JP2015201382A - Control method of secondary battery - Google Patents

Control method of secondary battery Download PDF

Info

Publication number
JP2015201382A
JP2015201382A JP2014080301A JP2014080301A JP2015201382A JP 2015201382 A JP2015201382 A JP 2015201382A JP 2014080301 A JP2014080301 A JP 2014080301A JP 2014080301 A JP2014080301 A JP 2014080301A JP 2015201382 A JP2015201382 A JP 2015201382A
Authority
JP
Japan
Prior art keywords
active material
secondary battery
negative electrode
charging
material layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014080301A
Other languages
Japanese (ja)
Inventor
寿夫 山重
Hisao Yamashige
寿夫 山重
正人 穂積
masato Hozumi
正人 穂積
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2014080301A priority Critical patent/JP2015201382A/en
Publication of JP2015201382A publication Critical patent/JP2015201382A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a charging/discharging control method capable of maintaining battery characteristics for a long time while preventing Lifrom moving to a non-opposite part in an all-solid type secondary battery.SOLUTION: A secondary battery includes: a positive electrode plate 210 including a cathode active material layer 212; a negative electrode layer 220 including an anode active material layer 222; and a solid layer 230 positioned between the positive electrode plate 210 and the negative electrode plate 220. The solid layer 230 is positioned in contact between the cathode active material layer 212 and the anode active material layer 222. An ECU 300 makes a charging/discharging device 400 charge the secondary battery to be a rate equal to or higher than 0.6 C without using a rate lower than 0.6 C, prevents Lifrom flowing out to non-opposite parts S2 and S3 and performs control to decrease the capacitance of the secondary battery or not to change the battery characteristics.

Description

この発明は、全固体型二次電池の制御方法に関し、特に二次電池の特性を長期間にわたり維持する二次電池の充放電制御方法に関する。   The present invention relates to a control method for an all-solid-state secondary battery, and more particularly to a charge / discharge control method for a secondary battery that maintains the characteristics of the secondary battery for a long period of time.

近年、ハイブリッド車両、電気自動車など、車両の走行に用いる電気エネルギをリチウムイオン二次電池に蓄電して、走行時に蓄電された電力を用いてモータジェネレータを回転駆動させる電動車両が知られている。   2. Description of the Related Art In recent years, electric vehicles such as hybrid vehicles and electric vehicles that store electric energy used for traveling of a vehicle in a lithium ion secondary battery and rotate a motor generator using electric power stored during traveling are known.

特許文献1(特開2011−238568号公報)には、電解液を備える液系リチウムイオン二次電池にハイレートの充電、たとえば、30Cの電流値で5秒間充電と、ローレートの放電、たとえば3Cの電流値で50秒間放電とを組合わせて1サイクルとして、1000サイクル繰返すことにより、負極活物質のうち、正極活物質に対向する対向部から、対向部の周囲に位置する非対向部に移動したリチウムイオン(以下、Li+とも称する。)を、負極活物質層の対向部に戻して、電池容量を回復させる技術が開示されている。 Patent Document 1 (Japanese Patent Application Laid-Open No. 2011-238568) discloses that a liquid-type lithium ion secondary battery including an electrolytic solution is charged at a high rate, for example, charged for 5 seconds at a current value of 30 C, and discharged at a low rate, for example, 3 C. By combining the discharge for 50 seconds with the current value as one cycle and repeating 1000 cycles, the negative electrode active material moved from the facing portion facing the positive electrode active material to the non-facing portion located around the facing portion. A technique is disclosed in which lithium ions (hereinafter also referred to as Li + ) are returned to the opposing portion of the negative electrode active material layer to recover the battery capacity.

特開2011−238568号公報JP 2011-238568 A 特開2012−28024号公報JP 2012-28024 A

一般に、リチウムイオン二次電池の負極活物質層は、正極活物質層と対向する対向部と、該対向部の周縁に正極活物質層と対向しない非対向部とを有する。充電時、非対向部に直接Li+が供給されることはない。しかし充電後の負極活物質層では対向部と非対向部との間でLi+の濃度勾配が生じるため、充電状態のまま放置されると、Li+が対向部から非対向部へと拡散する場合がある。非対向部に移動したLi+は、対峙する正極活物質層が存在しないために放電され難い。したがってLi+が対向部から非対向部へと移動すると電池容量の損失となる。 Generally, the negative electrode active material layer of a lithium ion secondary battery has a facing part that faces the positive electrode active material layer, and a non-facing part that does not face the positive electrode active material layer at the periphery of the facing part. At the time of charging, Li + is not directly supplied to the non-opposing portion. However, since the Li + concentration gradient occurs between the facing portion and the non-facing portion in the negative electrode active material layer after charging, Li + diffuses from the facing portion to the non-facing portion when left in a charged state. There is a case. Li + that has moved to the non-opposing portion is unlikely to be discharged because there is no opposing positive electrode active material layer. Therefore, when Li + moves from the facing portion to the non-facing portion, battery capacity is lost.

特許文献1は、電解液を備える液系リチウムイオン二次電池において、非対向部へと拡散したLi+を対向部へと引き戻す方法を開示している。そしてこれにより容量低下を抑制して電池の長寿命化を図っている。しかしながら、この方法は液系二次電池を前提としたものであり、固体電解質がイオン移動の媒体となる全固体型二次電池では、Li+の移動特性が液系とは異なる部分があり、全固体型二次電池に対して、液系のリチウムイオン二次電池の充放電制御方法を、必ずしもそのまま適用できるとは限らない。 Patent Document 1 discloses a method of pulling back Li + diffused to a non-opposing part to a counter part in a liquid lithium ion secondary battery including an electrolytic solution. As a result, a reduction in capacity is suppressed to extend the life of the battery. However, this method is premised on a liquid secondary battery, and in an all-solid-state secondary battery in which a solid electrolyte is an ion transfer medium, there are portions where the Li + transfer characteristics are different from the liquid system, The charge / discharge control method for a liquid lithium ion secondary battery is not always applicable to an all-solid-state secondary battery.

たとえば全固体型二次電池では、充電状態のまま放置しても前述のようなLi+の拡散は起こりにくい。その上、電流値が低すぎても高すぎても反応が起こらない場合があるため(Li+が移動しないため)、一度、非対向部にLi+が移動してしまうと対向部へと引き戻すことは容易ではない。非対向部にLi+が蓄積すると、通常の充放電反応に寄与できるLi+が減少し、これにより活物質あるいは固体電解質の使用領域が変化して、安定した電池特性を発揮できない場合が生じ得る。 For example, in an all solid state secondary battery, the diffusion of Li + as described above hardly occurs even when left in a charged state. In addition, the reaction may not occur if the current value is too low or too high (since Li + does not move), and once Li + moves to the non-opposing part, it is pulled back to the opposing part. It is not easy. When Li + is accumulated in the non-opposing section, Li +, which can contribute to the normal charging and discharging reactions is decreased, thereby changing the use region of the active material or a solid electrolyte, when it is not possible to exhibit stable cell properties may occur .

本発明は上記課題に鑑みてなされたものであって、その目的とするところは、全固体型二次電池において、非対向部へのLi+の移動を抑制して電池特性を長期間にわたり維持できる充放電制御方法を提供することにある。 The present invention has been made in view of the above problems, and its object is to maintain the battery characteristics over a long period of time by suppressing the movement of Li + to the non-opposing portion in an all-solid-state secondary battery. It is in providing the charge / discharge control method which can be performed.

本発明は、正極活物質層を含む正極板と、負極活物質層を含む負極板と、正極板および負極板間に位置する固体層とを備える二次電池の制御方法に適用される。負極板は、負極活物質層のうち、正極活物質層に対向する負極板対向部と、負極板対向部の周囲の正極活物質層に対向しない非対向部とを有している。二次電池を充電する際には、0.6C未満のレートを用いずに二次電池に充電を行なうようにしている。   The present invention is applied to a control method for a secondary battery including a positive electrode plate including a positive electrode active material layer, a negative electrode plate including a negative electrode active material layer, and a solid layer positioned between the positive electrode plate and the negative electrode plate. The negative electrode plate has, among the negative electrode active material layers, a negative electrode plate facing portion that faces the positive electrode active material layer, and a non-facing portion that does not face the positive electrode active material layer around the negative electrode plate facing portion. When charging the secondary battery, the secondary battery is charged without using a rate of less than 0.6C.

なお、以下の説明において電流値の単位「C」は電池の定格容量を1時間で充電または放電する電流値を示すものとする。また「CC(Constant Current)」は定電流を、「CV(Constant voltage)」は定電圧をそれぞれ示すものとする。   In the following description, the unit “C” of the current value indicates a current value for charging or discharging the rated capacity of the battery in one hour. “CC (Constant Current)” indicates a constant current, and “CV (Constant voltage)” indicates a constant voltage.

本発明者は充放電レートと非対向部のLi量(充電量)との関係を詳細に調査したところ、充電レートが0.6C以上の場合、対向部では正常に充電反応が進行するにも拘らず、非対向部へのLi+の拡散(流入)は極めて少ないという新規な知見を得た。 The inventor has investigated in detail the relationship between the charge / discharge rate and the Li amount (charge amount) of the non-facing portion. When the charge rate is 0.6 C or higher, the charging reaction proceeds normally in the facing portion. Regardless, the present inventors have obtained a new finding that the diffusion (inflow) of Li + into the non-opposing portion is extremely small.

本発明の充放電制御方法では、0.6C未満のレートを用いずに充電を行なう。これにより充電時に非対向部へのLi+の拡散を未然に防ぐことができ、非対向部へのLi+の拡散に起因する容量低下および特性変化を抑制することができる。 In the charge / discharge control method of the present invention, charging is performed without using a rate of less than 0.6C. As a result, it is possible to prevent the diffusion of Li + into the non-opposing portion during charging, and to suppress the capacity decrease and the characteristic change due to the diffusion of Li + into the non-facing portion.

実施の形態の二次電池の制御方法が適用される二次電池システムを説明するための図である。It is a figure for demonstrating the secondary battery system with which the control method of the secondary battery of embodiment is applied. 一般的な全固体型二次電池における充放電のレートと、当該レートで30分充電をしたときの非対向部のLi+量との関係を説明する図である。It is a figure explaining the relationship between the rate of charging / discharging in a general all-solid-state secondary battery, and the Li <+> amount of a non-facing part when it charges by the said rate for 30 minutes. 本実施の形態の充電制御の概要を説明するための図である。It is a figure for demonstrating the outline | summary of the charge control of this Embodiment. 実施の形態の二次電池の制御システムにおいて、制御部により行なわれる充電制御の処理を説明するフローチャートである。4 is a flowchart for explaining charging control processing performed by a control unit in the control system for a secondary battery according to the embodiment.

以下において、本発明の実施の形態について図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰返さない。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals and description thereof will not be repeated.

[二次電池システムの全体構成]
図1は、本実施の形態の二次電池の制御方法が適用される二次電池システムを説明するための図である。図1を参照して、二次電池システムは、二次電池100と、二次電池100に充電される電力を供給する充放電装置400と、充放電装置400に二次電池100への電力の充放電を行なわせるECU300とを備えている。
[Overall configuration of secondary battery system]
FIG. 1 is a diagram for explaining a secondary battery system to which the secondary battery control method of the present embodiment is applied. Referring to FIG. 1, the secondary battery system includes a secondary battery 100, a charging / discharging device 400 that supplies power charged in the secondary battery 100, and a charging / discharging device 400 that supplies power to the secondary battery 100. ECU300 which performs charging / discharging is provided.

[単位電池の構成]
図1には、単位電池200の断面図が模式的に示される。二次電池100は一般に複数の単位電池200を含んで構成される。なお、図1では、単純化のために1つの単位電池200のみが示されている。二次電池100を構成する単位電池200は、正極活物質層を含む正極板210と、負極活物質層を含む負極板220と、正極板210および負極板220間に位置する固体電解質層(以下、固体層とも称する。)230とを備えている。
[Unit battery configuration]
FIG. 1 schematically shows a cross-sectional view of the unit battery 200. The secondary battery 100 generally includes a plurality of unit batteries 200. In FIG. 1, only one unit battery 200 is shown for simplicity. The unit battery 200 constituting the secondary battery 100 includes a positive electrode plate 210 including a positive electrode active material layer, a negative electrode plate 220 including a negative electrode active material layer, and a solid electrolyte layer (hereinafter referred to as a positive electrode plate 210 and a negative electrode plate 220). , Also referred to as a solid layer) 230.

このうち、正極板210は、正極集電体211と、正極集電体211に接触して正極活物質を保持する正極活物質層212とを含む。   Among these, the positive electrode plate 210 includes a positive electrode current collector 211 and a positive electrode active material layer 212 that contacts the positive electrode current collector 211 and holds the positive electrode active material.

また、負極板220は、負極集電体221と、負極集電体221に接触して負極物質を保持する負極活物質層222とを含む。正極集電体211および負極集電体221は、それぞれアルミニウムや銅などの金属で構成されていて、それぞれ充放電装置400に電気的に接続されている。   The negative electrode plate 220 includes a negative electrode current collector 221 and a negative electrode active material layer 222 that contacts the negative electrode current collector 221 and holds the negative electrode material. The positive electrode current collector 211 and the negative electrode current collector 221 are each made of a metal such as aluminum or copper, and are electrically connected to the charging / discharging device 400, respectively.

固体層230は、正極活物質層212と負極活物質層222との間でそれぞれに接触する位置に設けられている。   The solid layer 230 is provided at a position in contact with each of the positive electrode active material layer 212 and the negative electrode active material layer 222.

負極板220は、負極活物質層222のうち、正極活物質層212に対向する負極板220の対向部S1と、負極板220の対向部S1の周囲に設けられて正極活物質層212に対向しないフランジ状の非対向部S2,S3とを有している。   The negative electrode plate 220 is provided around the facing portion S1 of the negative electrode plate 220 facing the positive electrode active material layer 212 and the facing portion S1 of the negative electrode plate 220 in the negative electrode active material layer 222, and faces the positive electrode active material layer 212. It has flange-shaped non-opposing portions S2, S3.

正極板210、固体層230および負極板220の積層方向と同じ方向に、複数の単位電池200を積層することによって組電池が構成され得る。   An assembled battery can be configured by stacking a plurality of unit cells 200 in the same direction as the stacking direction of the positive electrode plate 210, the solid layer 230, and the negative electrode plate 220.

[二次電池の構成材料]
正極活物質層212は、正極活物質と、正極活物質に隣接するように配置される導電助材と、正極活物質および導電助材を取囲む固体電解質とを有する。なお、固体電解質は、ガラスセラミックスあるいは、正極活物質および導電助材の周囲の硫化物ガラスであってもよい。このガラスセラミックスは硫化物ガラスを焼成して得られるものであり、硫化物ガラスよりも高いリチウムイオン伝導性を有する。
[Component materials of secondary batteries]
The positive electrode active material layer 212 includes a positive electrode active material, a conductive additive disposed adjacent to the positive electrode active material, and a solid electrolyte surrounding the positive electrode active material and the conductive additive. The solid electrolyte may be glass ceramics or sulfide glass around the positive electrode active material and the conductive additive. This glass ceramic is obtained by firing sulfide glass and has higher lithium ion conductivity than sulfide glass.

硫化物ガラスは、たとえばガラス形成材であるSiS、五硫化リン(P)およびPなどと、ガラス修飾材である硫化リチウム(Li+ S)を混合し加熱溶融した後、急冷することによって得られる。また、上述した硫化物ガラスを構成する硫化リチウム(Li+ S)は、いかなる製造方法により製造されたものでもよく、工業的に生産され、販売されるものであれば特に限定なく使用することができる。 For example, the glass for glass sulfide was mixed with SiS 2 , phosphorus pentasulfide (P 2 S 5 ), P 2 S 3 , and the like, and glass modifier lithium sulfide (Li + 2 S). Later, it is obtained by quenching. Moreover, the lithium sulfide (Li + 2 S) constituting the sulfide glass described above may be manufactured by any manufacturing method, and is used without particular limitation as long as it is industrially produced and sold. Can do.

また、硫化リチウムの粒径は特に限定されるものではない。また、硫化物ガラスとして、出発原料として硫化リチウムと、五硫化リンの混合物、もしくは五硫化リンのかわりに単体リンおよび単体硫黄を用いた混合物をメカニカルミリングによりガラス化させることで製造してもよい。   Further, the particle size of lithium sulfide is not particularly limited. Alternatively, the sulfide glass may be manufactured by mechanically milling a mixture of lithium sulfide and phosphorus pentasulfide as a starting material, or a mixture of simple phosphorus and simple sulfur instead of phosphorus pentasulfide. .

さらに、正極活物質としては、たとえばコバルト酸リチウム(Li+CoO)を用いることができる。また、導電助材としては、たとえば炭素を用いることができる。 Furthermore, as the positive electrode active material, for example, lithium cobaltate (Li + CoO 2 ) can be used. Moreover, as a conductive support material, carbon can be used, for example.

正極活物質層212と負極活物質層222との間に形成された固体層230は、固体電解質としてのガラスセラミックスにより主に構成される。なお、正極活物質内に、硫化物ガラスが残留していてもよい。   The solid layer 230 formed between the positive electrode active material layer 212 and the negative electrode active material layer 222 is mainly composed of glass ceramics as a solid electrolyte. Note that sulfide glass may remain in the positive electrode active material.

負極活物質層222は、負極活物質と、負極活物質を取囲むガラスセラミックスとを有する。なお、負極活物質の周囲に硫化物ガラスが残留していてもよい。なお、負極活物質は、黒鉛、Si、Snなどであってもよい。   The negative electrode active material layer 222 includes a negative electrode active material and glass ceramics surrounding the negative electrode active material. Note that sulfide glass may remain around the negative electrode active material. The negative electrode active material may be graphite, Si, Sn, or the like.

正極活物質層212には導電助材が設けられているが、導電助材は必ずしも設けられる必要はない。また、負極活物質層222には導電助材が設けられていないが、負極活物質層222に導電助材が設けられていてもよい。   Although the conductive support material is provided in the positive electrode active material layer 212, the conductive support material is not necessarily provided. Further, although the conductive support material is not provided in the negative electrode active material layer 222, the conductive support material may be provided in the negative electrode active material layer 222.

このような正極板210および負極板220間に固体層230を備えた、いわゆる全固体型二次電池は、セパレータに相当する部分が固体電解質であることから、液系二次電池に比べて、充放電時にLi+などの活物質の移動動作が鈍く、たとえば、レスト(放置)しているだけでは、活物質の移動による密度差の緩和が起こりにくい。 The so-called all solid state secondary battery including the solid layer 230 between the positive electrode plate 210 and the negative electrode plate 220 has a solid electrolyte in a portion corresponding to the separator. The movement of the active material such as Li + is slow during charging / discharging. For example, the density difference due to the movement of the active material is unlikely to occur only by resting.

[充電制御の説明]
図2は、一般的な全固体型二次電池における充放電のレートと、当該レートで30分充電をしたときの非対向部のLi+量との関係を説明する図である。
[Explanation of charge control]
FIG. 2 is a diagram for explaining the relationship between the charge / discharge rate in a general all solid state secondary battery and the amount of Li + in the non-opposing portion when charged at that rate for 30 minutes.

一般に、リチウムイオン二次電池の負極活物質層は、正極活物質層と対向する対向部と、該対向部の周縁に延在する正極活物質層と対向しない非対向部とを有する。充電時、非対向部に直接Li+が供給されることはない。しかし充電後の負極活物質層では対向部と非対向部との間でLi+の濃度勾配が生じるため、液系のリチウムイオン二次電池であれば充電状態のまま放置されると、Li+が対向部から非対向部へと拡散する場合がある。非対向部に移動したLi+は、対峙する正極活物質層が存在しないために放電され難い。したがってLi+が対向部から非対向部へと移動すると電池容量の損失となる。 In general, a negative electrode active material layer of a lithium ion secondary battery has a facing portion that faces the positive electrode active material layer and a non-facing portion that does not face the positive electrode active material layer extending to the periphery of the facing portion. At the time of charging, Li + is not directly supplied to the non-opposing portion. However, in the negative electrode active material layer after charging, a concentration gradient of Li + occurs between the facing portion and the non-facing portion. Therefore, if the liquid lithium ion secondary battery is left in a charged state, Li + May diffuse from the facing part to the non-facing part. Li + that has moved to the non-opposing portion is unlikely to be discharged because there is no opposing positive electrode active material layer. Therefore, when Li + moves from the facing portion to the non-facing portion, battery capacity is lost.

図2の一般な知見からは、充電を行なうレートが一定値(0.6C)以上で、かつ反応可能な上限レート1.0C以下とすることにより、対向部から非対向部へLi+が拡散しないように充電できることがわかる。 According to the general knowledge in FIG. 2, Li + diffuses from the facing part to the non-facing part by setting the charging rate to a certain value (0.6 C) or more and the upper limit rate of reaction to 1.0 C or less. It turns out that it can charge so

したがって、本実施の形態においては、全固体型二次電池に対して、0.6C未満のレートを用いることなく、0.6C以上のレートを用いて充電を行なう(図2中の領域D)。これによって、非対向部S2,S3への拡散を抑制しながら充電を行なうことができる。
[本実施の形態における充電制御の概要]
次に、図3,図4を用いて本実施の形態の全固体型二次電池の充電制御方法について説明する。
Therefore, in the present embodiment, the all solid state secondary battery is charged using a rate of 0.6 C or higher without using a rate of less than 0.6 C (region D in FIG. 2). . Thus, charging can be performed while suppressing diffusion to the non-facing portions S2 and S3.
[Outline of charge control in this embodiment]
Next, the charge control method of the all solid state secondary battery of the present embodiment will be described with reference to FIGS.

ECU300は、いずれも図示しないがCPU(Central Processing Unit)、記憶装置および入出力バッファを含み、各センサ等からの信号の入力や各機器への制御信号の出力を行なうとともに、充放電装置400などの各機器の制御を行なう。なお、これらの制御については、ソフトウェアによる処理に限られず、専用のハードウェア(電子回路)で処理することも可能である。   ECU 300 includes a CPU (Central Processing Unit), a storage device, and an input / output buffer (not shown). The ECU 300 inputs a signal from each sensor and outputs a control signal to each device, as well as a charge / discharge device 400 and the like. Control each device. Note that these controls are not limited to processing by software, and can be processed by dedicated hardware (electronic circuit).

図3は、本実施の形態の充電制御の概要を説明するための図であり、縦軸に電流値のレート(C)および端子電圧(V)が示され、横軸に時間(T)が示される。   FIG. 3 is a diagram for explaining the outline of the charging control according to the present embodiment, in which the vertical axis indicates the current value rate (C) and the terminal voltage (V), and the horizontal axis indicates time (T). Indicated.

具体的には、二次電池の充放電制御は、定電流定電圧制御(CCCV充電制御)方法を用いて行なわれる。充放電装置400は、ECU300からの制御信号に応じて単位電池200の両極に供給する電力を調整する。   Specifically, charge / discharge control of the secondary battery is performed using a constant current constant voltage control (CCCV charge control) method. Charging / discharging device 400 adjusts the power supplied to both electrodes of unit battery 200 in accordance with a control signal from ECU 300.

まず、SOCが低い領域では、電流のレートを、たとえば1.0Cの一定値に維持しながら定電流制御を用いて充電が行なわれる。多くの電流を短時間で充電する、定電流充電制御CCでは、充電時間を出来るだけ短くするために、比較的大きな電流で充電が行なわれる。定電流充電制御CCにおいては、図3中に示すように、充電が進んでSOCが増加するにつれて電池電圧が上昇する(図3中曲線F参照)。   First, in a region where the SOC is low, charging is performed using constant current control while maintaining the current rate at a constant value of 1.0 C, for example. In the constant current charging control CC that charges a large amount of current in a short time, charging is performed with a relatively large current in order to shorten the charging time as much as possible. In the constant current charge control CC, as shown in FIG. 3, the battery voltage increases as the charging progresses and the SOC increases (see curve F in FIG. 3).

充電時間の短縮のためには、できる限り大きな電流が好ましいが、満充電に近くなり上限までの余裕代が少なくなった状態で大電流を使用すると、センサの誤差などがあった場合は、過充電を招くおそれがある。過充電は、二次電池100の劣化を促進する。   To shorten the charging time, a current as large as possible is preferable. However, if a large current is used with the margin for the upper limit approaching that it is close to full charge, if there is a sensor error, etc. There is a risk of charging. Overcharge promotes deterioration of the secondary battery 100.

そのため、ECU300は、電圧が満充電に近い所定のSOCに到達すると(時刻T1)、過充電を防止して、二次電池の蓄電性能を維持するため、定電流充電制御CCから、定電圧充電制御CVに切り替える。   Therefore, when the voltage reaches a predetermined SOC that is close to full charge (time T1), ECU 300 prevents constant overcharge and maintains the storage performance of the secondary battery. Switch to control CV.

定電圧充電制御CVでは、電圧の値を一定値に保持しながら、電流のレートを1.0Cから時間の経過と共に徐々に低下させる。   In the constant voltage charge control CV, the current rate is gradually decreased from 1.0 C with the passage of time while maintaining the voltage value at a constant value.

このように、充電の途中でSOCが満充電に近い状態まで、定電流充電制御CCを行ってから、定電圧充電制御CVに切り替える定電流定電圧制御(CCCV充電制御)方法により、過充電を防止しつつ、充電時間の短縮を図ることができる。   As described above, the constant current charge control CC is performed until the SOC is almost fully charged in the middle of the charge, and then the overcharge is performed by the constant current constant voltage control (CCCV charge control) method for switching to the constant voltage charge control CV. While preventing, the charging time can be shortened.

本実施の形態においては、図2で説明したように非対向部S2,S3への拡散を抑制するために、0.6C以上で充電を行なう。そのため、定電圧充電制御CVにより、電流のレートが0.6C(カット電流)まで低下した時点T2において、充電が停止される。   In the present embodiment, as described with reference to FIG. 2, charging is performed at 0.6 C or more in order to suppress diffusion to the non-facing portions S2 and S3. Therefore, charging is stopped at the time T2 when the current rate is reduced to 0.6 C (cut current) by the constant voltage charging control CV.

図4は、本実施の形態に従う充電方法を説明するフローチャートである。図4に示されるフローチャートは、ECU300に予め格納されたプログラムが所定周期で実行されることによって処理が実現される。あるいは、一部のステップについては、専用のハードウェア(電子回路)を構築して処理を実現することも可能である。   FIG. 4 is a flowchart illustrating a charging method according to the present embodiment. In the flowchart shown in FIG. 4, the processing is realized by executing a program stored in advance in ECU 300 at a predetermined cycle. Alternatively, for some steps, it is also possible to construct dedicated hardware (electronic circuit) and realize processing.

図4を参照して、S10にて、ECU300は、充放電装置400を用いて、二次電池に対して充電を行う必要があるか否かを判定する。充電が必要な場合(S10にてYES)、ECU300は、二次電池に対して充放電装置400を用いた充電制御を行う。また、充電が必要ない場合(S10にてNO)には、処理が戻される。   Referring to FIG. 4, at S10, ECU 300 uses charge / discharge device 400 to determine whether or not the secondary battery needs to be charged. When charging is required (YES in S10), ECU 300 performs charge control using charging / discharging device 400 for the secondary battery. If charging is not required (NO in S10), the process is returned.

S20にて、ECU300は、二次電池の充電状態に基づいて、定電流充電制御CCを行なうか、定電圧充電制御CVを行なうかを判定する。SOCが所定値α未満である場合(S20にてYES)には、ECU300は、定電流充電制御CCを行なうと判断して処理をS30に進める。   In S20, ECU 300 determines whether constant current charge control CC or constant voltage charge control CV is to be performed based on the state of charge of the secondary battery. If SOC is less than predetermined value α (YES in S20), ECU 300 determines that constant current charging control CC is to be performed, and advances the process to S30.

S30にて、ECU300は、0.6C以上の所定の電流Iのレートを設定する。たとえば、初期状態では、1.0Cのレートに設定され得る。S40にて、ECU300は、S30で設定したレートを用いて、定電流充電制御CCによる充電を開始する。   In S30, ECU 300 sets a predetermined current I rate of 0.6C or more. For example, in the initial state, a rate of 1.0 C may be set. In S40, ECU 300 starts charging by constant current charging control CC using the rate set in S30.

一方、SOCが所定値αに到達すると(S20にてNO)、ECU300は、S50に処理を進めて、定電流充電制御CCから、定電圧充電制御CVに充電方式を切換える。定電圧充電制御CVでは、電圧の値を一定値に保持したまま、電流Iのレートを時間の経過とともに1.0Cから徐々に低下させる。   On the other hand, when SOC reaches predetermined value α (NO in S20), ECU 300 advances the process to S50, and switches the charging method from constant current charging control CC to constant voltage charging control CV. In the constant voltage charge control CV, the rate of the current I is gradually decreased from 1.0 C with the passage of time while maintaining the voltage value at a constant value.

S60にて、ECU300は、電流Iのレートが0.6C未満となったか否かを判定する。電流Iのレートが0.6C以上の場合(S60にてNO)には、ECU300は、処理をS50に戻して充電を継続する。電流Iのレートが0.6C未満となった場合(S60にてYES)には、ECU300は、非対向部S2,S3へのLi+の拡散を防止するために、S70に処理を進めて、充電動作を停止する。 In S60, ECU 300 determines whether or not the rate of current I is less than 0.6C. When the rate of current I is 0.6 C or higher (NO in S60), ECU 300 returns the process to S50 and continues charging. When the rate of current I is less than 0.6 C (YES in S60), ECU 300 proceeds to S70 in order to prevent the diffusion of Li + into non-opposing portions S2, S3. Stop charging operation.

上述してきたように、本実施の形態の二次電池の制御方法によれば、0.6C以上のレートにより充電動作が行なわれるため、負極板220の対向部S1の周囲に配置されている非対向部S2,S3にLi+が拡散することを抑制しながら充電することができる。 As described above, according to the secondary battery control method of the present embodiment, the charging operation is performed at a rate of 0.6 C or higher, and therefore, the non-battery electrode disposed around the facing portion S1 of the negative electrode plate 220 is not. It is possible to charge while suppressing diffusion of Li + into the facing portions S2 and S3.

これにより、通常の充放電反応に寄与できるLi+の量の減少が抑制され、二次電池の容量の減少が抑制でき、長期間にわたり電池特性を維持することができる。 Thereby, a decrease in the amount of Li + that can contribute to a normal charge / discharge reaction is suppressed, a decrease in the capacity of the secondary battery can be suppressed, and the battery characteristics can be maintained over a long period of time.

なお、車両走行中においては、たとえば回生制動力を確保するために、電流Iのレートが0.6C未満となっても回生制御による発電を停止できない状態が起こり得る。このような場合には、充電動作を停止しつつ充電システムに接続された抵抗回路やあるいは補機回路で発電電流を消費させて熱として廃棄してもよい。あるいは、発電電流を蓄電可能なキャパシタや補機バッテリなどの他の蓄電要素に一旦充電してから、電流Iのレートを0.6C以上としてメインバッテリを充電するようにしてもよい。   While the vehicle is running, for example, in order to secure the regenerative braking force, there may occur a state where power generation by regenerative control cannot be stopped even if the current I rate is less than 0.6C. In such a case, the generated current may be consumed and discarded as heat by a resistance circuit or an auxiliary circuit connected to the charging system while stopping the charging operation. Alternatively, after temporarily charging other power storage elements such as a capacitor and an auxiliary battery that can store the generated current, the main battery may be charged with a current I rate of 0.6 C or more.

最後に、本発明の実施の形態の二次電池の制御方法について総括する。図1を参照して、実施の形態の二次電池の制御方法は、正極活物質層212を含む正極板210と、負極活物質層222を含む負極板220と、正極板210および負極板220間に位置する固体層230とを備えている。固体層230は、正極活物質層212と負極活物質層222との間でそれぞれ接触するように位置している。ECU300は、充放電装置400に対して、0.6C未満のレートを用いず、0.6C以上のレートとなるように充電を行なって、非対向部S2,S3へのLi+の流れ出しを防止して二次電池の容量を減少させることがないように充電制御を行なう。また、ECU300は、二次電池の電池特性を変えないように充電制御を行なう。 Finally, the secondary battery control method according to the embodiment of the present invention will be summarized. Referring to FIG. 1, the secondary battery control method according to the embodiment includes a positive electrode plate 210 including a positive electrode active material layer 212, a negative electrode plate 220 including a negative electrode active material layer 222, and a positive electrode plate 210 and a negative electrode plate 220. And a solid layer 230 positioned therebetween. The solid layer 230 is positioned so as to be in contact with each other between the positive electrode active material layer 212 and the negative electrode active material layer 222. The ECU 300 charges the charging / discharging device 400 at a rate of 0.6C or higher without using a rate of less than 0.6C, thereby preventing Li + from flowing out to the non-facing portions S2 and S3. Thus, charging control is performed so as not to reduce the capacity of the secondary battery. ECU 300 also performs charge control so as not to change the battery characteristics of the secondary battery.

今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。   The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

100 組電池、200 単位電池、210 正極板、211 正極集電体、212 正極活物質層、220 負極板、221 負極集電体、222 負極活物質層、230 固体層、300 ECU、400 充放電装置。   100 assembled battery, 200 unit battery, 210 positive electrode plate, 211 positive electrode current collector, 212 positive electrode active material layer, 220 negative electrode plate, 221 negative electrode current collector, 222 negative electrode active material layer, 230 solid layer, 300 ECU, 400 charge / discharge apparatus.

Claims (1)

正極活物質層を含む正極板と、負極活物質層を含む負極板と、前記正極板および前記負極板間に位置する固体層とを備える二次電池の制御方法であって、
前記負極板は、前記負極活物質層のうち、前記正極活物質層に対向する負極板対向部と、前記負極板対向部の周囲の前記正極活物質層に対向しない非対向部とを有し、
前記制御方法は、前記二次電池を充電する際に、0.6C未満のレートを用いずに前記二次電池を充電するステップを含む、二次電池の制御方法。
A control method of a secondary battery comprising a positive electrode plate including a positive electrode active material layer, a negative electrode plate including a negative electrode active material layer, and a solid layer positioned between the positive electrode plate and the negative electrode plate,
The negative electrode plate has, among the negative electrode active material layers, a negative electrode plate facing portion that faces the positive electrode active material layer, and a non-facing portion that does not face the positive electrode active material layer around the negative electrode plate facing portion. ,
The control method includes a step of charging the secondary battery without using a rate of less than 0.6 C when charging the secondary battery.
JP2014080301A 2014-04-09 2014-04-09 Control method of secondary battery Pending JP2015201382A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014080301A JP2015201382A (en) 2014-04-09 2014-04-09 Control method of secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014080301A JP2015201382A (en) 2014-04-09 2014-04-09 Control method of secondary battery

Publications (1)

Publication Number Publication Date
JP2015201382A true JP2015201382A (en) 2015-11-12

Family

ID=54552453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014080301A Pending JP2015201382A (en) 2014-04-09 2014-04-09 Control method of secondary battery

Country Status (1)

Country Link
JP (1) JP2015201382A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018190537A (en) * 2017-04-28 2018-11-29 トヨタ自動車株式会社 Laminate battery and method for manufacturing the same
JP2019176637A (en) * 2018-03-28 2019-10-10 株式会社Gsユアサ Charge control device, power storage device, charge control method for power storage element, and computer program
JP2021035135A (en) * 2019-08-22 2021-03-01 トヨタ自動車株式会社 Electric power system, and vehicle

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018190537A (en) * 2017-04-28 2018-11-29 トヨタ自動車株式会社 Laminate battery and method for manufacturing the same
JP7009772B2 (en) 2017-04-28 2022-01-26 トヨタ自動車株式会社 Laminated battery and manufacturing method of laminated battery
JP2019176637A (en) * 2018-03-28 2019-10-10 株式会社Gsユアサ Charge control device, power storage device, charge control method for power storage element, and computer program
JP7159590B2 (en) 2018-03-28 2022-10-25 株式会社Gsユアサ Charging control device, power storage device, charging control method for power storage element, and computer program
JP2021035135A (en) * 2019-08-22 2021-03-01 トヨタ自動車株式会社 Electric power system, and vehicle

Similar Documents

Publication Publication Date Title
JP6406533B2 (en) Battery system
JP6797438B2 (en) Battery charging method and battery charging device
JP2008536272A (en) Lithium-ion rocking chair rechargeable battery
JP2013081357A (en) Control device of secondary battery
JP2019050094A (en) Charge/discharge control device for secondary battery
JP5822779B2 (en) Power storage system and charge / discharge control method thereof
JP2015201382A (en) Control method of secondary battery
CN103633390A (en) Quick charging method of lithium-ion power battery
WO2022067485A1 (en) Battery charging method and device, and storage medium
JP2015201994A (en) Control system for secondary battery
KR102439689B1 (en) Battery charging method and battery charging apparatus
KR20130126344A (en) Method for charging lithium secondary battery at low temperature
JP2022084373A (en) Regeneration method of laminated battery
JP2021150029A (en) Capacity recovery device, manufacturing method of secondary battery, capacity recovery method, and secondary battery system
Chrysocheris et al. Pulse-Charging Techniques for Advanced Charging of Batteries
JP6897362B2 (en) Rechargeable battery system
KR102006128B1 (en) Nickel-zinc battery single cell, the stackunit stacked with serial connection of the single cells and nickel-zinc secondary battery stack module composed of parallel connections of the stack units
KR20220051237A (en) Methods and systems for improved performance of silicon anode containing cells through formation process
JP2023046937A (en) Charging method for lithium-ion secondary battery
JP2022550483A (en) Method and system for silicon-based lithium-ion cells with controlled silicon utilization
JP2022550102A (en) Method and system for silicon-based lithium-ion cells with controlled lithiation of silicon
TWI485907B (en) Energy storage apparatus
JP2024053331A (en) Method of manufacturing bipolar layer-built battery
JP2003100289A (en) Sealed lead acid battery and method of using the same
CN116936969A (en) Electrochemical device, control method thereof, electronic apparatus, and storage medium