JP2015200137A - Non-flammable, heat-insulating, elastic and expandable protective material - Google Patents

Non-flammable, heat-insulating, elastic and expandable protective material Download PDF

Info

Publication number
JP2015200137A
JP2015200137A JP2014080403A JP2014080403A JP2015200137A JP 2015200137 A JP2015200137 A JP 2015200137A JP 2014080403 A JP2014080403 A JP 2014080403A JP 2014080403 A JP2014080403 A JP 2014080403A JP 2015200137 A JP2015200137 A JP 2015200137A
Authority
JP
Japan
Prior art keywords
heat
elastic
layer
insulating
incombustible
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014080403A
Other languages
Japanese (ja)
Other versions
JP6275532B2 (en
Inventor
山内 寛
Hiroshi Yamauchi
寛 山内
眞二 栗尾
Shinji Kurio
眞二 栗尾
大志 片島
Daishi Katashima
大志 片島
竜一 木原
Ryuichi Kihara
竜一 木原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kako Co Ltd
Original Assignee
Asahi Kako Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kako Co Ltd filed Critical Asahi Kako Co Ltd
Priority to JP2014080403A priority Critical patent/JP6275532B2/en
Publication of JP2015200137A publication Critical patent/JP2015200137A/en
Application granted granted Critical
Publication of JP6275532B2 publication Critical patent/JP6275532B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a non-flammable, heat-insulating, elastic and expandable protective material to be inserted into a surface layer of an expansion device as a protective layer, which does not spread flames or catch fire due to high temperature even when the surface layer is exposed to flames or a high temperature, while shielding the high temperature on the surface layer for protecting functional materials of gaps such as water-sealing, acoustic and other materials inserted into gaps of the expansion device, capable of forming a highly expandable protective layer.SOLUTION: A non-flammable, heat-insulating, elastic and expandable protective material F has a non-flammable, heat-insulating expandable layer A formed by laminating a film forming sheet 3 that contains an incombustible agent, having an elastic non-flammable film 2 that contains an incombustible agent formed on a surface layer of a base material sheet 1 made of a flexible, elastic rubber sponge material containing a series of air bubbles.

Description

本発明は、伸縮遊間内に敷設される伸縮性止水材や伸縮性防音材等の遊間機能材類の表層に挿入敷設し、路上火災や発炎筒等の高熱火炎による類焼や高熱の作用による発火及び熱損傷から遊間機能材を保護し、かつ、自身が着火延焼しない不燃断熱性弾性伸縮保護材に関する。   The present invention inserts and lays in the surface layer of functional materials such as stretchable waterproofing materials and stretchable soundproofing materials that are laid in the stretchable space, and fires due to the action of high temperature flames such as road fires and flame cylinders and the action of high heat Further, the present invention relates to a non-combustible heat-insulating elastic expansion / contraction protective material that protects an idle functional material from thermal damage and that does not ignite and spread by itself.

道路橋や高架橋は、その敷設環境温度により橋桁が伸縮をするが、この伸縮変位を吸収し、かつ、道路橋や高架橋の振動変位を吸収するための伸縮遊間を具備する伸縮装置が、橋長の一定間隔で配設されている。   The bridge girder of road bridges and viaducts expands and contracts depending on the laying environment temperature, but the expansion and contraction device that absorbs this expansion and contraction and has expansion and contraction spaces to absorb the vibration displacement of road bridges and viaducts is the bridge length. Are arranged at regular intervals.

ところで、道路橋や高架橋の伸縮遊間からは、路面の土砂や雨水等が落下し、また、路面の車両走行騒音が路下に漏洩するため、これらを阻止するための伸縮性遊間止水材や伸縮性防音材等の遊間機能材が遊間内に敷設される。   By the way, from road bridges and viaduct expansion / contraction gaps, road surface earth and sand, rainwater, etc. fall, and road surface vehicle running noise leaks under the road. A play function material such as a stretchable soundproof material is laid in the play room.

そして、これらの伸縮性各遊間機能材は、すべて、弾性伸縮性の柔軟な弾性フォーム材等の有機高分子材料で構成されているため、伸縮装置表層での火災や、道路補修工事等の車両走行規制時に使用する発炎筒等のような1,300℃にも及ぶ高熱火炎が作用すると、容易に類焼延焼し、時には伸縮装置遊間が煙道となり、瞬く間に伸縮装置が全橋幅に亘って延焼して車両走行車線にまで達し、走行車両事故を招くことがある。   These stretchable functional materials are all made of an organic polymer material such as a flexible elastic foam material that is elastic and stretchable, so vehicles such as fires on the surface of the expansion device and road repair work When a high-heat flame as high as 1,300 ° C, such as a flame tube used at the time of travel regulation, acts, it spreads easily, sometimes the expansion device play becomes a flue, and the expansion device extends over the entire bridge width in an instant. The fire may spread and reach the vehicle lane, causing a traveling vehicle accident.

また、伸縮装置の補修時には溶接作業や溶断作業を行うこともあるが、その溶接又は溶断時においても高温溶融金属等が遊間機能材表層に飛散し作用する。
これらの高温溶融融解熱は遊間機能材表層に接触作用し、発火燃焼や高熱により遊間機能材を損傷することとなる。
Further, when repairing the expansion / contraction device, a welding operation or a fusing operation may be performed, and even during the welding or fusing, a high-temperature molten metal or the like is scattered and acts on the surface of the loose functional material.
These high-temperature melting and melting heats contact the surface layer of the loose functional material and damage the loose functional material by ignition combustion or high heat.

これらの問題に対処するため、従来は、図1に示すように、伸縮装置Jの遊間に、難燃性弾性スポンジ材からなる約30〜50mm厚のシートを、保護層イとして表層に挿入し、燃焼遅延させ、遊間機能材ロを保護する方法が提案されているが、高温の火炎や高熱が長時間作用すると、着火延焼し、また、高熱を伝達して遊間機能材ロを損傷することとなる。   In order to deal with these problems, conventionally, as shown in FIG. 1, a sheet of about 30 to 50 mm thick made of a flame-retardant elastic sponge material is inserted into the surface layer as a protective layer A between the play of the expansion device J. Although a method of delaying the combustion and protecting the loose functional material B has been proposed, if a high-temperature flame or high heat is applied for a long time, the fire spreads and the high heat is transmitted to damage the loose functional material B. It becomes.

また、他の方法として、伸縮性弾性難燃スポンジ材で形成する厚みの大きな保護層イを表層に挿入配備し、着火延焼時間を遅延させるとともに、表層の高熱を厚みで遮蔽する方法が提案されているが、伸縮装置Jの遊間を構成する伸縮装置遊間ウエーブプレートPの高さは、伸縮装置Jの構造上限界があり、充分機能を果たす大きな厚みの保護層イを挿入すると遊間機能材ロの挿入配設スペースが不足する。   As another method, a method is proposed in which a protective layer (a) having a large thickness formed of a stretchable elastic flame retardant sponge material is inserted and arranged in the surface layer to delay the ignition spread time and shield the high heat of the surface layer by the thickness. However, the height of the expansion device idle wave plate P constituting the clearance of the expansion device J is limited by the structure of the expansion device J. Insufficient space for insertion.

本発明は、上記従来の伸縮装置の表層に設けられる保護層の有する問題点に鑑み、伸縮装置の表層に保護層として挿入し、表層で高熱燃焼火炎や高熱が作用しても、それ自身が類焼延焼や高熱発火することなく、また、その表層の高温を遮断して、伸縮装置遊間に挿入した止水材や防音材等の遊間機能材を保護する厚みの薄い、大きな伸縮性を有する保護層を形成することができる不燃断熱性弾性伸縮保護材を提供することを目的とする。   In view of the problems of the protective layer provided on the surface layer of the conventional expansion device, the present invention is inserted into the surface layer of the expansion device as a protective layer, and even if a high-heat combustion flame or high heat acts on the surface layer itself Thin, thin, and highly stretchable protection that protects functional materials such as water-stopping materials and soundproofing materials inserted between expansion devices without blocking high-temperature fires or high-temperature ignition, and by blocking the high temperature of the surface layer An object of the present invention is to provide an incombustible heat-insulating elastic stretch protective material capable of forming a layer.

上記目的を達成するため、本発明の不燃断熱性弾性伸縮保護材は、伸縮装置の表層に保護層として設けられる不燃断熱性弾性伸縮保護材であって、柔軟弾性ゴム連続気泡スポンジ材からなる基材シートの表層に不燃化剤を含有する弾性不燃化剤被膜を形成した不燃化剤含有被膜形成シートを積層してなる不燃断熱性伸縮層を備えてなることを特徴とする。   In order to achieve the above object, the non-combustible heat-insulating elastic stretch protective material of the present invention is a non-combustible heat-insulating elastic stretch protective material provided as a protective layer on the surface layer of the stretch device, and is a base made of a flexible elastic rubber open-cell sponge material. It is characterized by comprising a non-combustible heat-insulating stretchable layer formed by laminating a non-combustible agent-containing film forming sheet in which an elastic flame retardant film containing a non-combustible agent is formed on the surface layer of the material sheet.

また、前記不燃化剤に、低燃焼熱で溶融し、熱分解して不燃性ガスである炭酸ガスを生成する化合物を用いることができる。   Moreover, the compound which melt | dissolves with the low combustion heat and produces | generates the carbon dioxide which is a nonflammable gas can be used for the said incombustible agent.

また、前記不燃化剤に、低燃焼熱で溶融する無機化合物からなるフリット釉を添加することができる。   Further, frit soot made of an inorganic compound that melts with low combustion heat can be added to the incombustible agent.

また、前記不燃断熱性伸縮層が、フリット釉を添加した不燃化剤を含有する弾性不燃化剤被膜を形成した不燃化剤含有被膜形成シートを積層してなる不燃断熱性伸縮層を表層部に、フリット釉を添加しない不燃化剤を含有する弾性不燃化剤被膜を形成した不燃化剤含有被膜形成シートを積層してなる不燃断熱性伸縮層を内央部に用いるようにすることができる。   In addition, the non-combustible heat-insulating elastic layer has a non-combustible heat-insulating elastic layer formed by laminating a non-combustible agent-containing film-forming sheet on which an elastic flame retardant film containing a flame retardant containing frit soot is added. An incombustible heat-insulating stretchable layer formed by laminating an incombustible agent-containing film-forming sheet formed with an elastic incombustible agent film containing an incombustible agent without adding frit soot can be used in the central portion.

また、前記不燃断熱性伸縮層が、前記不燃化剤含有被膜形成シートを、水平方向又は垂直方向にして積層されるようにすることができる。   Moreover, the said incombustible heat-insulating elastic layer can be laminated | stacked by making the said incombustible agent containing film formation sheet into a horizontal direction or a perpendicular direction.

また、前記不燃断熱性伸縮層の最下面に、熱線を反射する反射鏡面を形成した熱線反射層を接着一体化することができる。   Moreover, the heat ray reflective layer which formed the reflective mirror surface which reflects a heat ray can be adhere | attached and integrated on the lowermost surface of the said nonflammable heat insulation elastic layer.

本発明の不燃断熱性弾性伸縮保護材を用いることにより、伸縮装置の表層に保護層として挿入し、表層で高熱燃焼火炎や高熱が作用しても、それ自身が類焼延焼や高熱発火することなく、また、その表層の高温を遮断して、伸縮装置遊間に挿入した止水材や防音材等の遊間機能材を保護する厚みの薄い、大きな伸縮性を有する保護層を形成することができる。   By using the non-combustible heat-insulating elastic expansion / contraction protective material of the present invention, it is inserted as a protective layer into the surface layer of the expansion / contraction device. In addition, it is possible to form a protective layer having a thin and large stretch property that blocks the high temperature of the surface layer and protects the play function material such as a water stop material and a soundproof material inserted between the play of the stretch device.

伸縮装置の遊間に設けられる機能材とその保護材の敷設図である。It is laying figure of the functional material provided in the play of an expansion-contraction apparatus, and its protection material. 本発明の不燃断熱性弾性伸縮保護材の概略構成図である。It is a schematic block diagram of the incombustible heat insulation elastic expansion-contraction protective material of this invention. 不燃断熱性弾性伸縮保護材の不燃断熱性伸縮層を構成する不燃化剤含有皮膜形成シートの構成図である。It is a block diagram of the nonflammable agent containing film formation sheet which comprises the nonflammable heat insulation elastic | stretch layer of a nonflammable heat insulation elastic expansion / contraction protective material. 同不燃化剤含有被膜形成シートの積層図で、(a)は水平積層した状態を示す説明図、(b)は垂直積層した状態を示す説明図である。It is a lamination view of the same incombustible agent content film formation sheet, (a) is an explanatory view showing the state where it was horizontally laminated, and (b) is an explanatory view showing the state where it was vertically laminated. 熱線反射層の概略構成図である。It is a schematic block diagram of a heat ray reflective layer. 本発明の不燃断熱性弾性伸縮保護材における複合不燃断熱性伸縮層の構成概略図で、(a)は水平積層して形成した複合不燃断熱性伸縮層の概略構成図、(b)は垂直積層して形成した複合不燃断熱性伸縮層の概略構成図である。BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic configuration diagram of a composite non-combustible heat insulating stretch layer in the non-combustible heat insulating elastic stretch protective material of the present invention, wherein (a) is a schematic configuration diagram of a composite non-flammable heat insulating stretch layer formed by horizontal lamination, and (b) is a vertical laminate. It is a schematic block diagram of the composite incombustible heat insulation elastic layer formed by doing. 本発明の不燃断熱性弾性伸縮保護材の一実施例のモデル図である。It is a model figure of one Example of the nonflammable heat insulation elastic expansion-contraction protective material of this invention. 本発明の不燃断熱性弾性伸縮保護材の一実施例の燃焼試験の説明図である。It is explanatory drawing of the combustion test of one Example of the nonflammable heat insulation elastic expansion-contraction protective material of this invention. JIS K6400−6に準じた難燃試験の説明図である。It is explanatory drawing of the flame retardance test according to JISK6400-6.

以下、高熱燃焼火炎や高熱が作用しても、それ自身が類焼延焼や高熱発火することがなく、また、表層高熱を遮断することができる厚みの薄い、大きな伸縮性を有する保護層を提供する本発明の不燃断熱性弾性伸縮保護材の実施の形態を、図面に基づいて説明する。   Hereinafter, even if a high-heat combustion flame or high heat acts, a protective layer having a thin and large stretchability that is capable of shutting off high-temperature surface heat and does not ignite itself or ignite itself. Embodiments of the non-combustible heat-insulating elastic elastic protective material of the present invention will be described with reference to the drawings.

本発明の不燃断熱性弾性伸縮保護材Fの主要構成構造は、図2に示すように、構成主体を占める不燃断熱性伸縮層Aからなり、必要に応じて、その最下面に熱線反射層Bを敷設して構成される。   As shown in FIG. 2, the main structural structure of the non-combustible heat-insulating elastic stretch protective material F of the present invention is composed of a non-combustible heat-insulating stretch layer A occupying the main constituent, and if necessary, a heat ray reflective layer B on the lowermost surface. Is constructed.

そして、この伸縮性を有する不燃断熱性伸縮層Aは、耐熱、耐老化性の柔軟伸縮性弾性ゴム連続気泡スポンジ材を、一定厚みtに分割スライスした基材シート1とし、その表面に、図3に示すように、耐熱、耐老化性のポリエラストマーをマトリックスとして無機化合物不燃化剤を高濃度に含有する弾性不燃化剤被膜2を基材シート1の表面にコーティングして不燃化剤含有被膜形成シート3を形成し、さらに、この不燃化剤含有被膜形成シート3を、図4(a)に示すように所定の厚みTになるまで複数枚積層一体化して構成される。   The incombustible heat-insulating stretch layer A having stretchability is a base sheet 1 obtained by dividing and slicing a heat-resistant, aging-resistant flexible stretchable elastic rubber open-cell sponge material to a constant thickness t, As shown in FIG. 3, the surface of the base sheet 1 is coated with an elastic flame retardant film 2 containing a high concentration of an inorganic compound flame retardant using a heat-resistant and aging-resistant polyelastomer as a matrix. The forming sheet 3 is formed, and a plurality of the incombustible agent-containing film forming sheets 3 are laminated and integrated until a predetermined thickness T is obtained as shown in FIG.

さらに、不燃断熱性伸縮層Aの最下面には、図5に示すような、耐熱、耐老化性の柔軟弾性ゴム連続気泡スポンジ材を一定厚みtにスライス分割した基材シート1の表層に熱線である赤外線を反射する反射鏡面4を形成した熱線反射層Bを、図2に示すように、接着一体化して不燃断熱性弾性伸縮保護材Fとしている。   Further, on the lowermost surface of the incombustible heat-insulating elastic layer A, a heat ray is applied to the surface layer of the base sheet 1 obtained by slicing the heat-resistant and aging-resistant flexible elastic rubber open-cell sponge material into a predetermined thickness t as shown in FIG. As shown in FIG. 2, the heat ray reflective layer B on which the reflecting mirror surface 4 that reflects infrared rays is bonded and integrated is used as a non-combustible heat insulating elastic stretch protective material F.

この不燃断熱性弾性伸縮保護材Fにおいて、主要構成部材である不燃断熱性伸縮層Aを構成する、図3に示す、不燃化剤含有被膜形成シート3の表層にコーティング形成された弾性不燃化剤被膜2に含有する無機化合物不燃化剤成分は、低燃焼熱で溶融し、熱分解して水を生成する金属水酸化化合物及びそれらに結晶水が結合した無機水酸化物結晶体や、さらに、また、低燃焼熱で溶融し、熱分解して不燃性ガスである炭酸ガスを生成する金属炭酸化合物や炭酸化合物とそれらの水酸化化合物及び結晶水が結晶結合した塩基性炭酸化合物である。そしてこれらの不燃化剤は、単独又はその混合物として弾性不燃化剤被膜2に添加されていることを特徴とする。   In this incombustible heat-insulating elastic stretch protective material F, the elastic incombustible agent coated on the surface layer of the incombustible agent-containing film-forming sheet 3 shown in FIG. The inorganic compound flame retardant component contained in the coating 2 is a metal hydroxide compound that melts with low combustion heat and thermally decomposes to produce water, and an inorganic hydroxide crystal body in which water of crystallization is bonded to them, Further, it is a basic carbonic acid compound in which a metal carbonic acid compound or a carbonic acid compound which is melted with low combustion heat and is thermally decomposed to generate carbon dioxide gas which is an incombustible gas, a hydroxide compound thereof, and crystal water are crystal-bonded. These flame retardants are added to the elastic flame retardant coating 2 alone or as a mixture thereof.

また、不燃断熱性伸縮層Aを構成する、図3に示す、不燃化剤含有被膜形成シート3の表層にコーティングされた弾性不燃化剤被膜2において、その弾性不燃化剤被膜2を構成する弾性マトリックスの耐熱、耐老化性のポリエラストマーを、有機珪素化合物とし、含有する無機化合物不燃化剤成分と併用することができる。   Further, in the elastic flame retardant film 2 coated on the surface layer of the flame retardant containing film-forming sheet 3 shown in FIG. 3 and constituting the non-flammable heat insulating stretchable layer A, the elasticity constituting the elastic flame retardant film 2 is shown. The heat-resistant and aging-resistant polyelastomer of the matrix can be used as an organic silicon compound in combination with an inorganic compound flame retardant component.

また、図3に示す、弾性不燃化剤被膜2の構成素材として、弾性不燃化剤被膜2に含有する無機化合物不燃化剤に対して、低温で容易に溶融する低融点無機化合物の混合融合フリット釉を添加混合併用することができる。   Further, as a constituent material of the elastic flame retardant coating 2 shown in FIG. 3, a mixed fusion frit of a low-melting-point inorganic compound that easily melts at a low temperature with respect to the inorganic compound flame retardant contained in the elastic flame retardant coating 2 Soot can be added and used together.

また、不燃断熱性伸縮層Aを成形するに当たり、不燃断熱性伸縮層Aを構成する不燃化剤含有被膜形成シート3の積層方向は、図4(a)に示す不燃化剤含有被膜形成シート3を水平方向にして積層する水平積層に限定されず、図4(b)に示す不燃化剤含有被膜形成シート3を垂直方向にして積層する垂直積層とすることもできる。   In forming the incombustible heat-insulating stretch layer A, the stacking direction of the incombustible agent-containing film forming sheet 3 constituting the incombustible heat-insulating stretch layer A is the incombustible agent-containing film forming sheet 3 shown in FIG. It is not limited to the horizontal lamination | stacking laminated | stacked in a horizontal direction, It can also be set as the vertical lamination | stacking which laminates | stacks the flame retardant containing film forming sheet 3 shown in FIG.4 (b) in a perpendicular direction.

また、図3に示す不燃化剤含有被膜形成シート3の表層にコーティング形成する弾性不燃化剤被膜2において、含有する不燃化剤の成分を異にした弾性不燃化剤被膜2a及び弾性不燃化剤被膜2bとし、これを基材シート1の表面に各々コーティングして、不燃化剤含有被膜形成シート3a及び不燃化剤含有被膜形成3bを形成し、さらにこれを種別毎に複数枚積層して、各々の厚みTa、Tbとし、不燃断熱性伸縮層Aa及び不燃断熱性伸縮層Abを構成し、さらにこれを図6(a)及び図6(b)に示すように、順次積層して複合不燃断熱性伸縮層Aとすることができる。   Further, in the elastic flame retardant film 2 formed on the surface layer of the flame retardant containing film-forming sheet 3 shown in FIG. 3, the elastic flame retardant film 2a and the elastic flame retardant having different components of the flame retardant contained. The coating 2b, each coated on the surface of the base sheet 1, to form a flame retardant containing film formation sheet 3a and a flame retardant containing film formation 3b, further laminated a plurality of types for each type, Each of the thicknesses Ta and Tb is used to form a non-combustible and heat-insulating elastic layer Aa and a non-combustible and heat-insulating elastic layer Ab, and as shown in FIG. 6 (a) and FIG. It can be set as the heat insulation elastic layer A.

一般に有機高分子の柔軟弾性ゴムを不燃及び難燃化するとき、そのポリマーに多量の不燃化剤を混入する必要があるが、そのことにより柔軟性や物理特性が損なわれ、また、耐老化性を低下させる。さらに、不燃化剤を多量混入して柔軟な発泡スポンジ材とすることは不可能であり、目的とする機能を有する素材で不燃断熱性弾性伸縮保護材を製作することは困難である。   In general, when non-combustible and flame-retardant organic polymer flexible elastic rubber, it is necessary to mix a large amount of non-combustible agent into the polymer, but this impairs flexibility and physical properties, and also prevents aging resistance. Reduce. Furthermore, it is impossible to make a flexible foamed sponge material by mixing a large amount of incombustible agent, and it is difficult to produce an incombustible heat-insulating elastic expansion / contraction protective material with a material having a target function.

一方、本発明の不燃断熱性弾性伸縮保護材Fはそれを可能としたものである。
すなわち、不燃断熱性弾性伸縮保護材Fの主要構成構造は、図2に示すように、構成主体を占める不燃断熱性伸縮層Aと、その最下面に敷設した熱線反射層Bとで構成されており、また、この伸縮性を有する不燃断熱性伸縮層Aは、耐熱、耐老化性の柔軟伸縮性弾性ゴム連続気泡スポンジ材を、一定厚みtに分割スライスして基材シート1とし、その表面に図3に示すように、耐熱、耐老化性のポリエラストマーをマトリックスとした無機化合物不燃化剤を高濃度に含有する弾性不燃化剤被膜2を基材シート1の表面にコーティングして不燃化剤含有被膜形成シート3を形成し、さらに、この不燃化剤含有被膜形成シート3を、図4(a)に示すように、所定の厚みTになるまで複数枚積層一体化して構成される。
On the other hand, the incombustible heat-insulating elastic stretch protective material F of the present invention makes it possible.
That is, as shown in FIG. 2, the main structural structure of the incombustible heat-insulating elastic stretch protective material F is composed of a non-combustible heat-insulating stretch layer A occupying the main constituents and a heat ray reflective layer B laid on the lowermost surface thereof. The incombustible heat-insulating elastic layer A having elasticity is a base sheet 1 obtained by dividing a heat-resistant, aging-resistant flexible elastic elastic rubber open-cell sponge material into a predetermined thickness t to obtain a base material sheet 1. As shown in FIG. 3, the surface of the base sheet 1 is made non-combustible by coating the surface of the base material sheet 1 with an elastic non-combustible agent film 2 containing a high-concentration inorganic compound flame retardant using a heat-resistant and aging-resistant polyelastomer as a matrix. The agent-containing film-forming sheet 3 is formed, and a plurality of the flame retardant-containing film-forming sheets 3 are laminated and integrated until a predetermined thickness T is reached, as shown in FIG.

すなわち、この不燃断熱性弾性伸縮保護材Fの構成主体である不燃断熱性伸縮層Aは、主体構成材が耐熱、耐老化性の柔軟伸縮性弾性ゴム連続気泡スポンジ材を一定厚みtに分割スライスした基材シート1の積層集合体として形成されており、また、基材シート1の表面にコーティングされた高濃度の不燃化剤を含有する弾性不燃化剤被膜2は弾性ポリマーをマトリックスとし、薄い被膜とすることで柔軟な被膜となり、基材シート1の自由伸縮性を阻害することなく、伸縮装置遊間の伸縮変位に追随でき、自由伸縮性を有する不燃断熱性伸縮層Aとすることができる。   That is, the incombustible heat-insulating elastic layer A, which is the main constituent of the incombustible heat-insulating elastic stretch protective material F, is formed by dividing the main constituent material into heat-resistant and aging-resistant flexible elastic elastic rubber open-cell sponge material into a constant thickness t. The elastic flame retardant coating 2 containing a high concentration of flame retardant coated on the surface of the base sheet 1 is thin with an elastic polymer as a matrix. By forming a coating, it becomes a flexible coating, can follow the expansion / contraction displacement between the expansion and contraction devices without hindering the free expansion / contraction of the base sheet 1, and can be a nonflammable heat insulating expansion / contraction layer A having free expansion / contraction. .

さらに、この不燃断熱性伸縮層Aの最下面には、図5に示すように、耐熱、耐老化性の柔軟弾性ゴム連続気泡スポンジ材を一定厚みtにスライス分割した基材シート1の表層に熱線である赤外線を反射する反射鏡面4を形成した熱線反射層Bを作成し、これを、図2に示すように、接着一体化して不燃断熱性弾性伸縮保護材Fとしている。   Furthermore, on the lowermost surface of the incombustible heat-insulating stretchable layer A, as shown in FIG. 5, a heat-resistant and aging-resistant flexible elastic rubber open-cell sponge material is formed on the surface layer of the base sheet 1 obtained by slicing the slice into a predetermined thickness t. A heat ray reflective layer B having a reflecting mirror surface 4 that reflects infrared rays, which are heat rays, is prepared, and this is bonded and integrated to form an incombustible and heat insulating elastic stretch protective material F as shown in FIG.

すなわち、不燃断熱性伸縮層Aの最下面に、図2に示すように、熱線である赤外線を反射する反射鏡面4を形成した熱線反射層Bを配備することで、不燃断熱性伸縮層Aの表層に作用する高熱や燃焼熱の伝達熱線赤外線を反射し、厚みの薄い不燃断熱性弾性伸縮保護材Fで遊間機能材ロに高熱が作用することを阻止できる。   That is, as shown in FIG. 2, a heat ray reflective layer B having a reflecting mirror surface 4 that reflects infrared rays, which are heat rays, is disposed on the lowermost surface of the nonflammable heat insulating stretchable layer A. High heat acting on the surface layer or heat transfer infrared rays of combustion heat is reflected, and the non-combustible heat insulating elastic expansion / contraction protective material F having a small thickness can prevent high heat from acting on the loose functional material.

また、この不燃断熱性弾性伸縮保護材Fにおいて、主要構成部材である不燃断熱性伸縮層Aを構成する、図3に示す、不燃化剤含有被膜形成シート3の表層にコーティング形成された弾性不燃化剤被膜2に含有する無機化合物不燃化剤成分は、低燃焼熱で溶融し、熱分解して水を生成する金属水酸化化合物及びそれらに結晶水が結合した無機水酸化物結晶体や、さらに、また、低燃焼熱で溶融し、熱分解して不燃性ガスの炭酸ガスを生成する金属炭酸化合物、及び炭酸化合物とそれらの水酸化化合物及び結晶水が結晶結合した塩基性炭酸化合物である。そしてこれらの不燃化剤は単独又はその混合物として弾性不燃化剤被膜2に添加されている。   Moreover, in this incombustible heat insulating elastic stretch protective material F, the elastic incombustible coated on the surface layer of the incombustible agent-containing film-forming sheet 3 shown in FIG. 3 constituting the incombustible heat insulating stretch layer A which is a main component. The inorganic compound flame retardant component contained in the agent coating 2 is a metal hydroxide compound that melts with low combustion heat and thermally decomposes to generate water, and an inorganic hydroxide crystal body in which water of crystallization is bonded to them, Furthermore, it is a metal carbonate compound that melts with low combustion heat and is thermally decomposed to generate carbon dioxide, which is an incombustible gas, and a basic carbonate compound in which a carbonate compound, a hydroxide compound thereof, and crystal water are crystal-bonded. . These flame retardants are added to the elastic flame retardant coating 2 alone or as a mixture thereof.

すなわち、可燃性有機高分子のゴムやプラスチックの連鎖延焼炎上反応は、それらの可燃性有機高分子が、高熱燃焼熱等の高熱に曝されることで、分子切断分解による低分子量の可燃性ガス化が進行し、分解可燃ガスは高温状態で酸素との接触頻度を高め、活性ラジカル(・OH、・O)を生成する。この活性ラジカル(・OH、・O)は反応エネルギが高く、分解可燃ガスに作用して水を生成するとともに、さらに、活性ラジカル(・OH、・O)を生成し、この高温燃焼連鎖反応が燃焼延焼反応を助長し高熱燃焼炎上する。そして、また、この反応高熱がポリマーの分解低分子量可燃ガス化を促進し、高温燃焼延焼反応が連鎖する。これが可燃性有機高分子の燃焼延焼炎上反応の基本的なメカニズムである。   In other words, the chain flame spread reaction of flammable organic polymers such as rubber and plastic is exposed to high heat, such as high-heat combustion heat, so that low molecular weight flammable gas by molecular cutting decomposition The decomposition combustible gas increases the frequency of contact with oxygen at a high temperature, and generates active radicals (.OH, .O). This active radical (.OH, .O) has a high reaction energy and acts on the cracked combustible gas to generate water, and further generates an active radical (.OH, .O). It promotes the flame spread reaction and raises a high-heat combustion flame. Moreover, this high reaction heat promotes the decomposition of the polymer into low molecular weight combustible gas, and the high temperature combustion flame spread reaction is chained. This is the basic mechanism of the reaction of the combustible organic polymer on the flame spread.

しかし、可燃性有機高分子が高熱燃焼熱等の影響を受ける際に、その高熱燃焼熱を冷却し、また、反応環境酸素濃度を低下することができれば、燃焼温度は低くなり、酸素濃度が低いことで、さらに、反応熱は低下し、高分子の分解低分子可燃ガス化は抑制できる。   However, when the combustible organic polymer is affected by high heat combustion heat, etc., if the high heat combustion heat can be cooled and the reaction environment oxygen concentration can be lowered, the combustion temperature becomes low and the oxygen concentration is low. As a result, the heat of reaction decreases, and the decomposition of the polymer into low molecular weight combustible gas can be suppressed.

すなわち、低温低酸素濃度での高分子の酸化反応は、高分子の切断低分子量ガス化反応が抑制され、高分子からの水素離脱分解反応となり、その脱離水素の酸化による水(HO)の生成反応と水素が離脱した高分子の炭素化反応となる。この炭素は不燃性であり、また、低温燃焼生成水は、反応熱を冷却し、燃焼反応をさらに抑制して消火する。 That is, the polymer oxidation reaction at a low temperature and low oxygen concentration suppresses the polymer cleavage and low molecular weight gasification reaction and becomes a hydrogen desorption decomposition reaction from the polymer, and water (H 2 O by oxidation of the desorbed hydrogen). ) And the carbonization reaction of the polymer from which hydrogen is released. This carbon is nonflammable, and the low-temperature combustion product water cools the reaction heat and further suppresses the combustion reaction to extinguish the fire.

本発明の不燃断熱性伸縮層Aの主体構成素材である可燃性の基材シート1において、その不燃化機構は、基材シート1の表層を高濃度の不燃化剤を含有する薄い弾性不燃化剤被膜2でコーティングして不燃化剤含有被膜形成シート3を形成し、その不燃化剤含有被膜形成シート3をさらに積層集合一体化して図4(a)及び図4(b)に示すように不燃断熱性伸縮層Aが構成されている。   In the combustible base material sheet 1 which is a main constituent material of the incombustible heat-insulating stretchable layer A of the present invention, the incombustible mechanism is a thin elastic incombustible material containing a high concentration of incombustible agent in the surface layer of the base material sheet 1. As shown in FIGS. 4 (a) and 4 (b), the flame retardant-containing film-forming sheet 3 is formed by coating with the agent film 2, and the flame-retardant-containing film-forming sheet 3 is further laminated and integrated. The non-combustible heat insulating stretchable layer A is configured.

すなわち、基材シート1は弾性不燃化剤被膜2で包囲されることとなり、この不燃断熱性伸縮層Aの表面に高熱火炎や高熱が作用すると、表層にコーティング形成した弾性不燃化剤被膜2に含有する無機化合物不燃化剤が直ちに低温溶融し無機溶融被膜を形成して酸素を遮断し高温燃焼を阻止するとともに、無機化合物不燃化剤の水酸化化合物は、その結晶水を離脱し水蒸気を発生し、また、分子分解で水を生成することで燃焼系の冷却と燃焼環境の酸素濃度希釈を行い、燃焼反応の抑制をしてさらに燃焼熱を低下させる。   That is, the base material sheet 1 is surrounded by the elastic flame retardant coating 2, and when a high-heat flame or high heat acts on the surface of the non-flammable heat-insulating stretchable layer A, the elastic flame retardant coating 2 formed on the surface layer is coated. The inorganic compound flame retardant contained immediately melts at a low temperature to form an inorganic molten film, blocking oxygen and preventing high temperature combustion, and the inorganic compound flame retardant hydroxylated compound releases its crystal water and generates water vapor. Moreover, by generating water by molecular decomposition, the combustion system is cooled and the oxygen concentration of the combustion environment is diluted to suppress the combustion reaction and further reduce the combustion heat.

一方、無機化合物不燃化剤の炭酸化合物及び塩基性炭酸化合物は同様に、その結晶水を離脱し水を生成し、燃焼系の反応熱冷却作用をするとともに、分子分解で不活性ガスの炭酸ガスを生成し、燃焼環境の酸素濃度が希釈され、燃焼反応の抑制をしてさらに燃焼熱を低下させる。   On the other hand, the carbonic acid compound and the basic carbonic acid compound, which are inorganic compound flame retardants, similarly release water of crystallization to generate water, which acts as a reaction heat cooling of the combustion system and carbon dioxide gas as an inert gas by molecular decomposition. And the oxygen concentration in the combustion environment is diluted to suppress the combustion reaction and further reduce the combustion heat.

これらの不燃化剤の作用により、表層に高熱延焼炎や高熱が作用しても、不燃断熱性伸縮層Aは低温、低酸素燃焼反応となり、構成する可燃性高分子が低分子の可燃性ガスに分解することなく、活性ラジカル(・OH、・O)が増殖しないために連鎖延焼反応は停止し、不燃化消火することとなる。   Due to the action of these incombustible agents, even if a high hot flame flame or high heat acts on the surface layer, the incombustible heat-insulating stretch layer A becomes a low temperature, low oxygen combustion reaction, and the combustible polymer constituting the combustible polymer has a low molecular weight. Since the active radicals (.OH, .O) do not proliferate without being decomposed, the chain spread reaction is stopped and the incombustible fire extinguishes.

さらに、分解生成炭酸ガスは、熱の伝導を下げ、遮熱性を高くする。
因みに、本発明で使用する無機化合物不燃化剤成分の金属水酸化物及びその結晶物質は低温(約350℃)で溶融し無機溶融物質となるとともに、熱分解により結合結晶水が水となり、さらに、金属水酸化化合物は金属酸化物と水に分解する。さらに、他の金属炭酸化合物及びその塩基性炭酸化合物結晶物質は、低温(約350℃)で溶融し無機溶融物質となるとともに、熱分解により結合結晶水が水となり、さらに、塩基性炭酸化合物に内包する金属水酸化化合物は金属酸化物と水に分解し、また、金属炭酸化合物は熱分解して金属酸化物と不活性の炭酸ガスになる。
Furthermore, the decomposition product carbon dioxide gas lowers the heat conduction and increases the heat shielding property.
Incidentally, the metal hydroxide of the inorganic compound flame retardant component used in the present invention and its crystalline substance melt at a low temperature (about 350 ° C.) to become an inorganic molten substance, and the combined crystal water becomes water by thermal decomposition. The metal hydroxide compound decomposes into metal oxide and water. Furthermore, other metal carbonate compounds and basic carbonate compound crystal substances melt at a low temperature (about 350 ° C.) to become inorganic melt substances, and bonded crystal water becomes water by thermal decomposition. The encapsulated metal hydroxide compound is decomposed into a metal oxide and water, and the metal carbonate compound is thermally decomposed into a metal oxide and an inert carbon dioxide gas.

また、不燃断熱性伸縮層Aを構成する、図3に示す、不燃化剤含有被膜形成シート3の表層にコーティングされた弾性不燃化剤被膜2において、その弾性不燃化剤被膜2を構成する弾性マトリックスのポリエラストマーを、有機珪素化合物とすることで含有する無機化合物不燃化剤成分との併用効果が発揮され、無機不燃化剤分解酸化物の低温溶融化が促進され、酸素遮断効果や断熱効果が助長される。   Further, in the elastic flame retardant film 2 coated on the surface layer of the flame retardant containing film-forming sheet 3 shown in FIG. 3 and constituting the non-flammable heat insulating stretchable layer A, the elasticity constituting the elastic flame retardant film 2 is shown. By using the matrix polyelastomer as an organosilicon compound, the combined effect with the inorganic compound flame retardant component is demonstrated, the low-temperature melting of the inorganic flame retardant decomposition oxide is promoted, the oxygen blocking effect and the heat insulation effect Is encouraged.

すなわち、この有機珪素化合物マトリックスは、熱分解で珪素(Si)を生成し、珪素(Si)と無機不燃化剤分解酸化物が共融合体を形成し、低温融解釉となり無機溶融皮膜を形成して酸素遮断し、高温燃焼を阻止する。   That is, this organosilicon compound matrix generates silicon (Si) by thermal decomposition, and silicon (Si) and an inorganic flame retardant decomposed oxide form a co-fusion, forming a low-temperature melting soot and forming an inorganic molten film. To block oxygen and prevent high temperature combustion.

また、図3に示す、弾性不燃化剤被膜2の構成素材として、無機化合物不燃化剤と共に低温で容易に溶融する低融点無機化合物の混合融合フリット釉を添加し併用することで、添加した低融点無機化合物融合フリット釉が低温燃焼熱で溶融し、無機化合物不燃化剤熱分解生成物質の金属酸化物を吸着し、新たな混合低温融解釉化して作用し、酸素遮断無機被膜をさらに増大して酸素遮断性を高め、低酸素、低温燃焼により有機高分子の脱水素反応、炭化反応が進行し、不燃断熱性伸縮層Aは難燃不燃性となる。特に、この低融点無機化合物融合フリット釉がリン酸系ガラスであれば、さらに有機高分子の脱水素反応、炭化反応が早期に行われ、効果が高くなる。   In addition, as a constituent material of the elastic flame retardant coating 2 shown in FIG. 3, a mixed fusion frit soot of a low melting point inorganic compound that easily melts at a low temperature together with the inorganic compound flame retardant is added and used in combination. Melting point inorganic compound fusion frit soot is melted by low-temperature combustion heat, adsorbs the metal oxide of the inorganic compound incombustible pyrolysis product, acts as a new mixed low-temperature melting and hatching, and further increases the oxygen barrier inorganic coating Thus, the oxygen barrier property is enhanced, and the dehydrogenation reaction and carbonization reaction of the organic polymer proceed due to low oxygen and low temperature combustion, and the incombustible heat insulating stretchable layer A becomes incombustible and incombustible. In particular, if the low-melting-point inorganic compound-fused frit bottle is phosphoric acid glass, the dehydrogenation reaction and carbonization reaction of the organic polymer are further performed at an early stage, and the effect is enhanced.

また、不燃断熱性伸縮層Aを成形するに当たり、不燃断熱性伸縮層Aを構成する不燃化剤含有被膜形成シート3の積層構造を、図4(a)に示す水平方向積層に限定せず、図4(b)に示すように垂直積層で構成することもできる。   In forming the non-combustible heat-insulating stretch layer A, the laminated structure of the non-flammable agent-containing film-forming sheet 3 constituting the non-flammable heat-insulating stretch layer A is not limited to the horizontal lamination shown in FIG. As shown in FIG. 4 (b), it may be constituted by vertical lamination.

すなわち、不燃断熱性伸縮層Aを形成する不燃化剤含有被膜形成シート3の伸縮変位性は基材シート1の幅方向より厚み方向の方が容易で、伸縮歪座屈変形を抑制する。不燃断熱性弾性伸縮保護材Fを敷設する遊間の伸縮方向によって、不燃化剤含有被膜形成シート3の積層方向を決定することで不燃断熱性伸縮層Aの伸縮特性をさらに向上させることができる。   That is, the expansion / contraction displacement of the incombustible agent-containing film-forming sheet 3 forming the non-combustible heat-insulating elastic layer A is easier in the thickness direction than in the width direction of the base sheet 1 and suppresses elastic strain buckling deformation. By determining the laminating direction of the incombustible agent-containing film-forming sheet 3 according to the expansion / contraction direction between the spaces where the incombustible heat-insulating elastic expansion / contraction protective material F is laid, the expansion / contraction characteristics of the incombustible heat-insulating expansion / contraction layer A can be further improved.

また、図3に示す、不燃化剤含有被膜形成シート3の表層にコーティング形成する弾性不燃化剤被膜2において、含有する不燃化剤の成分を異にして、弾性不燃化剤被膜2a及び弾性不燃化剤被膜2bとし、これらを基材シート1の表面に各々コーティングして不燃化剤含有被膜形成シート3a及び不燃化剤含有被膜形成シート3bを形成し、これを種別毎に複数枚積層して、各々厚みTa、Tbの不燃断熱性伸縮層Aa及び不燃断熱性伸縮層Abを形成し、さらにこれを、図6(a)及び図6(b)に示すように、積層構成して複合不燃断熱性伸縮層Aとすることができる。   Further, in the elastic flame retardant film 2 formed on the surface layer of the flame retardant containing film forming sheet 3 shown in FIG. 3, the components of the flame retardant contained are different, and the elastic flame retardant film 2a and the elastic flame retardant are contained. These are coated on the surface of the base sheet 1 to form a flame retardant film 2b, to form a flame retardant containing film forming sheet 3a and a flame retardant containing film forming sheet 3b. The non-combustible heat-insulating stretchable layer Aa and the non-combustible heat-insulating stretchable layer Ab having thicknesses Ta and Tb, respectively, are further laminated to form a composite non-combustible as shown in FIGS. 6 (a) and 6 (b). It can be set as the heat insulation elastic layer A.

すなわち、不燃断熱性弾性伸縮保護材Fの表層で火災や高熱の作用を受けた場合、不燃断熱性弾性伸縮保護材Fの表層部と内央部では、熱の作用や燃焼環境条件が異なり、各部位でそれに適合した不燃化機構や要求保護機能特性が必要である。   That is, when the surface layer of the incombustible heat-insulating elastic stretch protective material F is subjected to a fire or high heat action, the heat action and the combustion environment conditions are different between the surface layer and the inner part of the non-flammable heat-insulating elastic stretch protective material F, Each part must have a non-combustible mechanism and required protective functional characteristics.

そして、表層においては、燃焼火炎や高熱に曝され、また大気に直接接していることから酸素供給が容易であり、基材シート1の素材であるゴムポリマーは高温類焼延焼する。   And in the surface layer, since it is exposed to a combustion flame or high heat and is directly in contact with the atmosphere, it is easy to supply oxygen, and the rubber polymer that is the material of the base sheet 1 is fired at high temperature.

これを阻止するためには、直ちに燃焼熱を冷却して表層燃焼温度を下げ、また、表面の燃焼環境での酸素濃度の低減や酸素からの遮断が必要であり、また、早期脱水素反応によるゴムポリマーの炭素化が必要となる。   In order to prevent this, it is necessary to immediately cool the combustion heat to lower the surface layer combustion temperature, reduce the oxygen concentration in the surface combustion environment, and shut off from oxygen, and also by early dehydrogenation reaction Carbonization of the rubber polymer is required.

また、不燃断熱性弾性伸縮保護材Fの内央部においては、表層同様の不燃化機能も必要であるが、特に表層から伝達される高熱の冷却と伝導熱の緩和や遮蔽をする機能が要求され、不燃断熱性弾性伸縮保護材Fの下部に敷設する遊間機能材ロを高熱から保護する必要がある。   In addition, in the central part of the incombustible heat-insulating elastic stretch protective material F, a non-combustible function similar to that of the surface layer is also required, but in particular, a function of cooling the high heat transmitted from the surface layer and relaxing or shielding the conduction heat is required. Therefore, it is necessary to protect the loose functional material B laid under the incombustible heat-insulating elastic expansion / contraction protective material F from high heat.

この不燃断熱性弾性伸縮保護材Fは、この各部位の要求機能特性に適応した不燃剤層を形成配備することで、厚みが薄い、大きな伸縮性を有する保護層イとすることができる。   This incombustible heat-insulating elastic expansion / contraction protective material F can be formed into a protective layer A having a small thickness and large elasticity by forming and disposing an incombustible agent layer adapted to the required functional characteristics of each part.

以下、本発明の不燃断熱性弾性伸縮保護材Fを、より具体的に説明する。
本発明の不燃断熱性弾性伸縮保護材Fの基本構造概要は、図2に示すように、その構成主要部である不燃断熱性伸縮層Aとその下面に配備する熱線赤外線を反射して伝導高熱を抑制する熱線反射層Bの2部材で形成している。
Hereinafter, the non-combustible heat insulating elastic stretch protective material F of the present invention will be described more specifically.
As shown in FIG. 2, the basic structure outline of the incombustible heat-insulating elastic expansion / contraction protective material F of the present invention is a high heat conducted by reflecting the incombustible heat-insulating elastic layer A which is the main component of the structure and the heat ray infrared ray disposed on the lower surface thereof. It is formed by two members of the heat ray reflective layer B that suppresses the above.

そして、その各部を構成する主要部材は、両者とも耐熱、耐老化性の柔軟伸縮性弾性ゴム連続気泡スポンジ材を母材とし、それを一定厚みtに分割スライスした基材シート1からなり、主体構成部材の不燃断熱性伸縮層Aは、図3に示すような基材シート1の表層に弾性不燃化剤被膜2をコーティング形成した不燃化剤含有被膜形成シート3を、さらに、図4に示すように、積層して形成される。   And the main member which comprises each part consists of the base material sheet 1 which made the base material the heat-resistant and aging-resistant flexible elastic elastic rubber open-cell sponge material, and divided and sliced it into fixed thickness t, The incombustible heat-insulating stretchable layer A of the constituent member is a nonflammable agent-containing film-forming sheet 3 in which an elastic incombustible film 2 is formed on the surface layer of the base sheet 1 as shown in FIG. In this way, they are laminated.

また、基材シート1の表層にコーティングして不燃化剤含有被膜形成シート3を形成する弾性不燃化剤被膜2は、耐熱、耐老化性のポリエラストマーをマトリックスとして無機化合物不燃化剤を高濃度に含有させた弾性不燃化剤被膜2である。   The elastic flame retardant coating 2 that forms the flame retardant containing film-forming sheet 3 by coating the surface layer of the base sheet 1 has a high concentration of inorganic compound flame retardant using a heat-resistant and aging-resistant polyelastomer as a matrix. It is the elastic flame retardant film | membrane 2 contained in.

また、熱線反射層Bは、図5に示すように、基材シート1の表層に反射鏡面4を形成する材料を塗布して形成される。   Further, as shown in FIG. 5, the heat ray reflective layer B is formed by applying a material for forming the reflective mirror surface 4 to the surface layer of the base sheet 1.

以下、一実施例として、図7に示すような不燃断熱性伸縮層Aを異なった不燃剤を含有する弾性不燃化剤被膜2a、2bをそれぞれコーティングして形成した不燃化剤含有被膜形成シート3a、3bを各々縦に積層して形成した不燃断熱性伸縮層Aa、Abで構成する複合不燃断熱性伸縮層Aとし、最下層に基材シート1の表層に反射鏡面4を形成する材料を塗布して形成した熱線反射層Bを配設した不燃断熱性弾性伸縮保護材Fについて説明する。   Hereinafter, as one example, a flame retardant containing film-forming sheet 3a formed by coating the non-flammable heat-insulating stretchable layer A as shown in FIG. 7 with elastic flame retardant films 2a and 2b containing different flame retardants, respectively. 3b is formed of a non-combustible heat-insulating stretch layer Aa and Ab composed of non-combustible heat-insulating stretch layers Aa and Ab, and a material for forming the reflecting mirror surface 4 on the surface layer of the base sheet 1 is applied to the lowermost layer. The non-combustible heat insulating elastic expansion / contraction protective material F provided with the heat ray reflective layer B formed as described above will be described.

図7に示す不燃断熱性弾性伸縮保護材Fは、エチレン−プロピレン−ジエンゴム(EPDMゴム)やポリクロロプレン(ネオプレンゴム)等の軟質連続気泡ゴムスポンジ(約5〜10倍発泡)を基材シート1の母材とする。   The incombustible heat-insulating elastic stretch protective material F shown in FIG. 7 is made of a soft open-cell rubber sponge (foamed about 5 to 10 times) such as ethylene-propylene-diene rubber (EPDM rubber) or polychloroprene (neoprene rubber). The base material.

そして、複合不燃断熱性伸縮層Aの表層部を構成する不燃断熱性伸縮層Aaは、燃焼火炎や高熱に直接曝され、また、大気に直接接していて酸素供給が容易なため、高温類焼延焼する環境にある。   The non-combustible heat insulating stretch layer Aa constituting the surface portion of the composite non-flammable heat insulating stretch layer A is directly exposed to a combustion flame and high heat, and is in direct contact with the atmosphere so that oxygen can be easily supplied. It is in the environment to do.

これを阻止するための添加無機不燃化剤として、燃焼熱で直ちに低温溶融し、かつ、低温分解して水を生成する無機水酸化化合物を適用し燃焼高熱冷却を計り、また、さらに、低温溶融し、無機水酸化化合物の分解生成する金属酸化物を吸着し、新たな混合低温融解釉として作用する無機溶融フリット釉を併用し、酸素遮断溶融被膜形成能を高くすることで表層の酸素遮断効果を高める。   As an added inorganic flame retardant to prevent this, an inorganic hydroxide compound that immediately melts at low temperature with combustion heat and decomposes at low temperature to produce water is applied to measure combustion high temperature cooling. In addition, it adsorbs metal oxides generated by the decomposition of inorganic hydroxide compounds, and also uses inorganic molten frit soot that acts as a new mixed low-temperature melting soot to increase the ability to form an oxygen-blocking melt film, thereby improving the oxygen barrier effect of the surface layer. To increase.

この両者の併用効果で、低温、低酸素燃焼によるゴムポリマーの低温脱水素化とそれによるポリマーの炭化を促進し不燃断熱性伸縮層Aaの不燃化を実現する。   The combined effect of both promotes low-temperature dehydrogenation of the rubber polymer by low-temperature and low-oxygen combustion and thereby carbonization of the polymer, thereby realizing incombustibility of the incombustible heat-insulating stretchable layer Aa.

一方、複合不燃断熱性伸縮層Aの内央部を構成する不燃断熱性伸縮層Abは、表層部を構成する不燃断熱性伸縮層Aaと同様に、燃焼熱の冷却不燃化機能も必要であり、無機水酸化化合物を適用するとともに、さらに低温分解し不活性ガスである炭酸ガスを生成する無機炭酸化合物や塩基性炭酸化合物を添加し、表層から伝達する高熱を、生成内包する炭酸ガスの遮熱特性で遮蔽緩和する。   On the other hand, the non-combustible heat-insulating elastic layer Ab constituting the center part of the composite non-combustible heat-insulating elastic layer A also needs a function of cooling and incombusting the combustion heat in the same manner as the non-combustible heat-insulating elastic layer Aa constituting the surface layer part. In addition to applying inorganic hydroxide compounds, inorganic carbonate compounds or basic carbonate compounds that generate carbon dioxide, which is an inert gas by further low-temperature decomposition, are added to block high heat transferred from the surface layer to block the carbon dioxide contained in the product. Eliminates shielding due to thermal characteristics.

この両者を併用することで、冷却と断熱性の高い不燃断熱性伸縮層Abを形成することができる。   By using both of these, it is possible to form a nonflammable heat insulating stretch layer Ab having high cooling and heat insulating properties.

このように、図7に示すように不燃断熱性弾性伸縮保護材Fの主要構成部である不燃断熱性伸縮層Aを前記の複合不燃断熱性伸縮層とすることで、厚みを薄くした不燃断熱性伸縮層Aを実現できる。   Thus, as shown in FIG. 7, the incombustible heat-insulating elastic layer A, which is the main component of the incombustible heat-insulating elastic stretch protective material F, is made into the above-mentioned composite incombustible heat-insulating elastic layer, thereby reducing the thickness of the non-combustible heat insulating material. The elastic stretch layer A can be realized.

また、不燃断熱性伸縮層Aの最下面に、図2に示すように配備する反射鏡面4を形成した熱線反射層Bは、基材シート1(厚み:5mm)の表面に耐熱鏡面化塗料を塗布して熱線赤外線の反射面を形成し、不燃断熱性伸縮層Aの表層に作用する高熱や燃焼熱の熱線赤外線を反射することで、厚みの薄い不燃断熱性弾性伸縮保護材Fで遊間機能材ロに高熱が作用することなく保護することができる。 Moreover, the heat ray reflective layer B in which the reflecting mirror surface 4 provided as shown in FIG. 2 is formed on the lowermost surface of the incombustible heat-insulating stretchable layer A has a heat-resistant specular coating on the surface of the base sheet 1 (thickness: 5 mm). Applying to form a reflective surface for heat ray infrared rays, reflecting the heat ray infrared rays of high heat and combustion heat acting on the surface layer of the incombustible heat-insulating elastic layer A, and having a loose function with a thin non-combustible heat-insulating elastic elastic protective material F It can be protected without high heat acting on the material.

図7に示す不燃断熱性弾性伸縮保護材Fの寸法は、例えば、その厚みを35mmとし、遊間挿入最大幅Wを300mm、長さ方向は300mm(又は300mm以上)とする。   The dimensions of the non-combustible heat-insulating elastic expansion / contraction protective material F shown in FIG. 7 are, for example, a thickness of 35 mm, a maximum gap insertion width W of 300 mm, and a length direction of 300 mm (or 300 mm or more).

また、複合不燃断熱性伸縮層Aの表層部を構成する不燃断熱性伸縮層Aaの厚みTaは7mm、内央部を構成する不燃断熱性伸縮層Abの厚みTbは23mmとし、複合不燃断熱性伸縮層Aの厚みTを30mmとする。   Moreover, the thickness Ta of the incombustible heat insulating stretch layer Aa constituting the surface layer portion of the composite incombustible heat insulating stretch layer A is 7 mm, the thickness Tb of the incombustible heat insulating stretch layer Ab constituting the center portion is 23 mm, and the composite incombustible heat insulating property. The thickness T of the stretchable layer A is 30 mm.

そして、この複合不燃断熱性伸縮層Aの最下面に、図2に示す基材シート1に反射鏡面4を形成した熱線反射層B(厚み:5mm)を接着一体化し、不燃断熱性弾性伸縮保護材Fを構成する。   And the heat ray reflective layer B (thickness: 5 mm) which formed the reflective mirror surface 4 on the base material sheet 1 shown in FIG. The material F is configured.

図7に示す、上記寸法の不燃断熱性弾性伸縮保護材Fを製作する場合において、その主構成部材である不燃断熱性伸縮層Aは、エチレン−プロピレン−ジエンゴム(EPDMゴム)の軟質連続気泡ゴムスポンジ(約8倍発泡、見掛け密度:0.13、引張強さ:95kPa、伸び:350%、圧縮硬さ:5.6kPa/50%)を構成母材とし、これを一定厚み(約5mm)に分割スライスし、寸法300×300mmにカットして、実施例の基材シート1(平均55.7g/枚)を120枚作成した。   When the nonflammable heat insulating elastic stretch protective material F having the above-described dimensions shown in FIG. 7 is manufactured, the nonflammable heat insulating stretchable layer A, which is the main component thereof, is a soft open-cell rubber made of ethylene-propylene-diene rubber (EPDM rubber). Sponge (approximately 8 times foaming, apparent density: 0.13, tensile strength: 95 kPa, elongation: 350%, compression hardness: 5.6 kPa / 50%) is used as a constituent base material, and this is a constant thickness (about 5 mm) 120 slices were cut into a size of 300 × 300 mm, and 120 base material sheets 1 (average 55.7 g / sheet) of Examples were prepared.

また、不燃断熱性伸縮層Aを構成する積層素材の図3に示す不燃化剤含有被膜形成シート3において、基材シート1の表面にコーティングすることにより含浸させて形成する弾性不燃化剤被膜2の弾性マトリックスとして、オキシム硬化反応型のシクロテトラシロキサン溶液(成分濃度:63%)を採用した。   Moreover, in the flame retardant containing film forming sheet 3 shown in FIG. 3 of the laminated material constituting the non-flammable heat-insulating elastic layer A, the elastic flame retardant film 2 formed by impregnating the surface of the base sheet 1 by coating. As the elastic matrix, an oxime curing type cyclotetrasiloxane solution (component concentration: 63%) was employed.

また、図7に示す不燃断熱性弾性伸縮保護材Fの主構成部材である不燃断熱性伸縮層Aの表層部を構成する不燃断熱性伸縮層Aaにおいて、不燃断熱性伸縮層Aaを構成する不燃化剤含有被膜形成シート3aに配備する表面にコーティングすることにより含浸させて形成する弾性不燃化剤被膜2aの添加無機化合物不燃化剤成分は、水酸化アルミニウム(融点:300℃)と低融点無機化合物融合フリット釉(リン酸系ガラス釉、融点:360℃)の併用とし、その構成比は6:1とした。   Moreover, in the incombustible heat insulation elastic layer Aa which comprises the surface layer part of the incombustible heat insulation elastic layer A which is the main structural member of the incombustible heat insulation elastic expansion / contraction protective material F shown in FIG. 7, the incombustibility which comprises the incombustible heat insulation elastic layer Aa The additive inorganic compound flame retardant component of the elastic flame retardant film 2a formed by impregnation by coating on the surface of the agent forming film forming sheet 3a is composed of aluminum hydroxide (melting point: 300 ° C.) and low melting point inorganic A compound fusion frit bottle (phosphate glass bottle, melting point: 360 ° C.) was used in combination, and the composition ratio was 6: 1.

この併用無機化合物不燃化剤を基材シート1の表面にコーティングして形成する弾性不燃化剤被膜2aの塗布不燃化剤液は、前記シロキサン溶液(固形分:63%)100gに対し、表層部を構成する不燃断熱性伸縮層Aaに適応する併用無機化合物不燃化剤の153.4gを投入して均一に混合した溶液(無機不燃化剤率:60.35%)である。   The coating flame retardant liquid of the elastic flame retardant film 2a formed by coating the surface of the base sheet 1 with this combined inorganic compound flame retardant is a surface layer portion with respect to 100 g of the siloxane solution (solid content: 63%). Is a solution (inorganic flame retardant rate: 60.35%) in which 153.4 g of the combined inorganic compound flame retardant suitable for the non-flammable heat-insulating stretchable layer Aa is uniformly mixed.

この塗布不燃化剤液を、5mm×300mm×300mmの基材シート1(平均重量:55.7g/枚)の表面に平均91.2g(0.101g/cm)塗布し、60枚の不燃化剤含有被膜形成シート3aを製作し、さらにこれを積層して、厚みTaを約300mm以上とし、30〜45℃で24時間硬化養生する。 An average of 91.2 g (0.101 g / cm 2 ) of this coating flame retardant solution was applied to the surface of a substrate sheet 1 (average weight: 55.7 g / sheet) of 5 mm × 300 mm × 300 mm, and 60 sheets of nonflammable The agent-containing film-forming sheet 3a is manufactured, and further laminated, and the thickness Ta is set to about 300 mm or more, and cured at 30 to 45 ° C. for 24 hours.

そして、この不燃化剤含有被膜形成シート3aの積層ブロックを基材シート1の水平面に対して直交する方向に、幅7mmで切断し、図7に示す不燃断熱性伸縮層Aaを製作する。   And the laminated block of this flame retardant containing film formation sheet 3a is cut | disconnected by the width 7mm in the direction orthogonal to the horizontal surface of the base material sheet 1, and the nonflammable heat insulation elastic layer Aa shown in FIG. 7 is manufactured.

このときの基材シート1の表面(300×300mm)に付着する不燃化剤量(弾性シロキサンマトリックスを含む。)は、平均77.9g/枚(純無機不燃化剤量は55.2g/枚、0.061g/cm)であった。 The amount of the flame retardant attached to the surface (300 × 300 mm) of the substrate sheet 1 at this time (including the elastic siloxane matrix) averaged 77.9 g / sheet (the amount of pure inorganic flame retardant was 55.2 g / sheet). 0.061 g / cm 2 ).

すなわち、可燃性のゴム高分子量(55.7g/枚)に対して、それに対応付着させる純無機不燃化剤量は(55.2g/枚)、約同重量(1:2〜2:1の範囲に設定することができる。)である。   That is, the amount of pure inorganic incombustible agent adhering to the high molecular weight of combustible rubber (55.7 g / sheet) is (55.2 g / sheet), about the same weight (1: 2 to 2: 1 Can be set to a range.)

また、図7に示す不燃断熱性弾性伸縮保護材Fの主構成部材である不燃断熱性伸縮層Aの内央部を構成する不燃断熱性伸縮層Abにおいて、不燃断熱性伸縮層Abを構成する不燃化剤含有被膜形成シート3bの表面にコーティングすることにより含浸させて形成する弾性不燃化剤被膜2bに添加する無機化合物不燃化剤成分は、水酸化アルミニウム(融点:300℃)と炭酸マグネシウム結晶粉末(融点:350℃)の併用とし、その構成比は6.5:1とした。   Moreover, in the incombustible heat insulation elastic layer Ab which comprises the center part of the incombustible heat insulation elastic layer A which is a main structural member of the incombustible heat insulation elastic elastic protection material F shown in FIG. 7, the incombustible heat insulation elastic layer Ab is comprised. Inorganic flame retardant components added to the elastic flame retardant coating 2b formed by impregnation by coating on the surface of the flame retardant-containing coating film forming sheet 3b are aluminum hydroxide (melting point: 300 ° C.) and magnesium carbonate crystals. The powder (melting point: 350 ° C.) was used in combination, and the composition ratio was 6.5: 1.

この併用無機化合物不燃化剤を基材シート1の表面にコーティングして形成する弾性不燃化剤被膜2bの塗布不燃化剤液は、前記シロキサン溶液(固形分:63%)100gに対し、内央部を構成する不燃断熱性伸縮層Abに適応する併用無機化合物不燃化剤を151.8gを投入して均一に混合した溶液(無機不燃化剤率:60.28%)である。   The coating flame retardant liquid of the elastic flame retardant coating 2b formed by coating the surface of the base sheet 1 with this combined inorganic compound flame retardant is the center of the siloxane solution (solid content: 63%) with respect to 100 g. This is a solution (inorganic flame retardant rate: 60.28%) in which 151.8 g of the combined inorganic compound flame retardant suitable for the non-flammable heat-insulating stretchable layer Ab constituting the part is added and uniformly mixed.

この塗布不燃化剤液を、5mm×300mm×300mmの基材シート1(平均重量:55.7g/枚)の表面に平均90.3g(0.10033g/cm)を塗布し、60枚の不燃化剤含有被膜形成シート3bを製作し、さらにこれを積層して、厚みTbを約300mm以上とし、30〜45℃で24時間硬化養生する。 An average of 90.3 g (0.10033 g / cm 2 ) of this coating flame retardant solution was applied to the surface of a 5 mm × 300 mm × 300 mm substrate sheet 1 (average weight: 55.7 g / sheet). An incombustible agent-containing film-forming sheet 3b is manufactured, and further laminated to make a thickness Tb of about 300 mm or more, and cured at 30 to 45 ° C. for 24 hours.

そして、この不燃化剤含有被膜形成シート3bの積層ブロックを基材シート1の水平面に対して直交する方向に、幅23mmで切断し、図7に示す不燃断熱性伸縮層Abを製作する。   And the laminated block of this flame retardant containing film formation sheet 3b is cut | disconnected by the width 23mm in the direction orthogonal to the horizontal surface of the base material sheet 1, and the nonflammable heat insulation elastic layer Ab shown in FIG. 7 is manufactured.

このときの基材シート1(300×300mm)に付着する不燃化剤量(弾性シロキサンマトリックスを含む。)は平均77.0g/枚(純無機不燃化剤量は54.4g/枚:0.060g/cm)であった。 The amount of flame retardant attached to the substrate sheet 1 (300 × 300 mm) at this time (including the elastic siloxane matrix) averaged 77.0 g / sheet (the amount of pure inorganic flame retardant was 54.4 g / sheet: 0.00). 060 g / cm 2 ).

すなわち、可燃性のゴム高分子量(55.7g/枚)に対して、それに対応付着させる純無機不燃化剤量は(54.4g/枚)、約同重量(1:2〜2:1の範囲に設定することができる。)である。   That is, for the flammable rubber high molecular weight (55.7 g / sheet), the amount of pure inorganic incombustible agent adhering correspondingly (54.4 g / sheet) is about the same weight (1: 2 to 2: 1). Can be set to a range.)

以上の方法で製作した表層部を構成する厚み7mmの不燃断熱性伸縮層Aaと内央部を構成する厚み23mmの不燃断熱性伸縮層Abとを、図7に示すようにさらに積層接着して、図7に示す層厚み30mmの複合不燃断熱性伸縮層Aを形成する。   The non-combustible and heat-insulating stretchable layer Aa having a thickness of 7 mm and the non-flammable and heat-insulating stretchable layer Ab having a thickness of 23 mm constituting the surface layer portion manufactured by the above method are further laminated and bonded as shown in FIG. The composite incombustible heat insulating stretchable layer A having a layer thickness of 30 mm shown in FIG. 7 is formed.

また、図7に示す不燃断熱性弾性伸縮保護材Fの最下層に配備する熱線反射層Bにおいて、その基材シート1(300×300mm)の表面に、耐熱亜鉛シルバー塗料(成分:亜鉛、アルミニウム、固形分:55%)を、約9.0g/枚(0.01g/cm)塗布し、常温自然乾燥後、前記厚み30mmの複合不燃断熱性伸縮層Aの下面に接着配備した。 Moreover, in the heat ray reflective layer B arranged in the lowermost layer of the non-combustible heat-insulating elastic expansion / contraction protective material F shown in FIG. 7, the surface of the base material sheet 1 (300 × 300 mm) has a heat resistant zinc silver paint (components: zinc, aluminum). , Solid content: 55%) was applied at about 9.0 g / sheet (0.01 g / cm 2 ), dried at room temperature, and then adhesively deployed to the lower surface of the 30 mm-thick composite noncombustible heat-insulating stretch layer A.

このようにして製作した厚み35mm、300mm×300mmの不燃断熱性弾性伸縮保護材Fの燃焼断熱性能試験を、図8に示す燃焼断熱性能試験装置を用いて行った。   A combustion heat insulation performance test of the non-combustible heat insulation elastic stretch protection material F having a thickness of 35 mm and a thickness of 300 mm × 300 mm thus manufactured was performed using the combustion heat insulation performance test apparatus shown in FIG.

遊間機能材ロとして、厚み150mm、425mm×425mmのポリエチレンフォーム(密度:0.03g/cm、引張力:0.08MPa、伸び:170%、50%圧縮硬さ:0.0035MPa)を適用する。 A polyethylene foam having a thickness of 150 mm, 425 mm × 425 mm (density: 0.03 g / cm 2 , tensile force: 0.08 MPa, elongation: 170%, 50% compression hardness: 0.0035 MPa) is applied as the loose functional material b. .

また、試験体試料の不燃断熱性弾性伸縮保護材Fは、厚み35mm、300mm×300mmの複合不燃断熱性伸縮層Aとし、表層部を構成する不燃断熱性伸縮層Aaは厚み7mm、300mm×300mmの縦方向積層体とする。また、内央部を構成する不燃断熱性伸縮層Abは、厚み23mm、300mm×300mmの縦方向積層体とする。   The non-combustible heat-insulating elastic stretch protective material F of the test specimen is a composite non-flammable heat-insulating elastic layer A having a thickness of 35 mm and 300 mm × 300 mm, and the non-combustible heat-insulating elastic layer Aa constituting the surface layer portion is 7 mm in thickness and 300 mm × 300 mm. It is set as the vertical direction laminated body. Moreover, let the nonflammable heat-insulation elastic layer Ab which comprises an inner center part be the longitudinal direction laminated body of thickness 23mm and 300 mm x 300 mm.

温度測定センサーは、佐藤慶器製作所社製の針型(φ3)のセンサーSWP−01(測定範囲:−40℃〜240℃、精度:±0.5℃)を使用し、デジタル温度計SK−250WPで計測する。   The temperature measurement sensor is a needle-type (φ3) sensor SWP-01 (measurement range: −40 ° C. to 240 ° C., accuracy: ± 0.5 ° C.) manufactured by Sato Keiki Seisakusho, and a digital thermometer SK- Measure at 250 WP.

実験セットは、図8に示すように、遊間機能材ロの中央に針型のセンサーSWP−01を刺し、センサーの先端を約2mm突き出す。その上面に、厚み35mm、300mm×300mmの不燃断熱性弾性伸縮保護材Fの中央を合致させ、90度交差させて重ねる。すなわち、遊間機能材ロの中央面に突き出る温度測定センサーの先端は不燃断熱性弾性伸縮保護材Fの中央下面に接触する。   In the experimental set, as shown in FIG. 8, a needle-type sensor SWP-01 is inserted in the center of the play functional material B, and the tip of the sensor protrudes about 2 mm. On the upper surface, the center of the non-combustible heat-insulating elastic elastic protective material F having a thickness of 35 mm and 300 mm × 300 mm is matched and overlapped by 90 degrees. In other words, the tip of the temperature measuring sensor that protrudes from the center surface of the play functional material B comes into contact with the center bottom surface of the non-combustible heat-insulating elastic stretch protection material F.

燃焼試験熱源は、日本カーリット社製の道路作業信号炎管ロードフレヤー15AR(φ30×250L、燃焼時間:15分間、燃焼温度:約1,300℃)を不燃断熱性弾性伸縮保護材Fの上面の対角線に沿って中央より約100mm離した位置に噴炎口を付け、不燃断熱性弾性伸縮保護材Fの表面に対して、対角線上で15度傾斜させて噴炎して燃焼試験を行った。
その結果は、表1に示すとおりであった。
The combustion test heat source is a road work signal flame tube road flame 15AR (φ30 × 250L, combustion time: 15 minutes, combustion temperature: about 1,300 ° C.) manufactured by Nippon Carlit Co., Ltd. A flame outlet was attached at a position about 100 mm away from the center along the diagonal line, and the flame test was conducted by inclining the surface of the non-combustible heat-insulating elastic elastic protective material F at an angle of 15 degrees diagonally.
The results were as shown in Table 1.

Figure 2015200137
Figure 2015200137

また、本発明の不燃断熱性弾性伸縮保護材Fは、単一素材で形成するものではなく、各複数の素材で構成されており、各々の素材が持つ機能の相乗効果で性能を発揮する形態であるため、JIS K6400−6に準じる難燃試験法とその評価基準を適用して判断することは困難であるが、部分資材の性能評価の目安とすることは可能であり、JIS K6400−6に準じた難燃試験を以下の方法で実施した。   In addition, the incombustible heat-insulating elastic expansion / contraction protective material F of the present invention is not formed of a single material, but is composed of a plurality of materials, and exhibits a performance by a synergistic effect of the functions of each material. Therefore, it is difficult to make a judgment by applying a flame retardant test method according to JIS K6400-6 and its evaluation criteria, but it can be used as a guideline for performance evaluation of partial materials. JIS K6400-6 The flame retardant test according to was carried out by the following method.

難燃試験試料は、図7に示す不燃断熱性弾性伸縮保護材Fの主構成部材である不燃断熱性伸縮層Aの表層部を構成する不燃断熱性伸縮層Aa及び内央部を構成する不燃断熱性伸縮層Abをそれぞれ構成する不燃化剤含有被膜形成シート3a及び不燃化剤含有被膜形成シート3bの積層ブロックから採取する。   The flame-retardant test sample is a non-flammable heat-insulating elastic layer Aa and a non-flammable material that constitutes the central portion of the non-flammable heat-insulating elastic layer A that is the main component of the non-flammable heat-insulating elastic elastic material F shown in FIG. It samples from the laminated block of the flame retardant containing film forming sheet 3a and the flame retardant containing film forming sheet 3b constituting the heat insulating stretchable layer Ab.

各々の積層ブロックの製作は、前記と同様に、各不燃化剤を含有する弾性不燃化剤被膜2a、2bを5mm×300mm×300mmの基材シート1(平均重量:55.7g/枚)にコーティングし、各々の不燃化剤含有被膜形成シート3a、3bを製作し、各々を10枚積層(厚み:50mm)する。   In the production of each laminated block, the elastic flame retardant coatings 2a and 2b containing each flame retardant are applied to the base sheet 1 (average weight: 55.7 g / sheet) of 5 mm × 300 mm × 300 mm in the same manner as described above. Coating is performed to manufacture each of the incombustible agent-containing film-forming sheets 3a and 3b, and 10 sheets of each are laminated (thickness: 50 mm).

この各々の積層ブロック(厚み:50mm)を積層シート面に対して直交する方向で、10mm×150mmに裁断し、10t×50w×150Lの難燃試験片fとする。   Each of these laminated blocks (thickness: 50 mm) is cut into 10 mm × 150 mm in a direction orthogonal to the laminated sheet surface to obtain a flame retardant test piece f of 10 t × 50 w × 150 L.

この難燃試験片fを、図9に示すように、水平に金網上に配置し、その試料片の先端にJIS K6400−6に指示する燃焼試験バーナをセットし、指示燃焼炎で、60秒間接炎燃焼させ、その後の試料の消火時間及び燃焼状態を確認した。
その結果は、それぞれ表2及び表3に示すとおりであった。
As shown in FIG. 9, this flame-retardant test piece f is horizontally arranged on a wire mesh, a combustion test burner instructed by JIS K6400-6 is set at the tip of the sample piece, and the indicated combustion flame is used for 60 seconds. Indirect flame combustion was performed, and the fire extinguishing time and combustion state of the subsequent samples were confirmed.
The results were as shown in Table 2 and Table 3, respectively.

Figure 2015200137
Figure 2015200137

Figure 2015200137
Figure 2015200137

以上、本発明の不燃断熱性弾性伸縮保護材について、その実施例に基づいて説明したが、本発明は上記実施例に記載した構成に限定されるものではなく、その趣旨を逸脱しない範囲において適宜その構成を変更することができるものである。   As mentioned above, although the incombustible heat-insulating elastic expansion / contraction protective material of the present invention has been described based on the examples thereof, the present invention is not limited to the configurations described in the above-described examples, and is appropriately within a range not departing from the gist thereof. The configuration can be changed.

本発明の不燃断熱性弾性伸縮保護材は、伸縮装置の表層に保護層として挿入し、表層で高熱燃焼火炎や高熱が作用しても、それ自身が類焼延焼や高熱発火することなく、また、その表層の高温を遮断して、伸縮装置遊間に挿入した止水材や防音材等の遊間機能材を保護する厚みの薄い、大きな伸縮性を有する保護層を形成することができる特性を有していることから、伸縮遊間内に敷設される伸縮性止水材や伸縮性防音材等の遊間機能材類の表層に挿入敷設し、路上火災や発炎筒等の高熱火炎による類焼や高熱の作用による発火及び熱損傷から遊間機能材を保護し、かつ、自身が着火延焼しない不燃断熱性弾性伸縮保護材の用途に好適に用いることができる。   The incombustible heat-insulating elastic stretch protective material of the present invention is inserted as a protective layer into the surface layer of the expansion / contraction device, and even if a high-heat combustion flame or high heat acts on the surface layer, it itself does not cause a similar fire spread or high-temperature fire, It has the characteristic that it can form a thin, large stretch protective layer that blocks the high temperature of the surface layer and protects the play function material such as water-stopping material and soundproof material inserted between the expansion device play. Therefore, it is inserted and laid on the surface layer of functional materials such as stretchable waterproofing materials and stretchable soundproofing materials that are laid in the stretchable space. It can be suitably used for non-flammable heat-insulating elastic expansion / contraction protective materials that protect the loose functional material from ignition and thermal damage and that do not ignite and spread.

A 不燃断熱性伸縮層
Aa 不燃断熱性弾性伸縮保護材の表層部を構成する不燃化剤を含有する弾性不燃化剤被膜で形成した不燃化剤含有被膜形成シートを積層して形成した不燃断熱性伸縮層
Ab 不燃断熱性弾性伸縮保護材の内央部を構成する不燃化剤を含有する弾性不燃化剤被膜で形成した不燃化剤含有被膜形成シートを積層して形成した不燃断熱性伸縮層
B 熱線反射層
F 不燃断熱性弾性伸縮保護材
J 伸縮装置
P 伸縮装置遊間ウエーブプレート
イ 保護層
ロ 遊間機能材
1 基材シート
2 弾性不燃化剤被膜
2a 弾性不燃化剤被膜
2b 弾性不燃化剤被膜
3 不燃化剤含有被膜形成シート
3a 不燃化剤を含有する弾性不燃化剤被膜を形成した不燃化剤含有被膜形成シート
3b 不燃化剤を含有する弾性不燃化剤被膜を形成した不燃化剤含有被膜形成シート
4 反射鏡面
A non-combustible heat-insulating stretch layer Aa non-combustible heat-insulating material formed by laminating a non-combustible agent-containing film-forming sheet formed of an elastic fire-retardant film containing a non-combustible agent that constitutes the surface layer of an incombustible heat-insulating elastic stretch protective material Stretchable layer Ab Nonflammable heat-insulating elastic layer formed by laminating a flame-retardant-containing film-forming sheet formed of an elastic flame-retardant film containing a flame-retardant that constitutes the central part of the flame-retardant heat-insulating elastic stretch-protecting material B Heat ray reflective layer F Incombustible heat insulating elastic stretch protective material J Stretch device P Stretch device idle wave plate A Protective layer B Play functional material 1 Base sheet 2 Elastic flame retardant coating 2a Elastic flame retardant coating 2b Elastic flame retardant coating 3 Flame retardant containing film forming sheet 3a Flame retardant containing film forming sheet containing an inflammable agent containing film 3b Flame retardant containing an elastic flame retardant containing film containing a flame retardant Film-forming sheet 4 Reflective mirror surface

Claims (6)

伸縮装置の表層に保護層として設けられる不燃断熱性弾性伸縮保護材であって、柔軟弾性ゴム連続気泡スポンジ材からなる基材シートの表層に不燃化剤を含有する弾性不燃化剤被膜を形成した不燃化剤含有被膜形成シートを積層してなる不燃断熱性伸縮層を備えてなることを特徴とする不燃断熱性弾性伸縮保護材。   An incombustible heat-insulating elastic expansion / contraction protective material provided as a protective layer on the surface layer of the expansion / contraction device, wherein an elastic flame retardant coating containing a flame retardant is formed on the surface layer of a base sheet made of a flexible elastic rubber open-cell sponge material A non-combustible heat-insulating elastic stretchable protective material comprising a non-combustible heat-insulating stretchable layer formed by laminating a nonflammable agent-containing film-forming sheet. 前記不燃化剤が、低燃焼熱で溶融し、熱分解して不燃性ガスである炭酸ガスを生成する化合物からなることを特徴とする請求項1記載の不燃断熱性弾性伸縮保護材。   The non-combustible heat-insulating elastic elastic protective material according to claim 1, wherein the non-combustible agent is composed of a compound that melts with low combustion heat and thermally decomposes to generate carbon dioxide that is a non-combustible gas. 前記不燃化剤に、低燃焼熱で溶融する無機化合物からなるフリット釉を添加してなることを特徴とする請求項1又は2記載の不燃断熱性弾性伸縮保護材。   The incombustible heat-insulating elastic expansion-contraction protective material according to claim 1 or 2, wherein frit soot made of an inorganic compound that melts with low combustion heat is added to the incombustible agent. 前記不燃断熱性伸縮層が、フリット釉を添加した不燃化剤を含有する弾性不燃化剤被膜を形成した不燃化剤含有被膜形成シートを積層してなる不燃断熱性伸縮層を表層部に、フリット釉を添加しない不燃化剤を含有する弾性不燃化剤被膜を形成した不燃化剤含有被膜形成シートを積層してなる不燃断熱性伸縮層を内央部に用いてなることを特徴とする請求項3記載の不燃断熱性弾性伸縮保護材。   The non-combustible heat-insulating elastic layer is formed of a non-combustible heat-insulating elastic layer formed by laminating a non-combustible agent-containing film-forming sheet formed with an elastic non-combustible agent film containing an incombustible agent added with frit soot. The incombustible heat-insulating stretch layer formed by laminating a flame-retardant-containing film-forming sheet on which an elastic flame-retardant film containing a flame-retardant without adding soot is formed is used at the center. 3. A non-combustible heat-insulating elastic expansion / contraction protective material according to 3. 前記不燃断熱性伸縮層が、前記不燃化剤含有被膜形成シートを、水平方向又は垂直方向にして積層されてなることを特徴とする請求項1、2、3又は4記載の不燃断熱性弾性伸縮保護材。   The non-combustible heat-insulating elastic stretch layer according to claim 1, 2, 3, or 4, wherein the non-combustible heat-insulating elastic layer is formed by laminating the non-combustible agent-containing film forming sheet in a horizontal direction or a vertical direction. Protective layer. 前記不燃断熱性伸縮層の最下面に、熱線を反射する反射鏡面を形成した熱線反射層を接着一体化してなることを特徴とする請求項1、2、3、4又は5記載の不燃断熱性弾性伸縮保護材。   6. The incombustible heat insulating property according to claim 1, wherein a heat ray reflective layer having a reflecting mirror surface for reflecting heat rays is bonded and integrated on a lowermost surface of the incombustible heat insulating stretchable layer. Elastic stretch protection material.
JP2014080403A 2014-04-09 2014-04-09 Non-combustible, heat-insulating, elastic stretch protective material Active JP6275532B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014080403A JP6275532B2 (en) 2014-04-09 2014-04-09 Non-combustible, heat-insulating, elastic stretch protective material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014080403A JP6275532B2 (en) 2014-04-09 2014-04-09 Non-combustible, heat-insulating, elastic stretch protective material

Publications (2)

Publication Number Publication Date
JP2015200137A true JP2015200137A (en) 2015-11-12
JP6275532B2 JP6275532B2 (en) 2018-02-07

Family

ID=54551656

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014080403A Active JP6275532B2 (en) 2014-04-09 2014-04-09 Non-combustible, heat-insulating, elastic stretch protective material

Country Status (1)

Country Link
JP (1) JP6275532B2 (en)

Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5695016U (en) * 1979-12-24 1981-07-28
JPS60164539U (en) * 1984-04-11 1985-11-01 新田 親弘 Joint cutting material for concrete
JPH0318205U (en) * 1989-07-03 1991-02-22
JPH03103307U (en) * 1990-01-31 1991-10-28
JPH07320554A (en) * 1994-05-26 1995-12-08 Hitachi Cable Ltd Fireproofing cable
JPH0874350A (en) * 1994-09-07 1996-03-19 Miyazawa Sogyo:Kk Surfacing method, and architectural panel and wall-surfacing sheet therefor
JPH09282952A (en) * 1996-04-12 1997-10-31 Hitachi Cable Ltd Rubber/plastic coated wire, and method and device for manufacturing this coated wire
JP2689079B2 (en) * 1994-06-06 1997-12-10 旭化工株式会社 Water-stopping material for playground
JPH10120813A (en) * 1996-10-15 1998-05-12 Stylite Kogyo Kk Noncombustible fire-resistant composition and noncombustible fire-resistant foamed plastic
JPH10233126A (en) * 1997-02-20 1998-09-02 Hitachi Cable Ltd Fireproof cable with gas shielding layer
JP2001065784A (en) * 1999-08-25 2001-03-16 Kawakami Sangyo Co Ltd Foam sheet heat insulating material
JP2001279843A (en) * 2000-01-24 2001-10-10 Kikusui Chemical Industries Co Ltd Fire resistant pannel
JP2003342517A (en) * 2002-05-29 2003-12-03 Yutaka Tomita Nonflammable coating for building and building material
JP2005120780A (en) * 2003-10-20 2005-05-12 Nitta Ind Corp Water cut-off member for expansion gap
JP2007169415A (en) * 2005-12-21 2007-07-05 Fujikura Ltd Fire-retardant and fire-resistant ethylene-propylene-diene copolymer composition and low voltage fire resistant wire/cable
US20070151185A1 (en) * 2005-12-29 2007-07-05 Robinson Steven R Method and device for resilient seal system
JP2008031631A (en) * 2006-07-26 2008-02-14 Nitta Ind Corp Expansion device
US20100058696A1 (en) * 2006-09-08 2010-03-11 Boss Polymer Technologies Pty Ltd. Joint seal
JP2010111760A (en) * 2008-11-06 2010-05-20 Hitachi Cable Ltd Non-halogen resin composition, non-halogen insulated electrical wire, and non-halogen cable
KR100976546B1 (en) * 2009-12-22 2010-08-17 (주)은성이앤씨 Flexible connecting apparatus with barrier lex
JP2012180684A (en) * 2011-03-01 2012-09-20 Mikasa Metal Industries Co Ltd Cutoff body for expansion gap and water stop device for expansion gap using the same
JP2012211298A (en) * 2011-03-24 2012-11-01 Hitachi Cable Ltd Flame-retardant resin composition, molded article using the same, and fire prevention tape
JP2013163971A (en) * 2013-05-28 2013-08-22 Mikasa Metal Industries Co Ltd Finger joint
JP2013234323A (en) * 2012-04-11 2013-11-21 Nitto Denko Corp Flame-retardant silicone resin composition and flame-retardant silicone resin sheet

Patent Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5695016U (en) * 1979-12-24 1981-07-28
JPS60164539U (en) * 1984-04-11 1985-11-01 新田 親弘 Joint cutting material for concrete
JPH0318205U (en) * 1989-07-03 1991-02-22
JPH03103307U (en) * 1990-01-31 1991-10-28
JPH07320554A (en) * 1994-05-26 1995-12-08 Hitachi Cable Ltd Fireproofing cable
JP2689079B2 (en) * 1994-06-06 1997-12-10 旭化工株式会社 Water-stopping material for playground
JPH0874350A (en) * 1994-09-07 1996-03-19 Miyazawa Sogyo:Kk Surfacing method, and architectural panel and wall-surfacing sheet therefor
JPH09282952A (en) * 1996-04-12 1997-10-31 Hitachi Cable Ltd Rubber/plastic coated wire, and method and device for manufacturing this coated wire
JPH10120813A (en) * 1996-10-15 1998-05-12 Stylite Kogyo Kk Noncombustible fire-resistant composition and noncombustible fire-resistant foamed plastic
JPH10233126A (en) * 1997-02-20 1998-09-02 Hitachi Cable Ltd Fireproof cable with gas shielding layer
JP2001065784A (en) * 1999-08-25 2001-03-16 Kawakami Sangyo Co Ltd Foam sheet heat insulating material
JP2001279843A (en) * 2000-01-24 2001-10-10 Kikusui Chemical Industries Co Ltd Fire resistant pannel
JP2003342517A (en) * 2002-05-29 2003-12-03 Yutaka Tomita Nonflammable coating for building and building material
JP2005120780A (en) * 2003-10-20 2005-05-12 Nitta Ind Corp Water cut-off member for expansion gap
JP2007169415A (en) * 2005-12-21 2007-07-05 Fujikura Ltd Fire-retardant and fire-resistant ethylene-propylene-diene copolymer composition and low voltage fire resistant wire/cable
US20070151185A1 (en) * 2005-12-29 2007-07-05 Robinson Steven R Method and device for resilient seal system
JP2008031631A (en) * 2006-07-26 2008-02-14 Nitta Ind Corp Expansion device
US20100058696A1 (en) * 2006-09-08 2010-03-11 Boss Polymer Technologies Pty Ltd. Joint seal
JP2010111760A (en) * 2008-11-06 2010-05-20 Hitachi Cable Ltd Non-halogen resin composition, non-halogen insulated electrical wire, and non-halogen cable
KR100976546B1 (en) * 2009-12-22 2010-08-17 (주)은성이앤씨 Flexible connecting apparatus with barrier lex
JP2012180684A (en) * 2011-03-01 2012-09-20 Mikasa Metal Industries Co Ltd Cutoff body for expansion gap and water stop device for expansion gap using the same
JP2012211298A (en) * 2011-03-24 2012-11-01 Hitachi Cable Ltd Flame-retardant resin composition, molded article using the same, and fire prevention tape
JP2013234323A (en) * 2012-04-11 2013-11-21 Nitto Denko Corp Flame-retardant silicone resin composition and flame-retardant silicone resin sheet
JP2013163971A (en) * 2013-05-28 2013-08-22 Mikasa Metal Industries Co Ltd Finger joint

Also Published As

Publication number Publication date
JP6275532B2 (en) 2018-02-07

Similar Documents

Publication Publication Date Title
RU2448841C2 (en) Fire-proof film laminate
US9272169B2 (en) Fire barrier protection for airplanes comprising graphite films
US4299872A (en) Intumescent material-honeycomb thermal barrier
CN105561502B (en) Burn protection system
US20060068201A1 (en) Fire resistant polymeric compositions
US20100304078A1 (en) Fire resistant systems, methods and apparatus
JP2009215721A (en) Fire-resistant and heat-insulating sheet
KR101431002B1 (en) Non-flammable coating composition for expanded polystyrene foam
RU2631868C1 (en) Flexible plate containing fire-extinguishing composite material and method of its manufacture (versions)
JP2007297856A (en) Fire-resistant cover sheet for steel frame
KR101619298B1 (en) Two component polyurethane non-flammable adhesive and non-flammable composite using the same
KR20110052662A (en) Flame-retarding arrangement in reinforced-plastic boats
JP6275532B2 (en) Non-combustible, heat-insulating, elastic stretch protective material
BRPI0714821A2 (en) compositions and methods for the protection of substrates against heat flux and fire
KR20150124800A (en) Fire proofing sandwich panel using artificial light weight aggregate production method therewith
RU2616943C1 (en) Self-supporting extinguishing media
JP2010143061A (en) Fire-proof film and fire-proof glass
JP2015189975A (en) Thermally expandable fire-resistant resin composition and method for manufacturing molded product of the same
JP2018154733A (en) Reaction-curable fire-resistant composition, fire-resistant layer forming sheet, and fire-resistant structure
KR101177289B1 (en) Eco-friendly silicon fireproof material for civil structure enabling difficult combustion
JP5808612B2 (en) Thermally expandable heat insulating sealing material
JP5725333B2 (en) Wooden parts
KR101792765B1 (en) Forming type-flame retandant cloth for preventing spark-scattering and product using the same
JP2004314838A (en) Fire-resistant bulkhead structure and fire-resistant coating method for engine compartment
RU140812U1 (en) FIRE PROTECTIVE INTEGRATED LAMINATE MATERIAL

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171018

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180110

R150 Certificate of patent or registration of utility model

Ref document number: 6275532

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250