JP2015203613A - Coil inspection method and coil inspection apparatus - Google Patents

Coil inspection method and coil inspection apparatus Download PDF

Info

Publication number
JP2015203613A
JP2015203613A JP2014082625A JP2014082625A JP2015203613A JP 2015203613 A JP2015203613 A JP 2015203613A JP 2014082625 A JP2014082625 A JP 2014082625A JP 2014082625 A JP2014082625 A JP 2014082625A JP 2015203613 A JP2015203613 A JP 2015203613A
Authority
JP
Japan
Prior art keywords
winding
winding coil
inspection
coil
illumination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014082625A
Other languages
Japanese (ja)
Other versions
JP6253490B2 (en
Inventor
雄哉 横手
Yuya Yokote
雄哉 横手
崇裕 田中
Takahiro Tanaka
崇裕 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2014082625A priority Critical patent/JP6253490B2/en
Publication of JP2015203613A publication Critical patent/JP2015203613A/en
Application granted granted Critical
Publication of JP6253490B2 publication Critical patent/JP6253490B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a coil inspection method capable of calculating the linearity of a coil as an inspection object without giving any influence on cycle time while improving efficiency in coil inspection.SOLUTION: The coil inspection method includes: an image acquisition step S02 to acquire an image of a coil as an inspection object which is taken by using an imaging camera and an illumination; a binarizing processing step S03 to perform binarizing processing on the image; an edge extraction step S06 to extract edge of the coil as the inspection object; an integration graph creation step S08 to create an integration graph by integrating the extracted edge in a winding direction of the coil as the inspection object; and a linearity calculation step S09 to calculate the linearity of the coil as the inspection object based on the height of the integration graph.

Description

この発明は、回転電機のステータにおける巻線状態を検査する巻線検査方法および巻線検査装置に関するものである。   The present invention relates to a winding inspection method and a winding inspection apparatus for inspecting a winding state in a stator of a rotating electrical machine.

小型モータのステータの巻線工程では、巻線コイルが各層で等間隔に整列して巻かれる必要がある。巻線不良や異常の有無を検査するために目視検査や耐圧検査を実施している。しかし、目視検査は「検査時間に能力差がある」、「検査結果に個人差がある」等の問題がある。   In the winding process of the stator of a small motor, it is necessary that the winding coils are wound at equal intervals on each layer. Visual inspection and pressure resistance inspection are performed to check for winding defects and abnormalities. However, the visual inspection has problems such as “there is a difference in ability in inspection time” and “there is an individual difference in inspection results”.

これを解決するために、巻線工程直後に巻線装置とは別に外形検査装置を設け、ステータコアに巻き付けられた巻線コイルの巻外形の大きさを判別して、良否を判定する巻線装置が開示されている(例えば、特許文献1)。
また、被検査コイルの撮像画像から空間周波数成分の強度分布を生成し、強度分布の集まり具合を判断して、被検査コイルの良否を判定する判定方法が開示されている(例えば、特許文献2)。
In order to solve this, a winding inspection device is provided immediately after the winding process to provide an outer shape inspection device separately from the winding device, and determines the size of the winding outer shape of the winding coil wound around the stator core, thereby determining the quality. Is disclosed (for example, Patent Document 1).
In addition, a determination method is disclosed in which an intensity distribution of a spatial frequency component is generated from a captured image of a coil to be inspected, and the degree of collection of the intensity distribution is determined to determine whether the coil to be inspected is good or bad (for example, Patent Document 2) ).

特開平4−84406号公報(4頁 左下、図8)Japanese Patent Laid-Open No. 4-84406 (page 4, lower left, FIG. 8) 特開2005−241582号公報(段落[0010]、[0011]、[0020]、図3)JP-A-2005-241582 (paragraphs [0010], [0011], [0020], FIG. 3)

特許文献1の開示発明では、既存の生産ラインに追加することは困難であり、またサイクルタイムが増加するという問題がある。また、特許文献2の開示発明では、巻線の直線性を算出できないという問題がある。   In the disclosed invention of Patent Document 1, it is difficult to add to an existing production line, and the cycle time increases. Moreover, in the disclosed invention of Patent Document 2, there is a problem that the linearity of the winding cannot be calculated.

この発明は、上記のような問題を解決するためになされたものであり、サイクルタイムに影響することなく、検査対象の巻線コイルの直線性を算出でき、巻線検査の効率を向上できる巻線検査方法および巻線検査装置を提供することを目的とする。   The present invention has been made in order to solve the above-described problem, and can calculate the linearity of the winding coil to be inspected without affecting the cycle time, thereby improving the efficiency of the winding inspection. An object is to provide a wire inspection method and a winding inspection apparatus.

この発明に係る巻線検査方法は、撮像用カメラと照明を用いて撮像した検査対象巻線コイルの撮像画像を取得する画像取得工程と、撮像画像に対して2値化処理を行う2値化処理工程と、2値化処理データに対して微分処理を行い検査対象巻線コイルのエッジを抽出するエッジ抽出工程と、抽出エッジを検査対象巻線コイルの巻きまわり方向に積分して積分グラフを作成する積分グラフ作成工程と、積分グラフの高さより検査対象巻線コイルの直線性を算出する直線性算出工程とを備えるものである。   The winding inspection method according to the present invention includes an image acquisition step of acquiring an image of a winding coil to be inspected imaged using an imaging camera and illumination, and binarization for performing binarization processing on the captured image Processing step, an edge extraction step for extracting the edge of the winding coil to be inspected by performing a differentiation process on the binarized processing data, and an integration graph by integrating the extracted edge in the winding direction of the winding coil to be inspected An integration graph creation step to be created, and a linearity calculation step to calculate the linearity of the winding coil to be inspected from the height of the integration graph are provided.

この発明に係る巻線検査装置は、撮像用カメラと照明と画像処理装置から構成され、画像処理装置は、撮像用カメラと照明を用いて撮影した検査対象巻線コイルの撮像画像を取得する画像取得部と、撮像画像に対して2値化処理を行う2値化処理部と、2値化処理データに対して微分処理を行い検査対象巻線コイルのエッジを抽出するエッジ抽出部と、抽出エッジを検査対象巻線コイルの巻きまわり方向に積分して積分グラフを作成する積分グラフ作成部と、積分グラフの高さより検査対象巻線コイルの直線性を算出する直線性算出部とを備えたものである。   The winding inspection apparatus according to the present invention includes an imaging camera, illumination, and an image processing apparatus, and the image processing apparatus acquires an image of a winding coil to be inspected that is imaged using the imaging camera and illumination. An acquisition unit, a binarization processing unit that performs binarization processing on the captured image, an edge extraction unit that performs differentiation processing on the binarization processing data and extracts the edge of the winding coil to be inspected, and extraction An integration graph creation unit that creates an integration graph by integrating edges in the winding direction of the winding coil to be inspected, and a linearity calculation unit that calculates the linearity of the winding coil to be inspected from the height of the integration graph Is.

この発明に係る巻線検査方法は、上記の工程を備えるため、サイクルタイムに影響を与えることなく、検査対象巻線コイルの直線性を算出できるため、巻線検査の効率が向上し、後工程への不良流出を防止でき、生産性を向上させることができる。   Since the winding inspection method according to the present invention includes the above-described steps, the linearity of the winding coil to be inspected can be calculated without affecting the cycle time. It is possible to prevent outflow of defects into the product and improve productivity.

この発明に係る巻線検査装置は、上記のように構成されているため、サイクルタイムに影響を与えることなく、検査対象巻線コイルの直線性を算出できるため、巻線検査の効率が向上し、後工程への不良流出を防止でき、生産性を向上させることができる。   Since the winding inspection apparatus according to the present invention is configured as described above, the linearity of the winding coil to be inspected can be calculated without affecting the cycle time, so that the efficiency of the winding inspection is improved. Therefore, it is possible to prevent defective outflow to the subsequent process and improve productivity.

この発明の実施の形態1の巻線検査方法に係る巻線検査装置の構成図である。1 is a configuration diagram of a winding inspection device according to a winding inspection method of Embodiment 1 of the present invention. FIG. この発明の実施の形態1の巻線検査方法に係る巻線工程の説明図である。It is explanatory drawing of the winding process which concerns on the winding test | inspection method of Embodiment 1 of this invention. この発明の実施の形態1の巻線検査方法に係る巻線工程の説明図である。It is explanatory drawing of the winding process which concerns on the winding test | inspection method of Embodiment 1 of this invention. この発明の実施の形態1の巻線検査方法に係る巻線後のステータコアの斜視図である。It is a perspective view of the stator core after the winding which concerns on the winding test | inspection method of Embodiment 1 of this invention. この発明の実施の形態1の巻線検査方法に係る巻線後のステータコアの側面図である。It is a side view of the stator core after the winding which concerns on the winding test | inspection method of Embodiment 1 of this invention. この発明の実施の形態1の巻線検査方法に係る巻線後のステータコアの上面図である。It is a top view of the stator core after winding which concerns on the winding test | inspection method of Embodiment 1 of this invention. この発明の実施の形態1の巻線検査方法に係るフローチャートである。It is a flowchart which concerns on the winding test | inspection method of Embodiment 1 of this invention. この発明の実施の形態1の巻線検査方法に係るステータコアの拡大図である。It is an enlarged view of the stator core which concerns on the winding test | inspection method of Embodiment 1 of this invention. この発明の実施の形態1の巻線検査方法に係る説明図(積分グラフ)である。It is explanatory drawing (integral graph) which concerns on the winding test | inspection method of Embodiment 1 of this invention. この発明の実施の形態1の巻線検査方法に係る説明図(分布グラフ)である。It is explanatory drawing (distribution graph) which concerns on the winding test | inspection method of Embodiment 1 of this invention. この発明の実施の形態1の巻線検査方法に係るステータコアの拡大図である。It is an enlarged view of the stator core which concerns on the winding test | inspection method of Embodiment 1 of this invention. この発明の実施の形態1の巻線検査方法に係る説明図(積分グラフ)である。It is explanatory drawing (integral graph) which concerns on the winding test | inspection method of Embodiment 1 of this invention. この発明の実施の形態1の巻線検査方法に係る説明図(分布グラフ)である。It is explanatory drawing (distribution graph) which concerns on the winding test | inspection method of Embodiment 1 of this invention. この発明の実施の形態1の巻線検査方法に係る連結ステータコアの斜視図である。It is a perspective view of the connection stator core which concerns on the winding test | inspection method of Embodiment 1 of this invention. この発明の実施の形態1の巻線検査方法に係る連結ステータコアの巻線時の斜視図である。It is a perspective view at the time of the winding of the connection stator core which concerns on the winding test | inspection method of Embodiment 1 of this invention. この発明の実施の形態1の巻線検査方法に係る連結ステータコアの組み立て後の斜視図である。It is a perspective view after the assembly of the connection stator core which concerns on the winding test | inspection method of Embodiment 1 of this invention. この発明の実施の形態2の巻線検査方法に係る説明図(巻こぼれ不良)である。It is explanatory drawing (winding spill defect) which concerns on the winding test | inspection method of Embodiment 2 of this invention. この発明の実施の形態2の巻線検査方法に係る説明図(絶縁部材積分グラフ)である。It is explanatory drawing (insulation member integral graph) which concerns on the winding test | inspection method of Embodiment 2 of this invention. この発明の実施の形態2の巻線検査方法に係る説明図(巻線コイル積分グラフ)である。It is explanatory drawing (winding coil integral graph) which concerns on the winding test | inspection method of Embodiment 2 of this invention. この発明の実施の形態3の巻線検査装置に係る構成図である。It is a block diagram which concerns on the coil | winding test | inspection apparatus of Embodiment 3 of this invention.

実施の形態1.
実施の形態1は、基本工程として、検査対象巻線コイルの撮像画像を取得する画像取得工程と、撮像画像に対して2値化処理を行う2値化処理工程と、微分処理を行い検査対象巻線コイルのエッジを抽出するエッジ抽出工程と、抽出エッジを検査対象巻線コイルの巻きまわり方向に積分して積分グラフを作成する積分グラフ作成工程と、積分グラフの高さより検査対象巻線コイルの直線性を算出する直線性算出工程とを備える巻線検査方法に関するものである。さらに、実施の形態1の巻線検査方法は、積分グラフから巻線コイルの巻線不良位置を特定する不良位置特定工程と、積分グラフから分布グラフを作成し巻線コイルの整列性を定量化する整列性定量化工程とを備える。
Embodiment 1 FIG.
In the first embodiment, as basic steps, an image acquisition step of acquiring a captured image of a winding coil to be inspected, a binarization processing step of performing binarization processing on the captured image, a differential processing, and an inspection target Edge extraction process to extract the edge of the winding coil, integration graph creation process to create an integration graph by integrating the extracted edge in the winding direction of the winding coil to be inspected, and the winding coil to be inspected from the height of the integration graph The present invention relates to a winding inspection method including a linearity calculating step for calculating the linearity of the winding. Furthermore, the winding inspection method according to the first embodiment quantifies the alignment of the winding coil by creating a defect position identifying step for identifying a winding defect position of the winding coil from the integral graph and a distribution graph from the integral graph. An alignment quantification step.

以下、本願発明の実施の形態1に係る巻線検査方法の機能、動作について、巻線検査装置の構成図である図1、巻線工程の説明図である図2、図3、巻線後のステータコアの斜視図等である図4から図6、検査方法のフローチャートである図7、ステータコアの拡大図である図8、説明図である図9、図10、ステータコアの拡大図である図11、説明図である図12、図13、および連結ステータコアの斜視図である図14から図16に基づいて説明する。   Hereinafter, regarding the function and operation of the winding inspection method according to the first embodiment of the present invention, FIG. 1 is a configuration diagram of the winding inspection device, FIG. 2 and FIG. 3 are explanatory diagrams of a winding process, and after winding 4 to 6 which are perspective views of the stator core, FIG. 7 which is a flowchart of the inspection method, FIG. 8 which is an enlarged view of the stator core, FIGS. 9 and 10 which are explanatory views, and FIG. 11 which is an enlarged view of the stator core 12 and 13 which are explanatory diagrams, and FIGS. 14 to 16 which are perspective views of a connecting stator core.

図1は、本発明の実施の形態1の巻線検査方法に使用する巻線検査装置の構成を示している。図1において、本発明に適用する巻線検査装置1は、撮像用カメラ(以下、カメラと記載する)2と照明3と画像処理装置4とを備え、検査対象のステータコア5の巻線コイル6の検査を行う。なお、撮像用カメラは、画像処理用カメラであり、高画質、高精細なカメラを使用する。また、照明3はバー型照明を使用する。   FIG. 1 shows the configuration of a winding inspection apparatus used in the winding inspection method according to the first embodiment of the present invention. In FIG. 1, a winding inspection device 1 applied to the present invention includes an imaging camera (hereinafter referred to as a camera) 2, an illumination 3, and an image processing device 4, and a winding coil 6 of a stator core 5 to be inspected. Perform the inspection. Note that the imaging camera is an image processing camera, and uses a high-quality and high-definition camera. The illumination 3 uses bar-type illumination.

実施の形態1では、カメラ2にはカラーカメラ、照明3には白色照明を使用することを想定している。カラーカメラと白色照明を使用して、撮像した検査対象のステータコア5の撮像画像を処理して行う巻線検査方法について、以下説明する。   In the first embodiment, it is assumed that the camera 2 uses a color camera and the illumination 3 uses white illumination. A winding inspection method performed by processing a captured image of the stator core 5 to be inspected using a color camera and white illumination will be described below.

次に、ステータコア部材10へ巻線コイル6を巻きつける巻線工程について、図2から図4に基づいて説明する。
図2のようにステータコア部材10に対して、絶縁部材11を挿入する。絶縁部材11は第1の絶縁部材11aと第2の絶縁部材11bから成る。
第1の絶縁部材11aは、ステータコア部材10の巻線部に軸方向に一端から(図2では上部から)挿入し片側を絶縁する。第2の絶縁部材11bは、ステータコア部材10の巻線部に軸方向に他端から(図2では下部から)挿入し片側を絶縁する。
図3は、ステータコア部材10に対して絶縁部材11が挿入された状態を表している。これに対して巻線コイル6が巻きつけられて、図4は巻線完了後のステータコア5である。
なお、巻線完了後のステータコアをステータコア5として、ステータコア部材10と区別している。
Next, a winding process for winding the winding coil 6 around the stator core member 10 will be described with reference to FIGS.
As shown in FIG. 2, the insulating member 11 is inserted into the stator core member 10. The insulating member 11 includes a first insulating member 11a and a second insulating member 11b.
The first insulating member 11a is inserted into the winding portion of the stator core member 10 from one end in the axial direction (from the top in FIG. 2) to insulate one side. The second insulating member 11b is inserted into the winding portion of the stator core member 10 in the axial direction from the other end (from the lower part in FIG. 2) to insulate one side.
FIG. 3 shows a state in which the insulating member 11 is inserted into the stator core member 10. On the other hand, the winding coil 6 is wound, and FIG. 4 shows the stator core 5 after the winding is completed.
In addition, the stator core after the completion of winding is distinguished from the stator core member 10 as the stator core 5.

巻線コイル6が巻きつけられたステータコア5の巻線整列状態を、カメラ2と照明3により撮像し、画像処理装置4で検査対象の巻線コイル6の良否判定を行う。   The winding alignment state of the stator core 5 around which the winding coil 6 is wound is imaged by the camera 2 and the illumination 3, and the quality of the winding coil 6 to be inspected is determined by the image processing device 4.

巻線検査方法の処理手順を説明するに際して、画像処理に必要に座標系をまず説明する。
絶縁部材11の挿入方向(長辺側の巻線コイル6の巻きまわり方向)をX軸方向、ステータコア5の径方向(長辺側の巻線コイル6の巻きまわりに垂直な方向)をY軸方向、短辺側の巻線コイル6の巻きまわり方向をZ軸方向とする。
In describing the processing procedure of the winding inspection method, the coordinate system necessary for image processing will be described first.
The insertion direction of the insulating member 11 (the winding direction of the winding coil 6 on the long side) is the X axis direction, and the radial direction of the stator core 5 (the direction perpendicular to the winding of the winding coil 6 on the long side) is the Y axis. The direction of winding of the winding coil 6 on the short side is defined as the Z-axis direction.

巻線コイルの良否判定に用いる巻線コイルの直線性、整列性を以下のように定義する。
検査対象のステータコア5の巻線コイル6の巻きまわり方向に対して平行の程度を巻線コイル単体では直線性という。巻線コイル6の巻きつけが完了した後のステータコア5の巻線コイル6全体では整列性という。
The linearity and alignment of the winding coil used to determine the quality of the winding coil are defined as follows.
The degree of parallelism to the winding direction of the winding coil 6 of the stator core 5 to be inspected is called linearity in the winding coil alone. The entire winding coil 6 of the stator core 5 after the winding of the winding coil 6 is completed is called alignment.

巻線検査の概要を説明し、その後、図7のフローチャートに基づいて、巻線検査の処理手順を説明する。
まず、本願発明の基本である巻線コイルの直線性の算出、さらに巻線コイル全体の整列性の定量化について巻線検査の概要を説明する。
撮像した撮像画像は画像処理装置4で取得される。取得された撮像画像は2値化処理される。2値化処理後の2値化画像に対してフィルタ処理でノイズを除去する。このノイズ除去後の撮像画像から巻線コイル6のエッジ情報を抽出する。
The outline of the winding inspection will be described, and then the winding inspection processing procedure will be described based on the flowchart of FIG.
First, the outline of the winding inspection will be described with respect to the calculation of the linearity of the winding coil, which is the basis of the present invention, and the quantification of the alignment of the entire winding coil.
The captured image is acquired by the image processing device 4. The acquired captured image is binarized. Noise is removed by a filtering process on the binarized image after the binarization process. The edge information of the winding coil 6 is extracted from the captured image after the noise removal.

撮像した撮像画像には、絶縁部材11のエッジ情報も含まれているため、絶縁部材11のエッジ情報を除去して、巻線コイル6に関するエッジ情報のみを抽出する。
巻線コイル6のエッジ情報より巻線コイル6の巻きまわり方向であるX方向に積分した積分グラフを作成する。この積分グラフの各巻線コイル6に対応するグラフの高さで巻線コイル6の直線性を算出する。
さらに、積分グラフより、各高さ(各直線度)での分布を取得することによりステータコア5の巻線コイル6全体の整列性を定量化する。
Since the captured image includes the edge information of the insulating member 11, the edge information of the insulating member 11 is removed and only the edge information related to the winding coil 6 is extracted.
Based on the edge information of the winding coil 6, an integration graph is created by integrating in the X direction, which is the winding direction of the winding coil 6. The linearity of the winding coil 6 is calculated at the height of the graph corresponding to each winding coil 6 in the integration graph.
Furthermore, the alignment of the whole winding coil 6 of the stator core 5 is quantified by acquiring the distribution at each height (each linearity) from the integral graph.

次に、巻線整列良品のステータコア5の斜視図、側面図、上面図である図4から図6、および拡大図、説明図である図8から図10を参照して、図7のフローチャートに基づいて巻線検査方法の処理手順を説明する。   Next, a perspective view, a side view, and a top view of FIGS. 4 to 6, and an enlarged view and an explanatory view of FIGS. 8 to 10, and a flowchart of FIG. The processing procedure of the winding inspection method will be described based on the above.

ステップ1(S01)の撮像工程では、図4から図6に示した巻線コイル6を巻きつけられたステータコア5の巻線コイル6の側面部をカメラ2で撮像する。   In the imaging step of Step 1 (S01), the camera 2 captures an image of the side surface portion of the winding coil 6 of the stator core 5 around which the winding coil 6 shown in FIGS.

ステップ2(S02)の画像取得工程では、カメラ2で撮像した撮像画像を画像処理装置4で取得する。   In the image acquisition step of Step 2 (S02), the captured image captured by the camera 2 is acquired by the image processing device 4.

ステップ3(S03)の2値化処理工程では、取得された撮像画像に対して、RGB値それぞれの閾値で2値化処理をかける。
具体的には、B値に閾値を設けると、巻線コイル6を検出できないため、B値に閾値を設けずに、R値の閾値を高くし、R値とG値のみの閾値により2値化処理を行う。ただし、撮像画像に対してR値とG値のみの閾値により2値化処理を行うと、白色の絶縁部材11のデータも同時に検出される。
後のステップで、巻線コイル6のみのエッジ情報を得るために、このステップで絶縁部材11のみの2値化処理データを得るために、RBG値すべてに閾値を設けて2値化処理を行い、絶縁部材11のみの2値化処理データを取得する。
In the binarization process step of Step 3 (S03), the binarization process is applied to the acquired captured image with the threshold values of the RGB values.
Specifically, if a threshold value is provided for the B value, the winding coil 6 cannot be detected. Therefore, the threshold value for the R value is increased without setting the threshold value for the B value, and the binary value is determined based on the threshold value for only the R value and the G value. Process. However, when the binarization process is performed on the captured image using only the threshold values of the R value and the G value, the data of the white insulating member 11 is also detected at the same time.
In order to obtain edge information of only the winding coil 6 in a later step, in order to obtain binarization processing data of only the insulating member 11 in this step, the binarization processing is performed by setting threshold values for all the RBG values. Then, binarization processing data of only the insulating member 11 is acquired.

ステップ4(S04)のフィルタ処理工程では、ノイズ除去する必要がある場合、2値化処理後のデータに対してフィルタ処理を行う。   In the filtering process of step 4 (S04), when noise needs to be removed, the filtering process is performed on the data after the binarization process.

ステップ5(S05)の巻線コイルデータ抽出工程では、巻線コイル6のみの2値化処理データを得る。具体的には、ステップ4で取得した巻線コイル6と絶縁部材11の両方の2値化処理データから絶縁部材11の2値化処理データを除去することで、巻線コイル6のみの2値化処理データを得る。   In the winding coil data extraction step of step 5 (S05), binarization processing data for only the winding coil 6 is obtained. Specifically, by removing the binarization processing data of the insulating member 11 from the binarization processing data of both the winding coil 6 and the insulating member 11 acquired in step 4, the binary of only the winding coil 6 is obtained. To obtain data.

ステップ6(S06)のエッジ抽出工程では、ステップ5(S05)で得られた巻線コイル6のみの2値化処理データに対して微分処理を行い、微分処理後のデータから微分値が1以上の領域を抽出する処理を行い巻線コイル6のエッジを抽出する。   In the edge extraction process of step 6 (S06), differentiation processing is performed on the binarization processing data of only the winding coil 6 obtained in step 5 (S05), and the differential value is 1 or more from the data after differentiation processing. The edge of the winding coil 6 is extracted by performing the process of extracting the region.

ステップ7(S07)の分割工程では、必要に応じて巻線コイル6のエッジを巻線コイル6方向、すなわちX方向に等間隔で分割する。
巻線コイル6方向に分割せずに軸方向全体で簡易に検査することも可能であるが、分割しない、あるいは分割数が少ないと不良箇所が良好箇所を含めて全体的に平均化されるため、巻線検査の精度が低下する。
分割数が多いほど、正確に巻線不良が検出できるため高精度な良否判定が可能となる。
In the dividing step of Step 7 (S07), the edge of the winding coil 6 is divided at equal intervals in the direction of the winding coil 6, that is, in the X direction, as necessary.
Although it is possible to simply inspect the entire axial direction without dividing in the direction of the winding coil 6, if the division is not divided or the number of divisions is small, defective parts are averaged including the good parts as a whole. , Winding inspection accuracy decreases.
As the number of divisions increases, a winding defect can be detected more accurately, so that it is possible to make a quality determination with high accuracy.

以下、例として、図8に示す図4の良品ステータコア5のX方向中央部の分割部を対象として、巻線検査方法の処理手順を説明する。   Hereinafter, as an example, the processing procedure of the winding inspection method will be described with respect to the divided portion at the center in the X direction of the non-defective stator core 5 of FIG. 4 shown in FIG.

ステップ8(S08)の積分グラフ作成工程では、ステップ7で行った分割の各分割範囲内、具体的にはステータコア5のX方向中央部の分割部で、図9に示すように巻線コイル6の巻きまわり方向に積分した積分グラフを作成する。
なお、図9において、横軸は巻線Y方向ピクセル位置、縦軸は存在確率を示す。
In the integral graph creation step of Step 8 (S08), the winding coil 6 is formed in each division range of the division performed in Step 7, specifically, in the division portion at the center in the X direction of the stator core 5, as shown in FIG. Create an integral graph that is integrated in the winding direction of.
In FIG. 9, the horizontal axis indicates the pixel position in the winding Y direction, and the vertical axis indicates the existence probability.

ステップ9(S09)の直線性算出工程では、図9の積分グラフより、巻線コイル6の直線性を算出する。各巻線コイルの配置位置での値が1.0(100%)に近い程、直線性が良好である。   In the linearity calculation step of Step 9 (S09), the linearity of the winding coil 6 is calculated from the integral graph of FIG. Linearity is so good that the value in the arrangement position of each winding coil is near 1.0 (100%).

ステップ10(S10)の不良位置特定工程では、直線性不良の巻線コイルがあった場合、積分グラフから直線性不良の巻線コイルのY方向の配置位置を特定する。すなわち、積分グラフより、各巻線コイル6のY方向の配置位置を検出することが可能であり、直線性不良の位置と関連付けて、どの位置の巻線コイルが不良かを特定する。   In the defect position specifying step of step 10 (S10), when there is a winding coil with poor linearity, the arrangement position in the Y direction of the winding coil with poor linearity is specified from the integral graph. That is, the arrangement position of each winding coil 6 in the Y direction can be detected from the integral graph, and the position of the winding coil is specified in association with the position of the linearity defect.

ステップ11(S11)の整列性定量化工程では、図9の積分グラフからの各高さ(直線度)毎に確率分布を取得し、図10の分布グラフを作成する。
なお、図10において、横軸は頻度、縦軸は存在確率(図9の縦軸に対応する)を示す。具体的は、図10の横軸は、図9において0.1で横軸に水平線を引いたときの線上の点の数を表す。
さらに、ステップ11(S11)では図10の分布グラフから、判定基準(図10では、0.7)を超える領域の点数(図10では、190点)を算出し、巻線コイル6全体の整列性を定量化する。
In the alignment quantification step of Step 11 (S11), a probability distribution is acquired for each height (linearity) from the integral graph of FIG. 9, and the distribution graph of FIG. 10 is created.
In FIG. 10, the horizontal axis represents frequency, and the vertical axis represents existence probability (corresponding to the vertical axis in FIG. 9). Specifically, the horizontal axis of FIG. 10 represents the number of points on the line when a horizontal line is drawn on the horizontal axis at 0.1 in FIG.
Further, in step 11 (S11), from the distribution graph of FIG. 10, the number of points (190 points in FIG. 10) in the region exceeding the criterion (0.7 in FIG. 10) is calculated, and the entire winding coil 6 is aligned. Quantify sex.

ステップ12(S12)の良否判定工程では、ステップ9の直線性算出の結果、およびステップ11の整列性定量化の結果を用いて、設定された検査基準と比較することでステータコア5の巻線コイル6および巻線コイル6全体の良否判定を行う。   In the pass / fail judgment process of step 12 (S12), the result of linearity calculation of step 9 and the result of alignment quantification of step 11 are used to compare with the set inspection standard, thereby winding the winding coil of the stator core 5 6 and the whole winding coil 6 are judged.

次に、本願発明の巻線検査方法をより明確にするために、巻線不良が存在するステータコア5に対して、本願発明の巻線検査方法を適用した場合について、図11から図13に基づいて説明する。   Next, in order to clarify the winding inspection method of the present invention, a case where the winding inspection method of the present invention is applied to the stator core 5 in which a winding defect exists is based on FIGS. 11 to 13. I will explain.

図11は、良品の図8に対応した図であり、ステータコア5の中央部の分割部に巻線不良が存在する巻線不整列状態図である。
図12は、良品の図9に対応した図であり、巻線コイル巻線不良がある場合の積分グラフである。撮像画像に対して、2値化処理、エッジ抽出処理を行い、巻線コイル巻まわり方向に積分したグラフである。
図13は、良品の図10に対応した図であり、図12の積分グラフに対して、巻線不良がある場合の確率分布である。図12の積分グラフに対して、各高さ(直線度)毎に確率分布を取得し、作成した分布グラフである。
FIG. 11 is a view corresponding to FIG. 8 for the non-defective product, and is a winding misalignment state diagram in which a winding failure exists in the split portion at the center of the stator core 5.
FIG. 12 is a diagram corresponding to FIG. 9 which is a non-defective product, and is an integration graph when there is a winding coil winding defect. It is the graph which performed the binarization process and the edge extraction process with respect to the captured image, and integrated in the winding coil winding direction.
FIG. 13 is a diagram corresponding to FIG. 10 for a non-defective product, and is a probability distribution when there is a winding defect with respect to the integral graph of FIG. 13 is a distribution graph created by acquiring a probability distribution for each height (linearity) with respect to the integral graph of FIG.

図9と図12を比較すると、巻線不良が存在する積分グラフでは、各巻線コイルに対応するピークの高さが低く、直線性が悪いことがわかる。
図12において、存在確率(ピーク)が低い位置が巻線不良であり、Y方向(巻線方向に垂直方向)での巻線位置(ピクセル位置)と関連付けることが可能である。
Comparing FIG. 9 and FIG. 12, it can be seen that in the integral graph where the winding defect exists, the peak height corresponding to each winding coil is low and the linearity is poor.
In FIG. 12, a position with a low existence probability (peak) is a winding failure, and can be associated with a winding position (pixel position) in the Y direction (a direction perpendicular to the winding direction).

図10と図13を比較すると、巻線不良が存在するステータコアの巻線コイル全体の分布グラフでは、基準値(0.7)以上の分布が少なく、整列性が悪いことがわかる。具体的には、良品のステータコアの巻線コイルの分布グラフでは基準値以上が190点に対して、不良品のステータコアの巻線コイルの分布グラフでは69点と明らかに低くなっている。   Comparing FIG. 10 and FIG. 13, it can be seen that the distribution graph of the whole winding coil of the stator core in which the winding defect exists has a small distribution of the reference value (0.7) or more and the alignment is poor. Specifically, in the distribution graph of the winding coil of the non-defective stator core, the reference value or more is 190 points, whereas in the distribution graph of the winding coil of the defective stator core, 69 points are clearly lower.

以上の説明では、カメラ2と照明3を1台ずつ用いて、ステータコア5の巻線コイル6の片側側面を検査することで巻線コイル単体の直線性と全体の整列性を良否判定した。しかし、自動巻線機内の設置スペースに余裕があれば、両側面にカメラ2と照明3を設置して検査することができる。両側面からの良否判定を行うことで、より高精度な良否判定ができる。   In the above description, the camera 2 and the illumination 3 are used one by one, and one side surface of the winding coil 6 of the stator core 5 is inspected to determine the linearity of the winding coil alone and the overall alignment. However, if there is a sufficient installation space in the automatic winding machine, the camera 2 and the illumination 3 can be installed on both sides and inspected. By performing pass / fail determination from both sides, it is possible to perform pass / fail determination with higher accuracy.

また、以上の説明では、ステータコアとして分割されたステータコア5を検査対象としたが、これに限らず、図14のような連結されたステータコア(連結ステータコアと、適宜記載する)15に対して本願発明の巻線検査方法を適用できる。   In the above description, the stator core 5 divided as the stator core is an inspection object. However, the present invention is not limited to this, and the present invention is applied to a connected stator core 15 (described as a connected stator core as appropriate) as shown in FIG. The winding inspection method can be applied.

連結ステータコア15では、図15のように巻線時に連結ステータコア15を展開した状態で巻線コイル6を巻線することで巻線コイル6の占積率を向上させている。巻線完了後は、次のステータコアで折り曲げられ順次巻線されていく。しかし、自動巻線機で巻線コイル6を巻きつけられた後、図16に示すように自動巻線機内で連結部を溶接し、円形に固定するため、既存の製造ラインでは組み立て完了後に作業者による目視検査も行うことができない。
したがって、ステータコア製造ラインで、サイクルタイムに影響を与えない処理時間で巻線完了直後の各ステータコアの巻線コイルを順次、画像処理して巻線検査を行うことで、連結ステータコア15において既存の装置でも巻線コイルの直線性および整列性の良否判定検査ができる。
In the connection stator core 15, the space factor of the winding coil 6 is improved by winding the winding coil 6 in a state where the connection stator core 15 is unfolded during winding as shown in FIG. After the winding is completed, it is bent by the next stator core and sequentially wound. However, after the winding coil 6 is wound by the automatic winding machine, the connecting portion is welded and fixed in a circular shape in the automatic winding machine as shown in FIG. A visual inspection by a person cannot be performed.
Therefore, in the stator core manufacturing line, the winding coils of each stator core immediately after the completion of the winding are processed in sequence in a processing time that does not affect the cycle time, and the winding inspection is performed by sequentially processing the winding coils. However, it is possible to check whether the winding coil is linear or aligned.

また、従来の自動巻線機では、連結ステータコア15では、巻線途中に不良が発生していても、最終ステータコアまで巻線が行われる。しかし、本願発明の巻線検査方法を適用して、各ステータコアの巻線コイルを順次検査することで不良発生後に不良のステータコアを取り出すことが可能となるため、コイル線の無駄を低減することができる。   Moreover, in the conventional automatic winding machine, even if the connection stator core 15 has a defect in the middle of the winding, the winding is performed up to the final stator core. However, by applying the winding inspection method of the present invention and sequentially inspecting the winding coils of each stator core, it becomes possible to take out a defective stator core after the occurrence of a failure, so that waste of coil wires can be reduced. it can.

以上、実施の形態1の説明では、撮像用カメラ2としてカラーカメラ、照明3として白色照明を用いていた。撮像用カメラ2としては、カラーカメラの代わりにモノクロカメラを用いてもよい。
一般的に撮像用カメラとしてモノクロカメラを使用する場合は、照明に赤色照明や青色照明を用いて、RGB値を変化させるが、本願発明の巻線検査にもモノクロカメラとカラー照明を適用できる。
As described above, in the description of the first embodiment, a color camera is used as the imaging camera 2 and white illumination is used as the illumination 3. As the imaging camera 2, a monochrome camera may be used instead of a color camera.
In general, when a monochrome camera is used as an imaging camera, the RGB values are changed by using red illumination or blue illumination for illumination. However, the monochrome camera and color illumination can also be applied to the winding inspection of the present invention.

また、照明形状としてはバー型照明を用いて説明したが、リング型照明やドーム型照明、同軸型照明を一種類あるいは複数種類使用してもよい。
実施の形態1では検査対象範囲が長方形状であるためバー型照明を用いたが、検査対象の巻線コイルが均等に照明を受けることができる形状であれば、形状はこれに限られない。
Further, although the bar-type illumination has been described as the illumination shape, one type or a plurality of types of ring-type illumination, dome-type illumination, and coaxial illumination may be used.
In the first embodiment, the bar-type illumination is used because the inspection object range is a rectangular shape, but the shape is not limited to this as long as the winding coil to be inspected can be illuminated uniformly.

なお、実施の形態1において、直線性算出工程、不良位置特定工程、整列性定量化工程を備えた巻線検査方法を説明した。しかし、巻線検査の目的や要求される検査精度により、基本的な直線性算出工程のみを備えた検査方法とすることで、検査方法の簡素化を図ることができる。
巻線検査の目的に応じて、不良位置特定工程、整列性定量化工程を追加することで、検査精度の向上および検査の効率化を図ることができる。
In the first embodiment, the winding inspection method including the linearity calculation process, the defect position identification process, and the alignment quantification process has been described. However, depending on the purpose of the winding inspection and the required inspection accuracy, it is possible to simplify the inspection method by using an inspection method including only a basic linearity calculation process.
By adding a defect position specifying step and an alignment quantification step according to the purpose of the winding inspection, the inspection accuracy can be improved and the inspection efficiency can be improved.

以上説明したように、実施の形態1の巻線検査方法は、基本工程として、検査対象巻線コイルの撮像画像を取得する画像取得工程と、撮像画像に対して2値化処理を行う2値化処理工程と、微分処理を行い検査対象巻線コイルのエッジを抽出するエッジ抽出工程と、抽出エッジを検査対象巻線コイルの巻きまわり方向に積分して積分グラフを作成する積分グラフ作成工程と、積分グラフの高さより検査対象巻線コイルの直線性を算出する直線性算出工程とを備えるものである。したがって、検査対象の巻線コイルの直線性を算出できるため、巻線検査の効率が向上し、後工程への不良流出を防止でき、生産性を向上させることができる。このため、省エネルギーおよび歩留まり向上の効果がある。   As described above, in the winding inspection method according to the first embodiment, as a basic process, an image acquisition process for acquiring a captured image of a winding coil to be inspected, and a binary for performing binarization processing on the captured image An integration process step, an edge extraction step of performing differential processing to extract the edge of the winding coil to be inspected, and an integration graph creation step of creating an integral graph by integrating the extracted edge in the winding direction of the winding coil to be inspected And a linearity calculating step of calculating the linearity of the winding coil to be inspected from the height of the integral graph. Accordingly, since the linearity of the winding coil to be inspected can be calculated, the efficiency of the winding inspection can be improved, the outflow of defects to the subsequent process can be prevented, and the productivity can be improved. For this reason, there is an effect of energy saving and yield improvement.

さらに、実施の形態1の巻線検査方法は、積分グラフから巻線コイルの巻線不良位置を特定する不良位置特定工程と、積分グラフから分布グラフを作成し巻線コイルの整列性を定量化する整列性定量化工程とを備える。このため、さらに、検査精度の向上、検査工程の省力化を図ることができる。   Furthermore, the winding inspection method according to the first embodiment quantifies the alignment of the winding coil by creating a defect position identifying step for identifying a winding defect position of the winding coil from the integral graph and a distribution graph from the integral graph. An alignment quantification step. For this reason, it is possible to further improve inspection accuracy and save labor in the inspection process.

実施の形態2.
実施の形態2の巻線検査方法は、短絡不良要因の1つである巻きこぼれを検出する巻線検査方法に関するものである。
具体的には、実施の形態2の巻線検査方法は、実施の形態1の巻線検査方法の各処理工程に加えて、絶縁部材のエッジを抽出する絶縁部材エッジ抽出工程と検査対象巻線コイルの巻こぼれを検出する巻こぼれ検出工程を備えている。
Embodiment 2. FIG.
The winding inspection method according to the second embodiment relates to a winding inspection method for detecting winding spillage, which is one of the causes of short circuit failure.
Specifically, in the winding inspection method of the second embodiment, in addition to each processing step of the winding inspection method of the first embodiment, an insulating member edge extraction step for extracting the edge of the insulating member and the inspection target winding A spillage detecting step for detecting spillage of the coil is provided.

以下、実施の形態2の巻線検査方法の機能、動作について、本検査方法に係る説明図である図17から図19に基づいて、適時実施の形態1の図面を参照して説明する。   Hereinafter, the function and operation of the winding inspection method of the second embodiment will be described with reference to the drawings of the first embodiment on the basis of FIGS. 17 to 19 which are explanatory diagrams related to the inspection method.

ステータコア5の巻線コイル6が正常に等間隔に且つ直線的に巻かれていれば、実施の形態1の図4のように絶縁部材から巻線コイル6がこぼれてステータコア部材10と接触することはない。しかし、巻線コイル6に巻乱れが発生した場合、図17のように絶縁部材11から巻線コイル6がこぼれてしまうことがある。巻こぼれ巻線コイルを6Aで示している。
このように所定の絶縁部材11内に巻線コイル6が収まっているかを検査する際、実施の形態1で説明した巻線検査方法が適用できる。
If the winding coil 6 of the stator core 5 is normally wound at regular intervals and linearly, the winding coil 6 spills from the insulating member and comes into contact with the stator core member 10 as shown in FIG. 4 of the first embodiment. There is no. However, when the winding coil 6 is disturbed, the winding coil 6 may spill from the insulating member 11 as shown in FIG. A spilled winding coil is indicated by 6A.
Thus, when inspecting whether the winding coil 6 is housed in the predetermined insulating member 11, the winding inspection method described in the first embodiment can be applied.

実施の形態1との相違点は、実施の形態1では、ステップ5(S05)において、巻線コイル6のみの2値化処理データを抽出した後は、絶縁部材データは使用しなかった。
しかし、実施の形態2では、この絶縁部材データも使用して、絶縁部材のエッジを抽出して、巻こぼれ巻線コイル6Aを検出する。
The difference from the first embodiment is that, in the first embodiment, after the binarization processing data for only the winding coil 6 is extracted in Step 5 (S05), the insulating member data is not used.
However, in the second embodiment, the insulating member data is also used to extract the edge of the insulating member and detect the spilled winding coil 6A.

図7のフローチャートのステップ3において絶縁部材11のみの2値化処理データを得るために、RBG値すべてに閾値を設けて2値化処理を行い、絶縁部材11のみの2値化処理データを取得した。
上記の2値化処理データにおいて巻線コイル6のエッジも薄く残ることがある。この巻線コイル6のエッジを除去するために、ミニマムフィルタとマックスフィルタを使用する。
例えば、3×3のミニマムフィルタを使用し、次に3×3のマックスフィルタを使用すると、3画素より小さい検出物は除去され、3画素より大きい検出物は元の大きさで残る。
In step 3 of the flowchart of FIG. 7, in order to obtain binarization processing data only for the insulating member 11, threshold values are provided for all RBG values and binarization processing is performed to obtain binarization processing data for only the insulating member 11. did.
In the above binarization processing data, the edge of the winding coil 6 may remain thin. In order to remove the edge of the winding coil 6, a minimum filter and a maximum filter are used.
For example, if a 3 × 3 minimum filter is used and then a 3 × 3 max filter is used, detections smaller than 3 pixels are removed and detections larger than 3 pixels remain at their original size.

以降、図7のフローチャートのステップ6からステップ8の処理を行うことで、図18のように絶縁部材11のエッジのみの抽出をした積分グラフを取得でき、両側最端部のエッジ座標を得ることができる(絶縁部材エッジ抽出工程)。   Thereafter, by performing the processing from step 6 to step 8 in the flowchart of FIG. 7, an integral graph in which only the edge of the insulating member 11 is extracted as shown in FIG. 18 can be obtained, and the edge coordinates of the extreme ends on both sides can be obtained. (Insulating member edge extraction step).

例えば、図17のような不良巻こぼれ巻線コイル6Aが発生した場合を例に説明する。 図18で絶縁部材11の両側最端エッジ座標は左側29、右側160と得ることができる。同様に図19で巻線コイル6の両側最端エッジ座標を左側10、右側142と得ることができる。
それぞれの結果を比較すると、最端左部では絶縁部材11の座標よりも巻線コイル6の座標が小さくなっており、巻きこぼれが発生していることが検出できる。また最端右部では、絶縁部材11の座標よりも巻線コイル6の座標が小さくなっており、正常に巻きつけられていることが確認できる(巻こぼれ検出工程)。
For example, a case where a defective winding coil 6A as shown in FIG. 17 is generated will be described as an example. In FIG. 18, the extreme end edge coordinates on both sides of the insulating member 11 can be obtained as the left side 29 and the right side 160. Similarly, in FIG. 19, the extreme end edge coordinates on both sides of the winding coil 6 can be obtained as the left side 10 and the right side 142.
Comparing the respective results, the coordinates of the winding coil 6 are smaller than the coordinates of the insulating member 11 at the leftmost end, and it can be detected that the winding is spilled. Further, at the rightmost end, the coordinates of the winding coil 6 are smaller than the coordinates of the insulating member 11, and it can be confirmed that the winding is normally performed (rolling-out detection step).

以上説明したように、実施の形態2の巻線検査方法は、実施の形態1の巻線検査方法の各処理工程に加えて、絶縁部材のエッジを抽出する絶縁部材エッジ抽出工程と検査対象巻線コイルの巻こぼれを検出する巻こぼれ検出工程を備えている。
このため、実施の形態2の発明によれば、実施の形態1の効果に加えて、さらに巻こぼれ不良を検出することができるため、さらに巻線検査の精度の向上を図ることができる。また、検査対象巻線コイルの巻こぼれを検出するために、別途、検出機器を用意する必要はないため、巻線検査装置の簡素化を図ることができる。
As described above, the winding inspection method according to the second embodiment includes the insulating member edge extraction step for extracting the edge of the insulating member and the inspection target winding in addition to the processing steps of the winding inspection method according to the first embodiment. A spillage detecting step for detecting spillage of the wire coil is provided.
For this reason, according to the invention of the second embodiment, in addition to the effects of the first embodiment, it is possible to further detect a winding spill defect, thereby further improving the accuracy of the winding inspection. In addition, since it is not necessary to prepare a separate detection device in order to detect the winding of the winding coil to be inspected, the winding inspection apparatus can be simplified.

実施の形態3.
実施の形態3は、実施の形態1で説明した巻線検査方法を適用して、ステータコアの巻線コイルの検査を行う巻線検査装置に関するものである。
Embodiment 3 FIG.
The third embodiment relates to a winding inspection apparatus that applies the winding inspection method described in the first embodiment to inspect the winding coil of the stator core.

以下、本願発明の実施の形態3に係る巻線検査装置1の構成、動作について、巻線検査装置に係る構成図である図20に基づいて、実施の形態1の図を適時参照して説明する。
なお、図20は実施の形態1の図1の画像処理装置の内部構成を詳細に示したものである。図20において、図1と同一あるいは相当部分には、同一の符号を付している。
Hereinafter, the configuration and operation of the winding inspection device 1 according to the third embodiment of the present invention will be described based on FIG. 20, which is a configuration diagram according to the winding inspection device, with reference to the diagram of the first embodiment as appropriate. To do.
FIG. 20 shows in detail the internal configuration of the image processing apparatus of FIG. 1 according to the first embodiment. In FIG. 20, the same or corresponding parts as in FIG.

図20において、本発明に適用する巻線検査装置1は、撮像用カメラ2と照明3と画像処理装置4とを備え、検査対象のステータコア5の巻線コイル6の検査を行う。
巻線検査方法の基本、例えば座標系等は実施の形態1と同様であるため、以下、画像処理装置4の構成および機能を中心に説明する。
20, a winding inspection apparatus 1 applied to the present invention includes an imaging camera 2, an illumination 3, and an image processing apparatus 4, and inspects the winding coil 6 of the stator core 5 to be inspected.
Since the basics of the winding inspection method, such as the coordinate system, are the same as those in the first embodiment, the configuration and functions of the image processing apparatus 4 will be mainly described below.

画像処理装置4は、実施の形態1で説明した巻線検査方法を実施するために必要な機能部を備える。具体的には、画像処理装置4は、画像取込部21、2値化処理部22、エッジ抽出部23、積分グラフ作成部24、直線性算出部25、不良位置特定部26、整列性定量化部27、良否判定部28、および巻線検査全体を統括しカメラ2、照明3に操作する制御部29を備える。制御部29はまた図示しない表示装置(CRT)、キーボード、マウス等との間の信号処理も行う。   The image processing apparatus 4 includes a functional unit necessary for performing the winding inspection method described in the first embodiment. Specifically, the image processing apparatus 4 includes an image capturing unit 21, a binarization processing unit 22, an edge extraction unit 23, an integral graph creation unit 24, a linearity calculation unit 25, a defect position specifying unit 26, an alignment quantification. A control unit 29 that controls the camera 2 and the illumination 3 to control the entire winding inspection. The control unit 29 also performs signal processing with a display device (CRT), a keyboard, a mouse, and the like (not shown).

検査員は、表示装置、キーボードを用いて、巻線検査の判定基準や照明3の照度等の必要な検査条件を設定して、巻線検査を開始する。   The inspector uses the display device and the keyboard to set the necessary inspection conditions such as the determination standard for the winding inspection and the illuminance of the illumination 3, and starts the winding inspection.

ステータコア5の巻線コイル6の側面部をカメラ2で撮像し、この撮像した撮像画像を画像取込部21において取得する。   The side surface portion of the winding coil 6 of the stator core 5 is imaged by the camera 2, and this captured image is acquired by the image capturing unit 21.

次に、2値化処理部22において、この取得された撮像画像に対して、RGB値それぞれの閾値で2値化処理を行う。ノイズ除去が必要な場合は、この2値化処理部22において、2値化処理後のデータに対してフィルタ処理を行う。
また、巻線コイル6のみの2値化処理データを得る処理もこの2値化処理部22において行う。具体的には、巻線コイル6と絶縁部材11の両方の2値化処理データから絶縁部材11の2値化処理データを除去することで、巻線コイル6のみの2値化処理データを得る。
Next, in the binarization processing unit 22, binarization processing is performed on the acquired captured image with each RGB value threshold value. When noise removal is necessary, the binarization processing unit 22 performs a filtering process on the data after the binarization process.
The binarization processing unit 22 also performs processing for obtaining binarization processing data for only the winding coil 6. Specifically, the binarization processing data of only the winding coil 6 is obtained by removing the binarization processing data of the insulating member 11 from the binarization processing data of both the winding coil 6 and the insulating member 11. .

次に、エッジ抽出部23において、巻線コイル6のみの2値化処理データに対して微分処理を行い、微分処理後のデータから微分値が1以上の領域を抽出して巻線コイル6のエッジを抽出する。   Next, the edge extraction unit 23 performs a differentiation process on the binarized data of only the winding coil 6, extracts a region having a differential value of 1 or more from the data after the differentiation process, and extracts the winding coil 6. Extract edges.

次に、積分グラフ作成部24において、エッジ抽出部23で取得したエッジ情報を巻線コイル6の巻きまわり方向に積分して積分グラフを作成する。
なお、あらかじめ検査条件で設定された分割数に、巻線コイル6のエッジを巻線コイル6方向に等間隔で分割した後に、積分グラフを作成する。
Next, the integration graph creation unit 24 creates an integration graph by integrating the edge information acquired by the edge extraction unit 23 in the winding direction of the winding coil 6.
An integral graph is created after the edges of the winding coil 6 are divided at equal intervals in the direction of the winding coil 6 into the number of divisions set in advance under the inspection conditions.

次に、直線性算出部25において、積分グラフ作成部24で作成した積分グラフより、巻線コイル6の直線性を算出する。   Next, the linearity calculation unit 25 calculates the linearity of the winding coil 6 from the integration graph created by the integration graph creation unit 24.

次に、不良位置特定部26において、直線性不良の巻線コイルがあった場合、積分グラフから直線性不良の巻線コイルのY方向の配置位置を特定する。   Next, when there is a winding coil with poor linearity, the defective position specifying unit 26 specifies the arrangement position in the Y direction of the winding coil with poor linearity from the integral graph.

次に、整列性定量化部27において、積分グラフの各高さ(直線度)毎に確率分布を取得し、分布グラフを作成する。さらに、この分布グラフからあらかじめ検査条件で設定された判定基準を超える領域の点数を算出し、巻線コイル6全体の整列性を定量化する。   Next, the alignment quantification unit 27 acquires a probability distribution for each height (linearity) of the integral graph and creates a distribution graph. Furthermore, the score of the area | region exceeding the criterion set beforehand by the test condition is calculated from this distribution graph, and the alignment property of the whole winding coil 6 is quantified.

次に、良否判定部28において、直線性算出部25が算出した巻線コイル6の直線性、および、整列性定量化部27が定量化した巻線コイル6全体の整列性のデータとあらかじめ設定された検査基準と比較して、ステータコア5の巻線コイル6の良否判定を行う。   Next, in the pass / fail judgment unit 28, the linearity of the winding coil 6 calculated by the linearity calculation unit 25 and the alignment data of the entire winding coil 6 quantified by the alignment quantification unit 27 are set in advance. The quality of the winding coil 6 of the stator core 5 is determined in comparison with the inspection standard.

制御部29は、巻線検査の結果、すなわち良否判定部28の判定結果を、表示装置に表示して、検査員に提示する。直線性不良の巻線コイルがあった場合は、制御部29は、不良位置特定部26が特定した巻線コイルのY方向の配置位置も合わせて表示装置に表示する。   The control unit 29 displays the result of the winding inspection, that is, the determination result of the pass / fail determination unit 28 on the display device and presents it to the inspector. When there is a winding coil with poor linearity, the control unit 29 also displays the arrangement position in the Y direction of the winding coil specified by the defect position specifying unit 26 on the display device.

なお、実施の形態3の巻線検査装置1において、画像処理装置4は直線性算出部25、不良位置特定部26、および整列性定量化部27を備える構成として説明した。しかし、巻線検査の目的や要求される検査精度により、基本的な直線性算出部25のみを備えた画像処理装置とすることで、巻線検査装置の簡素化を図ることができる。
巻線検査の目的に応じて、不良位置特定部26、整列性定量化部27を備えることで、検査精度の向上および検査の効率化を図ることができる。
In the winding inspection apparatus 1 according to the third embodiment, the image processing apparatus 4 has been described as a configuration including the linearity calculation unit 25, the defect position specifying unit 26, and the alignment quantification unit 27. However, depending on the purpose of the winding inspection and the required inspection accuracy, the winding inspection apparatus can be simplified by using an image processing apparatus including only the basic linearity calculation unit 25.
By providing the defect position specifying unit 26 and the alignment quantifying unit 27 according to the purpose of the winding inspection, it is possible to improve the inspection accuracy and increase the efficiency of the inspection.

実施の形態3の巻線検査装置1においては、画像処理装置を巻線検査方法の各処理工程に対応した各機能部を備える構成とした。しかし、画像処理装置をCPU、メモリ、ディスク、入出力装置、および周辺装置で構成し、巻線検査方法の各処理工程をソフトウエアで処理することができる。   In the winding inspection apparatus 1 of the third embodiment, the image processing apparatus is configured to include each functional unit corresponding to each processing step of the winding inspection method. However, the image processing apparatus can be constituted by a CPU, a memory, a disk, an input / output device, and a peripheral device, and each processing step of the winding inspection method can be processed by software.

以上説明したように、実施の形態3の巻線検査装置は、撮像用カメラと照明と画像処理装置から構成され、画像処理装置は撮像用カメラと照明を用いて撮影した検査対象巻線コイルの撮像画像を取得する画像取得部と、撮像画像に対して2値化処理を行う2値化処理部と、微分処理を行い検査対象巻線コイルのエッジを抽出するエッジ抽出部と、抽出エッジを検査対象巻線コイルの巻きまわり方向に積分して積分グラフを作成する積分グラフ作成部と、積分グラフの高さより検査対象巻線コイルの直線性を算出する直線性算出部とを備えたものである。したがって、検査対象の巻線コイルの直線性を算出できるため、巻線検査の効率が向上し、後工程への不良流出を防止でき、生産性を向上させることができる。   As described above, the winding inspection apparatus according to the third embodiment includes the imaging camera, the illumination, and the image processing apparatus. The image processing apparatus includes the imaging coil and the inspection target winding coil that is captured using the illumination. An image acquisition unit that acquires a captured image, a binarization processing unit that performs binarization processing on the captured image, an edge extraction unit that performs differentiation processing and extracts an edge of the winding coil to be inspected, and an extraction edge An integration graph creation unit that creates an integration graph by integrating in the winding direction of the winding coil to be inspected, and a linearity calculation unit that calculates the linearity of the winding coil to be inspected from the height of the integration graph is there. Accordingly, since the linearity of the winding coil to be inspected can be calculated, the efficiency of the winding inspection can be improved, the outflow of defects to the subsequent process can be prevented, and the productivity can be improved.

さらに、実施の形態3の巻線検査装置は、積分グラフから検査対象巻線コイルの巻線不良位置を特定する不良位置特定部と、積分グラフから分布グラフを作成し検査対象巻線コイルの整列性を定量化する整列性定量化部を備える。このため、さらに、検査精度の向上、検査工程の省力化を図ることができる。   Furthermore, the winding inspection apparatus of the third embodiment creates a distribution graph from the integration graph by identifying a defective position specifying unit for specifying the winding defective position of the inspection target winding coil from the integral graph, and aligns the inspection target winding coil. Alignment quantification unit for quantifying performance. For this reason, it is possible to further improve inspection accuracy and save labor in the inspection process.

なお、本発明は、その発明の範囲内において、各実施の形態を自由に組み合わせたり、実施の形態を適宜、変形、省略したりすることが可能である。   Note that the present invention can be freely combined with each other within the scope of the invention, and the embodiments can be modified or omitted as appropriate.

1 巻線検査装置、2 撮像用カメラ、3 照明、4 画像処理装置、
5 ステータコア、6 巻線コイル、10 ステータコア部材、11 絶縁部材、
11a 第1の絶縁部材、11b 第2の絶縁部材、15 連結ステータコア、
21 画像取込部、22 2値化処理部、23 エッジ抽出部、
24 積分グラフ作成部、25 直線性算出部、26 不良位置特定部、
27 整列性定量化部、28 良否判定部、29 制御部。
1 winding inspection device, 2 imaging camera, 3 lighting, 4 image processing device,
5 stator core, 6 winding coil, 10 stator core member, 11 insulating member,
11a 1st insulating member, 11b 2nd insulating member, 15 connection stator core,
21 image capture unit, 22 binarization processing unit, 23 edge extraction unit,
24 integral graph creation unit, 25 linearity calculation unit, 26 defect position specifying unit,
27 Alignment quantification part, 28 Pass / fail judgment part, 29 Control part.

Claims (10)

撮像用カメラと照明を用いて撮像した検査対象巻線コイルの撮像画像を取得する画像取得工程と、前記撮像画像に対して2値化処理を行う2値化処理工程と、2値化処理データに対して微分処理を行い前記検査対象巻線コイルのエッジを抽出するエッジ抽出工程と、抽出エッジを前記検査対象巻線コイルの巻きまわり方向に積分して積分グラフを作成する積分グラフ作成工程と、前記積分グラフの高さより前記検査対象巻線コイルの直線性を算出する直線性算出工程とを備えた巻線検査方法。 An image acquisition step of acquiring a picked-up image of a winding coil to be inspected imaged using an image pickup camera and illumination, a binarization processing step of performing binarization processing on the picked-up image, and binarization processing data An edge extraction step of performing differentiation on the edge of the winding coil to be inspected and extracting an edge of the inspection target winding coil; A winding inspection method comprising: a linearity calculating step of calculating the linearity of the winding coil to be inspected from the height of the integral graph. さらに前記積分グラフから分布グラフを作成し、前記検査対象巻線コイルの整列性を定量化する整列性定量化工程を備えた請求項1に記載の巻線検査方法。 The winding inspection method according to claim 1, further comprising an alignment quantification step of creating a distribution graph from the integral graph and quantifying alignment of the winding coil to be inspected. さらに前記積分グラフから前記検査対象巻線コイルの巻線不良位置を特定する不良位置特定工程を備えた請求項1または請求項2に記載の巻線検査方法。 The winding inspection method according to claim 1, further comprising a defect position specifying step of specifying a winding defect position of the inspection target winding coil from the integral graph. さらに前記撮像画像に対して2値化処理、エッジ抽出および積分グラフを作成し、前記検査対象巻線コイルの絶縁部材のエッジを抽出する絶縁部材エッジ抽出工程と、前記積分グラフから判定できる前記検査対象巻線コイルの左右両端位置と前記絶縁部材のエッジ位置を比較し、前記検査対象巻線コイルの巻こぼれを検出する巻こぼれ検出工程を備えた請求項1から請求項3のいずれか1項に記載の巻線検査方法。 Further, binarization processing, edge extraction and integration graph are created for the captured image, and an insulating member edge extraction step for extracting the edge of the insulating member of the winding coil to be inspected, and the inspection that can be determined from the integration graph 4. The spillage detection step of comparing the left and right end positions of the target winding coil with the edge position of the insulating member and detecting a spillage of the inspection target winding coil. 5. Winding inspection method described in 1. 前記撮像用カメラはカラーカメラであり、前記照明は白色照明である請求項1から請求項4のいずれか1項に記載の巻線検査方法。 The winding inspection method according to any one of claims 1 to 4, wherein the imaging camera is a color camera, and the illumination is white illumination. 前記撮像用カメラはモノクロカメラであり、前記照明はカラー照明である請求項1から請求項4のいずれか1項に記載の巻線検査方法。 The winding inspection method according to any one of claims 1 to 4, wherein the imaging camera is a monochrome camera, and the illumination is color illumination. 前記照明は、バー型照明、リング型照明、ドーム型照明、同軸型照明の内のいずれか1種類か、あるいは複数種類を用いる請求項1から請求項6のいずれか1項に記載の巻線検査方法。 The winding according to any one of claims 1 to 6, wherein the illumination is one of bar illumination, ring illumination, dome illumination, and coaxial illumination, or a plurality of illuminations. Inspection method. 撮像用カメラと照明と画像処理装置から構成され、
前記画像処理装置は、撮像用カメラと照明を用いて撮影した検査対象巻線コイルの撮像画像を取得する画像取得部と、前記撮像画像に対して2値化処理を行う2値化処理部と、2値化処理データに対して微分処理を行い前記検査対象巻線コイルのエッジを抽出するエッジ抽出部と、抽出エッジを前記検査対象巻線コイルの巻きまわり方向に積分して積分グラフを作成する積分グラフ作成部と、前記積分グラフの高さより前記検査対象巻線コイルの直線性を算出する直線性算出部とを備えた巻線検査装置。
It consists of an imaging camera, illumination, and an image processing device.
The image processing apparatus includes an image acquisition unit that acquires an image of a winding coil to be inspected that has been imaged using an imaging camera and illumination, and a binarization processing unit that performs binarization processing on the captured image. An edge extraction unit that performs differential processing on the binarization processing data and extracts the edge of the winding coil to be inspected, and an integration graph is created by integrating the extracted edge in the winding direction of the winding coil to be inspected And a linearity calculating unit that calculates the linearity of the winding coil to be inspected from the height of the integral graph.
さらに、前記画像処理装置は、前記積分グラフから分布グラフを作成し、前記検査対象巻線コイルの整列性を定量化する整列性定量化部を備えた請求項8に記載の巻線検査装置。 The winding inspection apparatus according to claim 8, further comprising an alignment quantification unit that creates a distribution graph from the integral graph and quantifies alignment of the winding coil to be inspected. さらに、前記画像処理装置は、前記積分グラフから前記検査対象巻線コイルの巻線不良位置を特定する不良位置特定部を備えた請求項8または請求項9に記載の巻線検査装置。 Furthermore, the said image processing apparatus is a winding test | inspection apparatus of Claim 8 or Claim 9 provided with the defect position specific | specification part which pinpoints the winding defect position of the said test | inspection winding coil from the said integral graph.
JP2014082625A 2014-04-14 2014-04-14 Winding inspection method and winding inspection apparatus Active JP6253490B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014082625A JP6253490B2 (en) 2014-04-14 2014-04-14 Winding inspection method and winding inspection apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014082625A JP6253490B2 (en) 2014-04-14 2014-04-14 Winding inspection method and winding inspection apparatus

Publications (2)

Publication Number Publication Date
JP2015203613A true JP2015203613A (en) 2015-11-16
JP6253490B2 JP6253490B2 (en) 2017-12-27

Family

ID=54597135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014082625A Active JP6253490B2 (en) 2014-04-14 2014-04-14 Winding inspection method and winding inspection apparatus

Country Status (1)

Country Link
JP (1) JP6253490B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018117446A (en) * 2017-01-18 2018-07-26 三菱電機株式会社 Coil inspection method and coil inspection device
WO2019017071A1 (en) * 2017-07-20 2019-01-24 パナソニックIpマネジメント株式会社 Method for producing coil-shaped fiber, and coil-shaped fiber
JP2020162250A (en) * 2019-03-26 2020-10-01 三菱電機株式会社 Winding inspection method, winding inspection device and manufacturing method of stator of rotary electric machine
JP7466921B2 (en) 2021-09-29 2024-04-15 株式会社 東京ウエルズ Winding inspection method and inspection device
JP7499211B2 (en) 2021-04-30 2024-06-13 三菱電機プラントエンジニアリング株式会社 Generator inspection device, generator inspection method, and generator inspection program

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5224172A (en) * 1990-07-25 1993-06-29 Murata Kikai Kabushiki Kaisha Cobwebbing detection device
JPH07239309A (en) * 1994-02-28 1995-09-12 Matsushita Electric Ind Co Ltd Device for detecting abnormal part of parallel line pattern
US5590846A (en) * 1992-07-20 1997-01-07 State Of Israel, Ministry Of Defence, Armament Development Authority System and method for monitoring progress of winding a fiber
JP3275276B2 (en) * 1993-10-23 2002-04-15 住友電気工業株式会社 How to monitor the winding state of the linear body
JP2002350112A (en) * 2001-05-28 2002-12-04 Kobe Steel Ltd Apparatus for detecting aligned winding irregularity
US20030118230A1 (en) * 2001-12-22 2003-06-26 Haoshi Song Coiled tubing inspection system using image pattern recognition
JP2004131209A (en) * 2002-10-08 2004-04-30 Mitsubishi Electric Corp Wire wound body inspection device and its method
JP2005241582A (en) * 2004-02-27 2005-09-08 Denso Corp Method and apparatus for determining quality of coil, and coil manufacturing method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5224172A (en) * 1990-07-25 1993-06-29 Murata Kikai Kabushiki Kaisha Cobwebbing detection device
US5590846A (en) * 1992-07-20 1997-01-07 State Of Israel, Ministry Of Defence, Armament Development Authority System and method for monitoring progress of winding a fiber
JP3275276B2 (en) * 1993-10-23 2002-04-15 住友電気工業株式会社 How to monitor the winding state of the linear body
JPH07239309A (en) * 1994-02-28 1995-09-12 Matsushita Electric Ind Co Ltd Device for detecting abnormal part of parallel line pattern
JP2002350112A (en) * 2001-05-28 2002-12-04 Kobe Steel Ltd Apparatus for detecting aligned winding irregularity
US20030118230A1 (en) * 2001-12-22 2003-06-26 Haoshi Song Coiled tubing inspection system using image pattern recognition
JP2004131209A (en) * 2002-10-08 2004-04-30 Mitsubishi Electric Corp Wire wound body inspection device and its method
JP2005241582A (en) * 2004-02-27 2005-09-08 Denso Corp Method and apparatus for determining quality of coil, and coil manufacturing method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018117446A (en) * 2017-01-18 2018-07-26 三菱電機株式会社 Coil inspection method and coil inspection device
WO2019017071A1 (en) * 2017-07-20 2019-01-24 パナソニックIpマネジメント株式会社 Method for producing coil-shaped fiber, and coil-shaped fiber
JP2020162250A (en) * 2019-03-26 2020-10-01 三菱電機株式会社 Winding inspection method, winding inspection device and manufacturing method of stator of rotary electric machine
JP7316814B2 (en) 2019-03-26 2023-07-28 三菱電機株式会社 WINDING INSPECTION METHOD, WINDING INSPECTION APPARATUS, AND METHOD OF MANUFACTURING STATOR FOR ROTATING ELECTRIC MACHINE
JP7499211B2 (en) 2021-04-30 2024-06-13 三菱電機プラントエンジニアリング株式会社 Generator inspection device, generator inspection method, and generator inspection program
JP7466921B2 (en) 2021-09-29 2024-04-15 株式会社 東京ウエルズ Winding inspection method and inspection device

Also Published As

Publication number Publication date
JP6253490B2 (en) 2017-12-27

Similar Documents

Publication Publication Date Title
JP6253490B2 (en) Winding inspection method and winding inspection apparatus
US20170323435A1 (en) Defect quantification method, defect quantification device, and defect evaluation value display device
US9430841B2 (en) Defect inspection method
WO2015100777A1 (en) Display panel defect detecting method and defect detecting device
TWI618925B (en) Defect inspection method and defect inspection system
WO2017071406A1 (en) Method and system for detecting pin of gold needle element
WO2021189259A1 (en) Oled screen point defect determination method and apparatus, storage medium and electronic device
US20230011569A1 (en) Method and apparatus for detecting defect, device, and storage medium
CN111866501B (en) Camera module detection method and device, electronic equipment and medium
WO2017107529A1 (en) Positioning method and device for diodes arranged side by side
JP5088165B2 (en) Defect detection method and defect detection apparatus
WO2014103617A1 (en) Alignment device, defect inspection device, alignment method, and control program
JPH11337498A (en) Apparatus and method for inspecting printed circuit board
CN113935927A (en) Detection method, device and storage medium
KR102103689B1 (en) Winding inspection method and winding inspection device
WO2018068414A1 (en) Detection method and device for resistor having color bands, and automated optical inspection system
JP5257063B2 (en) Defect detection method and defect detection apparatus
CN115775245A (en) Coil winding detection method and device, electronic equipment and storage medium
JP5239275B2 (en) Defect detection method and defect detection apparatus
US20200211199A1 (en) Image inspection method
WO2014112290A1 (en) Inspection device
Kim License plate location method unaffected by variation in size and aspect ratio
CN116993654B (en) Camera module defect detection method, device, equipment, storage medium and product
JP6043178B2 (en) Automatic unevenness detection apparatus and automatic unevenness detection method for flat panel display
JP2014135007A (en) Flat panel display automatic unevenness detection device and automatic unevenness detection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170119

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171025

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171031

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171128

R150 Certificate of patent or registration of utility model

Ref document number: 6253490

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250