JP2015204755A - Facility for agricultural and horticultural use equipped with sunlight power generating system - Google Patents

Facility for agricultural and horticultural use equipped with sunlight power generating system Download PDF

Info

Publication number
JP2015204755A
JP2015204755A JP2014085385A JP2014085385A JP2015204755A JP 2015204755 A JP2015204755 A JP 2015204755A JP 2014085385 A JP2014085385 A JP 2014085385A JP 2014085385 A JP2014085385 A JP 2014085385A JP 2015204755 A JP2015204755 A JP 2015204755A
Authority
JP
Japan
Prior art keywords
light
agricultural
power generation
wavelength
nanometers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014085385A
Other languages
Japanese (ja)
Inventor
野村和弘
Kazuhiro Nomura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Riken Technos Corp
Original Assignee
Riken Technos Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Riken Technos Corp filed Critical Riken Technos Corp
Priority to JP2014085385A priority Critical patent/JP2015204755A/en
Publication of JP2015204755A publication Critical patent/JP2015204755A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Landscapes

  • Photovoltaic Devices (AREA)
  • Cultivation Of Plants (AREA)
  • Greenhouses (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a facility for agricultural and horticultural use equipped with a sunlight power generating system capable of effectively utilizing light of wavelength 500 to 600 nanometers.SOLUTION: A facility for agricultural and horticultural use has: (A) a sunlight power generating system having a lighting portion 1 and a double-sided power generation type module 2; and (B) a member 3 which reflects light having a wavelength of 500 to 600 nanometers, in which (1) the (A) sunlight power generating system is provided for at least a part of an area of the facility for agricultural and horticultural use which is directly irradiated with sunlight; (2) at least a part of light 4 having passed through a lighting portion of the (A) sunlight power generating system is made incident to the (B) member 3; (3) at least a part of light 5 having a wavelength of wavelength 500 to 600 nanometers which is reflected by the (B) member 3 is made incident to the double-sided power generation type module 2 of the (A) sunlight power generating system; and (4) at least a part of light 6 having passed through the (B) member 3 is made incident into the facility.

Description

本発明は、農園芸用施設に関する。更に詳しくは、農園芸作物の生育に必要な光は透過させつつ、その余の光は効率的に太陽光発電に利用することのできる太陽光発電システムを備えた農園芸用施設に関する。
The present invention relates to an agricultural and horticultural facility. More specifically, the present invention relates to an agricultural and horticultural facility equipped with a solar power generation system that allows light necessary for growth of agricultural and horticultural crops to pass therethrough and efficiently use the remaining light for solar power generation.

近年、石油等の化石燃料や原子力に替わる新たなエネルギー源として、太陽光発電が注目を集めており、住宅や農園芸用ハウスの屋根等への太陽光発電システムの設置が進んでいる。太陽光発電システムを農園芸用ハウスの屋根の上や農地に設置された架台の上に設置する場合は、農園芸作物の生育に必要な光を施設内に採り入れるため、採光部分を有する太陽光発電システムが使用される。そして採光部分を透過した光は、全て農園芸作物の生育に使用されることになる。 In recent years, photovoltaic power generation has attracted attention as a new energy source to replace fossil fuels such as oil and nuclear power, and the installation of photovoltaic power generation systems on the roofs of houses and agricultural and horticultural houses is progressing. When installing a solar power generation system on the roof of an agricultural or horticultural house or on a pedestal installed in farmland, the sunlight that has a daylighting part is used to bring the light necessary for the growth of agricultural and horticultural crops into the facility. A power generation system is used. And all the light which permeate | transmitted the lighting part will be used for growth of agricultural and horticultural crops.

しかし、農園芸作物の生育に必要とする光は、可視光線の中でも波長400〜500ナノメートルと600〜700ナノメートルの光であり(非特許文献1)、波長500〜600ナノメートルの光は生育への寄与は小さい。つまりこれまでは波長500〜600ナノメートルの光が有効活用されていなかった。 However, the light required for the growth of agricultural and horticultural crops is light having a wavelength of 400 to 500 nanometers and 600 to 700 nanometers among visible light (Non-Patent Document 1), and light having a wavelength of 500 to 600 nanometers is The contribution to growth is small. That is, until now, light having a wavelength of 500 to 600 nanometers has not been effectively utilized.

農園芸用施設等に使用する採光部分を有する太陽光発電システムとして、両面発電型のものを使用することは公知であり、「採光部分を有し太陽光を内部に採光するように構成した建物内の該採光部分の直下に、複数枚の太陽電池セルを並設し透明な合成樹脂で被覆してなる薄型軽量太陽電池モジュールを配設するか又は複数の該薄型軽量太陽電池モジュールを配設した構成の太陽電池アレイを設け、前記建物内への採光は前記太陽電池モジュールの太陽電池セルと太陽電池セルの間及び/又は前記太陽電池アレイの太陽電池モジュールと太陽電池モジュールの間から行うようにしたことを特徴とする遮光・調光機能付太陽光発電システム。」、及び上記のシステムにおいて、「太陽電池モジュールに両面発電可能な太陽電池セルを用い、該太陽電池モジュールは屋外から入射する太陽光の他、屋内で反射・散乱した光でも発電できるように構成したことを特徴とする遮光・調光機能付太陽光発電システム。」が提案されている(特許文献1)。しかし、波長500〜600ナノメートルの光が有効活用されていないという課題については、何の記載も示唆もない。また、寒冷期であっても、晴天の日中には、農園芸作物の生育に必要な光をハウス内に採り入れることにより、ハウス内部の温度は大きく上昇するため、農園芸用ハウスの内部が高温になることにより育成に障害が生じ易い農園芸作物、例えば、イチゴやレタスなどの場合には、冷房を必要としているという問題を解決する方法については、何の記載も示唆もない。 As a solar power generation system having a daylighting part used for agricultural and horticultural facilities, etc., it is known to use a double-sided power generation type, “a building having a daylighting part and configured to daylight sunlight inside. A thin and light solar cell module in which a plurality of solar cells are juxtaposed and covered with a transparent synthetic resin or a plurality of the thin and light solar cell modules is arranged immediately below the daylighting portion. The solar cell array having the above structure is provided, and the daylighting into the building is performed between the solar cells of the solar cell module and / or between the solar cell modules of the solar cell array. In the solar power generation system with a light-shielding / dimming function, characterized in that, and in the above-described system, The solar cell module is a solar power generation system with a light-shielding / dimming function, characterized in that it can generate power from sunlight reflected and scattered indoors in addition to sunlight incident from the outside. " Patent Document 1). However, there is no description or suggestion about the problem that light having a wavelength of 500 to 600 nanometers is not effectively utilized. In addition, even during the cold season, the temperature inside the house rises greatly by introducing light necessary for the growth of agricultural and horticultural crops into the house during sunny days. In the case of agricultural and horticultural crops, such as strawberries and lettuce, which tend to be hindered by raising the temperature, there is no description or suggestion about a method for solving the problem of requiring cooling.

更に採光部分を有していても、採光部分以外の箇所による影が出来るため、農園芸作物の受け取る光量は場所により違い、その生育状態にばらつきが出易いという問題があった。またこの問題を解決するため、太陽光発電システムのアレイを非常に高い位置に設置することが行われているが、システムのメンテナンス作業性やメンテナンス作業時の安全性が低下する;システムが強風により被害を受け易い;という新たな問題を生じていた。
Furthermore, even if it has a daylighting part, since shadows are produced by places other than the daylighting part, the amount of light received by the agricultural and horticultural crops varies depending on the place, and there is a problem that the growth state tends to vary. Moreover, in order to solve this problem, the array of the photovoltaic power generation system is installed at a very high position, but the maintenance workability of the system and the safety during the maintenance work are reduced; A new problem has arisen;

特開2002−026357号公報JP 2002-026357 A

植物の成長・発育と光質の関係http://www.nodai.ac.jp/journal/research/amaki/050708.htmlRelationship between plant growth and development and light quality http://www.nodai.ac.jp/journal/research/amaki/050708.html

本発明の課題は、波長500〜600ナノメートルの光を有効活用することのできる太陽光発電システムを備えた農園芸用施設を提供することにある。本発明の第2の課題は、農園芸作物の生育に必要な光は透過させつつ、その余の光は効率的に太陽光発電に利用し、農園芸用施設内部の温度上昇を抑制することのできる太陽光発電システムを備えた農園芸用施設を提供することにある。本発明の第3の課題は、任意の低い位置に採光部分を有する太陽光発電システムのアレイを設置しても、農園芸作物の受け取る光量が場所によらず一定となり、その生育状態のばらつきを小さくすることのできる太陽光発電システムを備えた農園芸用施設を提供することにある。
An object of the present invention is to provide an agricultural and horticultural facility provided with a solar power generation system capable of effectively utilizing light having a wavelength of 500 to 600 nanometers. The second problem of the present invention is that light necessary for the growth of agricultural and horticultural crops is transmitted while the remaining light is efficiently used for solar power generation to suppress the temperature rise inside the agricultural and horticultural facilities. It is to provide an agricultural and horticultural facility equipped with a solar power generation system capable of generating energy. The third problem of the present invention is that even if an array of a solar power generation system having a daylighting portion is installed at an arbitrarily low position, the amount of light received by the agricultural and horticultural crops is constant regardless of the place, and the variation in the growth state is reduced. The object is to provide an agricultural and horticultural facility equipped with a solar power generation system that can be made small.

本発明者は、鋭意研究した結果、採光部分と両面発電型モジュールとを有する太陽光発電システム、及び波長500〜600ナノメートルの光を反射する部材を有し、これらが特定の条件に構成された農園芸用施設により、上記課題を達成できることを見出した。 As a result of earnest research, the inventor has a photovoltaic power generation system having a daylighting portion and a double-sided power generation type module, and a member that reflects light having a wavelength of 500 to 600 nanometers, and these are configured to specific conditions. It was found that the above-mentioned problems can be achieved by the agricultural and horticultural facilities.

すなわち、本発明は、農園芸用施設であって、
(A)採光部分と両面発電型モジュールとを有する太陽光発電システム;及び
(B)波長500〜600ナノメートルの光を反射する部材;
を有し、
(1)上記(A)太陽光発電システムは、農園芸用施設の太陽光が直射する箇所の少なくとも一部分に設けられていること;
(2)上記(A)太陽光発電システムの採光部分を透過した光の少なくとも一部は、上記(B)部材に入射すること;
(3)上記(B)部材に反射された波長500〜600ナノメートルの光の少なくとも一部は、上記(A)太陽光発電システムの両面発電型モジュールに入射すること;
(4)上記(B)部材を透過した光の少なくとも一部は、施設内部に入射すること;
を特徴とする農園芸用施設である。
That is, the present invention is an agricultural and horticultural facility,
(A) a solar power generation system having a daylighting part and a double-sided power generation type module; and (B) a member that reflects light having a wavelength of 500 to 600 nanometers;
Have
(1) The (A) photovoltaic power generation system is provided in at least a part of a location where sunlight of an agricultural or horticultural facility is directly irradiated;
(2) At least a part of the light transmitted through the daylighting part of the (A) solar power generation system is incident on the member (B);
(3) At least a part of light having a wavelength of 500 to 600 nanometers reflected by the member (B) is incident on the double-sided power generation module of the solar power generation system (A);
(4) At least part of the light transmitted through the member (B) is incident on the inside of the facility;
It is an agricultural and horticultural facility characterized by

本発明の第2の発明は、上記(B)波長500〜600ナノメートルの光を反射する部材が、
(B2)波長500〜600ナノメートルと波長800〜1200ナノメートルの光を反射する部材;
であることを特徴とする第1の発明に記載の農園芸用施設である。
According to a second aspect of the present invention, (B) a member that reflects light having a wavelength of 500 to 600 nanometers,
(B2) a member that reflects light having a wavelength of 500 to 600 nanometers and a wavelength of 800 to 1200 nanometers;
The agricultural and horticultural facility according to the first aspect of the invention.

本発明の第3の発明は、更に(C)光拡散性部材を有し、
(5)上記(B)波長500〜600ナノメートルの光を反射する部材を透過した光の少なくとも一部は、上記(C)光拡散性部材に入射し、その透過光の少なくとも一部が施設内部に入射すること;
を特徴とする第1の発明又は第2の発明に記載の農園芸用施設である。
The third invention of the present invention further comprises (C) a light diffusing member,
(5) (B) At least part of the light transmitted through the member that reflects light having a wavelength of 500 to 600 nanometers is incident on the (C) light diffusing member, and at least part of the transmitted light is facility. Entering inside;
An agricultural and horticultural facility according to the first invention or the second invention.

本発明の太陽光発電システムを備えた農園芸用施設は、農園芸作物の生育に不必要な光は効率的に太陽光発電に利用することができ、農園芸用施設内部の温度上昇を抑制することができる。また本発明の第三の発明では、更に任意の低い位置に採光部分を有する太陽光発電システムのアレイを設置しても、農園芸作物の受け取る光量が場所によらず一定となり、その生育状態のばらつきを小さくすることができる。
Agricultural and horticultural facilities equipped with the solar power generation system of the present invention can efficiently use light unnecessary for the growth of agricultural and horticultural crops for solar power generation, and suppress temperature rise inside the agricultural and horticultural facilities. can do. Further, in the third invention of the present invention, even if an array of photovoltaic power generation systems having a daylighting portion is installed at an arbitrarily low position, the amount of light received by the agricultural and horticultural crops is constant regardless of the location, Variation can be reduced.

本発明の農園芸用施設は、(A)採光部分と両面発電型モジュールとを有する太陽光発電システム;及び(B)波長500〜600ナノメートルの光を反射する部材;を有する。 The agricultural and horticultural facility of the present invention includes (A) a solar power generation system having a daylighting portion and a double-sided power generation type module; and (B) a member that reflects light having a wavelength of 500 to 600 nanometers.

本明細書において、「農園芸用施設」とは、農園芸用ハウスのみならず、農地に設置された架台に太陽光発電システムを設置した施設も含む用語である。また「農園芸用施設内部」とは、農園芸用ハウスの場合はハウス内部であり、農地に設置された架台に太陽光発電システムを設置した施設の場合は、太陽光発電システムの下となる場所である。 In this specification, “agricultural and horticultural facilities” is a term including not only agricultural and horticultural houses but also facilities in which a photovoltaic power generation system is installed on a pedestal installed on farmland. “Agricultural and horticultural facilities” means the interior of the house for agricultural and horticultural houses, and under the solar power generation system for facilities with a solar power generation system installed on a stand installed on farmland. Is a place.

(A)採光部分と両面発電型モジュールとを有する太陽光発電システム:
上記太陽光発電システムAの採光部分は、発電要素と発電要素との間に設けた隙間である。隙間の設け方は制限されず、任意である。例えば、太陽電池セルに隙間を施したタイプ、太陽電池モジュールのセルとセルとの間に隙間を設けたタイプ、太陽電池アレイのモジュールとモジュールとの間に隙間を設けたタイプ、太陽電池アレイと太陽電池アレイとの間に隙間を設けたタイプ、及びこれらを任意に組み合わせたタイプなどをあげることができる。隙間の形も任意であり、例えば、直線状、曲線状、円形、三角形、四角形、六角形などの連続した、又は/及び独立した隙間を設けることができる。
(A) Solar power generation system having a daylighting part and a double-sided power generation type module:
The daylighting part of the solar power generation system A is a gap provided between the power generation element and the power generation element. The method of providing the gap is not limited and is arbitrary. For example, a type with a gap between solar cells, a type with a gap between cells of a solar cell module, a type with a gap between modules of a solar cell array, a solar cell array, The type which provided the clearance gap between solar cell arrays, the type which combined these arbitrarily, etc. can be mention | raise | lifted. The shape of the gap is also arbitrary. For example, a continuous or / and independent gap such as a straight line, a curved line, a circle, a triangle, a quadrangle, and a hexagon can be provided.

なお本明細書において、太陽電池セルとは、太陽電池素子そのもののことであり、太陽電池の基本単位となるものである。太陽電池モジュールとは、太陽電池セルを複数並べて配線し、強化ガラス等で保護・パッケージ化したものである。太陽電池アレイとは、太陽電池モジュールを複数並べて配線したものであり、太陽光発電システムの発電要素の設置単位となるものである。太陽光発電システムとはアレイ、及び制御系等を含むものである。 In addition, in this specification, a photovoltaic cell is a solar cell element itself, and becomes a basic unit of a solar cell. A solar cell module is a device in which a plurality of solar cells are arranged and wired and protected and packaged with tempered glass or the like. A solar cell array is a unit in which a plurality of solar cell modules are arranged and wired, and is a unit for installing power generation elements of a solar power generation system. The solar power generation system includes an array, a control system, and the like.

上記太陽光発電システムAの採光部分の全光線透過率は、通常50%以上である。農園芸作物の生育や、発電効率の観点から、採光部分の全光線透過率は高いほど好ましく、70%以上が好ましい。 The total light transmittance of the daylighting part of the solar power generation system A is usually 50% or more. From the viewpoint of growth of agricultural and horticultural crops and power generation efficiency, the total light transmittance of the daylighting portion is preferably as high as possible, and preferably 70% or more.

上記太陽光発電システムAの採光部分の面積の、太陽光発電システムAの全太陽光受光面積に対する割合は、特に制限されず、採光部分の全光線透過率や農園芸用施設内部で栽培される作物の種類などを勘案して、任意に決めることができる。例えば、イチゴやレタスなどの高温に弱い作物を栽培するときは、遮光効果を大きくするため、上記割合を小さくすることが好ましい。 The ratio of the area of the daylighting portion of the solar power generation system A to the total solar light receiving area of the solar power generation system A is not particularly limited, and is cultivated inside the daylighting portion and the agricultural and horticultural facilities. It can be decided arbitrarily considering the type of crop. For example, when cultivating crops that are vulnerable to high temperatures such as strawberries and lettuce, it is preferable to reduce the ratio in order to increase the light-shielding effect.

上記太陽光発電システムAの両面発電型モジュールは、両面からの発電が可能なモジュールである。本発明に使用する両面発電型モジュールは、特に制限されず、例えば、表裏対象構造の太陽電池セルを、表面ガラスと裏面ガラスとでサンドイッチ構造にしたモジュール;表面のみ発電可能なモジュールを組み合わせ、モジュール組合体として両面からの発電を可能にしたもの;など任意の両面からの発電が可能なモジュールを使用することができるが、裏面側で発電に使用する光は、主に上記部材Bで反射された波長500〜600ナノメートルの光(第2の発明の場合は、波長500〜600ナノメートルの光と波長800〜1200ナノメートルの光)となるので、少なくとも裏面側については、これらの波長領域の分光感度の高いものが好ましい。例えば、アモルファスシリコン型、結晶シリコン型、及びCIS(カルコパイライト)型などをあげることができる。 The double-sided power generation type module of the solar power generation system A is a module that can generate power from both sides. The double-sided power generation type module used in the present invention is not particularly limited. For example, a module in which a solar cell having a front and back target structure is sandwiched between a front glass and a back glass; Modules that can generate power from both sides, such as those that enable power generation from both sides as a combined body, can be used, but the light used for power generation on the back side is mainly reflected by the member B Since the light having a wavelength of 500 to 600 nanometers (in the case of the second invention, the light having a wavelength of 500 to 600 nanometers and the light having a wavelength of 800 to 1200 nanometers), at least the wavelength region in the back side Those having high spectral sensitivity are preferred. Examples thereof include an amorphous silicon type, a crystalline silicon type, and a CIS (chalcopyrite) type.

(B)波長500〜600ナノメートルの光を反射する部材
上記部材Bは、波長500〜600ナノメートルの光を反射し、それ以外の光は透過する部材である。
(B) A member that reflects light having a wavelength of 500 to 600 nanometers The member B is a member that reflects light having a wavelength of 500 to 600 nanometers and transmits other light.

上記部材Bの波長500〜600ナノメートルの光の反射率(以下、反射率Bと略すことがある。)は、好ましくは30%以上、好ましくは40%以上である。反射率Bは、高いほど太陽光発電効率が上がり、農園芸用施設内部の温度上昇を抑制することができるため好ましい。 The reflectance of light having a wavelength of 500 to 600 nm of the member B (hereinafter sometimes abbreviated as reflectance B) is preferably 30% or more, and preferably 40% or more. The higher the reflectance B is, the higher the photovoltaic power generation efficiency is, and it is preferable because the temperature rise in the agricultural and horticultural facilities can be suppressed.

なお本明細書において、反射率Bは、波長500〜600ナノメートルの全範囲における日射の反射率が100%であると仮定した場合の反射スペクトルの積分面積に対する波長500〜600ナノメートルにおける日射の反射スペクトルの積分面積の割合であり、島津製作所株式会社の分光光度計「SolidSpec−3700(商品名)」を用い、光を入射角0°で部材Bに入射させて測定した値である。 In this specification, the reflectance B is the ratio of the solar radiation at a wavelength of 500 to 600 nanometers with respect to the integral area of the reflection spectrum when the reflectance of solar radiation in the entire range of wavelengths of 500 to 600 nanometers is assumed to be 100%. It is the ratio of the integral area of the reflection spectrum, and is a value measured by using a spectrophotometer “SolidSpec-3700 (trade name)” manufactured by Shimadzu Corporation and making light incident on member B at an incident angle of 0 °.

また上記部材Bは、農園芸作物の生育に必要とする、波長400〜500ナノメートルと波長600〜700ナノメートルの光の透過率(以下、透過率Bと略すことがある。)は高いことが好ましい。透過率Bは、好ましくは50%以上、より好ましくは70%以上である。 The member B has a high light transmittance (hereinafter abbreviated as “transmittance B”) having a wavelength of 400 to 500 nanometers and a wavelength of 600 to 700 nanometers necessary for the growth of agricultural and horticultural crops. Is preferred. The transmittance B is preferably 50% or more, more preferably 70% or more.

なお本明細書において、透過率Bは、波長400〜500ナノメートルと波長600〜700ナノメートルの全範囲における日射の透過率が100%であると仮定した場合の透過スペクトルの積分面積に対する波長400〜500ナノメートルと波長600〜700ナノメートルにおける日射の透過スペクトルの積分面積の割合であり、島津製作所株式会社の分光光度計「SolidSpec−3700(商品名)」を用い、光を入射角0°で部材Bに入射させて測定した値である。 In this specification, the transmittance B is a wavelength 400 with respect to the integral area of the transmission spectrum when it is assumed that the transmittance of solar radiation in the entire range of wavelengths 400 to 500 nanometers and wavelengths 600 to 700 nanometers is 100%. It is the ratio of the integrated area of the transmission spectrum of solar radiation at a wavelength of ˜500 nanometers and a wavelength of 600 to 700 nanometers. Using a spectrophotometer “SolidSpec-3700 (trade name)” of Shimadzu Corporation, the incident angle is 0 °. It is a value measured by making it incident on the member B.

このような上記部材Bとしては、例えば、例えば、二軸延伸ポリエチレンテレフタレートフィルムなどの任意の透明ウェブ基材の少なくとも片面に、スパッタリング、蒸着、コーティング等の手法を用いて、高屈折率層と低屈折率層とを交互に多積層したもの;高屈折率の透明熱可塑性樹脂組成物と低屈折率の透明熱可塑性樹脂組成物との共押出交互多層積層体;などの光学的な干渉により波長500〜600ナノメートルの光を反射するものをあげることができる。 As such member B, for example, at least one surface of an arbitrary transparent web substrate such as a biaxially stretched polyethylene terephthalate film, using a technique such as sputtering, vapor deposition, and coating, a high refractive index layer and a low refractive index layer can be used. Wavelengths due to optical interference, such as multiple layers of alternating refractive index layers; co-extruded alternating multi-layer laminates of high refractive index transparent thermoplastic resin composition and low refractive index transparent thermoplastic resin composition; The thing which reflects the light of 500-600 nanometer can be mention | raise | lifted.

上記部材Bの形状は、任意である。通常は、シート状のものを好ましく使用できるが、これに制限されない。例えば、図2に示すようにプリズム状であってもよい。 The shape of the member B is arbitrary. Usually, a sheet-like material can be preferably used, but is not limited thereto. For example, it may be prismatic as shown in FIG.

本発明の農園芸用施設は、(1)上記太陽光発電システムAは、農園芸用施設の太陽光が直射する箇所の少なくとも一部分に設けられていること;(2)上記太陽光発電システムAの採光部分を透過した光の少なくとも一部は、上記部材Bに入射すること;(3)上記部材Bに反射された波長500〜600ナノメートルの光の少なくとも一部は、上記太陽光発電システムAの両面発電型モジュールに入射すること;(4)上記部材Bを透過した光の少なくとも一部は、施設内部に入射すること;を特徴とする。 The agricultural and horticultural facilities according to the present invention are: (1) the solar power generation system A is provided in at least a part of the direct sunlight of the agricultural and horticultural facilities; (2) the solar power generation system A At least part of the light transmitted through the daylighting part of the light enters the member B; (3) at least part of the light having a wavelength of 500 to 600 nanometers reflected by the member B is the solar power generation system. (4) At least part of the light transmitted through the member B is incident on the inside of the facility.

上記太陽光発電システムAは、太陽光を効率的に受光するために、太陽光が直射する箇所の少なくとも一部、好ましくは全部に設けられる。 The solar power generation system A is provided in at least a part, preferably all, of the places where sunlight is directly irradiated in order to efficiently receive sunlight.

上記太陽光発電システムAの採光部分を透過した光の少なくとも一部、好ましくは全部は、上記部材Bに入射し、波長500〜600ナノメートルの光は反射され、それ以外の波長の光は部材Bを透過し、その少なくとも一部、好ましくは全部は施設内部に入射して、施設内で栽培されている農園芸作物の生育に用いられる。反射された波長500〜600ナノメートルの光の少なくとも一部、好ましくは全部は、上記太陽光発電システムAの両面発電型モジュールに入射し、太陽光発電に利用される。 At least a part, preferably all, of the light transmitted through the daylighting portion of the photovoltaic power generation system A is incident on the member B, light having a wavelength of 500 to 600 nanometers is reflected, and light having other wavelengths is reflected by the member. B passes through B, and at least a part, preferably all, of the light enters B and is used to grow agricultural and horticultural crops cultivated in the facility. At least a part, preferably all, of the reflected light having a wavelength of 500 to 600 nanometers is incident on the double-sided power generation module of the solar power generation system A and used for solar power generation.

実施態様としては、例えば、図1や図2に示すように、上記太陽光発電システムAの採光部分を透過した光が、上記部材Bに直接入射するように構成しても良いし、例えば、図3に示すように、太陽光発電システムAの採光部分を透過した光を1以上の鏡などの全光線反射部材で反射し、部材Bに間接的に入射するように構成しても良い。部材Bに直接入射する実施態様では、システムを簡素で低コストなものにすることができる。部材Bに間接的に入射する実施態様では、部材Bにより反射された波長500〜600ナノメートルの光が、上記太陽光発電システムAの両面発電型モジュールに入射することなく、再び採光部分を透過してしまうというロスを減らすことができる。 As an embodiment, for example, as shown in FIGS. 1 and 2, the light transmitted through the daylighting portion of the solar power generation system A may be directly incident on the member B, for example, As shown in FIG. 3, the light transmitted through the daylighting portion of the solar power generation system A may be reflected by a total light reflecting member such as one or more mirrors and indirectly incident on the member B. In an embodiment that is directly incident on member B, the system can be simple and low cost. In the embodiment in which the light is indirectly incident on the member B, light having a wavelength of 500 to 600 nanometers reflected by the member B is transmitted through the daylighting portion again without entering the double-sided power generation type module of the solar power generation system A. This can reduce the loss.

本発明の第2の発明について説明する。第2の発明には、上記部材Bとして、(B2)波長500〜600ナノメートルと波長800〜1200ナノメートルの光を反射し、それ以外の光は透過する部材を使用する。そのため波長800〜1200ナノメートルの光、所謂「熱線」、を反射して太陽光発電に利用し、農園芸用施設内部に入射しないようにすることができる。これにより農園芸作物の生育に不必要な光は効率的に太陽光発電に利用し、農園芸用施設内部の温度上昇を抑制する効果が更に高まる。 The second invention of the present invention will be described. In the second invention, (B2) a member that reflects light having a wavelength of 500 to 600 nanometers and a wavelength of 800 to 1200 nanometers and transmits other light is used as the member B. Therefore, light having a wavelength of 800 to 1200 nanometers, so-called “heat rays”, can be reflected and used for photovoltaic power generation, and can be prevented from entering the agricultural or horticultural facilities. Thereby, the light unnecessary for the growth of agricultural and horticultural crops is efficiently used for solar power generation, and the effect of suppressing the temperature rise inside the agricultural and horticultural facilities is further enhanced.

上記部材B2の波長500〜600ナノメートルの光の反射率(以下、反射率B2と略すことがある。。測定方法は反射率Bに同じ。)は、好ましくは30%以上、好ましくは40%以上である。反射率B2は、高いほど太陽光発電効率が上がり、農園芸用施設内部の温度上昇を抑制することができるため好ましい。 The reflectance of light having a wavelength of 500 to 600 nanometers of the member B2 (hereinafter sometimes abbreviated as reflectance B2. The measurement method is the same as reflectance B) is preferably 30% or more, preferably 40%. That's it. The higher the reflectance B2, the higher the photovoltaic power generation efficiency, and the more preferable the reflectance B2 is because the temperature rise inside the agricultural and horticultural facilities can be suppressed.

上記部材B2の波長800〜1200ナノメートルの光の反射率は、(以下、赤外反射率B2と略すことがある。)は、好ましくは30%以上、好ましくは40%以上である。赤外反射率B2は、高いほど太陽光発電効率が上がり、農園芸用施設内部の温度上昇を抑制することができるため好ましい。 The reflectance of light having a wavelength of 800 to 1200 nanometers of the member B2 (hereinafter sometimes abbreviated as infrared reflectance B2) is preferably 30% or more, and preferably 40% or more. The higher the infrared reflectance B2, the higher the photovoltaic power generation efficiency, which is preferable because the temperature rise inside the agricultural and horticultural facilities can be suppressed.

なお本明細書において、赤外反射率B2は、波長800〜1200ナノメートルの全範囲における日射の反射率が100%であると仮定した場合の反射スペクトルの積分面積に対する波長800〜1200ナノメートルにおける日射の反射スペクトルの積分面積の割合であり、島津製作所株式会社の分光光度計「SolidSpec−3700(商品名)」を用い、光を入射角0°で部材B2に入射させて測定した値である。 In addition, in this specification, infrared reflectance B2 is in wavelength 800-1200 nanometer with respect to the integral area of a reflection spectrum at the time of assuming that the reflectance of solar radiation in the whole range of wavelength 800-1200 nanometer is 100%. It is the ratio of the integrated area of the reflection spectrum of solar radiation, and is a value measured using a spectrophotometer “SolidSpec-3700 (trade name)” manufactured by Shimadzu Corporation with light incident on the member B2 at an incident angle of 0 °. .

また上記部材B2は、農園芸作物の生育に必要とする、波長400〜500ナノメートルと波長600〜700ナノメートルの光の透過率(以下、透過率B2と略すことがある。測定方法は透過率Bに同じ。)は高いことが好ましい。透過率B2は、好ましくは50%以上、より好ましくは70%以上である。 Moreover, the said member B2 may be abbreviated as the transmittance | permeability (henceforth transmittance | permeability B2 below) of the light of wavelength 400-500 nanometer and wavelength 600-700 nanometer which are required for growth of agricultural and horticultural crops. It is preferable that the rate B is the same. The transmittance B2 is preferably 50% or more, more preferably 70% or more.

上記部材B2としては、例えば、上記部材Bと波長800〜1200ナノメートルの光を反射し、それ以外の光は透過する部材(以下、部材B−2と略すことがある。)との積層体をあげることができる。 As the member B2, for example, a laminate of the member B and a member that reflects light having a wavelength of 800 to 1200 nanometers and transmits other light (hereinafter may be abbreviated as member B-2). Can give.

上記部材B−2としては、例えば、二軸延伸ポリエチレンテレフタレートフィルムなどの任意の透明ウェブ基材の少なくとも片面に、スパッタリング、蒸着、コーティング等の手法を用いて、高屈折率層と低屈折率層とを交互に多積層したもの;高屈折率の透明熱可塑性樹脂組成物と低屈折率の透明熱可塑性樹脂組成物との共押出交互多層積層体;などの光学的な干渉により波長800〜1200ナノメートルの光を反射するものをあげることができる。 As the member B-2, for example, a high refractive index layer and a low refractive index layer are formed on at least one surface of an arbitrary transparent web substrate such as a biaxially stretched polyethylene terephthalate film using a technique such as sputtering, vapor deposition, and coating. And a multi-layer laminate of alternating high-refractive-index transparent thermoplastic resin composition and low-refractive-index transparent thermoplastic resin composition; wavelength 800-1200 due to optical interference such as One that reflects nanometer light can be mentioned.

また所望により、例えば、波長700〜800ナノメートルの光を反射し、それ以外の光は透過する部材(以下、部材B−3と略すことがある。)を更に用いることにより;あるいは、上記部材B−2の替わりに、波長700〜1200ナノメートルの光を反射し、それ以外の光は透過する部材(以下、部材B−4と略すことがある。)を用いることにより;波長700〜800ナノメートルの光を農園芸用施設内部に入射させないようにしてもよい。トウモロコシやサトウキビなどの農園芸作物は、非常に背が高くなる(通常2〜4メートル)ため、太陽電池モジュールを4メートル以上の高所に設置しなくてはならない。しかし、上記部材Bと部材B−3との積層体を用いることで;あるいは部材Bと部材B−4との積層体を用いることで;波長700〜800ナノメートルの光を反射、即ち、トウモロコシやサトウキビなどの農園芸作物には照射しないようにすることにより、その背を低くし、太陽電池モジュールの設置位置を低くすることができるようになる。 If desired, for example, by further using a member that reflects light having a wavelength of 700 to 800 nanometers and transmits other light (hereinafter, may be abbreviated as member B-3); By using a member that reflects light having a wavelength of 700 to 1200 nanometers and transmits other light (hereinafter, may be abbreviated as member B-4) instead of B-2; Nanometer light may be prevented from entering the agricultural or horticultural facilities. Agricultural and horticultural crops such as corn and sugarcane are very tall (usually 2 to 4 meters), so the solar cell module must be installed at a height of 4 meters or more. However, by using the laminate of member B and member B-3; or by using the laminate of member B and member B-4; reflecting light having a wavelength of 700 to 800 nanometers, that is, corn By not irradiating agricultural and horticultural crops such as sugarcane and sugarcane, the height of the plant can be lowered and the installation position of the solar cell module can be lowered.

上記部材B2の形状は、任意である。通常は、シート状のものを好ましく使用できるが、これに制限されない。 The shape of the member B2 is arbitrary. Usually, a sheet-like material can be preferably used, but is not limited thereto.

本発明の第3の発明について説明する。第3の発明は、更に(C)光拡散性部材を有し、(5)上記(B)波長500〜600ナノメートルの光を反射する部材を透過した光の少なくとも一部は、上記(C)光拡散性部材に入射し、その透過光の少なくとも一部が施設内部に入射すること;を特徴とする。 The third aspect of the present invention will be described. The third invention further includes (C) a light diffusing member, and (5) (B) at least part of the light transmitted through the member that reflects light having a wavelength of 500 to 600 nanometers is (C) ) It is incident on the light diffusing member, and at least a part of the transmitted light is incident on the inside of the facility.

太陽光発電システムが採光部分を有していても、採光部分以外の箇所による影が出来るため、農園芸作物の受け取る光量は場所により違うものになる。光量の位置依存性は、太陽光発電システムの採光部分からの距離を十分に遠くすることによっても減じることはできるが、そのためには太陽光発電システムのアレイを非常に高い位置に設置しなくてはならなくなる。するとシステムのメンテナンスは高所作業となり、その作業性や安全性は低いものになる。また高所であるため、システムが強風により被害を受け易いという問題も生じる。そこで第3の発明においては、採光部分、及び上記部材Bを透過した光の少なくとも一部、好ましくは全部を光拡散性部材Cに入射させ、その透過拡散光の少なくとも一部、好ましくは全部を農園芸用施設内部へと入射させることにより、任意の低い位置に太陽電池システムのアレイを設置したとしても、光量の位置依存性を減らし、農園芸作物の受け取る光量が場所によらず一定となり、その生育状態のばらつきを小さくすることができるようにしたものである。 Even if the solar power generation system has a daylighting part, shadows are produced by places other than the daylighting part, so the amount of light received by the agricultural and horticultural crops varies depending on the place. The position dependency of the amount of light can be reduced by sufficiently increasing the distance from the daylighting part of the photovoltaic system, but for this purpose, the array of photovoltaic systems must be installed at a very high position. It will not be. Then, the maintenance of the system becomes a work at a high place, and its workability and safety are low. Also, because of the high location, there is a problem that the system is easily damaged by strong winds. Therefore, in the third aspect of the invention, at least part, preferably all, of the light transmitted through the daylighting part and the member B is incident on the light diffusing member C, and at least part, preferably all, of the transmitted diffused light is incident. Even if an array of solar cell systems is installed at an arbitrarily low position by making it enter the agricultural and horticultural facility, the position dependency of the light quantity is reduced, and the light quantity received by the agricultural and horticultural crops becomes constant regardless of the location. The variation in the growth state can be reduced.

なお本発明の第3の発明の農園芸用施設では、太陽光発電システムのアレイを、任意の低い位置に設置することができるが、実際の設置高さは、通常、農園芸用施設で栽培される作物の生育や施設内部における農作業性に支障のない高さを勘案して決定することが好ましい In the agricultural and horticultural facility according to the third aspect of the present invention, the array of the photovoltaic power generation system can be installed at an arbitrarily low position, but the actual installation height is usually cultivated in the agricultural and horticultural facility. It is preferable to decide in consideration of the height that does not hinder the growth of crops to be grown and the farm workability inside the facility.

上記光拡散性部材Cは、十分な光拡散性が得られ、全光線透過率の高いものであれば制限されず、任意のものを用いることができる。例えば、透明樹脂からなるマトリックス中に、光拡散剤を分散させた樹脂組成物からなる部材をあげることができる。 The light diffusing member C is not limited as long as sufficient light diffusibility is obtained and the total light transmittance is high, and any member can be used. For example, a member made of a resin composition in which a light diffusing agent is dispersed in a matrix made of a transparent resin can be mentioned.

上記透明樹脂としては、ポリメタクリル酸エステル系樹脂、ポリスチレン系樹脂及びポリカーボネート系樹脂などをあげることができる。 Examples of the transparent resin include polymethacrylate resins, polystyrene resins and polycarbonate resins.

上記光拡散剤としては、結晶性シリカ、無定形シリカ、炭酸カルシウム、硫酸バリウム、水酸化アルミニウム、及び酸化チタン等の無機系微粒子;ガラス繊維等の無機系繊維;架橋アクリル系粒子、架橋シリコン系粒子及び架橋スチレン系粒子等の架橋樹脂微粒子;などをあげることができる。 Examples of the light diffusing agent include inorganic fine particles such as crystalline silica, amorphous silica, calcium carbonate, barium sulfate, aluminum hydroxide, and titanium oxide; inorganic fibers such as glass fibers; crosslinked acrylic particles, and crosslinked silicon And fine particles of crosslinked resin such as particles and crosslinked styrene-based particles.

上記光拡散性部材Cの形状は、任意である。通常は、シート状のものを好ましく使用できるが、これに制限されない。 The shape of the light diffusing member C is arbitrary. Usually, a sheet-like material can be preferably used, but is not limited thereto.

上記光拡散性部材Cの光拡散性は、図4に示すように、光拡散性部材11の表面に、光線を光源7から入射角0°で入射したとき、透過光(出射光)の光量が、0°の値の1/2の値になる角度θとして評価することができる。上記角度θは、大きいほど光拡散性が良好なことを示す。上記光拡散性部材Cの光拡散性は、全光線透過率を高く保持できる範囲内において、大きいほど好ましい。島津製作所株式会社の分光光度計「SolidSpec−3700(商品名)」を使用し、波長380〜780ナノメートルの全範囲における日射を測定光として用いて測定したとき、上記角度θは好ましくは20°以上、より好ましくは23°以上である。 As shown in FIG. 4, the light diffusibility of the light diffusing member C is such that when a light beam is incident on the surface of the light diffusing member 11 from the light source 7 at an incident angle of 0 °, the amount of transmitted light (emitted light). However, it can be evaluated as an angle θ that is ½ of the value of 0 °. The larger the angle θ, the better the light diffusibility. The light diffusibility of the light diffusing member C is preferably as large as possible within a range where the total light transmittance can be kept high. When a spectrophotometer “SolidSpec-3700 (trade name)” manufactured by Shimadzu Corporation is used and the solar radiation in the entire range of wavelengths of 380 to 780 nanometers is measured as measurement light, the angle θ is preferably 20 °. More preferably, it is 23 ° or more.

上記光拡散性部材Cの全光線透過率は、80%以上が好ましく、85%以上がより好ましい。全光線透過率は、高いほど好ましい。 The total light transmittance of the light diffusing member C is preferably 80% or more, and more preferably 85% or more. A higher total light transmittance is preferable.

なお本明細書において、全光線透過率は、JIS K 7361−1:1997に従い、日本電色工業株式会社の濁度計「NDH2000(商品名)」を用いて測定した値である。 In this specification, the total light transmittance is a value measured using a turbidimeter “NDH2000 (trade name)” of Nippon Denshoku Industries Co., Ltd. according to JIS K 7361-1: 1997.

上記光拡散性部材Cは、例えば、上記部材Bや上記部材B2の農園芸用施設内部側の面に積層して、あるいは部材Bや部材B2の農園芸用施設内部側に一定の距離を開けて設けることができる。 The light diffusing member C is, for example, laminated on the surface of the member B or the member B2 inside the agricultural or horticultural facility, or at a certain distance from the member B or the member B2 inside the agricultural or horticultural facility. Can be provided.

本発明の構成が、実施例により具体的に説明されたが、これらは本発明を例示的に説明したものに過ぎず、本発明の技術分野における通常の知識を有する者であれば、本発明の本質的な特徴から外れない範囲内で様々な変形が可能である。本明細書に開示された実施例により、本発明の技術思想と技術的範囲が何ら限定されるものではない。本発明の技術的範囲は、特許請求の範囲の記載に基づいて定められるべきであり、これと同等の範囲内にある全ての技術は、本発明の技術的範囲に含まれるものと解釈されるべきである。
The configuration of the present invention has been specifically described by way of examples. However, these are merely illustrative examples of the present invention, and those who have ordinary knowledge in the technical field of the present invention can use the present invention. Various modifications are possible without departing from the essential characteristics of the above. The technical idea and technical scope of the present invention are not limited by the embodiments disclosed in the present specification. The technical scope of the present invention should be determined based on the description of the scope of claims, and all the techniques within the equivalent scope are interpreted as being included in the technical scope of the present invention. Should.

本発明に用いる太陽光発電システムの一例を示す概念図である。It is a conceptual diagram which shows an example of the solar energy power generation system used for this invention. 本発明に用いる太陽光発電システムの他の一例を示す概念図である。It is a conceptual diagram which shows another example of the solar energy power generation system used for this invention. 本発明に用いる太陽光発電システムの他の一例を示す概念図である。It is a conceptual diagram which shows another example of the solar energy power generation system used for this invention. 光拡散性部材の光拡散性を評価する装置の一例を示す概念図である。It is a conceptual diagram which shows an example of the apparatus which evaluates the light diffusibility of a light diffusable member.

1:採光部分
2:両面発電型モジュール
3:波長500〜600ナノメートルの光を反射する部材B
4:採光部分を透過し、部材Bに入射する光
5:部材Bで反射され、両面発電型モジュールに入射する光
6:部材Bを透過し、農園芸用施設内部に入射する光
7:両面発電型モジュールに入射する光
8:全光線反射部材
9:採光部分を透過し、全光線反射部材8に入射する光
10:全光線反射部材8で反射され、部材Bに入射する光
11:光拡散性部材
12:光源
13:光拡散性部材11を透過した光の光量が、0°の値の1/2の値になる角度θ
1: Daylighting part 2: Double-sided power generation type module 3: Member B that reflects light having a wavelength of 500 to 600 nanometers
4: Light that passes through the daylighting portion and enters the member B 5: Light that is reflected by the member B and enters the double-sided power generation module 6: Light that passes through the member B and enters the agricultural / horticultural facility 7: Both sides Light 8 incident on the power generation type module: Total light reflecting member 9: Light passing through the daylighting part and incident on the total light reflecting member 8 10: Light reflected by the total light reflecting member 8 and incident on the member B 11: Light Diffusing member 12: Light source 13: Angle θ at which the amount of light transmitted through light diffusing member 11 is half the value of 0 °

Claims (3)

農園芸用施設であって、
(A)採光部分と両面発電型モジュールとを有する太陽光発電システム;及び
(B)波長500〜600ナノメートルの光を反射する部材;
を有し、
(1)上記(A)太陽光発電システムは、農園芸用施設の太陽光が直射する箇所の少なくとも一部分に設けられていること;
(2)上記(A)太陽光発電システムの採光部分を透過した光の少なくとも一部は、上記(B)部材に入射すること;
(3)上記(B)部材に反射された波長500〜600ナノメートルの光の少なくとも一部は、上記(A)太陽光発電システムの両面発電型モジュールに入射すること;
(4)上記(B)部材を透過した光の少なくとも一部は、施設内部に入射すること;
を特徴とする農園芸用施設。
Agricultural and horticultural facilities,
(A) a solar power generation system having a daylighting part and a double-sided power generation type module; and (B) a member that reflects light having a wavelength of 500 to 600 nanometers;
Have
(1) The (A) photovoltaic power generation system is provided in at least a part of a location where sunlight of an agricultural or horticultural facility is directly irradiated;
(2) At least a part of the light transmitted through the daylighting part of the (A) solar power generation system is incident on the member (B);
(3) At least a part of light having a wavelength of 500 to 600 nanometers reflected by the member (B) is incident on the double-sided power generation module of the solar power generation system (A);
(4) At least part of the light transmitted through the member (B) is incident on the inside of the facility;
Agricultural and horticultural facilities.
上記(B)波長500〜600ナノメートルの光を反射する部材が、
(B2)波長500〜600ナノメートルと波長800〜1200ナノメートルの光を反射する部材;
であることを特徴とする請求項1に記載の農園芸用施設。
(B) a member that reflects light having a wavelength of 500 to 600 nanometers,
(B2) a member that reflects light having a wavelength of 500 to 600 nanometers and a wavelength of 800 to 1200 nanometers;
The agricultural and horticultural facility according to claim 1, wherein the facility is an agricultural or horticultural facility.
更に(C)光拡散性部材を有し、
(5)上記(B)波長500〜600ナノメートルの光を反射する部材を透過した光の少なくとも一部は、上記(C)光拡散性部材に入射し、その透過光の少なくとも一部が施設内部に入射すること;
を特徴とする請求項1又は2に記載の農園芸用施設。
And (C) a light diffusing member
(5) (B) At least part of the light transmitted through the member that reflects light having a wavelength of 500 to 600 nanometers is incident on the (C) light diffusing member, and at least part of the transmitted light is facility. Entering inside;
The facility for agricultural or horticultural use according to claim 1 or 2.
JP2014085385A 2014-04-17 2014-04-17 Facility for agricultural and horticultural use equipped with sunlight power generating system Pending JP2015204755A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014085385A JP2015204755A (en) 2014-04-17 2014-04-17 Facility for agricultural and horticultural use equipped with sunlight power generating system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014085385A JP2015204755A (en) 2014-04-17 2014-04-17 Facility for agricultural and horticultural use equipped with sunlight power generating system

Publications (1)

Publication Number Publication Date
JP2015204755A true JP2015204755A (en) 2015-11-19

Family

ID=54602200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014085385A Pending JP2015204755A (en) 2014-04-17 2014-04-17 Facility for agricultural and horticultural use equipped with sunlight power generating system

Country Status (1)

Country Link
JP (1) JP2015204755A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018146288A1 (en) * 2017-02-09 2018-08-16 Elemental Engineering Ag Directional solar panel assembly

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018146288A1 (en) * 2017-02-09 2018-08-16 Elemental Engineering Ag Directional solar panel assembly
US10852039B2 (en) 2017-02-09 2020-12-01 Elemental Engineering Ag Directional solar panel assembly

Similar Documents

Publication Publication Date Title
Zeyghami et al. A review of clear sky radiative cooling developments and applications in renewable power systems and passive building cooling
JP6600919B2 (en) Condensing mechanism, solar power generation device and window structure
Smith Green nanotechnology
Chong et al. Design and construction of active daylighting system using two-stage non-imaging solar concentrator
EP4052565A1 (en) Agricultural sunlight transmission lighting system, supporting greenhouse, and supporting lighting method
WO2008152887A1 (en) Visible light transmitting solar radiation heat reflecting film
ITSV20060031A1 (en) COVERING ELEMENT FOR AGRICULTURAL AND SIMILAR GREENHOUSES, A HALF HEATER FOR AGRICULTURAL OR SIMILAR GREENHOUSES, SYSTEM AND PLANT
US20180219510A1 (en) Distributed light condensation/splitting-based comprehensive solar energy utilization system
TW201229367A (en) A building structure having semi-transparent photovoltaic panels
KR20110067118A (en) Photovoltaic cell apparatus
CN105308855B (en) For concentrating the adiabatic secondary optics part of the solar concentrator used in photovoltaic system
US8884156B2 (en) Solar energy harvesting device using stimuli-responsive material
Song et al. Application of highly concentrated sunlight transmission and daylighting indoor via plastic optical fibers with comprehensive cooling approaches
JP6321384B2 (en) Agricultural and horticultural facilities with solar power generation system
JP6263369B2 (en) Solar power generation system and agricultural and horticultural house equipped with the same
JP2007264353A (en) Wavelength selective thin film
JP2015208288A (en) Agricultural and horticultural facilities with photovoltaic power generation system
JP2012010609A (en) Agricultural sheet
KR101131571B1 (en) Solar cell module and electricity generation system to adjust light transmission
JP2015204755A (en) Facility for agricultural and horticultural use equipped with sunlight power generating system
Bisht et al. Study and analysis of parameters affecting tubular daylighting device
Hebrink Durable polymeric films for increasing the performance of concentrators
KR101543657B1 (en) Transparent colored solar cell
JP2021193951A (en) Cultivation apparatus, and cultivation method of plants
Ketchum et al. Design and Characterization of a Translucent Solar Module (TSM) for Greenhouse Structures