JP2015203638A - Axial force measuring apparatus and axial force measuring method - Google Patents

Axial force measuring apparatus and axial force measuring method Download PDF

Info

Publication number
JP2015203638A
JP2015203638A JP2014083495A JP2014083495A JP2015203638A JP 2015203638 A JP2015203638 A JP 2015203638A JP 2014083495 A JP2014083495 A JP 2014083495A JP 2014083495 A JP2014083495 A JP 2014083495A JP 2015203638 A JP2015203638 A JP 2015203638A
Authority
JP
Japan
Prior art keywords
axial force
propagation time
wave
burst
master curve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014083495A
Other languages
Japanese (ja)
Other versions
JP5964882B2 (en
Inventor
重行 松原
Shigeyuki Matsubara
重行 松原
江淵 高弘
Takahiro Ebuchi
高弘 江淵
吉克 合田
Yoshikatsu Goda
吉克 合田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Non Destructive Inspection Co Ltd
Original Assignee
Non Destructive Inspection Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Non Destructive Inspection Co Ltd filed Critical Non Destructive Inspection Co Ltd
Priority to JP2014083495A priority Critical patent/JP5964882B2/en
Publication of JP2015203638A publication Critical patent/JP2015203638A/en
Application granted granted Critical
Publication of JP5964882B2 publication Critical patent/JP5964882B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an axial force measuring apparatus and an axial force measuring method capable of accurately measuring axial force even with a simple configuration.SOLUTION: An ultrasonic generator generates at least two kinds of burst waves which are a first burst wave and a second burst wave different from the first burst wave. A signal processing part measures propagation time T by making the first burst wave incident on a coupled long member, measures signal strength for each oscillatory frequency by making the second burst wave incident while changing the oscillatory frequency, obtains outline axial force F' in the propagation time T measured from a first master curve M1, obtains an interference frequency range fr in the outline axial force F' from a second master curve M2, obtains the maximum interference frequency Q with the maximum signal strength in the interference frequency range fr from the measured signal strength for each oscillatory frequency, and measures the axial force of the long member on the basis of the obtained maximum interference frequency Q and the second master curve M2.

Description

本発明は、軸力測定装置及び軸力測定方法に関する。さらに詳しくは、長尺部材の一端から超音波を入射すると共に前記長尺部材の他端から反射した反射波を受信する探触子と、前記超音波を発生させる超音波発生器と、受信した反射波の信号を処理し前記長尺部材の軸力を測定する信号処理部とを備える軸力測定装置及び軸力測定方法に関する。   The present invention relates to an axial force measuring device and an axial force measuring method. More specifically, a probe that receives ultrasonic waves from one end of the long member and receives reflected waves reflected from the other end of the long member, an ultrasonic generator that generates the ultrasonic waves, and The present invention relates to an axial force measuring device and an axial force measuring method including a signal processing unit that processes a reflected wave signal and measures the axial force of the long member.

従来、上述の如き超音波を用いた軸力測定方法として、例えば、特許文献1に示す如き方法が知られている。ボルトに軸力が加わるとボルトは伸び、ボルトの伸長等によって超音波の伝播時間も延びる。そこで、特許文献1の方法では、ボルトの頭部から超音波パルスを入射しボルト端部で反射して戻ってくる超音波の伝播時間を測定し、この伝播時間に基づきボルトの軸力を測定する。しかし、ボルトの長さが短い場合、締め付けによるボルトの伸長も短くなり、精度が低下する場合があった。また、振幅や波形のひずみにより時刻を読み違えるおそれもあった。   Conventionally, as an axial force measurement method using ultrasonic waves as described above, for example, a method shown in Patent Document 1 is known. When an axial force is applied to the bolt, the bolt is extended, and the propagation time of the ultrasonic wave is extended due to the extension of the bolt. Therefore, in the method of Patent Document 1, an ultrasonic pulse is incident from the head of the bolt and the propagation time of the ultrasonic wave reflected and returned from the bolt end is measured, and the axial force of the bolt is measured based on this propagation time. To do. However, when the length of the bolt is short, the extension of the bolt by tightening is also shortened, and the accuracy may be lowered. There is also a risk of misreading the time due to amplitude or waveform distortion.

また、他の方法として、ボルト頭部から入射する超音波の発振周波数を掃引してボルトの長さに応じた共振周波数を測定する方法(共振法)も知られている。この方法では、軸力によって生じるボルト長さの変化に応じた共振周波数を検知するために、共振状態を持続させるための振動エネルギーを絶えず供給しなければならない。   As another method, there is also known a method (resonance method) in which the oscillation frequency of ultrasonic waves incident from the bolt head is swept to measure the resonance frequency corresponding to the length of the bolt. In this method, in order to detect the resonance frequency corresponding to the change in the bolt length caused by the axial force, vibration energy for maintaining the resonance state must be continuously supplied.

特開平5−203513号公報JP-A-5-203513

かかる従来の実情に鑑みて、本発明は、簡素な構成でありながら精度よく軸力を測定可能な軸力測定装置及び軸力測定方法を提供することを目的とする。   In view of such a conventional situation, an object of the present invention is to provide an axial force measuring device and an axial force measuring method capable of accurately measuring an axial force with a simple configuration.

上記目的を達成するため、本発明に係る軸力測定装置の特徴は、長尺部材の一端から超音波を入射すると共に前記長尺部材の他端から反射した反射波を受信する探触子と、前記超音波を発生させる超音波発生器と、受信した反射波の信号を処理し前記長尺部材の軸力を測定する信号処理部とを備える構成において、前記超音波発生器は、少なくとも第一バースト波とこの第一バースト波とは異なる第二バースト波の2種のバースト波を発生させるものであり、前記信号処理部は、前記第一バースト波の伝播時間を測定する伝播時間測定部と、発振周波数毎に前記反射波の伝播時間から次の反射波の伝播時間までの測定時間における前記第二バースト波の信号強度を測定する信号強度測定部と、既知の軸力に対する前記伝播時間を求める第一マスターカーブと、前記既知の軸力に対する前記信号強度が最大となる極大干渉周波数を求める第二マスターカーブとを備え、締結された長尺部材に前記第一バースト波を入射させて前記伝播時間を測定すると共に前記第二バースト波を前記発振周波数を変化させながら入射させて前記発振周波数毎に前記信号強度を測定し、前記第一マスターカーブから測定した伝播時間における概略軸力を求め、前記第二マスターカーブから前記概略軸力における干渉周波数範囲を求め、測定した発振周波数毎の信号強度から前記干渉周波数範囲内で最大の信号強度となる極大干渉周波数を求め、求めた極大干渉周波数と前記第二マスターカーブにより前記長尺部材の軸力を測定することにある。   In order to achieve the above object, the axial force measuring device according to the present invention is characterized in that a probe that receives ultrasonic waves from one end of a long member and receives reflected waves reflected from the other end of the long member; In the configuration comprising the ultrasonic generator for generating the ultrasonic wave and the signal processing unit for processing the received reflected wave signal and measuring the axial force of the long member, the ultrasonic generator includes at least a first One burst wave and a second burst wave different from the first burst wave are generated, and the signal processing unit measures a propagation time of the first burst wave. A signal intensity measuring unit that measures the signal intensity of the second burst wave in a measurement time from the propagation time of the reflected wave to the propagation time of the next reflected wave for each oscillation frequency, and the propagation time for a known axial force Seeking first And a second master curve for obtaining a maximum interference frequency that maximizes the signal intensity with respect to the known axial force, and measuring the propagation time by causing the first burst wave to enter the fastened long member In addition, the second burst wave is incident while changing the oscillation frequency, the signal intensity is measured for each oscillation frequency, the approximate axial force at the propagation time measured from the first master curve is obtained, and the second The interference frequency range in the approximate axial force is obtained from the master curve, the maximum interference frequency that is the maximum signal strength within the interference frequency range is obtained from the measured signal intensity for each oscillation frequency, and the obtained maximum interference frequency and the second interference frequency are obtained. It is to measure the axial force of the long member by a master curve.

上記構成によれば、信号処理部は、第一バースト波の伝播時間を測定する伝播時間測定部と、発振周波数毎に反射波の伝播時間から次の反射波の伝播時間までの測定時間における第二バースト波の信号強度を測定する信号強度測定部と、既知の軸力に対する伝播時間を求める第一マスターカーブと、既知の軸力に対する信号強度が最大となる極大干渉周波数を求める第二マスターカーブとを備える。そして、異なる2種の第一、第二バースト波は1つの超音波発生器により発生される。従って、装置構成が簡素となる。そして、例えば図9に示すように、第一マスターカーブM1から測定した第一バースト波の伝播時間Tにおける概略軸力F’を求め、第二マスターカーブM2から求めた概略軸力F’における干渉周波数範囲frを求め、測定した発振周波数毎の信号強度から求めた干渉周波数範囲fr内で最大の信号強度となる極大干渉周波数Qを求める。そして、求めた極大干渉周波数Qと第二マスターカーブM2により長尺部材の軸力を算出する。このように、第一バースト波の伝播時間から概略軸力を求めてその概略軸力から干渉周波数範囲を求めるので、第二バースト波の極大干渉周波数を予測でき、ピーク値等の読み間違えによる誤測定を防止することができる。よって、簡素な構成ながらも高精度に軸力を測定することが可能となる。   According to the above configuration, the signal processing unit includes the propagation time measurement unit that measures the propagation time of the first burst wave, and the first measurement time in the measurement time from the propagation time of the reflected wave to the propagation time of the next reflected wave for each oscillation frequency. A signal strength measurement unit that measures the signal strength of two burst waves, a first master curve that determines the propagation time for a known axial force, and a second master curve that determines the maximum interference frequency that maximizes the signal strength for the known axial force With. Two different kinds of first and second burst waves are generated by one ultrasonic generator. Therefore, the apparatus configuration is simplified. For example, as shown in FIG. 9, the approximate axial force F ′ at the propagation time T of the first burst wave measured from the first master curve M1 is obtained, and the interference at the approximate axial force F ′ obtained from the second master curve M2 is obtained. The frequency range fr is obtained, and the maximum interference frequency Q that provides the maximum signal strength within the interference frequency range fr obtained from the measured signal strength for each oscillation frequency is obtained. Then, the axial force of the long member is calculated from the obtained maximum interference frequency Q and the second master curve M2. In this way, since the approximate axial force is obtained from the propagation time of the first burst wave and the interference frequency range is obtained from the approximate axial force, the maximum interference frequency of the second burst wave can be predicted, and errors due to misreading of peak values etc. Measurement can be prevented. Therefore, it is possible to measure the axial force with high accuracy with a simple configuration.

上記目的を達成するため、本発明に係る軸力測定装置の他の特徴は、長尺部材の一端から超音波を入射すると共に前記長尺部材の他端から反射した反射波を受信する探触子と、前記超音波を発生させる超音波発生器と、受信した反射波の信号を処理し前記長尺部材の軸力を測定する信号処理部とを備える構成において、前記超音波発生器は、少なくとも第一バースト波とこの第一バースト波とは異なる第二バースト波の2種のバースト波を発生させるものであり、前記信号処理部は、前記第一バースト波の伝播時間を測定する伝播時間測定部と、発振周波数毎に前記反射波の伝播時間から次の反射波の伝播時間までの測定時間における前記第二バースト波の信号強度を測定する信号強度測定部と、既知の軸力に対する前記伝播時間を求める第一マスターカーブと、前記既知の軸力に対する前記信号強度が最大となる極大干渉周波数を求める第二マスターカーブとを備え、締結された長尺部材に前記第一バースト波を入射させて前記伝播時間を測定すると共に前記第二バースト波を前記発振周波数を変化させながら入射させて前記発振周波数毎に前記信号強度を測定して前記極大干渉周波数を求め、前記第二マスターカーブから求めた極大干渉周波数における概略軸力を求め、前記第一マスターカーブから求めた前記概略軸力における前記伝播時間範囲を求め、測定した伝播時間から前記伝播時間範囲内で最大の信号強度となる極大伝播時間を求め、求めた極大伝播時間と前記第一マスターカーブにより前記長尺部材の軸力を測定することにある。   In order to achieve the above object, another feature of the axial force measuring apparatus according to the present invention is that a probe receives ultrasonic waves from one end of a long member and receives reflected waves reflected from the other end of the long member. In the configuration comprising a child, an ultrasonic generator that generates the ultrasonic wave, and a signal processing unit that processes the received reflected wave signal and measures the axial force of the elongated member, the ultrasonic generator includes: At least two burst waves of a first burst wave and a second burst wave different from the first burst wave are generated, and the signal processing unit is a propagation time for measuring a propagation time of the first burst wave. A measurement unit, a signal intensity measurement unit for measuring the signal intensity of the second burst wave in a measurement time from the propagation time of the reflected wave to the propagation time of the next reflected wave for each oscillation frequency, and the above-described known axial force Determine the propagation time A master curve and a second master curve for obtaining a maximum interference frequency at which the signal intensity with respect to the known axial force is maximized, and the propagation time is determined by causing the first burst wave to enter the fastened long member. Measure and make the second burst wave incident while changing the oscillation frequency, measure the signal intensity for each oscillation frequency to obtain the maximum interference frequency, and at the maximum interference frequency obtained from the second master curve Obtain an approximate axial force, obtain the propagation time range in the approximate axial force obtained from the first master curve, obtain a maximum propagation time that gives the maximum signal strength within the propagation time range from the measured propagation time, and obtain The axial force of the long member is measured by the maximum propagation time and the first master curve.

上記構成によれば、信号処理部は、第一バースト波の伝播時間を測定する伝播時間測定部と、発振周波数毎に反射波の伝播時間から次の反射波の伝播時間までの測定時間における第二バースト波の信号強度を測定する信号強度測定部と、既知の軸力に対する伝播時間を求める第一マスターカーブと、既知の軸力に対する信号強度が最大となる極大干渉周波数を求める第二マスターカーブとを備える。そして、異なる2種の第一、第二バースト波は1つの超音波発生器により発生される。従って、装置構成が簡素となる。そして、例えば図12に示すように、第二マスターカーブM2から求めた第二バースト波の極大干渉周波数Qにおける概略軸力F’を求め、第一マスターカーブM1から求めた概略軸力F’における伝播時間範囲trを求め、測定した伝播時間から伝播時間範囲tr内で最大の信号強度となる極大伝播時間T’を求める。そして、求めた極大伝播時間T’と第一マスターカーブM1により長尺部材の軸力を算出する。このように、第二バースト波の極大干渉周波数から概略軸力を求めてその概略軸力から伝播時間範囲を求めるので、第一バースト波の極大伝播時間を予測でき、ピーク値等の読み間違えによる誤測定を防止することができる。よって、簡素な構成ながらも高精度に軸力を測定することが可能となる。   According to the above configuration, the signal processing unit includes the propagation time measurement unit that measures the propagation time of the first burst wave, and the first measurement time in the measurement time from the propagation time of the reflected wave to the propagation time of the next reflected wave for each oscillation frequency. A signal strength measurement unit that measures the signal strength of two burst waves, a first master curve that determines the propagation time for a known axial force, and a second master curve that determines the maximum interference frequency that maximizes the signal strength for the known axial force With. Two different kinds of first and second burst waves are generated by one ultrasonic generator. Therefore, the apparatus configuration is simplified. For example, as shown in FIG. 12, the approximate axial force F ′ at the maximum interference frequency Q of the second burst wave obtained from the second master curve M2 is obtained, and the approximate axial force F ′ obtained from the first master curve M1 is obtained. The propagation time range tr is obtained, and the maximum propagation time T ′ that gives the maximum signal strength within the propagation time range tr is obtained from the measured propagation time. Then, the axial force of the long member is calculated from the obtained maximum propagation time T ′ and the first master curve M1. In this way, since the approximate axial force is obtained from the maximum interference frequency of the second burst wave and the propagation time range is obtained from the approximate axial force, the maximum propagation time of the first burst wave can be predicted, and due to misreading of the peak value etc. Incorrect measurement can be prevented. Therefore, it is possible to measure the axial force with high accuracy with a simple configuration.

前記第二バースト波は、最初の反射波の伝播時間以上で且つ2回目の反射波の伝播時間未満の長さであるとよい。最初の反射波の伝播時間未満であれば、干渉を生じる波が発生せず、2回目の反射波の伝播時間以上となれば、長尺部材を伝播する3以上の波(入射波及び第一、第二反射波)により干渉の観測が困難となり、精度が低下する。   The second burst wave may be longer than the propagation time of the first reflected wave and shorter than the propagation time of the second reflected wave. If the propagation time of the first reflected wave is less than the propagation time of the first reflected wave, the interference wave does not occur, and if the propagation time of the reflected wave of the second time is exceeded, three or more waves propagating through the long member (incident wave and first wave) , The second reflected wave) makes it difficult to observe interference, and the accuracy decreases.

前記測定時間は、2回目の反射波の伝播時間から3回目の反射波の伝播時間までの時間であるとよい。2回目の反射波の伝播時間よりも前になると、送信と第1回目の反射波との干渉となるが、振幅差が大きすぎるため干渉を観測することが困難となる。一方、3回目の反射波の伝播時間よりも後になると、信号が減衰により小さくなってしまい精度よく検出することが困難となる。   The measurement time may be a time from the propagation time of the second reflected wave to the propagation time of the third reflected wave. If it is before the propagation time of the second reflected wave, it becomes interference between the transmission and the first reflected wave, but it is difficult to observe the interference because the amplitude difference is too large. On the other hand, if it is after the propagation time of the third reflected wave, the signal becomes small due to attenuation, and it is difficult to detect with high accuracy.

前記第一バースト波は、0.5波以上最初の反射波の到達時間より短い波数であるとよい。0.5波の波数よりも小さい(短い)と、超音波の発生効率が低下し精度が低下する。他方、最初の反射波の到達時間よりも長くなると、伝播する波が複数となり精度よく伝播時間を測定することが困難となる。   The first burst wave may have a wave number of 0.5 wave or more and shorter than the arrival time of the first reflected wave. If it is smaller (shorter) than the wave number of 0.5 waves, the generation efficiency of ultrasonic waves is lowered and the accuracy is lowered. On the other hand, if the time is longer than the arrival time of the first reflected wave, a plurality of waves propagate and it is difficult to accurately measure the propagation time.

前記長尺部材の長さは、5mm以上300mm以下であるとよい。この長さであれば、第一、第二バースト波を併用し求めた値を第一、第二マスターカーブに適用することで、サンプリング周波数の速いオシロスコープやA/D変換器を用いることなく、安価な装置で精度よく軸力を測定することが可能となる。   The length of the long member is preferably 5 mm or more and 300 mm or less. If it is this length, by applying the values obtained by using the first and second burst waves to the first and second master curves, without using an oscilloscope or A / D converter with a fast sampling frequency, It is possible to measure the axial force with high accuracy using an inexpensive device.

上記目的を達成するため、本発明に係る軸力測定方法の特徴は、長尺部材の一端から超音波を入射すると共に前記長尺部材の他端から反射した反射波を受信し、受信した反射波の信号に基づいて前記長尺部材の軸力を測定する方法において、予め、前記長尺部材の一端から第一バースト波を入射させて反射波の伝播時間を測定すると共にこの第一バースト波とは異なる第二バースト波を発振周波数を変化させながら入射させて前記反射波の伝播時間から次の反射波の伝播時間までの測定時間における前記第二バースト波の信号強度を測定して、既知の軸力に対する前記伝播時間を求める第一マスターカーブ及び前記既知の軸力に対する前記信号強度が最大となる極大干渉周波数を求める第二マスターカーブを作成しておき、締結された長尺部材に前記第一バースト波を入射させて前記伝播時間を測定すると共に前記第二バースト波を前記発振周波数を変化させながら入射させて前記発振周波数毎に信号強度を測定し、前記第一マスターカーブから測定した伝播時間における概略軸力を求め、前記第二マスターカーブから前記概略軸力における干渉周波数範囲を求め、測定した発振周波数毎の信号強度から前記干渉周波数範囲内で最大の信号強度となる極大干渉周波数を求め、求めた極大干渉周波数と前記第二マスターカーブにより前記長尺部材の軸力を測定することにある。   In order to achieve the above object, the axial force measurement method according to the present invention is characterized in that an ultrasonic wave is incident from one end of a long member and a reflected wave reflected from the other end of the long member is received and received. In the method of measuring the axial force of the long member based on a wave signal, the first burst wave is measured in advance by making the first burst wave incident from one end of the long member and the first burst wave. A second burst wave different from the above is made incident while changing the oscillation frequency, and the signal intensity of the second burst wave in the measurement time from the reflected wave propagation time to the next reflected wave propagation time is measured and known. The first master curve for obtaining the propagation time with respect to the axial force and the second master curve for obtaining the maximum interference frequency at which the signal intensity with respect to the known axial force is maximized are created and fastened. The first burst wave is made incident and the propagation time is measured, and the second burst wave is made incident while changing the oscillation frequency, and the signal intensity is measured for each oscillation frequency, from the first master curve The approximate axial force in the measured propagation time is obtained, the interference frequency range in the approximate axial force is obtained from the second master curve, and the maximum signal intensity within the interference frequency range is obtained from the measured signal intensity for each oscillation frequency. The interference frequency is obtained, and the axial force of the long member is measured by the obtained maximum interference frequency and the second master curve.

また、上記目的を達成するため、本発明に係る軸力測定方法の他の特徴は、長尺部材の一端から超音波を入射すると共に前記長尺部材の他端から反射した反射波を受信し、受信した反射波の信号に基づいて前記長尺部材の軸力を測定する方法において、予め、前記長尺部材の一端から第一バースト波を入射させて反射波の伝播時間を測定すると共にこの第一バースト波とは異なる第二バースト波を発振周波数を変化させながら入射させて前記反射波の伝播時間から次の反射波の伝播時間までの測定時間における前記第二バースト波の信号強度を測定して、既知の軸力に対する前記伝播時間を求める第一マスターカーブ及び前記既知の軸力に対する前記信号強度が最大となる極大干渉周波数を求める第二マスターカーブを作成しておき、締結された長尺部材に前記第一バースト波を入射させて前記伝播時間を測定すると共に前記第二バースト波を前記発振周波数を変化させながら入射させて前記発振周波数毎に信号強度を測定して前記極大干渉周波数を求め、前記第二マスターカーブから求めた極大干渉周波数における概略軸力を求め、前記第一マスターカーブから求めた概略軸力における伝播時間範囲を求め、測定した伝播時間から前記伝播時間範囲内で最大の信号強度となる極大伝播時間を求め、求めた極大伝播時間と前記第一マスターカーブにより前記長尺部材の軸力を測定することにある。   In order to achieve the above object, another feature of the axial force measuring method according to the present invention is that an ultrasonic wave is incident from one end of a long member and a reflected wave reflected from the other end of the long member is received. In the method of measuring the axial force of the long member based on the received reflected wave signal, the first burst wave is incident from one end of the long member and the propagation time of the reflected wave is measured in advance. A second burst wave different from the first burst wave is made incident while changing the oscillation frequency, and the signal intensity of the second burst wave is measured in the measurement time from the propagation time of the reflected wave to the propagation time of the next reflected wave. Then, a first master curve for obtaining the propagation time with respect to a known axial force and a second master curve for obtaining a maximum interference frequency at which the signal intensity with respect to the known axial force is maximized are created and fastened. The first burst wave is incident on a long member to measure the propagation time, and the second burst wave is incident while changing the oscillation frequency, and the signal intensity is measured for each oscillation frequency to measure the maximum. Obtaining the interference frequency, obtaining the approximate axial force at the maximum interference frequency obtained from the second master curve, obtaining the propagation time range in the approximate axial force obtained from the first master curve, and determining the propagation time range from the measured propagation time The maximum propagation time at which the maximum signal intensity is obtained is obtained, and the axial force of the long member is measured by the obtained maximum propagation time and the first master curve.

上記本発明に係る軸力測定装置及び軸力測定方法の特徴によれば、簡素な構成でありながら精度よく軸力を測定することが可能となった。   According to the features of the axial force measuring device and the axial force measuring method according to the present invention, it is possible to accurately measure the axial force with a simple configuration.

本発明の他の目的、構成及び効果については、以下の発明の実施の形態の項から明らかになるであろう。   Other objects, configurations, and effects of the present invention will become apparent from the following embodiments of the present invention.

本発明に係る軸力測定装置のブロック図である。It is a block diagram of an axial force measuring device concerning the present invention. 第一バースト波の伝播時間の測定(時間差法)を説明する図である。It is a figure explaining the measurement (time difference method) of the propagation time of a 1st burst wave. 第二バースト波の干渉周波数の測定(干渉法)を説明する図である。It is a figure explaining the measurement (interference method) of the interference frequency of a 2nd burst wave. 時間差法での超音波の伝播とボルト長さとの関係を説明する図であり、(a)はボルトとその伸びの定義を示す図、(b)は受信波形の概略図、(c)は高速サンプリングの概念図、(d)は低速サンプリングの概念図である。It is a figure explaining the relationship between the propagation of the ultrasonic wave by a time difference method, and bolt length, (a) is a figure which shows the definition of a volt | bolt and its extension, (b) is a schematic diagram of a received waveform, (c) is a high speed. A conceptual diagram of sampling, (d) is a conceptual diagram of low-speed sampling. 干渉法での超音波の伝播とボルト長さとの関係を説明する図であり、(a)は半波長がボルト長さとなる例、(b)は1波長がボルト長さとなる例、(c)は1.5波長がボルト長さとなる例、(d)は干渉周波数の差異を模式的に示す図である。It is a figure explaining the relationship between the propagation of the ultrasonic wave by interferometry, and bolt length, (a) is an example in which a half wavelength becomes a bolt length, (b) is an example in which one wavelength is a bolt length, (c) Is an example in which 1.5 wavelength is the volt length, and (d) is a diagram schematically showing a difference in interference frequency. マスターカーブ作成手順を示すフローチャートである。It is a flowchart which shows the master curve creation procedure. (a)は第一マスターカーブ、(b)は第二マスターカーブの一例を示す図である。(A) is a figure which shows an example of a 1st master curve, (b) is a 2nd master curve. ボルト長さ160mmでの時間差法と干渉法における測定波形の一例を示す図である。It is a figure which shows an example of the measurement waveform in the time difference method and interference method in bolt length 160mm. 軸力測定手順を示すフローチャートである。It is a flowchart which shows an axial force measurement procedure. 軸力測定手順におけるグラフの一例であり、(a)は時間波形、(b)は第一マスターカーブ、(c)は第二マスターカーブ、(d)は干渉波形、(e)は第二マスターカーブをそれぞれ示す。It is an example of the graph in an axial force measurement procedure, (a) is a time waveform, (b) is a 1st master curve, (c) is a 2nd master curve, (d) is an interference waveform, (e) is a 2nd master. Each curve is shown. ボルト長さ30mmでの時間差法と干渉法における測定波形の一例を示す図である。It is a figure which shows an example of the measurement waveform in the time difference method and interference method in bolt length 30mm. 他の実施形態に係る軸力測定手順を示すフローチャートである。It is a flowchart which shows the axial force measurement procedure which concerns on other embodiment. 他の実施形態における軸力測定手順におけるグラフの一例であり、(a)は干渉波形、(b)は第二マスターカーブ、(c)は第一マスターカーブ、(d)は時間波形、(e)は第一マスターカーブをそれぞれ示す。It is an example of the graph in the axial force measurement procedure in other embodiment, (a) is an interference waveform, (b) is a 2nd master curve, (c) is a 1st master curve, (d) is a time waveform, (e ) Indicates the first master curve.

次に、図1〜10を参照しながら、本発明の第一実施形態についてをさらに詳しく説明する。
本発明に係る軸力測定装置1は、図1に示すように、大略、長尺部材としてのボルト100の頭部101から超音波を入射すると共に、ボルト100の先端部102で反射した反射波を受信する探触子2と、超音波を発生させる超音波発生器30と、受信した反射波の信号を処理しボルトの軸力を測定する信号処理部3を備える。信号処理部3は、例えばパーソナルコンピュータ(PC)で構成された表示・入出力部4に接続される。探触子2には、例えば、超音波の送受信を兼務する一振動子型探触子を用いるが、二振動子型探触子を用いても構わない。
Next, the first embodiment of the present invention will be described in more detail with reference to FIGS.
As shown in FIG. 1, the axial force measuring device 1 according to the present invention generally receives ultrasonic waves from the head 101 of a bolt 100 as a long member and reflects the reflected wave at the tip 102 of the bolt 100. Are provided, a probe 2 for receiving the ultrasonic wave, an ultrasonic generator 30 for generating an ultrasonic wave, and a signal processing unit 3 for processing the received reflected wave signal and measuring the axial force of the bolt. The signal processing unit 3 is connected to a display / input / output unit 4 configured by, for example, a personal computer (PC). As the probe 2, for example, a single-transducer type probe that is also used for transmitting and receiving ultrasonic waves is used, but a dual-element type probe may be used.

図1に示すように、信号処理部3は超音波発生器30を含み、大略、測定部36と、マスターカーブ作成部37と、軸力算出部38を備える。超音波発生器30は、後述のバースト波設定部41の条件設定に従いパワーアンプ31を介して探触子2で2種類のバースト波10,21を発生させる。受信した反射波の信号(受信波形)は、保護回路32、周波数フィルタ33、A/D変換器34、フィルタ35を介して測定部36に送られると共にデータ記憶部39に記憶される。測定部36は、第一バースト波10の伝播時間を測定する伝播時間測定部36aと、発振周波数毎に反射波の伝播時間から次の反射波の伝播時間までの測定時間における第二バースト波21の信号強度を測定する信号強度測定部36bとを備える。マスターカーブ作成部37は、既知の軸力に対する伝播時間を求める第一マスターカーブM1を作成する第一マスターカーブ作成部37aと、既知の軸力に対する信号強度が最大となる極大干渉周波数を求める第二マスターカーブM2を作成する第二マスターカーブ作成部37bを備える。そして、軸力算出部38は、測定部36の測定値及び予め作成された第一、第二マスターカーブM1、M2から軸力を求める。   As shown in FIG. 1, the signal processing unit 3 includes an ultrasonic generator 30, and generally includes a measurement unit 36, a master curve creation unit 37, and an axial force calculation unit 38. The ultrasonic generator 30 generates two types of burst waves 10 and 21 by the probe 2 via the power amplifier 31 in accordance with condition settings of a burst wave setting unit 41 described later. The received reflected wave signal (received waveform) is sent to the measurement unit 36 via the protection circuit 32, the frequency filter 33, the A / D converter 34, and the filter 35 and is also stored in the data storage unit 39. The measurement unit 36 measures the propagation time of the first burst wave 10 and the second burst wave 21 in the measurement time from the propagation time of the reflected wave to the propagation time of the next reflected wave for each oscillation frequency. A signal strength measuring unit 36b for measuring the signal strength of the signal. The master curve creation unit 37 creates a first master curve creation unit 37a that creates a first master curve M1 for obtaining a propagation time for a known axial force, and a first interference curve that obtains a maximum interference frequency that maximizes the signal intensity for the known axial force. A second master curve creation unit 37b for creating the second master curve M2 is provided. Then, the axial force calculation unit 38 obtains the axial force from the measurement value of the measurement unit 36 and the first and second master curves M1 and M2 created in advance.

超音波発生器30は、図2,3に示す如く、第一バースト波10と第一バースト波10とは異なる第二バースト波21の2種のバースト波を発生させる。第一バースト波10は、ボルト100を伝播する超音波の伝播時間を測定するために用いられる(時間差法)。第二バースト波21は、ボルト100内を伝播する超音波が互いに干渉して生じる合成波の干渉周波数を測定するために用いられる(干渉法)。すなわち、本発明は、1つの超音波発生器30で2種類のバースト波を発生させることで2種類の手法を使用し、それら手法により求めた値を用いることで精度よく軸力を測定する。   As shown in FIGS. 2 and 3, the ultrasonic generator 30 generates two types of burst waves, a first burst wave 10 and a second burst wave 21 that is different from the first burst wave 10. The first burst wave 10 is used for measuring the propagation time of the ultrasonic wave propagating through the bolt 100 (time difference method). The second burst wave 21 is used to measure the interference frequency of the synthesized wave generated by the interference of the ultrasonic waves propagating in the bolt 100 (interference method). That is, according to the present invention, two types of burst waves are generated by one ultrasonic generator 30 and two types of methods are used, and the axial force is accurately measured by using values obtained by these methods.

図2(a)に示すように、第一バースト波10は、その波数が0.5波以上最初の反射波(B1:第一反射エコー)の到達時間より短い波数であるとよい。波数が0.5波よりも少ない場合、バースト波(超音波)の発生効率が低下する。他方、波数が最初の反射波の到達時間よりも長くなる波数であれば、第一反射エコーB1が第一バースト波10(入射波)と重なり伝播時間の測定が困難となる。なお、本実施形態では、図2(a)に示す第一バースト波10の送信エコー10’(S)と第一反射エコー11’(B1)の時間差Tを伝播時間Tとして求め、図2(b)に示す如き時間波形W1を生成する。   As shown in FIG. 2A, the first burst wave 10 may have a wave number shorter than the arrival time of the first reflected wave (B1: first reflected echo) by 0.5 wave or more. When the wave number is less than 0.5 waves, the generation efficiency of burst waves (ultrasonic waves) decreases. On the other hand, if the wave number is longer than the arrival time of the first reflected wave, the first reflected echo B1 overlaps with the first burst wave 10 (incident wave), making it difficult to measure the propagation time. In this embodiment, the time difference T between the transmission echo 10 ′ (S) of the first burst wave 10 and the first reflection echo 11 ′ (B1) shown in FIG. A time waveform W1 as shown in b) is generated.

図3(a)に示すように、第二バースト波21は、ボルト100内を伝播する入射した超音波及び反射波が干渉して合成波20A,20Bとなる。また、第二バースト波21は、所定の範囲内及びピッチで発振周波数を変化させながら入射される。同図に示すように、発振周波数f1の第二バースト波P2Aでは、第二反射エコーB2直後の合成波20Aの信号強度(図中破線で囲む部分)は、最初の反射波22Aと2回目の反射波23Aとが干渉して弱くなる。一方、発振周波数f2の第二バースト波P2Bでは、第二反射エコーB2直後の合成波20Bの信号強度(図中破線で囲む部分)が、最初の反射波22Bと2回目の反射波23Bとが干渉して強くなる。このように、合成波は、ボルト100の長さと第二バースト波21の半波長の整数倍の長さとが一致すれば、干渉し合う波が同位相となり信号強度が増す。なお、本実施形態では、所定の範囲内及びピッチでの各周波数毎に信号強度のピークとなる干渉周波数を測定すると共に図3(b)に示す如き干渉波形W2を生成し、そのピークを極大干渉周波数Qとする。   As shown in FIG. 3A, the second burst wave 21 becomes the combined waves 20 </ b> A and 20 </ b> B by interference of incident ultrasonic waves and reflected waves propagating in the bolt 100. The second burst wave 21 is incident while changing the oscillation frequency within a predetermined range and pitch. As shown in the figure, in the second burst wave P2A having the oscillation frequency f1, the signal intensity of the synthesized wave 20A immediately after the second reflected echo B2 (portion surrounded by a broken line in the figure) is the same as the first reflected wave 22A and the second time. The reflected wave 23A interferes and becomes weak. On the other hand, in the second burst wave P2B having the oscillation frequency f2, the signal intensity of the synthesized wave 20B immediately after the second reflected echo B2 (the portion surrounded by the broken line in the figure) is the first reflected wave 22B and the second reflected wave 23B. It becomes strong by interference. Thus, if the length of the volt | bolt 100 and the length of the integral multiple of the half wavelength of the 2nd burst wave 21 correspond in a synthetic | combination wave, the wave which interferes will become the same phase and signal strength will increase. In the present embodiment, an interference frequency that is a peak of signal intensity is measured for each frequency within a predetermined range and pitch, and an interference waveform W2 as shown in FIG. 3B is generated, and the peak is maximized. Let the interference frequency be Q.

ここで、第二バースト波21の長さは、最初の反射波(第一反射エコーB1)の伝播時間以上で且つ2回目の反射波(第二反射エコーB2)の伝播時間未満の長さであるとよい。最初の反射波の伝播時間未満であれば、干渉する波が発生しておらず測定できない。他方、2回目の反射波の伝播時間以上となると、ボルト100内を伝播する3以上の波(入射波及び第一、第二反射波)で干渉が生じることとなり、干渉による信号強度の判別が困難となる。   Here, the length of the second burst wave 21 is longer than the propagation time of the first reflected wave (first reflected echo B1) and shorter than the propagation time of the second reflected wave (second reflected echo B2). There should be. If it is less than the propagation time of the first reflected wave, no interfering wave is generated and measurement is not possible. On the other hand, when the propagation time of the second reflected wave is exceeded, interference occurs in three or more waves (incident wave and first and second reflected waves) propagating in the bolt 100, and the signal intensity is discriminated by the interference. It becomes difficult.

さらに、極大干渉周波数を測定する測定時間は、2回目の反射波(第二反射エコーB2)の伝播時間から3回目の反射波(第三反射エコーB3)の伝播時間までの時間であるとよい。例えば、第二バースト波21の送信信号が数V〜数百Vであれば、第一反射エコーB1は数mV〜数百V、第二反射エコーB2は第一反射エコーB1の半分程度となる。そのため、送信エコーと第一反射エコーB1では、振幅差が大きすぎるため、送信エコーが支配的となる。従って、1回目の反射波の伝播時間から2回目の反射波の伝播時間までの時間を測定時間とすると、干渉を観察することが困難となる。他方、超音波は反射を繰り返す度に減衰するため、3回目以降の反射波(第三反射エコーB3)の信号強度は次第に弱くなる。従って、3回目以降の反射波の伝播時間からその次の反射波の伝播時間までの時間を測定時間とすると、信号が微弱であるために干渉を観察することが困難となる。このように、第一反射エコーB1と第二反射エコーB2との干渉領域を利用することで、極大干渉周波数を容易且つ正確に検出することができる。   Furthermore, the measurement time for measuring the maximum interference frequency may be the time from the propagation time of the second reflected wave (second reflected echo B2) to the propagation time of the third reflected wave (third reflected echo B3). . For example, if the transmission signal of the second burst wave 21 is several V to several hundred V, the first reflected echo B1 is several mV to several hundred V, and the second reflected echo B2 is about half of the first reflected echo B1. . Therefore, the transmission echo becomes dominant because the amplitude difference between the transmission echo and the first reflection echo B1 is too large. Therefore, if the time from the propagation time of the first reflected wave to the propagation time of the second reflected wave is the measurement time, it is difficult to observe the interference. On the other hand, since the ultrasonic wave is attenuated every time it is repeatedly reflected, the signal intensity of the third and subsequent reflected waves (third reflected echo B3) gradually becomes weaker. Therefore, if the time from the propagation time of the reflected wave after the third time to the propagation time of the next reflected wave is the measurement time, it is difficult to observe the interference because the signal is weak. Thus, the maximum interference frequency can be detected easily and accurately by using the interference region between the first reflection echo B1 and the second reflection echo B2.

表示・入出力部4は、図1に示すように、大略、バースト波設定部41と、条件設定部42と、表示部43と、記憶部44を備える。バースト波設定部41は、第一、第二バースト波10,21の発振周波数、波数(長さ)や発振周波数ピッチ等が入力設定される。条件設定部42は、ボルト100の長さや後述する概略軸力等が入力設定される。表示部43は、例えば軸力測定中において時間波形W1や干渉波形W2を常時表示し、測定結果の軸力等も表示する。記憶部44には、第一、第二マスターカーブM1,M2が記憶され、軸力算出部38がそれを参照する。   As shown in FIG. 1, the display / input / output unit 4 generally includes a burst wave setting unit 41, a condition setting unit 42, a display unit 43, and a storage unit 44. The burst wave setting unit 41 is input and set with the oscillation frequency, wave number (length), oscillation frequency pitch, and the like of the first and second burst waves 10 and 21. The condition setting unit 42 is input and set with the length of the bolt 100, a rough axial force described later, and the like. The display unit 43 always displays the time waveform W1 and the interference waveform W2 during axial force measurement, for example, and also displays the axial force and the like of the measurement result. The storage unit 44 stores the first and second master curves M1 and M2, and the axial force calculation unit 38 refers to them.

ところで、長尺部材としてのボルト100の長さ(軸長)は、5mm以上300mm以下であるとよい。例えば、図4(a)に示すように、軸力負荷前のボルト100の長さをL、軸力負荷後のボルト100’の長さをL+ΔLとすると、伸び(歪みε)はΔL/Lと定義できる。ここで、一般的な弾性変形範囲として1000μεを想定すると、伸び(歪みε)=0.001となる。ボルト100の長さが5mmであればボルト100’の長さは、5.005mmとなる。   By the way, the length (axial length) of the bolt 100 as the long member is preferably 5 mm or more and 300 mm or less. For example, as shown in FIG. 4A, when the length of the bolt 100 before the axial force load is L and the length of the bolt 100 ′ after the axial force load is L + ΔL, the elongation (strain ε) is ΔL / L. Can be defined. Here, assuming 1000 με as a general elastic deformation range, elongation (strain ε) = 0.001. If the length of the bolt 100 is 5 mm, the length of the bolt 100 ′ is 5.005 mm.

伝播速度が5.9mm/μsの超音波がボルト100を往復する伝播時間tは、t=5mm×2(往復経路)÷5.9mm/μs=1.6949msとなる。他方、ボルト100’での伝播時間t’は、t’=5.005mm×2(往復経路)÷5.9mm/μs=1.6966msとなる。その差Δtは、Δt=t’−t=0.0017μs=1.7nsとなる(図4(b))。ボルトの長さが短くなる程、この時間差Δtも短くなる。   The propagation time t during which the ultrasonic wave having a propagation speed of 5.9 mm / μs reciprocates through the bolt 100 is t = 5 mm × 2 (reciprocal path) ÷ 5.9 mm / μs = 1.6949 ms. On the other hand, the propagation time t ′ in the bolt 100 ′ is t ′ = 5.005 mm × 2 (reciprocating path) ÷ 5.9 mm / μs = 1.6966 ms. The difference Δt is Δt = t′−t = 0.717 μs = 1.7 ns (FIG. 4B). The shorter the bolt length, the shorter the time difference Δt.

このような受信信号(波形)に対しデジタル処理を行う場合、音圧を一定間隔(サンプリング周波数)でデジタルデータに変換される。図4(c)に示すように、高速サンプリングのA/D変換器はサンプリング周期が短く、微細な時間差を識別可能であるが、装置が高価となる。一方、図4(d)に示すように、低速サンプリングのA/D変換器はサンプリング周期が長く、微細な時間差を識別することが困難であるが、装置は安価となる。すなわち、ボルトの長さが短くなる程、時間差Δtを検出するためにサンプリング周期の短いものが必要となる。他方、ボルトの長さが長くなれば時間差Δtも大きくなる。   When digital processing is performed on such a received signal (waveform), the sound pressure is converted into digital data at regular intervals (sampling frequency). As shown in FIG. 4C, the high-speed sampling A / D converter has a short sampling period and can identify a minute time difference, but the apparatus becomes expensive. On the other hand, as shown in FIG. 4 (d), the low-speed sampling A / D converter has a long sampling period and it is difficult to identify a minute time difference, but the apparatus is inexpensive. In other words, the shorter the bolt length, the shorter the sampling period is required to detect the time difference Δt. On the other hand, the time difference Δt increases as the length of the bolt increases.

一方、干渉法において、一般的な弾性変形範囲として1000μεとし、ボルト100の長さLを300mmとすると、L+ΔLは、300.3mmとなる。ここで、伝播速度が5.9mm/μsの超音波において、図5(a)に示す如く半波長がボルト長さとなれば、ボルト100では、干渉波長λ=300mm×2=600mm、干渉周波数f=5.9mm/μs÷600mm=9.833kHzとなる。他方、ボルト100’では、干渉波長λ’=300.3mm×2=600.6mm、干渉周波数f’=5.9mm/μs÷600.6mm=9.824kHzとなる。そして、同図(b)に示すように、ボルト長さが1波長となると、干渉波長は半減し干渉周波数は倍増する。さらに、同図(c)に示すように、ボルト長さが1.5波長となると、干渉波長は半波長時の1/3となり干渉周波数は3倍となる。   On the other hand, in the interferometry, if the general elastic deformation range is 1000 με and the length L of the bolt 100 is 300 mm, L + ΔL is 300.3 mm. Here, in the ultrasonic wave having a propagation velocity of 5.9 mm / μs, if the half wavelength is a bolt length as shown in FIG. 5A, the bolt 100 has an interference wavelength λ = 300 mm × 2 = 600 mm, an interference frequency f = 5.9 mm / μs ÷ 600 mm = 9.833 kHz. On the other hand, in the bolt 100 ′, the interference wavelength λ ′ = 300.3 mm × 2 = 600.6 mm and the interference frequency f ′ = 5.9 mm / μs ÷ 600.6 mm = 9.824 kHz. As shown in FIG. 5B, when the bolt length becomes one wavelength, the interference wavelength is reduced by half and the interference frequency is doubled. Furthermore, as shown in FIG. 5C, when the bolt length is 1.5 wavelengths, the interference wavelength is 1/3 of the half wavelength, and the interference frequency is tripled.

従って、図5(d)に示すように、干渉強度のピークは干渉周波数毎に出現する。また、干渉周波数の差は9Hzとなる。よって、干渉次数(半波長の数)が多い程、干渉周波数が大きくなりその差も大きくなる。例えば干渉次数が510程度となる超音波をボルトに入射した場合、干渉周波数の差は5.01kHzとなり、1kHz程度の周波数分解能があれば、干渉周波数の差を検出できる。一方、ボルトの長さが長くなる程(300mm超)、干渉波長が長くなり干渉周波数は小さくなるので、周波数分解能を向上させなければならず、装置が高価となる。他方、ボルトの長さが短くなれば干渉周波数の差も大きくなる。   Therefore, as shown in FIG. 5D, the peak of the interference intensity appears for each interference frequency. The difference in interference frequency is 9 Hz. Therefore, as the interference order (the number of half wavelengths) increases, the interference frequency increases and the difference also increases. For example, when an ultrasonic wave having an interference order of about 510 is incident on the bolt, the difference in interference frequency is 5.01 kHz, and if there is a frequency resolution of about 1 kHz, the difference in interference frequency can be detected. On the other hand, as the length of the bolt becomes longer (over 300 mm), the interference wavelength becomes longer and the interference frequency becomes smaller, so that the frequency resolution has to be improved and the apparatus becomes expensive. On the other hand, if the length of the bolt is shortened, the difference in interference frequency is also increased.

このように、特に、ボルト100の長さが5mm以上300mm以下の場合、時間差法及び干渉法の双方の手法を併用することで、サンプリング周期の短いオシロスコープやA/D変換器又は周波数分解能の高い装置を用いることなく、安価な装置で高精度に軸力を測定することが可能となる。   Thus, particularly when the length of the bolt 100 is 5 mm or more and 300 mm or less, by using both the time difference method and the interferometry method, an oscilloscope, A / D converter, or high frequency resolution with a short sampling period is used. Without using a device, it is possible to measure the axial force with high accuracy using an inexpensive device.

次に、図6〜10を参照しながら軸力測定手順について説明する。
図6に示すように、軸力測定の前に、対象となるボルトと同一構成よりなる試験ボルトを用いて第一、第二マスターカーブM1,M2を作成する。始めに、試験ボルトを引張試験機や油圧ジャッキ等にセットすると共に、試験ボルトを引っ張ることで所定の軸力を発生させる。また、バースト波設定部41に入射する第一、第二バースト波10,21の発振周波数、波数、発振周波数間隔を入力すると共に条件設定部42に試験ボルトの長さや設定した軸力を入力する(S1)。次に、超音波発生器30がバースト波設定部41に設定された条件に従って探触子2に第一バースト波10を発生させ、反射信号を受信する(S2)。そして、伝播時間測定部36aにて波形データの作成が完了すれば(S3)、超音波発生器30がバースト波設定部41に設定された条件に従って探触子2に第二バースト波21を発生させ、反射信号を受信し信号強度測定部36bにて波形データが生成される(S4)。
Next, an axial force measurement procedure will be described with reference to FIGS.
As shown in FIG. 6, before the axial force measurement, first and second master curves M1 and M2 are created using test bolts having the same configuration as the target bolt. First, a test bolt is set on a tensile tester or a hydraulic jack, and a predetermined axial force is generated by pulling the test bolt. In addition, the oscillation frequency, wave number, and oscillation frequency interval of the first and second burst waves 10 and 21 incident on the burst wave setting unit 41 are input, and the length of the test bolt and the set axial force are input to the condition setting unit 42. (S1). Next, the ultrasonic generator 30 generates the first burst wave 10 in the probe 2 according to the conditions set in the burst wave setting unit 41, and receives the reflected signal (S2). When the generation of waveform data is completed in the propagation time measuring unit 36a (S3), the ultrasonic generator 30 generates the second burst wave 21 on the probe 2 according to the conditions set in the burst wave setting unit 41. Then, the reflected signal is received, and the waveform data is generated by the signal intensity measuring unit 36b (S4).

全測定が完了していなければ(S5)、軸力を変更して(S7)上記工程を繰り返す。各軸力にて測定が完了すれば(S5)、第一マスターカーブ作成部37aは、伝播時間測定部36aが測定した第一バースト波10の伝播時間と設定した軸力から図7(a)の如き第一マスターカーブM1を作成する(S6)。また、第二マスターカーブ作成部37bは、信号強度測定部36bが測定した第二バースト波21の極大干渉周波数と設定した軸力から図7(b)の如き第二マスターカーブM2を作成する(S6)。作成された第一、第二マスターカーブM1,M2は、表示・入出力部4の記憶部44に記憶される。そして、第一、第二マスターカーブM1,M2の作成後に、軸力測定が行われる。   If all measurements are not completed (S5), the axial force is changed (S7) and the above steps are repeated. If the measurement is completed with each axial force (S5), the first master curve creating unit 37a determines the propagation time of the first burst wave 10 measured by the propagation time measuring unit 36a and the set axial force as shown in FIG. A first master curve M1 is created (S6). Further, the second master curve creating unit 37b creates a second master curve M2 as shown in FIG. 7B from the maximum interference frequency of the second burst wave 21 measured by the signal intensity measuring unit 36b and the set axial force ( S6). The created first and second master curves M 1 and M 2 are stored in the storage unit 44 of the display / input / output unit 4. Then, after the first and second master curves M1 and M2 are created, axial force measurement is performed.

ここで、例えば図8に示すように、ボルト100が比較的長い場合、時間波形(第一バースト波)では、ピーク信号から伝播時間を特定しやすい。一方、干渉波形(第二バースト波)ではピーク信号が複数存在するため、極大干渉周波数となる周波数を特定しにくい。   Here, for example, as shown in FIG. 8, when the bolt 100 is relatively long, in the time waveform (first burst wave), it is easy to specify the propagation time from the peak signal. On the other hand, since there are a plurality of peak signals in the interference waveform (second burst wave), it is difficult to specify the frequency that is the maximum interference frequency.

そこで、図9に示すように、まず、上述と同様にバースト波設定部41に入射する第一、第二バースト波10,21の発振周波数、波数、発振周波数間隔を入力すると共に条件設定部42にボルト100の長さを入力する(S10)。例えば、発振周波数5MHz(例えば可変範囲5.0MHz〜5.1MHz)、第一バースト波の波数1、第二バースト波の波数600、発振周波数間隔1kHz、ボルト100の長さ160mmと入力する。次に、超音波発生器30が第一バースト波21を発生させ、反射信号を受信する(S2)。そして、伝播時間測定部36aが時間波形W1を生成すると共にそのピーク時刻を伝播時間Tとして測定する(S12、図10(a))。   Therefore, as shown in FIG. 9, first, the oscillation frequency, the wave number, and the oscillation frequency interval of the first and second burst waves 10 and 21 incident on the burst wave setting unit 41 are input and the condition setting unit 42 as described above. Is input the length of the bolt 100 (S10). For example, an oscillation frequency of 5 MHz (for example, a variable range of 5.0 MHz to 5.1 MHz), a wave number of the first burst wave, a wave number of the second burst wave of 600, an oscillation frequency interval of 1 kHz, and a length of the bolt 100 of 160 mm are input. Next, the ultrasonic generator 30 generates the first burst wave 21 and receives the reflected signal (S2). Then, the propagation time measuring unit 36a generates the time waveform W1 and measures the peak time as the propagation time T (S12, FIG. 10 (a)).

伝播時間Tを測定後、軸力算出部38は、第一マスターカーブM1から測定した伝播時間Tにおける概略軸力F’を求め、条件設定部42に記憶させる。また、軸力算出部38は、第二マスターカーブM2から先の概略軸力F’における干渉周波数範囲frを求める(S13、図10(b)(c))。なお、本実施形態において、干渉周波数範囲frは10kHz程度に設定しているが、一例に過ぎず、適宜の数値範囲で設定される。   After measuring the propagation time T, the axial force calculation unit 38 obtains the approximate axial force F ′ at the propagation time T measured from the first master curve M1, and stores it in the condition setting unit 42. Further, the axial force calculation unit 38 obtains the interference frequency range fr in the approximate axial force F ′ from the second master curve M2 (S13, FIGS. 10B and 10C). In the present embodiment, the interference frequency range fr is set to about 10 kHz. However, the interference frequency range fr is only an example, and is set in an appropriate numerical range.

そして、概略軸力F’及び干渉周波数範囲frを算出できれば(S14)、超音波発生器30が設定した発振周波数範囲内において設定した周波数間隔で周波数を変化させながら第二バースト波21を発生させ、反射信号を受信する(S15)。そして、信号強度測定部36bは、干渉波形W2を生成すると共にその干渉波形W2において先に求めた干渉周波数範囲frから極大干渉周波数Qを求める(S16、図10(d))。そして、軸力算出部38は、求めた極大干渉周波数Qを第二マスターカーブM2に代入して軸力Fを算出する(S17、図10(e))。このように、先に第一バースト波10を用いて第二バースト波21の極大干渉周波数Qが出現し得る周波数範囲frを予測することで、極大干渉周波数Qを見誤ることなく正確に算出できるので、上述の如き周波数分解能が高い高価な装置を用いなくとも、安価な装置で高精度に軸力を測定することができる。   If the approximate axial force F ′ and the interference frequency range fr can be calculated (S14), the second burst wave 21 is generated while changing the frequency at the frequency interval set within the oscillation frequency range set by the ultrasonic generator 30. The reflected signal is received (S15). Then, the signal strength measuring unit 36b generates the interference waveform W2 and obtains the maximum interference frequency Q from the interference frequency range fr obtained previously in the interference waveform W2 (S16, FIG. 10 (d)). Then, the axial force calculator 38 calculates the axial force F by substituting the obtained maximum interference frequency Q into the second master curve M2 (S17, FIG. 10 (e)). Thus, by predicting the frequency range fr where the maximum interference frequency Q of the second burst wave 21 can appear using the first burst wave 10 in advance, the maximum interference frequency Q can be accurately calculated without mistaking it. Therefore, the axial force can be measured with high accuracy by an inexpensive device without using an expensive device with high frequency resolution as described above.

次に、本発明の第二実施形態について説明する。なお、以下の実施形態において、上記実施形態と同様の部材には同一の符号を附してある。
上記第一実施形態においては、先に第一バースト波10の伝播時間Tから概算軸力F’を算出し、概算軸力F’に基づき第二マスターカーブM2から干渉周波数範囲frを求めた。しかし、先に第二バースト波21を適用し極大干渉周波数Qから概算軸力F’を算出し、概算軸力F’に基づき第一マスターカーブM1から伝播時間範囲trを求めて、軸力Fを求めることも可能である。
Next, a second embodiment of the present invention will be described. In the following embodiments, members similar to those in the above embodiment are denoted by the same reference numerals.
In the first embodiment, the approximate axial force F ′ is calculated from the propagation time T of the first burst wave 10 first, and the interference frequency range fr is obtained from the second master curve M2 based on the approximate axial force F ′. However, the second burst wave 21 is first applied, the approximate axial force F ′ is calculated from the maximum interference frequency Q, the propagation time range tr is obtained from the first master curve M1 based on the approximate axial force F ′, and the axial force F Is also possible.

例えば、図11に示すように、ボルト100が比較的短い場合、干渉波形(第二バースト波)では、ピーク信号から極大干渉周波数を特定しやすい。一方、時間波形(第一バースト波)ではピーク信号が複数存在するため、伝播時間を特定しにくい。   For example, as shown in FIG. 11, when the bolt 100 is relatively short, it is easy to specify the maximum interference frequency from the peak signal in the interference waveform (second burst wave). On the other hand, since there are a plurality of peak signals in the time waveform (first burst wave), it is difficult to specify the propagation time.

そこで、図12に示すように、まず、上述と同様にバースト波設定部41に入射する第一、第二バースト波10,21の発振周波数、波数、発振周波数間隔を入力すると共に条件設定部42にボルト100の長さを入力する(S20)。次に、超音波発生器30が第二バースト波21を発生させ、反射信号を受信する(S21)。そして、信号強度測定部36bが干渉波形W2を生成すると共に極大干渉周波数Qを求める(S22、図13(a))。   Therefore, as shown in FIG. 12, first, the oscillation frequency, the wave number, and the oscillation frequency interval of the first and second burst waves 10 and 21 incident on the burst wave setting unit 41 are input and the condition setting unit 42 as described above. The length of the bolt 100 is input to (S20). Next, the ultrasonic generator 30 generates the second burst wave 21 and receives the reflected signal (S21). Then, the signal intensity measuring unit 36b generates the interference waveform W2 and obtains the maximum interference frequency Q (S22, FIG. 13A).

極大干渉周波数Qを求めた後、軸力算出部38は、第二マスターカーブM2から求めた極大干渉周波数Qにおける概略軸力F’を求め、条件設定部42に記憶させる。また、軸力算出部38は、第一マスターカーブM1から先の概略軸力F’における伝播時間範囲trを求める(S23、図13(b)(c))。   After obtaining the maximum interference frequency Q, the axial force calculation unit 38 obtains the approximate axial force F ′ at the maximum interference frequency Q obtained from the second master curve M2, and stores it in the condition setting unit 42. Moreover, the axial force calculation part 38 calculates | requires the propagation time range tr in the general axial force F 'ahead from the 1st master curve M1 (S23, FIG.13 (b) (c)).

そして、概略軸力F’及び伝播時間範囲trを算出できれば(S24)、超音波発生器30が第一バースト波21を発生させ、反射信号を受信する(S25)。そして、伝播時間測定部36aは時間波形W1を生成すると共に時間波形W1において先に求めた伝播時間範囲trから極大伝播時間T’を求める(S26、図13(d))。なお、本実施形態において、伝播時間範囲trは0.01μs程度に設定しているが、一例に過ぎず、適宜の数値範囲で設定される。   If the approximate axial force F 'and the propagation time range tr can be calculated (S24), the ultrasonic generator 30 generates the first burst wave 21 and receives the reflected signal (S25). Then, the propagation time measuring unit 36a generates the time waveform W1 and obtains the maximum propagation time T ′ from the propagation time range tr previously obtained in the time waveform W1 (S26, FIG. 13 (d)). In the present embodiment, the propagation time range tr is set to about 0.01 μs, but is merely an example, and is set within an appropriate numerical range.

そして、軸力算出部38は、求めた極大伝播時間T’を第一マスターカーブM1に代入して軸力を算出する(S27、図13(e))。このように、先に第二バースト波を用いて第一バースト波10の極大伝播時間T’が出現し得る伝播時間範囲trを予測することで、極大伝播時間T’を見誤ることなく正確に算出できるので、上述の如きサンプリング周期の短いA/D変換器等を用いることなく、安価な装置で高精度に軸力を測定することができる。   Then, the axial force calculation unit 38 calculates the axial force by substituting the obtained maximum propagation time T ′ into the first master curve M1 (S27, FIG. 13 (e)). Thus, by predicting the propagation time range tr in which the maximum propagation time T ′ of the first burst wave 10 can appear using the second burst wave, the maximum propagation time T ′ can be accurately detected without mistaking it. Since it can be calculated, the axial force can be measured with high accuracy by an inexpensive apparatus without using an A / D converter having a short sampling period as described above.

最後に、本発明のさらに他の実施形態の可能性について説明する。
上記各実施形態において、伝播時間Tを第一バースト波10の送信エコー10’(S)と第一反射エコー11’(B1)の時間差とした。しかし、これに限られず、例えば第一反射エコー11’(B1)と第二反射エコー12’(B2)との時間差であってもよい。また、図2(b)に示す如く伝播時間Tとしてピーク時間を計測した。しかし、伝播時間はピーク時間に限定されるものではなく、例えば、ゼロクロス時刻、閾値クロス時刻、相互相関法等の他の手法により求まる時間を伝播時間とすることも可能である。なお、極大伝播時間T’においても同様である。
Finally, the possibilities of yet another embodiment of the present invention will be described.
In each of the above embodiments, the propagation time T is the time difference between the transmission echo 10 ′ (S) of the first burst wave 10 and the first reflection echo 11 ′ (B1). However, the present invention is not limited to this, and may be a time difference between the first reflected echo 11 ′ (B1) and the second reflected echo 12 ′ (B2), for example. Further, the peak time was measured as the propagation time T as shown in FIG. However, the propagation time is not limited to the peak time, and for example, the time obtained by another method such as zero cross time, threshold cross time, or cross-correlation method can be used as the propagation time. The same applies to the maximum propagation time T ′.

上記各実施形態において、第二バースト波また、図3(b)に示す如く、第二バースト波の合成波(反射信号)の信号強度として振幅値を用いた。しかし、信号強度は振幅値に限定されるものではなく、振幅の積分値(面積)やエネルギーを用いることも可能である。   In each of the embodiments described above, the amplitude value is used as the signal intensity of the second burst wave or the combined wave (reflected signal) of the second burst wave as shown in FIG. However, the signal intensity is not limited to the amplitude value, and an integral value (area) of amplitude or energy can also be used.

上記実施形態において、各バースト波の周波数、周波数ピッチや波数等は適宜設定、入力するものであり、上記数値に限られるものではない。また、上記各実施形態では、信号処理部3にマスターカーブ作成部37を設けた。しかし、必ずしも信号処理部3にマスターカーブ作成部37を設ける必要はなく、軸力測定時に少なくとも予め作成された第一、第二マスターカーブM1,M2を参照可能に構成すればよい。   In the above embodiment, the frequency, frequency pitch, wave number, etc. of each burst wave are set and input as appropriate, and are not limited to the above numerical values. Further, in each of the above embodiments, the master curve creation unit 37 is provided in the signal processing unit 3. However, it is not always necessary to provide the master curve creation unit 37 in the signal processing unit 3, and it may be configured to be able to refer to at least the first and second master curves M1 and M2 created in advance when measuring the axial force.

上記第一実施形態において、第一バースト波10により伝播時間Tを測定し概略軸力F’を介して干渉周波数範囲frを求め、設定した第二バースト波21の発振周波数範囲内で且つ干渉周波数範囲fr内で極大干渉周波数Qを求めた。しかし、例えば、干渉周波数範囲frを求めた後、その干渉周波数範囲frを第二バースト波21の発振周波数範囲として設定することも可能である。これにより、第二バースト波21の発振周波数範囲が極大干渉周波数Qが出現するであろう範囲に限定できるので、測定時間を短縮でき効率よく軸力を測定できる。   In the first embodiment, the propagation time T is measured by the first burst wave 10, the interference frequency range fr is obtained through the approximate axial force F ', and the interference frequency is within the set oscillation frequency range of the second burst wave 21. The maximum interference frequency Q was determined within the range fr. However, for example, after obtaining the interference frequency range fr, the interference frequency range fr can be set as the oscillation frequency range of the second burst wave 21. Thereby, since the oscillation frequency range of the second burst wave 21 can be limited to a range where the maximum interference frequency Q will appear, the measurement time can be shortened and the axial force can be measured efficiently.

上記各実施形態において、1つの超音波発生器30から異なる2種のバースト波を発生させることで軸力測定を行った。しかし、第一バースト波をパルス波に替えて、下記に示す構成の如くパルス波とバースト波(第二バースト波に相当)とを用いることも可能である。但し、パルス波とバースト波とを1つの超音波発生器で生成できないため、それぞれに超音波発生器が必要となり装置が複雑且つ高価となる。この点で上記各実施形態が優れている。なお、パルス波としては、例えばスパイクパルスや矩形波(スクエアパルス)等が利用可能であり、伝播時間が測定可能なものであればよい。その他の点は、上記各実施形態と共通する。   In each of the above embodiments, axial force measurement was performed by generating two different types of burst waves from one ultrasonic generator 30. However, it is also possible to use a pulse wave and a burst wave (corresponding to the second burst wave) as shown in the following configuration in place of the first burst wave. However, since the pulse wave and the burst wave cannot be generated by one ultrasonic generator, an ultrasonic generator is required for each, and the apparatus becomes complicated and expensive. In this respect, the above embodiments are excellent. In addition, as a pulse wave, a spike pulse, a rectangular wave (square pulse), etc. can be utilized, for example, and the propagation time should just be measurable. Other points are common to the above embodiments.

軸力測定装置の特徴は、長尺部材の一端から超音波を入射すると共に前記長尺部材の他端から反射した反射波を受信する探触子と、前記超音波を発生させる超音波発生器と、受信した反射波の信号を処理し前記長尺部材の軸力を測定する信号処理部とを備える軸力測定装置であって、前記超音波発生器は、パルス波とバースト波の2種の超音波を発生させるものであり、前記信号処理部は、前記パルス波の伝播時間を測定する伝播時間測定部と、発振周波数毎に前記反射波の伝播時間から次の反射波の伝播時間までの測定時間における前記バースト波の信号強度を測定する信号強度測定部と、既知の軸力に対する前記伝播時間を求めた第一マスターカーブと、前記既知の軸力に対する前記信号強度が最大となる極大干渉周波数を求めた第二マスターカーブとを備え、締結された長尺部材に前記パルス波を入射させて前記伝播時間を測定すると共に前記バースト波を前記発振周波数を変化させながら入射させて前記発振周波数毎に前記信号強度を測定し、前記第一マスターカーブから測定した伝播時間における概略軸力を求め、前記第二マスターカーブから前記概略軸力における干渉周波数範囲を求め、測定した発振周波数毎の信号強度から前記干渉周波数範囲内で最大の信号強度となる極大干渉周波数を求め、求めた極大干渉周波数と前記第二マスターカーブにより前記長尺部材の軸力を測定することにある。   The axial force measuring device is characterized by a probe that receives ultrasonic waves from one end of a long member and receives a reflected wave reflected from the other end of the long member, and an ultrasonic generator that generates the ultrasonic waves And a signal processing unit that processes the received reflected wave signal and measures the axial force of the elongated member, wherein the ultrasonic generator includes two types of pulse waves and burst waves The signal processing unit includes a propagation time measurement unit that measures the propagation time of the pulse wave, and from the propagation time of the reflected wave to the propagation time of the next reflected wave for each oscillation frequency. A signal intensity measuring unit for measuring the signal intensity of the burst wave during the measurement time, a first master curve for obtaining the propagation time with respect to a known axial force, and a maximum with which the signal intensity with respect to the known axial force is maximized The second machine that determined the interference frequency And measuring the propagation time by allowing the pulse wave to enter a fastened long member and measuring the signal intensity at each oscillation frequency by causing the burst wave to enter while changing the oscillation frequency. The approximate axial force at the propagation time measured from the first master curve is obtained, the interference frequency range at the approximate axial force is obtained from the second master curve, and within the interference frequency range from the measured signal intensity for each oscillation frequency. The maximum interference frequency that gives the maximum signal strength is obtained, and the axial force of the long member is measured by the obtained maximum interference frequency and the second master curve.

軸力測定装置の他の特徴は、長尺部材の一端から超音波を入射すると共に前記長尺部材の他端から反射した反射波を受信する探触子と、前記超音波を発生させる超音波発生器と、受信した反射波の信号を処理し前記長尺部材の軸力を測定する信号処理部とを備える軸力測定装置であって、前記超音波発生器は、パルス波とバースト波の2種の超音波を発生させるものであり、前記信号処理部は、前記パルス波の伝播時間を測定する伝播時間測定部と、発振周波数毎に前記反射波の伝播時間から次の反射波の伝播時間までの測定時間における前記バースト波の信号強度を測定する信号強度測定部と、既知の軸力に対する前記伝播時間を求めた第一マスターカーブと、前記既知の軸力に対する前記信号強度が最大となる極大干渉周波数を求めた第二マスターカーブとを備え、締結された長尺部材に前記パルス波を入射させて前記伝播時間を測定すると共に前記バースト波を前記発振周波数を変化させながら入射させて前記発振周波数毎に前記信号強度を測定して前記極大干渉周波数を求め、前記第二マスターカーブから求めた極大干渉周波数における概略軸力を求め、前記第一マスターカーブから求めた前記概略軸力における前記伝播時間範囲を求め、測定した伝播時間から前記伝播時間範囲内で最大の信号強度となる極大伝播時間を求め、求めた極大伝播時間と前記第一マスターカーブにより前記長尺部材の軸力を測定することにある。   Another feature of the axial force measuring device is that a probe that receives ultrasonic waves from one end of a long member and receives a reflected wave reflected from the other end of the long member, and an ultrasonic wave that generates the ultrasonic waves An axial force measuring device including a generator and a signal processing unit that processes a received reflected wave signal and measures an axial force of the elongated member, wherein the ultrasonic generator generates a pulse wave and a burst wave. Two types of ultrasonic waves are generated, and the signal processing unit includes a propagation time measurement unit that measures the propagation time of the pulse wave, and the propagation of the next reflected wave from the propagation time of the reflected wave for each oscillation frequency. A signal intensity measuring unit for measuring the signal intensity of the burst wave in a measurement time up to time, a first master curve for obtaining the propagation time with respect to a known axial force, and the signal intensity with respect to the known axial force being maximum. The maximum interference frequency A master curve, and measuring the propagation time by making the pulse wave incident on a fastened long member and making the burst wave incident while changing the oscillation frequency to increase the signal intensity for each oscillation frequency. Measured to determine the maximum interference frequency, to determine the approximate axial force at the maximum interference frequency determined from the second master curve, to determine and measure the propagation time range in the approximate axial force determined from the first master curve The maximum propagation time that is the maximum signal intensity within the propagation time range is obtained from the propagation time, and the axial force of the long member is measured by the obtained maximum propagation time and the first master curve.

軸力測定方法の特徴は、長尺部材の一端から超音波を入射すると共に前記長尺部材の他端から反射した反射波を受信し、受信した反射波の信号に基づいて前記長尺部材の軸力を測定する軸力測定方法であって、予め、前記長尺部材の一端からパルス波を入射させて反射波の伝播時間を測定すると共にこのパルス波とは異なるバースト波を発振周波数を変化させながら入射させて前記反射波の伝播時間から次の反射波の伝播時間までの測定時間における前記バースト波の信号強度を測定して、既知の軸力に対する前記伝播時間を求めた第一マスターカーブ及び前記既知の軸力に対する前記信号強度が最大となる極大干渉周波数を求めた第二マスターカーブを作成しておき、締結された長尺部材に前記パルス波を入射させて前記伝播時間を測定すると共に前記バースト波を前記発振周波数を変化させながら入射させて前記発振周波数毎に信号強度を測定し、前記第一マスターカーブから測定した伝播時間における概略軸力を求め、前記第二マスターカーブから前記概略軸力における干渉周波数範囲を求め、測定した発振周波数毎の信号強度から前記干渉周波数範囲内で最大の信号強度となる極大干渉周波数を求め、求めた極大干渉周波数と前記第二マスターカーブにより前記長尺部材の軸力を測定することにある。   The axial force measurement method is characterized in that an ultrasonic wave is incident from one end of the long member and a reflected wave reflected from the other end of the long member is received, and the long member is An axial force measurement method for measuring an axial force, in which a pulse wave is incident from one end of the long member to measure a propagation time of a reflected wave, and a burst wave different from the pulse wave is changed in oscillation frequency. The first master curve obtained by measuring the signal intensity of the burst wave in the measurement time from the propagation time of the reflected wave to the propagation time of the next reflected wave and obtaining the propagation time with respect to a known axial force. And creating a second master curve for obtaining the maximum interference frequency at which the signal intensity with respect to the known axial force is maximized, and measuring the propagation time by making the pulse wave incident on the fastened long member. In addition, the burst wave is incident while changing the oscillation frequency, and the signal intensity is measured for each oscillation frequency, the approximate axial force in the propagation time measured from the first master curve is obtained, and the second master curve Determine the interference frequency range in the approximate axial force, determine the maximum interference frequency that is the maximum signal strength within the interference frequency range from the measured signal intensity for each oscillation frequency, and by the determined maximum interference frequency and the second master curve The purpose is to measure the axial force of the long member.

軸力測定方法の他の特徴は、長尺部材の一端から超音波を入射すると共に前記長尺部材の他端から反射した反射波を受信し、受信した反射波の信号に基づいて前記長尺部材の軸力を測定する軸力測定方法であって、予め、前記長尺部材の一端からパルス波を入射させて反射波の伝播時間を測定すると共にこのパルス波とは異なるバースト波を発振周波数を変化させながら入射させて前記反射波の伝播時間から次の反射波の伝播時間までの測定時間における前記バースト波の信号強度を測定して、既知の軸力に対する前記伝播時間を求めた第一マスターカーブ及び前記既知の軸力に対する前記信号強度が最大となる極大干渉周波数を求めた第二マスターカーブを作成しておき、締結された長尺部材に前記パルス波を入射させて前記伝播時間を測定すると共に前記バースト波を前記発振周波数を変化させながら入射させて前記発振周波数毎に前記信号強度を測定して前記極大干渉周波数を求め、前記第二マスターカーブから求めた極大干渉周波数における概略軸力を求め、前記第一マスターカーブから求めた前記概略軸力における前記伝播時間範囲を求め、測定した伝播時間から前記伝播時間範囲内で最大の信号強度となる極大伝播時間を求め、求めた極大伝播時間と前記第一マスターカーブにより前記長尺部材の軸力を測定することにある。   Another feature of the axial force measuring method is that an ultrasonic wave is incident from one end of the long member, a reflected wave reflected from the other end of the long member is received, and the long length is based on the received reflected wave signal. A method of measuring an axial force of a member, wherein a pulse wave is incident from one end of the long member to measure a propagation time of a reflected wave and a burst wave different from the pulse wave is oscillated in frequency. First, the propagation time with respect to a known axial force was determined by measuring the signal intensity of the burst wave during the measurement time from the propagation time of the reflected wave to the propagation time of the next reflected wave. A second master curve for obtaining a master curve and a maximum interference frequency that maximizes the signal intensity with respect to the known axial force is created, and the pulse wave is incident on the fastened long member to determine the propagation time. Measurement In addition, the burst wave is made incident while changing the oscillation frequency, the signal intensity is measured for each oscillation frequency to obtain the maximum interference frequency, and the approximate axial force at the maximum interference frequency obtained from the second master curve. Obtaining the propagation time range in the approximate axial force obtained from the first master curve, obtaining the maximum propagation time that gives the maximum signal intensity within the propagation time range from the measured propagation time, and obtaining the obtained maximum propagation. The axial force of the long member is measured by time and the first master curve.

本発明は、例えば、自動車部品、機械装置、その他産業用装置、機器、プラント等に用いられる長尺部材としてのボルトやねじ等による締結物における軸力測定装置及び測定方法として利用することができる。また、医療用ボルト等の他の長尺部材の軸力測定装置及び測定方法としても利用することができる。   INDUSTRIAL APPLICABILITY The present invention can be used as an axial force measuring device and measuring method for a fastening object such as a bolt or a screw as a long member used in, for example, automobile parts, mechanical devices, other industrial devices, equipment, plants, and the like. . It can also be used as an axial force measuring device and measuring method for other long members such as medical bolts.

1:軸力測定装置、2:探触子、3:信号処理部(装置本体)、4:表示・入出力部(PC)、10:第一バースト波、11,11’:最初の反射波(B1)、12,12’:2回目の反射波(B2)、20A,20B:合成波、21:第二バースト波、22:最初の反射波(B1)、23:2回目の反射波(B2)、30:超音波発生器、31:パワーアンプ、32:保護回路、33:周波数フィルタ、34:A/D変換器、35:フィルタ、36:測定部、36a:伝搬時間測定部、36b:信号強度測定部、37:マスターカーブ作成部、37a:第一マスターカーブ作成部、37b:第二マスターカーブ作成部、38:軸力算出部、39:データ記憶部、41:バースト波設定部、42:条件設定部、43:表示部、44:記憶部、100:ボルト、101:頭部(一端)、102:先端部(他端)、F:軸力、F’:概略軸力、fr:干渉周波数範囲、Q:極大干渉周波数、T:伝播時間、T’:極大伝播時間、tr:伝播時間範囲、W1:時間波形、W2:干渉波形 1: axial force measuring device, 2: probe, 3: signal processing unit (device main body), 4: display / input / output unit (PC), 10: first burst wave, 11, 11 ′: first reflected wave (B1), 12, 12 ′: Second reflected wave (B2), 20A, 20B: Composite wave, 21: Second burst wave, 22: First reflected wave (B1), 23: Second reflected wave ( B2), 30: ultrasonic generator, 31: power amplifier, 32: protection circuit, 33: frequency filter, 34: A / D converter, 35: filter, 36: measurement unit, 36a: propagation time measurement unit, 36b : Signal intensity measurement unit, 37: master curve creation unit, 37a: first master curve creation unit, 37b: second master curve creation unit, 38: axial force calculation unit, 39: data storage unit, 41: burst wave setting unit 42: condition setting unit, 43: display unit, 44: storage unit, 00: bolt, 101: head (one end), 102: tip (other end), F: axial force, F ′: approximate axial force, fr: interference frequency range, Q: maximum interference frequency, T: propagation time, T ′: maximum propagation time, tr: propagation time range, W1: time waveform, W2: interference waveform

Claims (8)

長尺部材の一端から超音波を入射すると共に前記長尺部材の他端から反射した反射波を受信する探触子と、前記超音波を発生させる超音波発生器と、受信した反射波の信号を処理し前記長尺部材の軸力を測定する信号処理部とを備える軸力測定装置であって、
前記超音波発生器は、少なくとも第一バースト波とこの第一バースト波とは異なる第二バースト波の2種のバースト波を発生させるものであり、
前記信号処理部は、前記第一バースト波の伝播時間を測定する伝播時間測定部と、
発振周波数毎に前記反射波の伝播時間から次の反射波の伝播時間までの測定時間における前記第二バースト波の信号強度を測定する信号強度測定部と、
既知の軸力に対する前記伝播時間を求める第一マスターカーブと、
前記既知の軸力に対する前記信号強度が最大となる極大干渉周波数を求める第二マスターカーブとを備え、
締結された長尺部材に前記第一バースト波を入射させて前記伝播時間を測定すると共に前記第二バースト波を前記発振周波数を変化させながら入射させて前記発振周波数毎に前記信号強度を測定し、
前記第一マスターカーブから測定した伝播時間における概略軸力を求め、
前記第二マスターカーブから前記概略軸力における干渉周波数範囲を求め、
測定した発振周波数毎の信号強度から前記干渉周波数範囲内で最大の信号強度となる極大干渉周波数を求め、
求めた極大干渉周波数と前記第二マスターカーブにより前記長尺部材の軸力を測定する軸力測定装置。
A probe that receives ultrasonic waves from one end of a long member and receives reflected waves reflected from the other end of the long member, an ultrasonic generator that generates the ultrasonic waves, and a signal of the received reflected waves An axial force measuring device comprising a signal processing unit that processes the axial force of the elongated member,
The ultrasonic generator generates at least two burst waves of a first burst wave and a second burst wave different from the first burst wave,
The signal processing unit is a propagation time measurement unit that measures the propagation time of the first burst wave;
A signal intensity measuring unit that measures the signal intensity of the second burst wave in the measurement time from the reflected wave propagation time to the next reflected wave propagation time for each oscillation frequency;
A first master curve for determining the propagation time for a known axial force;
A second master curve for obtaining a maximum interference frequency at which the signal intensity with respect to the known axial force is maximized,
The first burst wave is incident on a fastened long member to measure the propagation time, and the second burst wave is incident while changing the oscillation frequency, and the signal intensity is measured for each oscillation frequency. ,
Obtain the approximate axial force at the propagation time measured from the first master curve,
Obtain the interference frequency range in the approximate axial force from the second master curve,
From the measured signal strength for each oscillation frequency, find the maximum interference frequency that is the maximum signal strength within the interference frequency range,
An axial force measuring device that measures the axial force of the long member based on the obtained maximum interference frequency and the second master curve.
長尺部材の一端から超音波を入射すると共に前記長尺部材の他端から反射した反射波を受信する探触子と、前記超音波を発生させる超音波発生器と、受信した反射波の信号を処理し前記長尺部材の軸力を測定する信号処理部とを備える軸力測定装置であって、
前記超音波発生器は、少なくとも第一バースト波とこの第一バースト波とは異なる第二バースト波の2種のバースト波を発生させるものであり、
前記信号処理部は、前記第一バースト波の伝播時間を測定する伝播時間測定部と、
発振周波数毎に前記反射波の伝播時間から次の反射波の伝播時間までの測定時間における前記第二バースト波の信号強度を測定する信号強度測定部と、
既知の軸力に対する前記伝播時間を求める第一マスターカーブと、
前記既知の軸力に対する前記信号強度が最大となる極大干渉周波数を求める第二マスターカーブとを備え、
締結された長尺部材に前記第一バースト波を入射させて前記伝播時間を測定すると共に前記第二バースト波を前記発振周波数を変化させながら入射させて前記発振周波数毎に前記信号強度を測定して前記極大干渉周波数を求め、
前記第二マスターカーブから求めた極大干渉周波数における概略軸力を求め、
前記第一マスターカーブから求めた前記概略軸力における伝播時間範囲を求め、
測定した伝播時間から前記伝播時間範囲内で最大の信号強度となる極大伝播時間を求め、
求めた極大伝播時間と前記第一マスターカーブにより前記長尺部材の軸力を測定する軸力測定装置。
A probe that receives ultrasonic waves from one end of a long member and receives reflected waves reflected from the other end of the long member, an ultrasonic generator that generates the ultrasonic waves, and a signal of the received reflected waves An axial force measuring device comprising a signal processing unit that processes the axial force of the elongated member,
The ultrasonic generator generates at least two burst waves of a first burst wave and a second burst wave different from the first burst wave,
The signal processing unit is a propagation time measurement unit that measures the propagation time of the first burst wave;
A signal intensity measuring unit that measures the signal intensity of the second burst wave in the measurement time from the reflected wave propagation time to the next reflected wave propagation time for each oscillation frequency;
A first master curve for determining the propagation time for a known axial force;
A second master curve for obtaining a maximum interference frequency at which the signal intensity with respect to the known axial force is maximized,
The first burst wave is incident on a fastened long member to measure the propagation time, and the second burst wave is incident while changing the oscillation frequency, and the signal intensity is measured for each oscillation frequency. To obtain the maximum interference frequency,
Obtain the approximate axial force at the maximum interference frequency obtained from the second master curve,
Obtain the propagation time range in the approximate axial force obtained from the first master curve,
From the measured propagation time, find the maximum propagation time that is the maximum signal strength within the propagation time range,
An axial force measuring device that measures the axial force of the long member based on the obtained maximum propagation time and the first master curve.
前記第二バースト波は、最初の反射波の伝播時間以上で且つ2回目の反射波の伝播時間未満の長さである請求項1又は2記載の軸力測定装置。 3. The axial force measuring device according to claim 1, wherein the second burst wave has a length equal to or longer than a propagation time of the first reflected wave and less than a propagation time of the second reflected wave. 前記測定時間は、2回目の反射波の伝播時間から3回目の反射波の伝播時間までの時間である請求項1〜3のいずれかに記載の軸力測定装置。 The axial force measuring device according to claim 1, wherein the measurement time is a time from a propagation time of the second reflected wave to a propagation time of the third reflected wave. 前記第一バースト波は、0.5波以上最初の反射波の到達時間より短い波数である請求項1〜4のいずれかに記載の軸力測定装置。 The axial force measuring device according to any one of claims 1 to 4, wherein the first burst wave has a wave number of 0.5 wave or more and shorter than an arrival time of the first reflected wave. 前記長尺部材の長さは、5mm以上300mm以下である請求項1〜5のいずれかに記載の軸力測定装置。 The axial force measuring device according to any one of claims 1 to 5, wherein a length of the long member is 5 mm or more and 300 mm or less. 長尺部材の一端から超音波を入射すると共に前記長尺部材の他端から反射した反射波を受信し、受信した反射波の信号に基づいて前記長尺部材の軸力を測定する軸力測定方法であって、
予め、前記長尺部材の一端から第一バースト波を入射させて反射波の伝播時間を測定すると共にこの第一バースト波とは異なる第二バースト波を発振周波数を変化させながら入射させて前記反射波の伝播時間から次の反射波の伝播時間までの測定時間における前記第二バースト波の信号強度を測定して、既知の軸力に対する前記伝播時間を求める第一マスターカーブ及び前記既知の軸力に対する前記信号強度が最大となる極大干渉周波数を求める第二マスターカーブを作成しておき、
締結された長尺部材に前記第一バースト波を入射させて前記伝播時間を測定すると共に前記第二バースト波を前記発振周波数を変化させながら入射させて前記発振周波数毎に信号強度を測定し、
前記第一マスターカーブから測定した伝播時間における概略軸力を求め、
前記第二マスターカーブから前記概略軸力における干渉周波数範囲を求め、
測定した発振周波数毎の信号強度から前記干渉周波数範囲内で最大の信号強度となる極大干渉周波数を求め、
求めた極大干渉周波数と前記第二マスターカーブにより前記長尺部材の軸力を測定する軸力測定方法。
Axial force measurement that receives an ultrasonic wave from one end of the long member and receives a reflected wave reflected from the other end of the long member and measures the axial force of the long member based on the received reflected wave signal A method,
First, a first burst wave is incident from one end of the elongated member to measure the propagation time of the reflected wave, and a second burst wave different from the first burst wave is incident while changing the oscillation frequency to reflect the reflected wave. A first master curve for determining the propagation time with respect to a known axial force by measuring the signal intensity of the second burst wave in the measurement time from the propagation time of the wave to the propagation time of the next reflected wave, and the known axial force Create a second master curve to find the maximum interference frequency that maximizes the signal intensity for
Measuring the signal intensity for each oscillation frequency by making the first burst wave incident on the elongated member fastened and measuring the propagation time and making the second burst wave incident while changing the oscillation frequency,
Obtain the approximate axial force at the propagation time measured from the first master curve,
Obtain the interference frequency range in the approximate axial force from the second master curve,
From the measured signal strength for each oscillation frequency, find the maximum interference frequency that is the maximum signal strength within the interference frequency range,
An axial force measurement method for measuring an axial force of the long member by using the obtained maximum interference frequency and the second master curve.
長尺部材の一端から超音波を入射すると共に前記長尺部材の他端から反射した反射波を受信し、受信した反射波の信号に基づいて前記長尺部材の軸力を測定する軸力測定方法であって、
予め、前記長尺部材の一端から第一バースト波を入射させて反射波の伝播時間を測定すると共にこの第一バースト波とは異なる第二バースト波を発振周波数を変化させながら入射させて前記反射波の伝播時間から次の反射波の伝播時間までの測定時間における前記第二バースト波の信号強度を測定して、既知の軸力に対する前記伝播時間を求める第一マスターカーブ及び前記既知の軸力に対する前記信号強度が最大となる極大干渉周波数を求める第二マスターカーブを作成しておき、
締結された長尺部材に前記第一バースト波を入射させて前記伝播時間を測定すると共に前記第二バースト波を前記発振周波数を変化させながら入射させて前記発振周波数毎に信号強度を測定して前記極大干渉周波数を求め、
前記第二マスターカーブから求めた極大干渉周波数における概略軸力を求め、
前記第一マスターカーブから求めた概略軸力における伝播時間範囲を求め、
測定した伝播時間から前記伝播時間範囲内で最大の信号強度となる極大伝播時間を求め、
求めた極大伝播時間と前記第一マスターカーブにより前記長尺部材の軸力を測定する軸力測定方法。
Axial force measurement that receives an ultrasonic wave from one end of the long member and receives a reflected wave reflected from the other end of the long member and measures the axial force of the long member based on the received reflected wave signal A method,
First, a first burst wave is incident from one end of the elongated member to measure the propagation time of the reflected wave, and a second burst wave different from the first burst wave is incident while changing the oscillation frequency to reflect the reflected wave. A first master curve for determining the propagation time with respect to a known axial force by measuring the signal intensity of the second burst wave in the measurement time from the propagation time of the wave to the propagation time of the next reflected wave, and the known axial force Create a second master curve to find the maximum interference frequency that maximizes the signal intensity for
Measure the propagation time by making the first burst wave incident on the fastened long member, and measure the signal intensity for each oscillation frequency by making the second burst wave incident while changing the oscillation frequency. Determining the maximum interference frequency;
Obtain the approximate axial force at the maximum interference frequency obtained from the second master curve,
Obtain the propagation time range in the approximate axial force obtained from the first master curve,
From the measured propagation time, find the maximum propagation time that is the maximum signal strength within the propagation time range,
An axial force measuring method for measuring an axial force of the long member based on the obtained maximum propagation time and the first master curve.
JP2014083495A 2014-04-15 2014-04-15 Axial force measuring device and axial force measuring method Active JP5964882B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014083495A JP5964882B2 (en) 2014-04-15 2014-04-15 Axial force measuring device and axial force measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014083495A JP5964882B2 (en) 2014-04-15 2014-04-15 Axial force measuring device and axial force measuring method

Publications (2)

Publication Number Publication Date
JP2015203638A true JP2015203638A (en) 2015-11-16
JP5964882B2 JP5964882B2 (en) 2016-08-03

Family

ID=54597154

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014083495A Active JP5964882B2 (en) 2014-04-15 2014-04-15 Axial force measuring device and axial force measuring method

Country Status (1)

Country Link
JP (1) JP5964882B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7364941B2 (en) 2020-01-24 2023-10-19 日本電信電話株式会社 Looseness detection sensor and looseness detection method using it

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS527790A (en) * 1975-07-09 1977-01-21 Tokyo Keiki Co Ltd Stress measuring equipment
JPH04230819A (en) * 1990-04-09 1992-08-19 Techmetal Promotion Sa Method and apparatus for measuring tensile force of metal strip
JP2010197273A (en) * 2009-02-26 2010-09-09 Akita Univ Fastening state evaluation system of bolt using ultrasonic wave
JP2012522213A (en) * 2009-03-27 2012-09-20 アトラス・コプコ・ツールス・アクチボラグ Ultrasonic measurement method and apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS527790A (en) * 1975-07-09 1977-01-21 Tokyo Keiki Co Ltd Stress measuring equipment
JPH04230819A (en) * 1990-04-09 1992-08-19 Techmetal Promotion Sa Method and apparatus for measuring tensile force of metal strip
JP2010197273A (en) * 2009-02-26 2010-09-09 Akita Univ Fastening state evaluation system of bolt using ultrasonic wave
JP2012522213A (en) * 2009-03-27 2012-09-20 アトラス・コプコ・ツールス・アクチボラグ Ultrasonic measurement method and apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7364941B2 (en) 2020-01-24 2023-10-19 日本電信電話株式会社 Looseness detection sensor and looseness detection method using it

Also Published As

Publication number Publication date
JP5964882B2 (en) 2016-08-03

Similar Documents

Publication Publication Date Title
JP5774469B2 (en) Liquid level measuring device, method and program
EP3112857B1 (en) System comprising an aircraft structural object attached to an ultrasonic test system, and ultrasonic test method
US10481131B2 (en) Ultrasonic test system, ultrasonic test method and method of manufacturing aircraft part
US20180356205A1 (en) Defect detection method and defect detection device
JP2007232373A (en) Piping inspection device and its method
JP6764271B2 (en) Axial force measuring device, axial force measuring method, ultrasonic inspection device, ultrasonic inspection method and vertical probe fixing jig used for this
JP5964882B2 (en) Axial force measuring device and axial force measuring method
JP4795925B2 (en) Ultrasonic thickness measurement method and apparatus
JP2008014868A (en) Method for measuring attached material, and apparatus for measuring the attached material
JP4997636B2 (en) Non-destructive diagnostic method for structures
JP5940350B2 (en) Vibration measuring apparatus and vibration measuring method
JP6581462B2 (en) Ultrasonic inspection equipment
Tang et al. Detecting plastic strain distribution by a nonlinear wave mixing method
JP2014044123A (en) Contact interface detection device
EP2354808A1 (en) Object probing device, object probing program, and object probing method
JP5841027B2 (en) Inspection apparatus and inspection method
JENAL et al. Structural damage detection using laser vibrometers
Mažeika et al. Investigations of the guided wave data analysis capabilities in structural health monitoring of composite objects
CN104568000B (en) A kind of pipeline ess-strain information detecting method and detecting system
KR101415359B1 (en) System and method for estimating circumferential thickness of pipe
JP2019211371A (en) Method and system for measuring stress of concrete structure
JP7369059B2 (en) Signal processing method and device for ultrasonic inspection and thickness measurement method and device
JP2014233601A (en) Ultrasonic diagnostic apparatus, and ultrasonic diagnostic method and program
JP2015021749A (en) Inspection device and inspection method
RU2640956C1 (en) Device of ultrasonic controlling state of products

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160621

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160630

R150 Certificate of patent or registration of utility model

Ref document number: 5964882

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250