furnace, heated to 1250 ° C. over 2 hours, held for 20 hours, and then naturally cooled.

Figure 2015205782
Figure 2015205782

Figure 2015205782
Figure 2015205782

表1及び表2から明らかなように、(a) 粒子内の細孔直径が0.01〜0.1μmの範囲にある細孔の占める割合Aに関して、比較例1−1〜6−2で得られたシリカゲル粒子は、80.6〜90.0%であった。これに対して実施例1−1〜実施例4−6で得られたシリカゲル粒子は74.1〜80.5%であった。このことから、添加剤の添加により細孔の直径に大きな変化は見られないが、細孔個数が減少したことにより全細孔容積が減少したことが推察される。   As is clear from Tables 1 and 2, (a) with respect to the proportion A of the pores having a pore diameter in the range of 0.01 to 0.1 μm, the comparative example 1-1 to 6-2 The obtained silica gel particles were 80.6-90.0%. On the other hand, the silica gel particles obtained in Examples 1-1 to 4-6 were 74.1 to 80.5%. From this, it can be inferred that although the diameter of the pores is not significantly changed by the addition of the additive, the total pore volume is reduced by reducing the number of pores.

(b) また、全細孔容積に関して、比較例1−1〜6−2で得られたシリカゲル粒子は、1.172〜1.388ml/gであった。これに対して実施例1−1〜実施例4−6で得られたシリカゲル粒子は1.030〜1.173ml/gであり、実施例1−1〜実施例4−6で得られたシリカゲル粒子の方が比較例1−1〜6−2で得られたシリカゲル粒子より約12〜15%小さかった。   (b) Regarding the total pore volume, the silica gel particles obtained in Comparative Examples 1-1 to 6-2 were 1.172 to 1.388 ml / g. On the other hand, the silica gel particles obtained in Example 1-1 to Example 4-6 are 1.030 to 1.173 ml / g, and the silica gel obtained in Example 1-1 to Example 4-6. The particles were about 12-15% smaller than the silica gel particles obtained in Comparative Examples 1-1 to 6-2.

(c) 更に、かさ密度が0.27〜0.29g/mlの比較例1−1〜6−2のシリカゲル粒子は、1.35〜1.45kgしか焼成用容器に充填できなかったのに対して、かさ密度が0.31〜0.32g/mlの実施例1−1〜実施例4−6のシリカゲル粒子は、1.55〜1.60kg焼成用容器に充填することができ、約10〜15%多く、焼成炉に充填できた。即ち、焼成炉への1バッチ当たりのシリカゲル充填量を多くして、焼成工程の生産性を向上できることが分かった。   (c) Further, although the silica gel particles of Comparative Examples 1-1 to 6-2 having a bulk density of 0.27 to 0.29 g / ml could only be filled into a firing container from 1.35 to 1.45 kg. On the other hand, the silica gel particles of Examples 1-1 to 4-6 having a bulk density of 0.31 to 0.32 g / ml can be filled in a container for baking from 1.55 to 1.60 kg, 10 to 15% more could be filled in the firing furnace. That is, it was found that the productivity of the firing process can be improved by increasing the amount of silica gel per batch into the firing furnace.

Claims (3)

比表面積が90〜300m/gのヒュームドシリカ粒子と分散媒としての水とを混合して前記シリカ粒子の濃度が25〜35質量%のシリカスラリーを調製する工程と、
前記シリカスラリー中のアンモニア濃度又は炭酸アンモニウム濃度が100〜500質量ppmになるように前記シリカスラリーにアンモニア水又は炭酸アンモニウム水溶液を添加剤として添加混合する工程と、
前記添加剤を含むシリカスラリーから水分を除去してシリカ乾燥体を得る工程と、
前記シリカ乾燥体を解砕した後、粉砕し分級してシリカゲル粒子を得る工程と
を含むシリカゲル粒子の製造方法。
A step of preparing fumed silica particles having a specific surface area of 90 to 300 m 2 / g and water as a dispersion medium to prepare a silica slurry having a concentration of the silica particles of 25 to 35% by mass;
Adding and mixing ammonia water or an aqueous ammonium carbonate solution as an additive to the silica slurry such that the ammonia concentration or ammonium carbonate concentration in the silica slurry is 100 to 500 ppm by mass;
Removing water from the silica slurry containing the additive to obtain a dried silica,
And crushing and classifying the dried silica product to obtain silica gel particles.
水銀ポロシメーターで測定された粒子内の細孔直径が0.003〜3μmの範囲の全細孔容積が1.030〜1.173ml/gの範囲にあり、かつ前記粒子内の細孔直径が0.003〜3μmの範囲のうち、粒子内の細孔直径が0.01〜0.1μmの範囲にある細孔の占める割合が74.1〜80.5%の範囲にあることを特徴とするシリカゲル粒子。   The total pore volume in the range of 0.003 to 3 μm of pore diameter in the particle measured with a mercury porosimeter is in the range of 1.030 to 1.173 ml / g, and the pore diameter in the particle is 0. The ratio of the pores having a pore diameter in the range of 0.01 to 0.1 μm in the range of 0.003 to 3 μm is in the range of 74.1 to 80.5%. Silica gel particles. 合成非晶質シリカ粉末の前駆体である請求項2記載のシリカゲル粒子。   3. Silica gel particles according to claim 2, which is a precursor of synthetic amorphous silica powder.
JP2014085501A 2014-04-17 2014-04-17 Silica gel particles and manufacturing method therefor Pending JP2015205782A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014085501A JP2015205782A (en) 2014-04-17 2014-04-17 Silica gel particles and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014085501A JP2015205782A (en) 2014-04-17 2014-04-17 Silica gel particles and manufacturing method therefor

Publications (1)

Publication Number Publication Date
JP2015205782A true JP2015205782A (en) 2015-11-19

Family

ID=54602965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014085501A Pending JP2015205782A (en) 2014-04-17 2014-04-17 Silica gel particles and manufacturing method therefor

Country Status (1)

Country Link
JP (1) JP2015205782A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107162006A (en) * 2017-05-25 2017-09-15 厦门大学 One kind plus salt drying means
CN115304070A (en) * 2022-08-16 2022-11-08 河南大学 Preparation method of multi-scale micro-channel spherical silicon dioxide

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107162006A (en) * 2017-05-25 2017-09-15 厦门大学 One kind plus salt drying means
CN115304070A (en) * 2022-08-16 2022-11-08 河南大学 Preparation method of multi-scale micro-channel spherical silicon dioxide
CN115304070B (en) * 2022-08-16 2023-10-27 河南大学 Preparation method of multi-scale micro-pore spherical silicon dioxide

Similar Documents

Publication Publication Date Title
CN1221471C (en) Highly filled SiO2 dispersion, methods for production thereof and its use
TWI582055B (en) Ultra fine milk of lime composition
JP7002519B2 (en) How to prepare spherical silicon fine powder for electronic packaging
US7704315B2 (en) Highly-filled, aqueous metal oxide dispersion
RU2017144428A (en) METHOD OF MAKING POROUS BODIES WITH IMPROVED PROPERTIES
CN103359740A (en) Preparation method of silica shear thickening liquid
CN106316456A (en) Method for preparing foamed ceramic through hydrophobic flocculation
EP3112424A1 (en) Polyarylene sulfide resin powder/grain composition and method for producing same
JP6258131B2 (en) Hydrophobic airgel powder, production method thereof, and filler using the same
JP2018090638A5 (en)
US20180111881A1 (en) Precursor Material for Additive Manufacturing of Low-density, High-porosity Ceramic Parts and Methods of Producing the Same
JP2015205782A (en) Silica gel particles and manufacturing method therefor
CN104326478A (en) Preparation method of nano silica microspheres
JP2008150263A (en) Method of manufacturing silicon carbide powder
CN108423686B (en) Preparation method of high-purity sub-nanometer spherical silicon micropowder
JP2012102016A (en) Silica particle and method of manufacturing the same
Umaran et al. Aqueous dispersion of red clay-based ceramic powder with the addition of starch
JP6129216B2 (en) Method for producing and processing pasty SiO2 material and use thereof
JP4044350B2 (en) Nonporous spherical silica and method for producing the same
JP2010059056A (en) Method of manufacturing silica particle
JP2015224182A (en) Method for preparing cement composition
JP6283678B2 (en) Colorant composition and method for producing the same
KR100843057B1 (en) Highly-filled, aqueous metal oxide dispersion
CN203606625U (en) Material sub-packaging device for preparing powdered ink
JP2004231483A (en) Method for production of mullite whisker