JP2015202444A - Separation and recovery method of carbon component from carbon-containing refractory - Google Patents

Separation and recovery method of carbon component from carbon-containing refractory Download PDF

Info

Publication number
JP2015202444A
JP2015202444A JP2014082383A JP2014082383A JP2015202444A JP 2015202444 A JP2015202444 A JP 2015202444A JP 2014082383 A JP2014082383 A JP 2014082383A JP 2014082383 A JP2014082383 A JP 2014082383A JP 2015202444 A JP2015202444 A JP 2015202444A
Authority
JP
Japan
Prior art keywords
carbon
component
containing refractory
treatment
separated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014082383A
Other languages
Japanese (ja)
Other versions
JP6347511B2 (en
Inventor
中村 善幸
Yoshiyuki Nakamura
善幸 中村
久宏 松永
Hisahiro Matsunaga
久宏 松永
聖司 細原
Seiji Hosohara
聖司 細原
亀島 欣一
Kinichi Kameshima
欣一 亀島
三宅 通博
Michihiro Miyake
通博 三宅
俊介 西本
Shunsuke Nishimoto
俊介 西本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Okayama University NUC
Original Assignee
JFE Steel Corp
Okayama University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp, Okayama University NUC filed Critical JFE Steel Corp
Priority to JP2014082383A priority Critical patent/JP6347511B2/en
Publication of JP2015202444A publication Critical patent/JP2015202444A/en
Application granted granted Critical
Publication of JP6347511B2 publication Critical patent/JP6347511B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method where a carbon component can be effectively separated from a carbon-containing refractory by a simple method and then the carbon component can be separated and recovered at a high recovery rate.SOLUTION: A carbon component isolated from crushed matter x is separated and recovered after the hydration treatment A of a metal oxide component is performed to the crushed matter x of a carbon-containing refractory. The isolation of the carbon component can be effectively accelerated by volume expansion due to the hydration of a metal oxide by performing the hydration treatment of the metal oxide component beforehand and then the carbon component is efficiently separated in a subsequent separation and recovery step.

Description

本発明は、炭素含有耐火物(主に使用済となった炭素含有耐火物)から黒鉛などの炭素成分を分離回収するための方法に関する。   The present invention relates to a method for separating and recovering carbon components such as graphite from carbon-containing refractories (mainly used carbon-containing refractories).

炭素含有耐火物は炭素と金属酸化物などからなる複合耐火物であり、転炉、取鍋、RHなどの精錬用の炉材として使用されている。これらの炉材の廃棄物(使用済みの炭素含有耐火物)には炭素が含まれるため、単純な金属酸化物系の廃棄物のような再利用が難しい。このため、多くは路盤材や埋め戻し材に用いるしか処理方法がない。したがって、リサイクルを促進するために、使用済み炭素含有耐火物から炭素成分を効率的に分離回収できる方法の開発が望まれている。   Carbon-containing refractories are composite refractories composed of carbon and metal oxides, and are used as furnace materials for refining such as converters, ladles, and RH. Since the waste of these furnace materials (used carbon-containing refractory) contains carbon, it is difficult to recycle like simple metal oxide waste. For this reason, in many cases, there is only a processing method used for roadbed materials and backfill materials. Therefore, in order to promote recycling, development of a method capable of efficiently separating and recovering carbon components from spent carbon-containing refractories is desired.

既存の技術としては、微粉炭、未燃炭、石炭灰などからの炭素成分の分離方法が存在する(例えば、特許文献1〜3)。従来では、炭素資源の分離には浮遊選鉱法を用いるのが一般的である。しかし、単純な浮遊選鉱では分離性能が低いことから、例えば、特許文献1の方法では、油分を添加後に剪断力を付与するシェアーリング工程を導入することで分離性能を高めている。   As existing techniques, there are methods for separating carbon components from pulverized coal, unburned coal, coal ash, and the like (for example, Patent Documents 1 to 3). Conventionally, the flotation method is generally used to separate carbon resources. However, since the separation performance is low in simple flotation, for example, in the method of Patent Document 1, the separation performance is enhanced by introducing a shearing process that imparts a shearing force after the oil is added.

一方、炭素含有耐火物から炭素成分を分離回収する技術については、使用済みマグネシアカーボンレンガの粉砕物を水に投入し、浮遊選鉱法を利用して遊離黒鉛を含む浮上物を分離回収する方法が、特許文献4に示されている。この特許文献4の方法では、粉砕物の粒度を細かくすることと起泡剤や特定の捕集剤を添加することで黒鉛の回収率を高めるようにしている。   On the other hand, as for the technology for separating and recovering carbon components from carbon-containing refractories, there is a method in which pulverized magnesia carbon bricks are thrown into water, and floating materials containing free graphite are separated and recovered using the flotation method. Patent Document 4 shows. In the method of Patent Document 4, the recovery rate of graphite is increased by reducing the particle size of the pulverized product and adding a foaming agent or a specific collecting agent.

特許第4346299号公報Japanese Patent No. 4346299 特開2003−284973号公報JP 2003-284974 A 特開2010−023018号公報JP 2010-023018 A 特開2013−1606号公報JP 2013-1606 A

特許文献4の方法は、マグネシアカーボンレンガを粉砕し、この粉砕で遊離した黒鉛を浮遊選鉱で浮上させて捕集するものであり、高い回収率が得られるが、黒鉛の遊離量を増やすためには、より細かい粒度に粉砕する必要があり、粉砕作業に長時間を要するなどの問題がある。   In the method of Patent Document 4, magnesia carbon bricks are pulverized, and the graphite released by this pulverization is floated and collected by flotation. A high recovery rate is obtained, but in order to increase the amount of free graphite. However, there is a problem that it is necessary to pulverize to a finer particle size and a long time is required for the pulverization operation.

一方、特許文献1に示される炭素分離のためのシェアーリング工程は、そのための特別な剪断機が必要である。また、微粉炭のような炭素含有量の高い物質についての分離性能は高いが、炭素含有量が低い物質についての分離性能は高くない。このため、炭素含有耐火物のような数mass%〜20mass%程度の炭素含有量の物質については、より廉価な代替手法が望まれている。   On the other hand, the shearing process for carbon separation disclosed in Patent Document 1 requires a special shearing machine. Moreover, although the separation performance about a substance with high carbon content like pulverized coal is high, the separation performance about a substance with low carbon content is not high. For this reason, a cheaper alternative method is desired for a substance having a carbon content of about several mass% to 20 mass%, such as a carbon-containing refractory.

したがって本発明の目的は、以上のような従来技術の課題を解決し、簡易な手法により炭素含有耐火物から炭素成分を効果的に分離させることができ、これにより炭素成分を高い回収率で分離回収することができる方法を提供することにある。   Therefore, the object of the present invention is to solve the above-mentioned problems of the prior art and to effectively separate the carbon component from the carbon-containing refractory by a simple method, thereby separating the carbon component with a high recovery rate. It is to provide a method that can be recovered.

本発明者らは、炭素含有耐火物の粉砕物に対して、予め金属酸化物を水和させる処理を施すことにより、金属酸化物の水和による体積膨張によって炭素成分の遊離を効果的に促進でき、その後の分離回収工程で炭素成分を効率的に分離回収できること、また、金属酸化物成分を水和させる処理としては、水熱処理が特に有効であることを見出した。さらに、金属酸化物成分を水和させる処理を施した粉砕物をスラリー化し、このスラリーに超音波照射を行うことにより、その後の分離回収工程で炭素成分を特に高い回収率で分離回収できることを見出した。   The present inventors effectively promote the liberation of carbon components by volume expansion due to hydration of the metal oxide by preliminarily treating the pulverized carbon-containing refractory with the metal oxide. It has been found that the carbon component can be efficiently separated and recovered in the subsequent separation and recovery step, and that hydrothermal treatment is particularly effective as a treatment for hydrating the metal oxide component. Furthermore, it has been found that a pulverized product subjected to a treatment for hydrating a metal oxide component is made into a slurry, and the slurry is subjected to ultrasonic irradiation, whereby the carbon component can be separated and recovered at a particularly high recovery rate in the subsequent separation and recovery step. It was.

本発明はこのような知見に基づきなされたもので、以下を要旨とするものである。
[1]炭素含有耐火物の粉砕物(x)に対して、金属酸化物成分を水和させる処理(A)を施した後、粉砕物(x)から遊離した炭素成分の分離回収を行うことを特徴とする、炭素含有耐火物からの炭素成分の分離回収方法。
[2]上記[1]の分離回収方法において、金属酸化物成分を水和させる処理(A)として、粉砕物(x)に水熱処理を施すことを特徴とする、炭素含有耐火物からの炭素成分の分離回収方法。
The present invention has been made on the basis of such findings and has the following gist.
[1] After subjecting the pulverized product (x) of the carbon-containing refractory to the treatment (A) for hydrating the metal oxide component, the carbon component released from the pulverized product (x) is separated and recovered. A method for separating and recovering a carbon component from a carbon-containing refractory.
[2] In the separation and recovery method of [1] above, carbon from the carbon-containing refractory, wherein the pulverized product (x) is subjected to hydrothermal treatment as the treatment (A) for hydrating the metal oxide component Method for separating and recovering components.

[3]上記[1]又は[2]の分離回収方法において、金属酸化物成分を水和させる処理(A)を施した粉砕物(x)をスラリー化し、該スラリーに超音波照射を行った後、粉砕物(x)から遊離した炭素成分の分離回収を行うことを特徴とする、炭素含有耐火物からの炭素成分の分離回収方法。
[4]上記[1]〜[3]のいずれかの分離回収方法において、浮遊選鉱法により、粉砕物(x)から遊離した炭素成分の分離回収を行うことを特徴とする、炭素含有耐火物からの炭素成分の分離回収方法。
[5]上記[1]〜[4]のいずれかの分離回収方法において、炭素含有耐火物がアルカリ土類金属の酸化物を含むことを特徴とする、炭素含有耐火物からの炭素成分の分離回収方法。
[3] In the separation and recovery method of [1] or [2] above, the pulverized product (x) subjected to the treatment (A) for hydrating the metal oxide component was slurried, and the slurry was irradiated with ultrasonic waves. Thereafter, the carbon component released from the pulverized product (x) is separated and recovered, and the carbon component is separated and recovered from the carbon-containing refractory.
[4] The carbon-containing refractory according to any one of [1] to [3] above, wherein the carbon component released from the pulverized product (x) is separated and recovered by a flotation method. Of separating and recovering carbon components from sewage.
[5] Separation and recovery of carbon component from carbon-containing refractory, wherein the carbon-containing refractory contains an alkaline earth metal oxide in the separation and recovery method according to any one of [1] to [4] above Collection method.

本発明によれば、炭素含有耐火物の粉砕物に対して、予め金属酸化物成分を水和させる処理を施すことにより、金属酸化物の水和による体積膨張によって炭素成分の遊離を効果的に促進でき、その後の分離回収工程で炭素成分を効率的に分離回収することができる。
また、炭素含有耐火物の粉砕物に水熱処理を施すことにより、金属酸化物成分を効果的に水和させることができ、炭素成分の分離をより促進させることができる。水熱処理法は、比較的簡便な手法であるため、既存の分離方法と組み合わせる上でも大きな障害がなく、また、特許文献1のシェアーリング工程のような機械的な剪断力の付与の必要がない。このため、従来技術よりも幅広い炭素含有耐火物からの炭素の分離を促進することができ、例えば、低炭素の耐火物からも炭素を高効率分離できる。
さらに、金属酸化物成分を水和させる処理を施した粉砕物をスラリー化し、このスラリーに超音波照射を行うことにより、その後の分離回収工程において炭素成分を特に高い回収率で分離回収することができる。
According to the present invention, the pulverized carbon-containing refractory is preliminarily treated by hydrating the metal oxide component, thereby effectively releasing the carbon component by volume expansion due to hydration of the metal oxide. The carbon component can be efficiently separated and recovered in the subsequent separation and recovery step.
Moreover, by subjecting the pulverized carbon-containing refractory to hydrothermal treatment, the metal oxide component can be effectively hydrated and the separation of the carbon component can be further promoted. Since the hydrothermal treatment method is a relatively simple method, there is no major obstacle in combination with the existing separation method, and it is not necessary to apply mechanical shearing force as in the sharing process of Patent Document 1. . For this reason, separation of carbon from a wider range of carbon-containing refractories than in the prior art can be promoted, and for example, carbon can be separated from low-carbon refractories with high efficiency.
Furthermore, the pulverized product subjected to the treatment for hydrating the metal oxide component is slurried, and the slurry is subjected to ultrasonic irradiation, whereby the carbon component can be separated and recovered at a particularly high recovery rate in the subsequent separation and recovery step. it can.

種々の条件で水熱処理したマグカーボン耐火物のXRDパターン図XRD pattern diagram of magcarbon refractories hydrothermally treated under various conditions 水熱処理による炭素含有耐火物の改質(構造変化)を模式的に示す説明図Explanatory drawing schematically showing reformation (structural change) of carbon-containing refractories by hydrothermal treatment 本発明において、炭素含有耐火物の水熱処理後の処理工程の一例を示す説明図In this invention, explanatory drawing which shows an example of the process after a hydrothermal treatment of a carbon containing refractory

本発明は、炭素含有耐火物から炭素成分を分離回収するための方法であり、炭素含有耐火物の粉砕物xに対して、金属酸化物成分を水和させる処理Aを施した後、粉砕物xから遊離した炭素成分の分離回収を行うものである。すなわち、炭素含有耐火物の粉砕物xに対して、予め金属酸化物成分を水和させる処理Aを施しておき、しかる後、炭素成分の分離回収を行うものである。
炭素含有耐火物としては、マグネシア、ドロマイト、アルミナ、ジルコニア、シリカ、スピネルなどの金属酸化物の1種以上と黒鉛などの炭素成分を主成分としたものが挙げられるが、これに限定されるものではない。このなかでも、マグネシアカーボン質、ドロマイトカーボン質、若しくはそれら両方を含む複合耐火物が広く用いられている。
The present invention is a method for separating and recovering a carbon component from a carbon-containing refractory, and after subjecting the pulverized product x of the carbon-containing refractory to the treatment A for hydrating the metal oxide component, the pulverized product The carbon component liberated from x is separated and recovered. In other words, the pulverized product x of carbon-containing refractory is preliminarily subjected to the treatment A for hydrating the metal oxide component, and then the carbon component is separated and recovered.
Examples of the carbon-containing refractory include, but are not limited to, those containing as a main component one or more metal oxides such as magnesia, dolomite, alumina, zirconia, silica, and spinel and carbon components such as graphite. is not. Of these, composite refractories containing magnesia carbon, dolomite carbon, or both are widely used.

炭素含有耐火物を構成する金属酸化物、特にマグネシアやドロマイトといったアルカリ土類金属の酸化物は、水と化合して水和物を形成する際に体積変化を伴う。本発明ではこれを利用し、予め炭素含有耐火物を水と反応させて金属酸化物を水和物にすることで、粒子を体積膨張させて炭素成分と水和物との結合を乖離させ、炭素成分の遊離を促進させるものである。これにより炭素成分の遊離量が高められ、その後の分離回収工程において炭素成分を高い回収率で分離回収することができる。
上述の水和反応は、金属酸化物の体積膨張により耐火物組織を破壊しながら進行するため、炭素含有耐火物の粉砕物xの粒度は特に制限はないが、水和を短時間に完了させるためには、なるべく小さい粒度が好ましく、具体的には最大粒径が13mm以下、望ましくは1mm以下の粒度が好ましい。
Metal oxides constituting carbon-containing refractories, particularly oxides of alkaline earth metals such as magnesia and dolomite, undergo a volume change when combined with water to form a hydrate. In the present invention, utilizing this, by reacting the carbon-containing refractory with water in advance to make the metal oxide hydrate, the particles are expanded in volume to dissociate the bond between the carbon component and the hydrate, It promotes liberation of carbon components. Thereby, the liberated amount of the carbon component is increased, and the carbon component can be separated and recovered at a high recovery rate in the subsequent separation and recovery step.
Since the hydration reaction proceeds while destroying the refractory structure due to the volume expansion of the metal oxide, the particle size of the pulverized product x of the carbon-containing refractory is not particularly limited, but hydration is completed in a short time. For this purpose, a particle size as small as possible is preferable. Specifically, a particle size having a maximum particle size of 13 mm or less, desirably 1 mm or less is preferable.

炭素含有耐火物の金属酸化物成分を水和させる処理Aは、特に限定されないが、水熱処理が好適である。すなわち、炭素含有耐火物の粉砕物xに水熱処理を施すことにより、金属酸化物成分を水和させるものである。なお、炭素含有耐火物の粉砕物を常温・常圧で水と接触(例えば水に浸漬する)させても水和反応は進行するが、数年から数十年を要することもあるため、水熱処理により反応を加速させることが望ましい。   The treatment A for hydrating the metal oxide component of the carbon-containing refractory is not particularly limited, but hydrothermal treatment is suitable. That is, the metal oxide component is hydrated by subjecting the pulverized product x of the carbon-containing refractory to hydrothermal treatment. The hydration reaction proceeds even when the pulverized carbon-containing refractory is brought into contact with water (for example, immersed in water) at room temperature and normal pressure, but it may take several to several decades. It is desirable to accelerate the reaction by heat treatment.

水熱処理とは、材料と水(水蒸気の場合を含む)を圧力容器内に封入し、常温を超える温度に加熱する処理のことである。水熱処理は水熱反応器(圧力容器)を用いて行うが、水分と温度が確保できれば、どのような装置・手法で実施してもよい。例えば、少量処理の場合には、キャップ付の小型圧力容器を用いて処理を行い、大量処理の場合には、大型のチャンバー内で加圧蒸気による処理を行うことができる。
水熱処理の条件に特別な制限はないが、処理温度が高いほど、また、処理時間が長いほど遊離炭素の回収率は高くなる。したがって、処理温度に応じて処理時間を適宜設定して処理を行なえばよいが、効率的な処理を行うには、処理温度は110℃以上が好ましく、150℃以上がより好ましい。また、処理時間は、処理温度が110℃以上の場合には7日以上、処理温度が150℃以上の場合には2日以上が好ましい。
Hydrothermal treatment is a treatment in which a material and water (including water vapor) are enclosed in a pressure vessel and heated to a temperature exceeding normal temperature. Hydrothermal treatment is performed using a hydrothermal reactor (pressure vessel), but any apparatus and method may be used as long as moisture and temperature can be secured. For example, in the case of a small amount of processing, the processing is performed using a small pressure vessel with a cap, and in the case of a large amount of processing, the processing with pressurized steam can be performed in a large chamber.
There are no particular restrictions on the conditions of the hydrothermal treatment, but the higher the treatment temperature and the longer the treatment time, the higher the free carbon recovery rate. Therefore, the treatment time may be set appropriately according to the treatment temperature, but for efficient treatment, the treatment temperature is preferably 110 ° C. or higher, and more preferably 150 ° C. or higher. Further, the treatment time is preferably 7 days or more when the treatment temperature is 110 ° C. or more, and 2 days or more when the treatment temperature is 150 ° C. or more.

図1は、種々の条件で水熱処理したマグカーボン耐火物のXRDパターン図であり、水熱処理条件の違いによるマグネシアの水和状況の違いを示している。水熱処理条件は、図1(a)が110℃×2日、図1(b)が110℃×7日、図1(c)が150℃×2日、図1(d)が150℃×7日である。図1によれば、110℃×2日の処理後サンプルではマグネシアのピークが認められるが、110℃×7日の処理後サンプルではマグネシアのピークが認められない。また、150℃処理においては2日の処理後サンプルでもマグネシアのピークが認められない。これらの結果から、110℃×7日および150℃×2日、7日の処理でマグネシアの水和が完了していることが判る。   FIG. 1 is an XRD pattern diagram of a magcarbon refractory that has been hydrothermally treated under various conditions, and shows the difference in the hydration status of magnesia depending on the hydrothermal conditions. Hydrothermal treatment conditions are 110 ° C. × 2 days for FIG. 1A, 110 ° C. × 7 days for FIG. 1B, 150 ° C. × 2 days for FIG. 1C, and 150 ° C. for FIG. 7 days. According to FIG. 1, a magnesia peak is observed in the sample after treatment at 110 ° C. × 2 days, but no magnesia peak is observed in the sample after treatment at 110 ° C. × 7 days. Moreover, in the 150 degreeC process, the magnesia peak is not recognized even in the sample after the 2nd process. From these results, it can be seen that hydration of magnesia is completed by treatment at 110 ° C. × 7 days, 150 ° C. × 2 days, and 7 days.

炭素含有耐火物の粉砕物xに水熱処理を施すことにより、金属酸化物成分を効果的に水和させ、炭素成分の分離を促進させることができる。図2は、炭素含有耐火物がマグカーボン廃耐火物である場合について、水熱処理によるマグカーボン廃耐火物の改質(構造変化)の原理を模式的に示したものである。
金属酸化物成分を水和させる処理A(好ましくは水熱処理)を施した炭素含有耐火物の粉砕物xは、必要に応じて固液分離処理(すなわち、水分量が炭素成分の分離回収工程に支障を生じさせるがおそれがある場合には、支障を生じない程度の水分量にする)をした後、炭素成分の分離回収工程に送られる。
By subjecting the pulverized product x of carbon-containing refractory to hydrothermal treatment, the metal oxide component can be effectively hydrated and the separation of the carbon component can be promoted. FIG. 2 schematically shows the principle of modification (structural change) of magcarbon waste refractory by hydrothermal treatment when the carbon-containing refractory is magcarbon waste refractory.
The pulverized product x of the carbon-containing refractory subjected to the treatment A (preferably hydrothermal treatment) for hydrating the metal oxide component is subjected to solid-liquid separation treatment (that is, the moisture content is separated and recovered in the carbon component as necessary). If there is a possibility of causing trouble, the amount of water is set to a level that does not cause trouble), and then sent to the carbon component separation and recovery step.

炭素成分の分離回収工程の方式には特別な制限はなく、例えば、油層−水層界面を利用した二層分離法、スラリー(通常、油水混合溶媒のスラリー)を浮遊選鉱する方法などが適用できる。この浮遊選鉱法では、疎水性となった成分を気泡に付着させてフロス部へ移動させることで、疎水性成分と親水性成分を分離することができるので、遊離炭素を効率的に浮上分離させることができる。後述する試験例でも確認できるように、本発明法にしたがい、炭素含有耐火物の粉砕物xに水熱処理を施した後、浮遊選鉱により遊離炭素を分離回収することにより、炭素含有耐火物の粉砕物xを水熱処理無しで浮遊選鉱する場合に較べて、遊離炭素の回収率を4倍程度高めることができる。   There are no particular restrictions on the method of separating and recovering the carbon component, and for example, a two-layer separation method using an oil layer-water layer interface, a method of flotation of a slurry (usually a slurry of an oil-water mixed solvent), etc. can be applied. . In this flotation method, hydrophobic components and hydrophilic components can be separated by attaching hydrophobic components to bubbles and moving them to the froth part, so that free carbon can be efficiently levitated and separated. be able to. According to the method of the present invention, the hydrous heat treatment is performed on the pulverized product x of the carbon-containing refractory x, and then free carbon is separated and recovered by flotation, so that the pulverization of the carbon-containing refractory is performed. Compared with the case where the product x is subjected to flotation without hydrothermal treatment, the recovery rate of free carbon can be increased by about 4 times.

また、特に好ましい炭素成分の分離回収方法は、金属酸化物成分を水和させる処理Aを施した粉砕物xをスラリー(通常、油水混合溶媒のスラリー)とし、このスラリーに超音波照射を行った後、粉砕物xから遊離した炭素成分の分離回収を浮遊選鉱法などにより行う方法である。この方法の処理工程の一例を図3に示す。水熱処理材料(水熱処理を施した炭素含有耐火物の粉砕物x)と水に捕集剤であるケロシン(油分)を添加して、図3(A)に示すような二層分離の状態のスラリー(油水混合溶媒のスラリー)にする。このスラリーに超音波照射を行うと、図3(B)に示すように、水熱処理後も分離されない炭素成分の乖離と油層への移動が促進され、浮遊選鉱による分離回収に好適な状態が作り出される。さらに、油層水層界面での乳化やソノケミカル効果による炭素表面の疎水化が促進される。これらの複合効果により、図3(C)に示される浮遊選鉱時に、疎水成分の気泡への付着性を向上させてフロス部への炭素の分離効率を高めることができる。これにより炭素成分を高い回収率で分離回収することができる。   A particularly preferable method for separating and recovering the carbon component was a pulverized product x subjected to the treatment A for hydrating the metal oxide component as a slurry (usually a slurry of an oil-water mixed solvent), and this slurry was subjected to ultrasonic irradiation. Thereafter, the carbon component released from the pulverized product x is separated and recovered by a flotation method or the like. An example of the processing steps of this method is shown in FIG. Hydrothermally treated material (crushed material x of carbon-containing refractory subjected to hydrothermal treatment) and kerosene (oil) as a collecting agent are added to water, and the two-layer separation state as shown in FIG. Make a slurry (oil / water mixed solvent slurry). When this slurry is subjected to ultrasonic irradiation, as shown in FIG. 3 (B), the separation of the carbon components that are not separated even after hydrothermal treatment and the movement to the oil layer are promoted, and a state suitable for separation and recovery by flotation is created. It is. Furthermore, emulsification at the oil layer / water layer interface and hydrophobization of the carbon surface by the sonochemical effect are promoted. Due to these combined effects, it is possible to improve the separation efficiency of carbon into the froth portion by improving the adhesion of hydrophobic components to bubbles during the flotation shown in FIG. 3 (C). Thereby, the carbon component can be separated and recovered at a high recovery rate.

スラリーに超音波照射(超音波処理)を行う方法は任意であるが、例えば、小量処理であれば、スラリーを入れた容器を、水を入れた超音波洗浄機内にセットし、スラリーに超音波照射を行うようにしてもよい。また、大量処理の場合には、原料を混合、撹拌してスラリー化を行う容器全体もしくはスラリーを搬送する配管に超音波発生器を付随させて超音波照射を行うようにしてもよい。   The method of irradiating the slurry with ultrasonic waves (sonication) is arbitrary. For example, in the case of a small amount of processing, a container containing the slurry is set in an ultrasonic cleaner containing water and the slurry is supersonic. Sound wave irradiation may be performed. In the case of a large amount of processing, ultrasonic irradiation may be performed by attaching an ultrasonic generator to the entire vessel for mixing and stirring the raw materials to form a slurry or piping for transferring the slurry.

一般的な炭素含有耐火物の1つであるマグカーボン耐火物(MgO−C系耐火物)の実際の廃棄物、すなわち使用済みマグカーボン耐火物(以下、「マグカーボン廃耐火物」という)を対象とし、以下のような試験を行った。
試料としたマグカーボン廃耐火物の組成を燃焼法と蛍光X線分析方法により分析した結果、MgOとC(黒鉛)の他に、MgOの水酸化物であるbrucite(Mg(OH))、鉄の酸化物であるakagaenite(Fe2+ ・HO)、及びカルサイト(CaCO)がわずかに存在していた。また、その化学組成は、MgO含有量が77mass%、炭素含有量が16mass%であった。また、不純物は7mass%であり、廃棄物としては高純度であった。
The actual waste of magcarbon refractories (MgO-C refractories), which is one of the common carbon-containing refractories, that is, used magcarbon refractories (hereinafter referred to as "magcarbon waste refractories") The following tests were conducted.
As a result of analyzing the composition of the magcarbon waste refractory used as a sample by a combustion method and a fluorescent X-ray analysis method, in addition to MgO and C (graphite), brucite (Mg (OH) 2 ), which is a hydroxide of MgO, The iron oxides akagaenite (Fe 2+ 3 O 3 .H 2 O) and calcite (CaCO 3 ) were slightly present. Moreover, as for the chemical composition, MgO content was 77 mass% and carbon content was 16 mass%. Moreover, an impurity was 7 mass% and was highly purified as a waste material.

予め乳鉢で粉砕したマグカーボン廃耐火物5.0gを秤量し、ステンレス製圧力容器(25mL)のテフロン内筒に詰め、イオン交換水15.0mLとともに所定の温度に設定した恒温槽中で水熱処理した。水熱処理後の試料を固液分離した後、水洗し、80℃の恒温槽で乾燥させて、目的とする水熱処理試料を得た。このようにして得られた水熱処理試料について、その組成を調査した。   Hydrothermal treatment in a thermostatic bath set at a predetermined temperature together with 15.0 mL of ion-exchanged water, weighing 5.0 g of magcarbon waste refractory previously ground in a mortar, packed in a Teflon inner cylinder of a stainless steel pressure vessel (25 mL) did. The sample after hydrothermal treatment was separated into solid and liquid, then washed with water and dried in a thermostatic bath at 80 ° C. to obtain a target hydrothermal treatment sample. The composition of the hydrothermally treated sample thus obtained was investigated.

水熱処理試料の基本組成は、マグカーボン廃耐火物の主相であるMgOが水と反応して生じたMg(OH)と黒鉛であるが、110℃で2日間水熱処理した試料では、わずかなMgOが観察された。また、150℃の水熱処理試料では、1〜30時間水熱処理した試料ではMgOが観察されたが、48時間以上水熱処理した試料ではMgOは消失した。水熱処理が48時間での質量増加は約35mass%で、これは試料中のMgOの水酸化物化に伴う推定質量増加率と一致した。水熱処理では、MgOの水酸化物化により、図2に示すようなマグカーボン廃耐火物の改質(構造変化)が生じたものである。 The basic composition of the hydrothermally treated sample is Mg (OH) 2 and graphite produced by the reaction of MgO, which is the main phase of the magcarbon waste refractory, with water. MgO was observed. In the hydrothermally treated sample at 150 ° C., MgO was observed in the sample hydrothermally treated for 1 to 30 hours, but MgO disappeared in the sample hydrothermally treated for 48 hours or more. The mass increase after 48 hours of hydrothermal treatment was about 35 mass%, which was consistent with the estimated mass increase rate associated with the hydroxideization of MgO in the sample. In the hydrothermal treatment, MgO waste refractory as shown in FIG. 2 is modified (changed in structure) due to MgO hydroxide.

水熱処理で金属酸化物成分(MgO)が水和することにより、炭素成分(黒鉛)が遊離状態となったことを確認するため、以下の試験を行った。
浮遊選鉱法では、疎水性となった成分を気泡に付着させてフロス部へ移動させることで、疎水性成分と親水性成分を分離することができる。そこで、マグカーボン廃耐火物の粉砕物を種々の条件で水熱処理し、これら水熱処理試料を水とケロシンに混合してスラリーを調製し、このスラリーを浮遊選鉱する試験を行った。また、比較のため、水熱処理しない試料(マグカーボン廃耐火物の粉砕物)について、同様の試験を行った。その結果を表1に示す。
In order to confirm that the carbon component (graphite) was in a free state by hydration of the metal oxide component (MgO) by hydrothermal treatment, the following test was performed.
In the flotation method, the hydrophobic component and the hydrophilic component can be separated by attaching the hydrophobic component to the bubble and moving it to the froth portion. Therefore, the pulverized pulverized magcarbon refractory was hydrothermally treated under various conditions, and the hydrothermally treated sample was mixed with water and kerosene to prepare a slurry, and this slurry was subjected to a flotation test. For comparison, a similar test was performed on a sample that was not hydrothermally treated (a pulverized product of magcarbon waste refractory). The results are shown in Table 1.

この試験では、マグカーボン廃耐火物の粉砕物として、最大粒径が1mmと13mmのものを用いた。水熱処理の方法は、マグカーボン廃耐火物の粉砕物をステンレス製圧力容器(25mL)のテフロン内筒に詰め、イオン交換水15.0mLとともに所定の温度に設定した恒温槽中で水熱処理した。水熱処理後の試料を固液分離した後、水洗し、80℃の恒温槽で乾燥させて、目的とする水熱処理試料を得た。水熱処理の温度は、80℃、110℃、150℃の3水準とした。また、一部の試験例では、浮遊選鉱を行う前にスラリーに対して超音波照射を行った。この超音波照射は、スラリーを入れた容器を、水を入れた超音波洗浄機内にセットして行い、45kHz(100W)で所定の時間実施した。   In this test, pulverized magcarbon waste refractories were used having a maximum particle size of 1 mm and 13 mm. As a method of hydrothermal treatment, pulverized pulverized magcarbon waste refractories were packed in a Teflon inner cylinder of a stainless steel pressure vessel (25 mL), and hydrothermally treated in a thermostat set at a predetermined temperature together with 15.0 mL of ion-exchanged water. The sample after hydrothermal treatment was separated into solid and liquid, then washed with water and dried in a thermostatic bath at 80 ° C. to obtain a target hydrothermal treatment sample. The hydrothermal treatment temperature was set at three levels of 80 ° C, 110 ° C, and 150 ° C. In some test examples, the slurry was irradiated with ultrasonic waves before the flotation. This ultrasonic irradiation was performed by setting the container containing the slurry in an ultrasonic cleaning machine containing water, and was performed at 45 kHz (100 W) for a predetermined time.

浮遊選鉱は、表1に示した条件以外は、以下の条件で行った。
・捕集剤:ケロシン
・起泡剤:2−エチルヘキサノール、テレピン油
・ガス流量:200mL/min
・フィルター孔径:16〜40μm
浮遊選鉱時に浮上したフロス部を回収した。また、選鉱終了後、選鉱器内の残留物をビーカーに移して静置した後、上澄みを排出して、テール部を回収した。回収したフロス部とテール部の試料を80℃の恒温槽中で乾燥させた後、大気中のTG−DTAによる重量変化から炭素量を算出し、この炭素量に基づいて、遊離炭素の回収率を求めた。
Flotation was performed under the following conditions except for the conditions shown in Table 1.
・ Collector: Kerosene ・ Foaming agent: 2-ethylhexanol, turpentine oil ・ Gas flow rate: 200 mL / min
-Filter pore size: 16-40 μm
The floss part that floated during flotation was collected. Further, after the completion of the beneficiation, the residue in the beneficiator was transferred to a beaker and allowed to stand, and then the supernatant was discharged to collect the tail portion. After the collected samples of the floss part and the tail part are dried in a constant temperature bath at 80 ° C., the amount of carbon is calculated from the change in weight due to TG-DTA in the atmosphere, and based on this amount of carbon, the recovery rate of free carbon Asked.

表1によれば、本発明例1は、水熱処理しないマグカーボン廃耐火物を浮遊選鉱した比較例1に較べて、遊離炭素の回収率が4倍程度に向上している。また、本発明例のなかでも、処理温度が高いほど、また、処理時間が長いほど遊離炭素の回収率は高くなっている。また、粉砕物(マグカーボン廃耐火物)の粒度が小さい方が、水和反応が促進される結果、遊離炭素の回収率が高くなっている。さらに、浮遊選鉱の前に超音波照射を行うことにより、遊離炭素の回収率がさらに向上している。   According to Table 1, Example 1 of the present invention improves the recovery rate of free carbon by about 4 times compared to Comparative Example 1 in which magcarbon waste refractory not subjected to hydrothermal treatment was floated. Among the examples of the present invention, the higher the treatment temperature and the longer the treatment time, the higher the free carbon recovery rate. Further, the smaller the particle size of the pulverized material (magcarbon waste refractory), the higher the recovery rate of free carbon as a result of promoting the hydration reaction. Furthermore, the collection rate of free carbon is further improved by performing ultrasonic irradiation before flotation.

Figure 2015202444
Figure 2015202444

Claims (5)

炭素含有耐火物の粉砕物(x)に対して、金属酸化物成分を水和させる処理(A)を施した後、粉砕物(x)から遊離した炭素成分の分離回収を行うことを特徴とする、炭素含有耐火物からの炭素成分の分離回収方法。   The carbon-containing refractory pulverized product (x) is subjected to the treatment (A) for hydrating the metal oxide component, and then the carbon component released from the pulverized product (x) is separated and recovered. A method for separating and recovering a carbon component from a carbon-containing refractory. 金属酸化物成分を水和させる処理(A)として、粉砕物(x)に水熱処理を施すことを特徴とする、請求項1に記載の炭素含有耐火物からの炭素成分の分離回収方法。   The method for separating and recovering a carbon component from a carbon-containing refractory according to claim 1, wherein the pulverized product (x) is subjected to a hydrothermal treatment as the treatment (A) for hydrating the metal oxide component. 金属酸化物成分を水和させる処理(A)を施した粉砕物(x)をスラリー化し、該スラリーに超音波照射を行った後、粉砕物(x)から遊離した炭素成分の分離回収を行うことを特徴とする、請求項1又は2に記載の炭素含有耐火物からの炭素成分の分離回収方法。   The pulverized product (x) subjected to the treatment (A) for hydrating the metal oxide component is slurried, and the slurry is subjected to ultrasonic irradiation, and then the carbon component released from the pulverized product (x) is separated and recovered. The method for separating and recovering a carbon component from a carbon-containing refractory according to claim 1 or 2, wherein 浮遊選鉱法により、粉砕物(x)から遊離した炭素成分の分離回収を行うことを特徴とする、請求項1〜3のいずれかに記載の炭素含有耐火物からの炭素成分の分離回収方法。   The method for separating and recovering a carbon component from a carbon-containing refractory according to any one of claims 1 to 3, wherein the carbon component released from the pulverized product (x) is separated and recovered by a flotation method. 炭素含有耐火物がアルカリ土類金属の酸化物を含むことを特徴とする、請求項1〜4のいずれかに記載の炭素含有耐火物からの炭素成分の分離回収方法。   The method for separating and recovering a carbon component from a carbon-containing refractory according to any one of claims 1 to 4, wherein the carbon-containing refractory contains an oxide of an alkaline earth metal.
JP2014082383A 2014-04-12 2014-04-12 Method for separating and recovering carbon components from refractories containing carbon Active JP6347511B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014082383A JP6347511B2 (en) 2014-04-12 2014-04-12 Method for separating and recovering carbon components from refractories containing carbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014082383A JP6347511B2 (en) 2014-04-12 2014-04-12 Method for separating and recovering carbon components from refractories containing carbon

Publications (2)

Publication Number Publication Date
JP2015202444A true JP2015202444A (en) 2015-11-16
JP6347511B2 JP6347511B2 (en) 2018-06-27

Family

ID=54596260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014082383A Active JP6347511B2 (en) 2014-04-12 2014-04-12 Method for separating and recovering carbon components from refractories containing carbon

Country Status (1)

Country Link
JP (1) JP6347511B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5235703A (en) * 1975-09-17 1977-03-18 Nippon Steel Corp Method of treating carbon powder containing metals
JPH09215939A (en) * 1996-02-09 1997-08-19 Sumitomo Metal Ind Ltd Method for crushing magnesia-carbon brick and method for reusing crushed product
JP2005043086A (en) * 2003-07-23 2005-02-17 Nippon Steel Corp Evaluation method of resistivity to slaking of magnesia-containing monolithic refractory
JP2010023018A (en) * 2008-06-18 2010-02-04 Shingijutsu Kenzai Kk Pretreatment method and pretreatment device for slurried coal ash, coal ash treatment method, and coal ash treatment equipment
US20110315660A1 (en) * 2010-06-29 2011-12-29 Korea University Research And Business Foundation Method for recycling of silica waste and method for preparing nanoporous or spherical materials
JP2013001606A (en) * 2011-06-17 2013-01-07 Jfe Steel Corp Method for recycling used magnesia carbon brick and method for manufacturing magnesia carbon brick

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5235703A (en) * 1975-09-17 1977-03-18 Nippon Steel Corp Method of treating carbon powder containing metals
JPH09215939A (en) * 1996-02-09 1997-08-19 Sumitomo Metal Ind Ltd Method for crushing magnesia-carbon brick and method for reusing crushed product
JP2005043086A (en) * 2003-07-23 2005-02-17 Nippon Steel Corp Evaluation method of resistivity to slaking of magnesia-containing monolithic refractory
JP2010023018A (en) * 2008-06-18 2010-02-04 Shingijutsu Kenzai Kk Pretreatment method and pretreatment device for slurried coal ash, coal ash treatment method, and coal ash treatment equipment
US20110315660A1 (en) * 2010-06-29 2011-12-29 Korea University Research And Business Foundation Method for recycling of silica waste and method for preparing nanoporous or spherical materials
JP2013001606A (en) * 2011-06-17 2013-01-07 Jfe Steel Corp Method for recycling used magnesia carbon brick and method for manufacturing magnesia carbon brick

Also Published As

Publication number Publication date
JP6347511B2 (en) 2018-06-27

Similar Documents

Publication Publication Date Title
Valeev et al. Complex utilisation of ekibastuz brown coal fly ash: Iron & carbon separation and aluminum extraction
RU2644169C1 (en) Method of recovery of alkali and aluminum during processing of the red mud obtained in the bayer process using liming and carbonization technology
Han et al. Enhanced recycling and utilization of mullite from coal fly ash with a flotation and metallurgy process
Zhang et al. Mechanism of mechanical–chemical synergistic activation for preparation of mullite ceramics from high-alumina coal fly ash
Ji et al. Recycling of mullite from high-alumina coal fly ash by a mechanochemical activation method: Effect of particle size and mechanism research
CN106006688A (en) Method for processing Bayer process red mud through calcification-carbonization one-step method
Shoppert et al. Alkali fusion-leaching method for comprehensive processing of fly ash
JP2015006659A (en) Asbestos detoxification treatment method for waste slate, and asbestos detoxified in the same
JP6707466B2 (en) System and method for selective rare earth extraction with sulfur recovery
WO2008144838A1 (en) Method for treating residue from a bayer process
JP6347511B2 (en) Method for separating and recovering carbon components from refractories containing carbon
RU2683149C1 (en) Method of producing magnetite
Xie et al. Direct calcification–carbonation method for processing of Bayer process red mud
Jamil et al. Extraction of silica from rice husk via acid leaching treatment
Zhang et al. Optimization of cemented paste backfill with carbon nanotubes as a sustainable treatment for lead-containing tailings
EP3953074A1 (en) A method for integrated processing of finely dispersed metal-containing waste
JP5889348B2 (en) A method for removing 99% or more of asbestos from asbestos-containing materials using low-temperature heat treatment
RU2659510C2 (en) Method of obtaining magnesium oxide from waste of serpentine ore
RU2706907C1 (en) Bauxite processing method
CN109337728B (en) Method for preparing ultra-pure coal by aid of hydraulic-electric pulverization
Pandey et al. Reducing alumina, silica and phosphorous in iron ore by high intensity power ultrasound
JP5522133B2 (en) Regeneration method of slag
JP2017042709A (en) Treatment method for fluidized bed boiler ash
Hassan et al. Chemical and Mineralogical Properties of Rice Husk Ash (RHA)
TWI499456B (en) Method for upgrading combustion ash

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170331

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180320

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180523

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180525

R150 Certificate of patent or registration of utility model

Ref document number: 6347511

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250