JP2015200022A - Manufacturing method of iron-based shape memory alloy and iron-based shape memory alloy - Google Patents

Manufacturing method of iron-based shape memory alloy and iron-based shape memory alloy Download PDF

Info

Publication number
JP2015200022A
JP2015200022A JP2015070235A JP2015070235A JP2015200022A JP 2015200022 A JP2015200022 A JP 2015200022A JP 2015070235 A JP2015070235 A JP 2015070235A JP 2015070235 A JP2015070235 A JP 2015070235A JP 2015200022 A JP2015200022 A JP 2015200022A
Authority
JP
Japan
Prior art keywords
strain
shape memory
mass
iron
memory alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015070235A
Other languages
Japanese (ja)
Inventor
洋志 福富
Hiroshi Fukutomi
洋志 福富
鈴木 茂
Shigeru Suzuki
鈴木  茂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Yokohama National University NUC
Original Assignee
Tohoku University NUC
Yokohama National University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC, Yokohama National University NUC filed Critical Tohoku University NUC
Priority to JP2015070235A priority Critical patent/JP2015200022A/en
Publication of JP2015200022A publication Critical patent/JP2015200022A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Forging (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of an iron-based shape memory alloy having lower cost and higher recovery strain than conventional products.SOLUTION: The manufacturing method of an iron-based shape memory alloy includes a first process of conducting plane strain compression process on a material to be proceeded containing 3 mass% to 7 mass% of Si, 15 mass% to 33 mass% of Mn and the balance Fe with inevitable impurities in a temperature range where the Si is solid dissolved in Fe to be a single phase and at strain speed where solute atom atmosphere controls movement of a transition and a crystal grain boundary can move with a strain energy of a crystal grain as a driving force and a second process for cutting the material to be proceeded on a face having 40° to 50° to an elongation direction in the plane strain compression process and parallel to a load adding direction.

Description

本発明は、鉄基形状記憶合金の製造方法、及び鉄基形状記憶合金に関する。   The present invention relates to a method for producing an iron-base shape memory alloy and an iron-base shape memory alloy.

形状記憶効果を有する合金として、Ti−Ni系形状記憶合金と鉄基形状記憶合金とが知られている。Ti−Ni系形状記憶合金の回復ひずみは約8%であり、鉄基形状記憶合金よりも高い値となっている。しかしながら、Ti−Ni系形状記憶合金は、鉄基形状記憶合金よりも高価であり且つ加工性が劣るので、小型の精密機械等、その用途が限られている。一方、鉄基形状記憶合金は、その回復ひずみが約2〜3%と低いものの、安価であり且つ加工性が良い。このため、鉄基形状記憶合金の適用範囲を広げるために、鉄基形状記憶合金の回復ひずみを向上することが求められている。   Ti-Ni type shape memory alloys and iron-based shape memory alloys are known as alloys having a shape memory effect. The recovery strain of the Ti—Ni-based shape memory alloy is about 8%, which is higher than that of the iron-based shape memory alloy. However, Ti—Ni-based shape memory alloys are more expensive than iron-based shape memory alloys and are inferior in workability, so their use is limited to small precision machines and the like. On the other hand, the iron-based shape memory alloy has a low recovery strain of about 2-3%, but is inexpensive and has good workability. For this reason, in order to expand the application range of an iron-based shape memory alloy, it is required to improve the recovery strain of the iron-based shape memory alloy.

非特許文献1には、鉄基形状記憶合金であるFe−Mn−Si系形状記憶合金にトレーニング処理を施すことにより、トレーニング処理前よりも大きい回復ひずみを得られることが開示されている。ここで、トレーニング処理とは、形状記憶性を付与した形状記憶合金に所定量のひずみを付加し、所定の温度へ加熱することにより、形状記憶性を向上する処理であり、ひずみの付加と加熱は複数回繰り返されても良い。非特許文献1では、トレーニング処理を施す前の回復ひずみは3%よりも小さいのに対し、トレーニング処理を施した後では、回復ひずみが3%よりも高くなっている。   Non-Patent Document 1 discloses that a recovery strain larger than that before the training process can be obtained by performing a training process on an Fe-Mn-Si-based shape memory alloy that is an iron-based shape memory alloy. Here, the training process is a process for improving shape memory by applying a predetermined amount of strain to a shape memory alloy imparted with shape memory and heating it to a predetermined temperature. May be repeated multiple times. In Non-Patent Document 1, the recovery strain before the training process is smaller than 3%, but after the training process, the recovery strain is higher than 3%.

このように、トレーニング処理をすることで、非特許文献1のように回復ひずみを増加させることはできるが、トレーニング処理にはコストがかかる。また、より高い回復ひずみが求められている。   Thus, by performing the training process, the recovery strain can be increased as in Non-Patent Document 1, but the training process is costly. Moreover, higher recovery strain is required.

国際公開第2007/055155号International Publication No. 2007/055155

淡路マテリア株式会社 開発グループ、「Fe−Mn−Si系形状記憶合金の特性と応用」、[online]、淡路マテリア株式会社、[平成26年2月21日検索]、インターネット〈URL:http://www.awaji-m.jp/r_and_d/images/sma.pdf〉Awaji Materia Co., Ltd. Development Group, "Characteristics and Applications of Fe-Mn-Si Shape Memory Alloy", [online], Awaji Materia Co., Ltd., [February 21, 2014 Search], Internet <URL: http: / /www.awaji-m.jp/r_and_d/images/sma.pdf>

非特許文献1によれば、Fe−Mn−Si系形状記憶合金の形状記憶効果は、面心立方構造を有するオーステナイト相(γ相)から六方最密充填構造を有するマルテンサイト相(ε相)への応力誘起変態(マルテンサイト変態)と、応力誘起変態をした状態の素材に回復熱を与えることで起こる逆変態とにより得られる。応力誘起変態による変形には結晶方位依存性があるため、形状記憶効果にも結晶方位依存性があると考えられる。このため、より大きい回復ひずみを得るためには、形状記憶合金の集合組織制御が有効であると考えられる。   According to Non-Patent Document 1, the shape memory effect of the Fe—Mn—Si based shape memory alloy is from an austenite phase (γ phase) having a face-centered cubic structure to a martensite phase (ε phase) having a hexagonal close packed structure. It is obtained by the stress-induced transformation to (martensitic transformation) and the reverse transformation that occurs by applying recovery heat to the material that has undergone the stress-induced transformation. Since deformation due to stress-induced transformation has crystal orientation dependence, the shape memory effect is also considered to have crystal orientation dependence. For this reason, it is considered that the texture control of the shape memory alloy is effective for obtaining a larger recovery strain.

特許文献1には、冷間加工と熱処理とを繰り返し施すことにより、圧延方向における<100>の存在頻度を2以上にした鉄系合金が開示されている。なお、特許文献1において、この存在頻度は電子背面散乱パターン法で測定されており、結晶方位が完全にランダムになっている場合の加工方向に配向された<100>の存在頻度を1と仮定したときの存在率を<100>の存在頻度としている。この鉄系合金における形状回復率は80%以上となっている。しかしながら、回復熱を付与する前に合金に与えられるひずみが2%と小さいため、非特許文献1のように5%以上まで変形した後に回復熱を付与した回復ひずみが実用上十分な値をとるかは、特許文献1からは不明である。また、特許文献1では、圧延方向における<100>の存在頻度を向上する余地があり、圧延方向における結晶方位だけではなく、板厚方向や幅方向における結晶方位も検討する余地がある。さらに、冷間加工と熱処理とを繰り返しているため工程数が多く、その結果製造コストが増加するという問題がある。   Patent Document 1 discloses an iron-based alloy in which the presence frequency of <100> in the rolling direction is set to 2 or more by repeatedly performing cold working and heat treatment. In Patent Document 1, this existence frequency is measured by the electron backscattering pattern method, and it is assumed that the existence frequency of <100> oriented in the processing direction when the crystal orientation is completely random is 1. The presence rate at the time of occurrence is set as <100> presence frequency. The shape recovery rate in this iron-based alloy is 80% or more. However, since the strain applied to the alloy before applying the recovery heat is as small as 2%, the recovery strain applied with the recovery heat after being deformed to 5% or more as in Non-Patent Document 1 takes a practically sufficient value. This is unknown from Patent Document 1. Further, in Patent Document 1, there is room for improving the presence frequency of <100> in the rolling direction, and there is room for examining not only the crystal orientation in the rolling direction but also the crystal orientation in the plate thickness direction and the width direction. Furthermore, since cold work and heat treatment are repeated, there is a problem that the number of steps is large, resulting in an increase in manufacturing cost.

本発明は上記事情に鑑みてなされたものであり、その第一の目的は、従来よりも低コストで且つ高い回復ひずみを有する鉄基形状記憶合金の製造方法を提供することにある。また、第二の目的は、従来よりも高い回復ひずみを有する鉄基形状記憶合金を提供することにある。   This invention is made | formed in view of the said situation, The 1st objective is to provide the manufacturing method of the iron base shape memory alloy which has a low recovery cost and high recovery strain conventionally. A second object is to provide an iron-based shape memory alloy having a higher recovery strain than before.

本発明の鉄基形状記憶合金の製造方法は、3質量%以上7質量%以下のSiと、15質量%以上33質量%以下のMnと、残部がFe及び不可避的不純物からなる被加工材を、前記SiがFe中に固溶し単相となる温度域で、且つ、溶質原子雰囲気が転位の運動を支配し且つ結晶粒のひずみエネルギーを駆動力として結晶粒界が移動できるひずみ速度で、平面ひずみ圧縮加工を行う第一の工程と、前記第一の工程を施した前記被加工材を、前記平面ひずみ圧縮加工における伸長方向に対して40°〜50°をなし、且つ荷重付加方向に平行な面で被加工材を切断する第二の工程と、を有する。   The method for producing an iron-based shape memory alloy according to the present invention comprises a workpiece comprising 3% to 7% by mass of Si, 15% to 33% by mass of Mn, and the balance being Fe and inevitable impurities. In a temperature range in which the Si is dissolved in Fe into a single phase, the solute atom atmosphere dominates the movement of dislocations, and the strain rate at which the grain boundaries can move using the strain energy of the grains as a driving force, A first step of performing plane strain compression processing, and the workpiece subjected to the first step is formed at 40 ° to 50 ° with respect to the extension direction in the plane strain compression processing, and in the load application direction. And a second step of cutting the workpiece on a parallel surface.

また、本発明の鉄基形状記憶合金の製造方法は、3質量%以上7質量%以下のSiと、15質量%以上33質量%以下のMnと、残部がFe及び不可避的不純物からなる被加工材を、800℃以上1250℃以下の温度で、且つ、1×10−5−1以上1×10−1−1以下のひずみ速度で、真ひずみ量が0.5以上となるまで平面ひずみ圧縮加工を行う第一の工程と、前記第一の工程を施した前記被加工材を、前記平面ひずみ圧縮加工における伸長方向に対して40°〜50°をなし、且つ荷重付加方向に平行な面で被加工材を切断する第二の工程と、を有する。
なお、本発明において「真ひずみ量」は真ひずみの絶対値を意味する。
Further, the method for producing an iron-based shape memory alloy of the present invention is a workpiece comprising 3% by mass or more and 7% by mass or less of Si, 15% by mass or more and 33% by mass or less of Mn, and the balance being Fe and inevitable impurities. The material is flat at a temperature of 800 ° C. or more and 1250 ° C. or less and at a strain rate of 1 × 10 −5 s −1 or more and 1 × 10 −1 s −1 or less until the true strain amount becomes 0.5 or more. The first step of performing strain compression processing and the workpiece subjected to the first step form 40 ° to 50 ° with respect to the extension direction in the plane strain compression processing and are parallel to the load application direction. And a second step of cutting the workpiece on a smooth surface.
In the present invention, “true strain amount” means an absolute value of true strain.

本発明の製造方法において、前記真ひずみ量が1.5以下であることが好ましい。
本発明の製造方法において、前記切断面に平行な方向が形状回復容易方向であることが好ましい。
本発明の製造方法において、前記被加工材が更に3質量%以上7質量%以下のCrを含むことが好ましい。
本発明の製造方法において、前記被加工材が更に3質量%以上7質量%以下のNiを含むことが好ましい。
In the production method of the present invention, the true strain amount is preferably 1.5 or less.
In the manufacturing method of this invention, it is preferable that the direction parallel to the said cut surface is an easy shape recovery direction.
In the manufacturing method of this invention, it is preferable that the said workpiece further contains 3 mass% or more and 7 mass% or less of Cr.
In the manufacturing method of this invention, it is preferable that the said workpiece further contains 3 mass% or more and 7 mass% or less of Ni.

また、本発明の鉄基形状記憶合金は、3質量%以上7質量%以下のSiと、15質量%以上33質量%以下のMnと、残部がFe及び不可避的不純物からなり、形状回復容易方向における回復ひずみが、2.5%より大きい。   Further, the iron-based shape memory alloy of the present invention comprises 3% by mass or more and 7% by mass or less of Si, 15% by mass or more and 33% by mass or less of Mn, and the balance is Fe and unavoidable impurities. The recovery strain at is greater than 2.5%.

本発明の鉄基形状記憶合金は、前記形状回復容易方向に平行な<110>方位の平均集積強度が、ランダム組織のそれの2.3倍以上であることが好ましい。
本発明の鉄基形状記憶合金は、前記形状回復容易方向に対して<110>方位に配向された結晶粒の平均粒径が10μm以下であることが好ましい。
本発明の鉄基形状記憶合金は、面心立方構造を有する相において、前記形状回復容易方向を基準として、0°以上15°以下の範囲内に<110>方向に配向する結晶粒が体積分率で22%以上含まれることが好ましい。
本発明の鉄基形状記憶合金は、更に3質量%以上7質量%以下のCrを含むことが好ましい。
本発明の鉄基形状記憶合金は、更に3質量%以上7質量%以下のNiを含むことが好ましい。
In the iron-based shape memory alloy of the present invention, it is preferable that the average integrated strength in the <110> orientation parallel to the direction of easy shape recovery is 2.3 times or more that of the random structure.
In the iron-based shape memory alloy of the present invention, it is preferable that the average grain size of crystal grains oriented in the <110> orientation with respect to the direction of easy shape recovery is 10 μm or less.
In the iron-based shape memory alloy of the present invention, in a phase having a face-centered cubic structure, crystal grains oriented in the <110> direction within a range of 0 ° to 15 ° with reference to the direction of easy shape recovery are volume fractions. It is preferable that the content is 22% or more.
The iron-based shape memory alloy of the present invention preferably further contains 3 mass% or more and 7 mass% or less of Cr.
The iron-based shape memory alloy of the present invention preferably further contains 3 mass% or more and 7 mass% or less of Ni.

本発明によれば、従来よりも低コストで且つ高い回復ひずみを有する鉄基形状記憶合金の製造方法が提供される。また、従来よりも高い回復ひずみを有する鉄基形状記憶合金が提供される。   ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the iron-base shape memory alloy which has low recovery cost and high recovery strain than before is provided. Also provided is an iron-based shape memory alloy having a higher recovery strain than before.

平面ひずみ圧縮加工を説明する模式図であり、(a)は変形前、(b)は変形後を表す。It is a schematic diagram explaining a plane strain compression process, (a) represents before deformation, (b) represents after deformation. 第二の工程における切断面を説明する模式図であり、(a)は斜視図、(b)は平面図である。It is a schematic diagram explaining the cut surface in a 2nd process, (a) is a perspective view, (b) is a top view. 平面ひずみ圧縮加工を行うための装置の模式図である。It is a schematic diagram of the apparatus for performing a plane strain compression process. 実施例1〜3におけるCube方位、Goss方位、Brass方位、及びS方位に配向された結晶粒の体積率とひずみ速度との関係を示す図である。It is a figure which shows the relationship between the volume rate and the strain rate of the crystal grain orientated in Cube direction, Goss direction, Brass direction, and S direction in Examples 1-3. 実施例2、4及び初期材におけるCube方位、Goss方位、Brass方位、及びS方位に配向された結晶粒の体積率と真ひずみ量との関係を示す図である。It is a figure which shows the relationship between the volume rate of the crystal grain orientated in Example 2, 4 and the initial stage material in the Cube direction, Goss direction, Brass direction, and S direction, and the amount of true strain. 実施例1〜4の集合組織を、X線ディフラクトメータを用いて測定した結果を示すφ=0°断面であり、(a)は実施例1、(b)は実施例2、(c)は実施例3、(d)は実施例4のφ=0°断面である。It is (phi) 2 = 0 degree cross section which shows the result of having measured the texture of Examples 1-4 using the X-ray diffractometer, (a) is Example 1, (b) is Example 2, (c ) Is Example 3 and (d) is a φ 2 = 0 ° cross section of Example 4. 実施例1〜4の集合組織を、X線ディフラクトメータを用いて測定した結果を示すφ=20°断面であり、(a)は実施例1、(b)は実施例2、(c)は実施例3、(d)は実施例4のφ=20°断面である。It is (phi) 2 = 20 degree cross section which shows the result of having measured the texture of Examples 1-4 using the X-ray diffractometer, (a) is Example 1, (b) is Example 2, (c ) Is Example 3, and (d) is the φ 2 = 20 ° cross section of Example 4. 実施例2、4の集合組織を測定した結果を示す逆極点図であり、(a)は実施例2、(b)は実施例4の逆極点図である。It is a reverse pole figure which shows the result of having measured the texture of Example 2, 4, (a) is Example 2 and (b) is a reverse pole figure of Example 4. FIG. 実施例2〜4及び初期材の回復ひずみと、引張方向における<110>の体積率との関係を示すグラフである。It is a graph which shows the relationship between the recovery strain of Examples 2-4 and an initial stage material, and the volume ratio of <110> in a tension direction. 実施例2〜4及び初期材の回復ひずみと、引張試験におけるひずみ量との関係を示すグラフである。It is a graph which shows the relationship between Examples 2-4 and the recovery | restoration distortion | strain of an initial stage material, and the distortion amount in a tension test. 実施例5〜8の回復ひずみと引張試験におけるひずみ量との関係を示すグラフである。It is a graph which shows the relationship between the recovery strain of Examples 5-8, and the strain amount in a tension test.

以下に本発明の実施形態に係る鉄基形状記憶合金の製造方法、及び鉄基形状記憶合金について説明する。
本実施形態に係る鉄基形状記憶合金の製造方法は、3質量%以上7質量%以下のSiと、15質量%以上33質量%以下のMnと、残部がFe及び不可避的不純物からなる被加工材を、前記SiがFe中に固溶し単相となる温度域で、且つ、溶質原子雰囲気が転位の運動を支配し且つ結晶粒のひずみエネルギーを駆動力として結晶粒界が移動できるひずみ速度で、平面ひずみ圧縮加工を行う第一の工程と、前記第一の工程を施した前記被加工材を、前記平面ひずみ圧縮加工における伸長方向に対して40°〜50°をなし、且つ荷重付加方向に平行な面で被加工材を切断する第二の工程と、を有する。
かかる製造方法によれば、回復ひずみの高い鉄基形状記憶合金を得ることができる。以下、このメカニズムについて説明する。
Hereinafter, a method for producing an iron-based shape memory alloy and an iron-based shape memory alloy according to an embodiment of the present invention will be described.
The manufacturing method of the iron-based shape memory alloy according to the present embodiment is a work piece comprising 3% by mass or more and 7% by mass or less of Si, 15% by mass or more and 33% by mass or less of Mn, the balance being Fe and inevitable impurities. The strain rate at which the grain boundary can move in the temperature range where the Si is dissolved in Fe into a single phase and the solute atomic atmosphere governs the movement of dislocations and the strain energy of the grains as a driving force. Thus, the first step of performing plane strain compression processing and the workpiece subjected to the first step form a load of 40 ° to 50 ° with respect to the extension direction in the plane strain compression processing, and a load is applied. And a second step of cutting the workpiece on a plane parallel to the direction.
According to this manufacturing method, an iron-based shape memory alloy having a high recovery strain can be obtained. Hereinafter, this mechanism will be described.

上記第一の工程では、面心立方構造を有する鉄にSiを固溶させた鉄基形状記憶合金である被加工材を、SiがFe中に固溶し単相となる温度域で、且つ、溶質原子雰囲気が転位の運動を支配し且つ結晶粒のひずみエネルギーを駆動力として結晶粒界が移動できるひずみ速度で、平面ひずみ圧縮加工を行う。平面ひずみ圧縮加工とは、図1に示すように、荷重付加方向と直交する方向に被加工材を拘束した状態で行われる圧縮加工である。平面ひずみ圧縮加工の一例として圧延が挙げられる。なお、以下の説明においては、平面ひずみ圧縮加工により結晶粒が配向される方位について、荷重付加方向に垂直な面(圧縮面)の方位を面指数である{hkl}で表し、平面ひずみ圧縮加工により被加工材4が伸長する伸長方向の方位を方向の指数である<uvw>で表す。   In the first step, a workpiece which is an iron-based shape memory alloy in which Si is solid-solved in iron having a face-centered cubic structure, in a temperature range where Si is solid-solved in Fe and becomes a single phase, and The plane strain compression processing is performed at a strain rate at which the crystal grain boundary can move with the solute atomic atmosphere governing the dislocation motion and the strain energy of the crystal grains as a driving force. As shown in FIG. 1, the plane strain compression process is a compression process performed in a state where a workpiece is constrained in a direction orthogonal to the load application direction. An example of the plane strain compression process is rolling. In the following description, with respect to the orientation in which crystal grains are oriented by plane strain compression processing, the orientation of the plane (compression plane) perpendicular to the load application direction is represented by {hkl} as the plane index, and plane strain compression processing is performed. The orientation in the extending direction in which the workpiece 4 extends is represented by <uvw>, which is a direction index.

第一の工程では、加工の初期段階では、平面ひずみ圧縮加工によるひずみ量の増加と共に、すべり変形により、Cube方位{001}<100>、Goss方位{011}<100>、Brass方位{011}<211>、S方位{123}<634>に配向される結晶粒の体積率が増加する。その後、ひずみ量の増加に伴い、Cube方位に配向される結晶粒の体積率が増加し、先鋭なCube集合組織({001}<100>集合組織)が発達する。このようなCube集合組織の発達メカニズムは次の通りである。   In the first step, in the initial stage of processing, along with an increase in strain due to plane strain compression processing, due to slip deformation, Cube orientation {001} <100>, Goss orientation {011} <100>, Brass orientation {011} The volume ratio of crystal grains oriented in <211>, S orientation {123} <634> increases. Thereafter, as the amount of strain increases, the volume ratio of crystal grains oriented in the Cube orientation increases, and a sharp Cube texture ({001} <100> texture) develops. The development mechanism of such a Cube texture is as follows.

面心立方構造を有する金属の平面ひずみ圧縮において、Cube方位は他の方位と比べてTaylor因子が小さい。Taylor因子とは、単位ひずみ量が与えられた場合に生じるすべり面のすべり量の総和を表す値であり、変形モードと結晶方位に依存する値である。Taylor因子が低いほど、単位ひずみ量に対しその方位に配向された結晶粒に加えられた変形量が小さく、変形により生じる格子欠陥である転位が内部に蓄積される量が小さい。すなわち、Cube方位はTaylor因子が比較的小さいので、その内部に蓄積される転位の量が小さく、ひずみエネルギーも小さい。また、Cube方位は平面ひずみ圧縮に対して安定な方位であるため、変形が進行しても回転し難い。このため、Fe−Si合金が単相固溶体となる温度域で平面ひずみ圧縮加工を行った場合、すべり変形によりCube方位、Goss方位、Brass方位、S方位に配向される結晶粒の体積率が増加すると共に、ひずみエネルギーの低いCube方位に配向された結晶粒の結晶粒界がS方位等他方位の結晶粒のひずみエネルギーを消費して移動し、Cube方位に配向された結晶粒が成長して大きくなる。すなわち、単相固溶体となる温度域では、溶質雰囲気により転位の移動が制限されるため、転位が結晶粒内に無秩序に配置された状態となる。このため、転位が整列してサブグレインを形成し、ひずみエネルギーを下げることが難しい。この結果、全ての結晶粒のひずみエネルギーはひずみ量の増加に伴い増大すると共に、変形に対して安定でかつひずみエネルギーの低いCube方位に配向された結晶粒が、S方位等他の方位の結晶粒を消費する。   In plane strain compression of a metal having a face-centered cubic structure, the Cube orientation has a smaller Taylor factor than other orientations. The Taylor factor is a value that represents the total slip amount of the slip surface generated when a unit strain amount is given, and is a value that depends on the deformation mode and the crystal orientation. The lower the Taylor factor, the smaller the amount of deformation applied to the crystal grains oriented in the direction with respect to the unit strain amount, and the smaller the amount of dislocations that are lattice defects caused by the deformation accumulated inside. That is, since the Cube orientation has a relatively small Taylor factor, the amount of dislocations accumulated therein is small, and the strain energy is also small. Also, since the Cube orientation is a stable orientation with respect to plane strain compression, it is difficult to rotate even when deformation progresses. For this reason, when plane strain compression processing is performed in the temperature range in which the Fe-Si alloy becomes a single-phase solid solution, the volume fraction of crystal grains oriented in the Cube orientation, Goss orientation, Brass orientation, and S orientation increases due to slip deformation. At the same time, the crystal grain boundaries of the crystal grains oriented in the Cube orientation having a low strain energy move by consuming the strain energy of the other crystal grains such as the S orientation, and the crystal grains oriented in the Cube orientation grow. growing. That is, in the temperature range in which a single-phase solid solution is formed, dislocation movement is limited by the solute atmosphere, so that dislocations are randomly arranged in the crystal grains. For this reason, dislocations are aligned to form subgrains, and it is difficult to reduce strain energy. As a result, the strain energy of all crystal grains increases as the amount of strain increases, and crystal grains oriented in the Cube orientation that are stable against deformation and have low strain energy are crystals of other orientations such as the S orientation. Consume grains.

ここで、集合組織の形成過程においてこのような挙動を発現させるためには、平面ひずみ圧縮加工を行う温度及びひずみ速度を適切にする必要がある。転位が結晶粒内を自由に移動できる加工条件では、転位が集合することによりサブグレインが形成され、結晶粒のひずみエネルギーが小さくなる。このため、結晶粒毎のひずみエネルギーの差が小さくなり、上記のようにCube方位に配向された結晶粒が他方位の結晶粒を消費して成長することができなくなる。   Here, in order to express such behavior in the formation process of the texture, it is necessary to appropriately set the temperature and strain rate for performing the plane strain compression processing. Under processing conditions in which dislocations can move freely within crystal grains, subgrains are formed by dislocations gathering, and strain energy of crystal grains is reduced. For this reason, the difference in strain energy between crystal grains becomes small, and the crystal grains oriented in the Cube orientation as described above cannot grow while consuming the other crystal grains.

第一の工程においては、温度を単相固溶体となる温度域としている。そして、ひずみ速度を、溶質原子雰囲気が転位の運動を支配し、且つ結晶粒のひずみエネルギーを駆動力として結晶粒界が移動できるひずみ速度としている。このような条件下では、溶質原子により転位の運動が妨げられ、結晶粒内に転位が無秩序に存在することになるため、上記のようにCube方位に配向された結晶粒がS方位等他方位の結晶粒を消費して成長することができ、結果として配向性の高いCube集合組織が形成される。   In the first step, the temperature is set to a temperature range where a single-phase solid solution is formed. The strain rate is a strain rate at which the crystal grain boundary can move with the solute atomic atmosphere governing the dislocation motion and the crystal strain energy as the driving force. Under such conditions, the movement of dislocations is hindered by solute atoms, and dislocations exist disorderly in the crystal grains. Therefore, the crystal grains oriented in the Cube orientation as described above are in the other position such as the S orientation. As a result, a highly textured Cube texture is formed.

第二の工程では、図2に示すように、前記第一の工程を施した被加工材4を、前記平面ひずみ圧縮加工における伸長方向に対して40°〜50°をなし、且つ荷重付加方向に平行な複数の面5で被加工材4を切断する。これにより、棒材もしくは板材(以下、形状記憶合金素材という)を得ることができる。第一の工程を施した被加工材では、Cube集合組織が形成されていることから、形状記憶合金素材の長手方向近傍、すなわち切断面5及び圧縮面4Aに平行な切断方向近傍に、<110>が配向された結晶粒が多数存在する。なお、伸長方向と切断方向との角度θは、43°〜47°が好ましく、より好ましくは44.5°〜45.5°である。   In the second step, as shown in FIG. 2, the workpiece 4 subjected to the first step has an angle of 40 ° to 50 ° with respect to the extension direction in the plane strain compression processing, and the load application direction. The workpiece 4 is cut along a plurality of surfaces 5 parallel to the surface. Thereby, a bar or a plate (hereinafter referred to as a shape memory alloy material) can be obtained. Since the Cube texture is formed in the workpiece subjected to the first step, <110 near the longitudinal direction of the shape memory alloy material, that is, near the cutting direction parallel to the cutting surface 5 and the compression surface 4A. There are many crystal grains in which> is oriented. In addition, the angle θ between the extending direction and the cutting direction is preferably 43 ° to 47 °, and more preferably 44.5 ° to 45.5 °.

ここで、鉄基形状記憶合金における形状記憶効果は、前述のように、オーステナイト相からマルテンサイト相へのマルテンサイト変態を利用したものである。マルテンサイト変態は、面心立方構造の最密面である{111}が<112>方向にずれることにより生じる。すなわち、{111}上のショックレー部分転位(a/6)<112>の運動により生じる。この{111}<112>せん断系におけるシュミット因子の最大方位は<144>である。シュミット因子とは、外力を加えた際にせん断系に生じる応力の外力に対する割合を示す値である。シュミット因子が高いほど、そのせん断系が活動し易い方位と言える。{111}<112>せん断系におけるシュミット因子が最大となる<144>を、形状を記憶させる方向(形状回復容易方向)である引張方向に配向させると、マルテンサイト変態が起こりやすくなり、形状記憶効果を高めることができると考えられる。   Here, the shape memory effect in the iron-based shape memory alloy utilizes the martensitic transformation from the austenite phase to the martensite phase as described above. The martensitic transformation occurs when {111}, which is the close-packed surface of the face-centered cubic structure, shifts in the <112> direction. That is, it is caused by the motion of Shockley partial dislocation (a / 6) <112> on {111}. The maximum orientation of the Schmid factor in this {111} <112> shear system is <144>. The Schmid factor is a value indicating the ratio of the stress generated in the shearing system when an external force is applied to the external force. It can be said that the higher the Schmid factor, the easier the shear system is to act. If <144> having the maximum Schmid factor in the {111} <112> shear system is oriented in the tensile direction, which is the direction in which the shape is memorized (the direction in which shape recovery is easy), martensitic transformation is likely to occur, resulting in shape memory. It is thought that the effect can be enhanced.

第二の工程により得られた形状記憶合金素材は、上述の通り、長手方向に<110>が配向された結晶粒の体積率が高い。<110>は<144>から10°程度しか離れていないため、この形状記憶合金素材によれば、高い回復ひずみを得ることができる。   As described above, the shape memory alloy material obtained by the second step has a high volume ratio of crystal grains in which <110> is oriented in the longitudinal direction. Since <110> is only about 10 ° away from <144>, according to this shape memory alloy material, a high recovery strain can be obtained.

このように、本実施形態に係る製造方法によれば、トレーニング処理を施さなくとも、高い回復ひずみを有する鉄基形状記憶合金を得ることができる。さらに、2つの工程により高い回復ひずみを有する鉄基形状記憶合金を得ることができるので、製造コストを低減できる。   Thus, according to the manufacturing method according to the present embodiment, an iron-based shape memory alloy having a high recovery strain can be obtained without performing a training process. Furthermore, since an iron-based shape memory alloy having a high recovery strain can be obtained by two steps, the manufacturing cost can be reduced.

上記の製造方法では、第一の工程の温度を800℃以上1250℃以下とし、ひずみ速度を1×10−5−1以上1×10−1−1以下とし、真ひずみ量を0.5以上とすることが好ましい。 In the above manufacturing method, the temperature of the first step was 800 ° C. or higher 1250 ° C. or less, strain rate and a 1 × 10 -5 s -1 or 1 × 10 -1 s -1 or less, the true strain amount 0. 5 or more is preferable.

第一の工程における温度を800℃以上1250℃以下とすると、Fe−Si固溶体合金を単相固溶体とすることができるため、溶質原子により転位の運動が妨げられる。この温度は、好ましくは850℃以上1100℃以下である。また、第一の工程におけるひずみ速度を1×10−5−1以上1×10−1−1以下とすることにより、平面ひずみ圧縮加工を、溶質原子により転位の運動が妨げられ、結晶粒界の移動が可能な状態で行うことができる。ひずみ速度は、好ましくは5×10−5−1以上5×10−3−1以下である。また、真ひずみ量を0.5以上とすることにより、上述の挙動により、第一の工程において配向性の高いCube集合組織を形成することができる。真ひずみ量は1.5以下であることが好ましい。 If the temperature in the first step is 800 ° C. or higher and 1250 ° C. or lower, the Fe—Si solid solution alloy can be made into a single-phase solid solution, and therefore the movement of dislocations is hindered by the solute atoms. This temperature is preferably 850 ° C. or higher and 1100 ° C. or lower. In addition, by setting the strain rate in the first step to 1 × 10 −5 s −1 or more and 1 × 10 −1 s −1 or less, the plane strain compression processing is prevented from moving dislocations by solute atoms, and crystal It can be performed in a state where the grain boundary can be moved. The strain rate is preferably 5 × 10 −5 s −1 or more and 5 × 10 −3 s −1 or less. Further, by setting the true strain amount to 0.5 or more, it is possible to form a Cube texture with high orientation in the first step due to the above-described behavior. The true strain amount is preferably 1.5 or less.

以上の方法によれば、回復ひずみの高い形状記憶合金素材を得ることができる。また、第二の工程における切断面に平行な方向を形状回復容易方向(引張方向)とすることが好ましい。これにより、より高い形状回復効果を得られると共に、より大きい回復ひずみを得ることができる。   According to the above method, a shape memory alloy material having a high recovery strain can be obtained. Moreover, it is preferable that the direction parallel to the cut surface in the second step is the shape recovery easy direction (tensile direction). As a result, a higher shape recovery effect can be obtained, and a larger recovery strain can be obtained.

上記方法において、被加工材は3質量%以上7質量%以下のCrを含んでも良い。これに加え、被加工材が更に3質量%以上7質量%以下のNiを含んでも良い。このようなFe−Mn−Si−Cr系合金や、Fe−Mn−Si−Cr−Ni系合金においても、上述の方法により、高い回復ひずみを有する形状記憶合金を製造することができる。   In the above method, the workpiece may include 3% by mass or more and 7% by mass or less of Cr. In addition to this, the workpiece may further contain 3 mass% or more and 7 mass% or less of Ni. Even in such an Fe—Mn—Si—Cr alloy or an Fe—Mn—Si—Cr—Ni alloy, a shape memory alloy having a high recovery strain can be produced by the above-described method.

また、上記方法により製造した形状記憶合金素材について、トレーニング処理を施してもよい。これにより、回復ひずみをより大きくすることができる。   Moreover, you may give a training process about the shape memory alloy raw material manufactured by the said method. Thereby, the recovery strain can be further increased.

平面ひずみ圧縮加工を行うための装置の一例として、図3に示す装置が挙げられる。図3は、平面ひずみ圧縮加工に用いる圧縮加工機1を示す模式図である。圧縮加工機1は、圧縮治具2と、熱源としての加熱炉3とを備える。圧縮治具2は、下部治具21と上部治具22とで構成される。下部治具21は、平面ひずみ圧縮加工における伸長方向に延びるU字状の溝21Aを備える直方体形である。上部治具22は、下部治具21の溝21Aに対応する凸部22Aを備える直方体である。下部治具21の溝21Aと上部治具22の凸部22Aとの間に、直方体の被加工材4を配置する。加熱炉3は、圧縮治具2を囲むように配置される。このような圧縮加工機1を用いて、第一の工程を以下の手順で行う。まず、加熱炉3により被加工材4を昇温し、被加工材4が所定の温度となった後、上部治具22を一定速度で圧下させ、所定の真ひずみ量となるまで平面ひずみ圧縮加工を行う。真ひずみ量が所定の値に達した後、上部治具22の移動を停止する。このような加工を施した被加工材を第二の工程において切断することにより、長手方向近傍に、<110>が配向された結晶粒が多数存在する形状記憶合金素材を得ることができる。   An example of an apparatus for performing plane strain compression processing is an apparatus shown in FIG. FIG. 3 is a schematic diagram showing a compression processing machine 1 used for plane strain compression processing. The compression processing machine 1 includes a compression jig 2 and a heating furnace 3 as a heat source. The compression jig 2 includes a lower jig 21 and an upper jig 22. The lower jig 21 has a rectangular parallelepiped shape including a U-shaped groove 21 </ b> A extending in the extending direction in the plane strain compression processing. The upper jig 22 is a rectangular parallelepiped provided with a convex portion 22 </ b> A corresponding to the groove 21 </ b> A of the lower jig 21. A rectangular parallelepiped workpiece 4 is disposed between the groove 21 </ b> A of the lower jig 21 and the protrusion 22 </ b> A of the upper jig 22. The heating furnace 3 is disposed so as to surround the compression jig 2. Using such a compression processing machine 1, the first step is performed according to the following procedure. First, the temperature of the workpiece 4 is raised by the heating furnace 3, and after the workpiece 4 reaches a predetermined temperature, the upper jig 22 is reduced at a constant speed to compress the plane strain until a predetermined true strain amount is reached. Processing. After the true strain amount reaches a predetermined value, the movement of the upper jig 22 is stopped. By cutting the workpiece subjected to such processing in the second step, it is possible to obtain a shape memory alloy material in which a large number of <110> oriented crystal grains exist in the vicinity of the longitudinal direction.

上述の方法によれば、トレーニング処理を施すことなく、形状回復容易方向における回復ひずみが、2.5%を超える値となる鉄基形状記憶合金を得ることができる。また、平面ひずみ圧縮加工の条件によっては、回復ひずみを3.5%以上とすることができる。さらに、上述の方法で得られた鉄基形状記憶合金に付与する引張ひずみを適切な値とすることによっても、回復ひずみを向上することができる。すなわち、第二の工程で得られた鉄基形状記憶合金に対し、切断面に平行な方向(長手方向)に引張ひずみを付与する第三の工程を行うとき、引張ひずみを9%以下とすることが好ましく、5%以上9%以下とすることがより好ましい。   According to the above-described method, an iron-based shape memory alloy having a recovery strain exceeding 2.5% in the shape recovery easy direction can be obtained without performing a training process. Moreover, depending on the conditions of plane strain compression processing, the recovery strain can be 3.5% or more. Furthermore, the recovery strain can also be improved by setting the tensile strain applied to the iron-based shape memory alloy obtained by the above method to an appropriate value. That is, when performing the third step of applying tensile strain to the iron-based shape memory alloy obtained in the second step in the direction parallel to the cut surface (longitudinal direction), the tensile strain is set to 9% or less. It is preferably 5% or more and 9% or less.

このような鉄基形状記憶合金において、形状回復容易方向に平行に配向された<110>方位の平均集積強度が、ランダム組織の平均集積強度の2.3倍以上であることが好ましい。また、この鉄基形状記憶合金において、形状回復容易方向に対して<110>方位に配向された結晶粒の平均粒径が10μm以下であることが好ましい。さらに、面心立方構造を有する相において、前記形状回復容易方向を基準として、0°以上15°以下の範囲内に<110>方向に配向する結晶粒が体積分率で22%以上含まれることが好ましく、26%以上含まれることがより好ましい。このような鉄基形状記憶合金によれば、より高い回復ひずみを得ることができる。ここで、鉄基形状記憶合金において面心立方構造を有する相(γ相)の他に、六方最密充填構造を有する相(ε相)が含まれている場合があるが、この場合、ε相の体積率を7%以下、好ましくは2%以下とすることで、上述の作用効果が得られる。また、この場合には、回復容易方向を基準として、0°以上15°以下の範囲内に<110>方向が配向する結晶粒が、γ相に26%以上含まれることが好ましい。   In such an iron-based shape memory alloy, it is preferable that the average integrated strength in the <110> orientation oriented parallel to the direction of easy shape recovery is 2.3 times or more the average integrated strength of the random structure. In this iron-based shape memory alloy, it is preferable that the average grain size of the crystal grains oriented in the <110> direction with respect to the direction of easy shape recovery is 10 μm or less. Furthermore, in the phase having a face-centered cubic structure, the crystal grains oriented in the <110> direction within the range of 0 ° to 15 ° with reference to the direction of easy shape recovery include 22% or more by volume fraction. It is more preferable that it is contained in an amount of 26% or more. According to such an iron-based shape memory alloy, a higher recovery strain can be obtained. Here, in addition to the phase having a face-centered cubic structure (γ phase) in the iron-based shape memory alloy, a phase having a hexagonal close-packed structure (ε phase) may be included. By setting the volume ratio of the phase to 7% or less, preferably 2% or less, the above-described effects can be obtained. In this case, it is preferable that 26% or more of the crystal grains in which the <110> direction is oriented within a range of 0 ° to 15 ° with respect to the easy recovery direction are contained in the γ phase.

以下、実施例により、本発明についてさらに詳しく説明する。ただし、本発明は、以下に示す実施例に何ら限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples.

[被加工材]
被加工材となる固溶体合金は、28質量%のMn(マンガン)、6質量%のSi(ケイ素)、5質量%のCr(クロム)及び不可避の不純物を含むFe(鉄)の合金である。本実施例では、被加工材として、この合金の棒材から切り出された、寸法が荷重付加方向に10mm、伸長方向に7mm、拘束方向に20mmの直方体の試料を用いた。また、平面ひずみ圧縮加工前に、大気中、温度900℃で24時間の焼鈍を行った。以下の説明において、焼鈍後の試料を初期材と称する。
[Work material]
The solid solution alloy to be processed is an alloy of 28 mass% Mn (manganese), 6 mass% Si (silicon), 5 mass% Cr (chromium), and Fe (iron) containing inevitable impurities. In this example, a rectangular parallelepiped sample cut out from the bar material of this alloy and having dimensions of 10 mm in the load application direction, 7 mm in the extension direction, and 20 mm in the restraining direction was used as the workpiece. In addition, annealing was performed in the air at a temperature of 900 ° C. for 24 hours before the plane strain compression processing. In the following description, the sample after annealing is referred to as an initial material.

[平面ひずみ圧縮加工(第一の工程)]
図3に示す圧縮加工機1を用いて、初期材に対し、温度900℃で平面ひずみ圧縮加工を行った。所定の真ひずみ量に達した後、空冷した。
[Plane strain compression processing (first step)]
Using the compression processing machine 1 shown in FIG. 3, plane strain compression processing was performed on the initial material at a temperature of 900 ° C. After reaching a predetermined true strain amount, air cooling was performed.

[切断(第二の工程)]
平面ひずみ圧縮加工を施した試料を、図2に示すように、伸長方向に対する角度が45°であり、荷重付加方向に平行な二面で切断し、形状記憶合金素材の試料を得た。
[Cutting (second step)]
As shown in FIG. 2, the sample subjected to plane strain compression processing was cut at two angles parallel to the load application direction at an angle of 45 ° with respect to the extension direction, to obtain a sample of shape memory alloy material.

[集合組織測定]
第一の工程を経た被加工材の高さ方向(荷重付加方向)における中央位置で、荷重付加方向に垂直な面で試料を切断した。切断面に機械研磨及び電解研磨を施して鏡面にし、これを観察面とした。
観察面に対し、EBSD(Electron Backscatter Diffractin)法により、観察面の中央の450×450μmの領域について結晶方位を測定した。各測定点の間隔は1μmとした。EBSD法には、日本電子製JSM−5600にTSL社製OIMを搭載したシステムを使用した。この測定結果に基づき、測定領域内のCube方位、Goss方位、Brass方位、及びS方位に配向された結晶粒の存在率(体積率)を計算した。より詳細には、測定領域内のγ相におけるCube方位、Goss方位、Brass方位、及びS方位に配向された結晶粒の存在率(体積率)を計算した。なお、荷重付加方向に対し0°以上15°以下の範囲内に{011}の面法線が存在し、且つ伸長方向に対し0°以上15°以下の範囲内に<100>が存在する結晶粒をGoss方位に配向された結晶粒であるとして計算した。Cube方位、Brass方位、及びS方位についても同様である。
また、上記のように計算されたCube方位に配向された結晶粒の存在率に基づき、第二の工程により切断された試料について、γ相における長手方向(切断方向)に<110>が配向された結晶粒の存在率(体積率)を計算した。また、ε相の体積率を計算した。
また、X線ディフラクトメータを用いて、CuKα線を用いたSchulzの反射法により、上記観察面の{001}、{110}、{211}、及び{310}極点図を実験的に測定した。これらの極点図をもとに結晶方位分布関数を定めて、各方位の平均集積強度を求め、集合組織を評価した。初期材についても、同様の方法で集合組織を評価した。
[Texture measurement]
The sample was cut at a center position in the height direction (load application direction) of the workpiece subjected to the first step and a plane perpendicular to the load application direction. The cut surface was subjected to mechanical polishing and electrolytic polishing to give a mirror surface, which was used as an observation surface.
With respect to the observation surface, the crystal orientation was measured for a 450 × 450 μm 2 region in the center of the observation surface by an EBSD (Electron Backscatter Diffractin) method. The interval between the measurement points was 1 μm. For the EBSD method, a system in which JSM-5600 manufactured by JEOL was equipped with OIM manufactured by TSL was used. Based on this measurement result, the abundance (volume ratio) of crystal grains oriented in the Cube orientation, Goss orientation, Brass orientation, and S orientation in the measurement region was calculated. More specifically, the abundance (volume ratio) of crystal grains oriented in the Cube orientation, Goss orientation, Brass orientation, and S orientation in the γ phase in the measurement region was calculated. A crystal having a {011} surface normal in the range of 0 ° to 15 ° with respect to the direction of load and <100> in the range of 0 ° to 15 ° with respect to the extension direction. The grains were calculated as being grains oriented in the Goss orientation. The same applies to the Cube orientation, the Brass orientation, and the S orientation.
Further, based on the abundance of crystal grains oriented in the Cube orientation calculated as described above, <110> is oriented in the longitudinal direction (cutting direction) in the γ phase for the sample cut in the second step. The abundance (volume ratio) of the obtained crystal grains was calculated. Further, the volume fraction of the ε phase was calculated.
In addition, the {001}, {110}, {211}, and {310} pole figures of the observation surface were experimentally measured by the Schulz reflection method using CuKα rays using an X-ray diffractometer. . The crystal orientation distribution function was determined based on these pole figures, the average integrated strength in each orientation was determined, and the texture was evaluated. The texture of the initial material was also evaluated in the same manner.

[回復ひずみの測定]
第二の工程により切断した試料の切断面上に、ビッカース圧子により長手方向に沿って2点に圧痕を付けた。圧痕間の距離Lは6mmとした。圧痕を付した試料を用いて、室温で試料の長手方向を引張方向とする引張試験を行い、圧痕間の距離Lを測定した。またこの時のひずみ量(L−L)/Lを引張ひずみとして算出した。その後、400℃、10分で熱処理をすることにより試料に回復熱を与え、熱処理後の圧痕間の距離Lを測定した。圧痕間の距離L、L、Lから、回復ひずみ(L−L)/Lを算出した。
[Measurement of recovery strain]
On the cut surface of the sample cut in the second step, indentations were made at two points along the longitudinal direction with a Vickers indenter. The distance L 0 between the indentations was 6 mm. Using samples marked with indentations, subjected to tensile tests and tensile direction in the longitudinal direction of the sample at room temperature and measure the distance L 1 between the indentations. Further, the strain amount (L 1 -L 0 ) / L 0 at this time was calculated as the tensile strain. Thereafter, heat treatment was performed at 400 ° C. for 10 minutes to give heat to the sample, and the distance L 2 between the indentations after the heat treatment was measured. The recovery strain (L 1 -L 2 ) / L 0 was calculated from the distances L 0 , L 1 , L 2 between the indentations.

[実施例1〜4]
表1に示す条件で平面ひずみ圧縮加工を行った実施例1〜4の試料を作製し、集合組織測定を行った。表1に示すように、実施例1〜3では、ひずみ速度を変えて平面ひずみ圧縮加工を行い、実施例4では、実施例2と同じひずみ速度で、より高い真ひずみまで平面ひずみ圧縮加工を行った。
[Examples 1 to 4]
Samples of Examples 1 to 4 subjected to plane strain compression processing under the conditions shown in Table 1 were prepared, and texture measurement was performed. As shown in Table 1, in Examples 1-3, plane strain compression processing is performed by changing the strain rate, and in Example 4, plane strain compression processing is performed to a higher true strain at the same strain rate as Example 2. went.

Figure 2015200022
Figure 2015200022

このような条件で平面ひずみ圧縮加工を行った試料の観察面について集合組織測定を行った。Cube方位、Goss方位、Brass方位、及びS方位に配向された結晶粒の体積率、及び平均集積度数を求めた。その結果を図4〜7に示す。また、観察面についてEBSD法による結晶方位測定で求められた結晶方位マップから、Cube方位及びS方位に配向された結晶粒の平均結晶粒径を求めた。その結果を表1に求めた。なお、結晶粒径は、各結晶粒を円に近似した場合の直径である。   Texture measurement was performed on the observation surface of the sample subjected to plane strain compression processing under such conditions. The volume ratio and average integration frequency of the crystal grains oriented in the Cube orientation, Goss orientation, Brass orientation, and S orientation were determined. The results are shown in FIGS. Further, the average crystal grain size of the crystal grains oriented in the Cube orientation and the S orientation was obtained from the crystal orientation map obtained by the crystal orientation measurement by the EBSD method for the observation surface. The results were obtained in Table 1. The crystal grain size is a diameter when each crystal grain is approximated to a circle.

図4は、実施例1〜3の観察面におけるCube方位、Goss方位、Brass方位、及びS方位に配向された結晶粒の体積率とひずみ速度との関係を示している。図4によれば、ひずみ速度が小さいほど、Cube方位に配向された結晶粒の体積率が大きい。これは、溶質原子であるSiによる転位の運動が妨げられる効果が大きくなったためと考えられる。表1において、実施例3のCube方位に配向された結晶粒の平均粒径が実施例1〜3のうち最も大きくなっており、且つ実施例3のS方位に配向された結晶粒の平均粒径が実施例1〜3のうち最も小さくなっている。このことからも、実施例3ではひずみ速度が小さいので、Siによる転位の運動が妨げられる効果が大きくなり、結晶粒界が移動し易くなっていることがわかる。すなわち、実施例3では、Taylor因子の低い(蓄積されたひずみエネルギーが小さい)Cube方位に配向された結晶粒の結晶粒界が移動し易くなっているので、Taylor因子の高いS方位に配向された結晶粒を消費しながら、Cube方位に配向された結晶粒が成長し易くなると考えられる。   FIG. 4 shows the relationship between the volume ratio and strain rate of crystal grains oriented in the Cube orientation, Goss orientation, Brass orientation, and S orientation on the observation surfaces of Examples 1 to 3. According to FIG. 4, the smaller the strain rate, the larger the volume ratio of the crystal grains oriented in the Cube orientation. This is presumably because the effect of hindering the movement of dislocations due to Si as a solute atom has increased. In Table 1, the average grain size of the crystal grains oriented in the Cube orientation of Example 3 is the largest among Examples 1 to 3, and the average grain of the crystal grains oriented in the S orientation of Example 3 The diameter is the smallest among Examples 1-3. This also shows that since the strain rate is low in Example 3, the effect of hindering the dislocation movement due to Si is increased, and the crystal grain boundaries are easily moved. That is, in Example 3, since the grain boundary of the crystal grains oriented in the Cube orientation with a low Taylor factor (accumulated strain energy is small) is easy to move, it is oriented in the S orientation with a high Taylor factor. It is considered that crystal grains oriented in the Cube orientation are likely to grow while consuming the crystal grains.

図5は、実施例2、4及び初期材における、Cube方位、Goss方位、Brass方位、及びS方位に配向された結晶粒の体積率と真ひずみ量との関係を示している。図5によれば、真ひずみ量が大きいほどCube方位に配向された結晶粒の体積率が大きい。真ひずみ量が大きいほど、方位の違いに起因するひずみエネルギーの差が大きくなり、その結果Cube方位に配向された結晶粒が成長する駆動力が大きくなったため、このような結果が得られたと考えられる。   FIG. 5 shows the relationship between the volume ratio of crystal grains oriented in the Cube orientation, Goss orientation, Brass orientation, and S orientation and the true strain amount in Examples 2 and 4 and the initial material. According to FIG. 5, the larger the amount of true strain, the larger the volume ratio of crystal grains oriented in the Cube orientation. The larger the true strain amount, the greater the difference in strain energy due to the difference in orientation. As a result, the driving force for growing crystal grains oriented in the Cube orientation increased, and it is considered that such a result was obtained. It is done.

図6、7は、実施例1〜4の観察面の集合組織を、X線ディフラクトメータを用いて測定した結果を示すφ断面である。これらの図は、測定により得られた結晶分布関数を、オイラー角(φ,Φ,φ)を軸とした直交座標系で表したものである。図6はφ=0°、図7はφ=20°のφ断面を表している。各図の四角形の左上頂点、右上頂点、左下頂点、右下頂点は、順に、(φ,Φ)=(0°,0°)、(90°,0°)、(0°,90°)、(90°、90°)である。また、四角形中の等高線は、結晶方位の集積強度を表している。図中の等高線の値は、平均値を1として、平均値に対する倍数で表した平均集積強度である。また、図6(a)〜(d)は順に実施例1〜4の結果を表し、図7(a)〜(d)も順に実施例1〜4の結果を表す。図6(a)及び図7(a)中に、各断面図上に存在するCube方位、Goss方位、Brass方位、及びS方位の位置をそれぞれC、G、B、Sで記入した。図6、7によれば、いずれの実施例においても、Cube方位の平均集積強度が高く、Cube集合組織が形成されていることがわかる。そして、ひずみ速度が小さいほど、また真ひずみ量が大きいほど、Cube方位の平均集積強度が高いことがわかる。 6 and 7 are φ 2 cross sections showing the results of measuring the texture of the observation surfaces of Examples 1 to 4 using an X-ray diffractometer. These figures represent the crystal distribution function obtained by the measurement in an orthogonal coordinate system with Euler angles (φ 1 , Φ, φ 2 ) as axes. FIG. 6 shows a φ 2 cross section where φ 2 = 0 ° and FIG. 7 shows φ 2 = 20 °. The upper left vertex, the upper right vertex, the lower left vertex, and the lower right vertex of the quadrangle in each figure are (φ 1 , Φ) = (0 °, 0 °), (90 °, 0 °), (0 °, 90 °) in this order. ), (90 °, 90 °). Contour lines in the quadrangle represent the integrated strength of crystal orientation. The value of the contour line in the figure is the average integrated intensity expressed as a multiple of the average value, where the average value is 1. Moreover, Fig.6 (a)-(d) represents the result of Examples 1-4 in order, FIG.7 (a)-(d) also represents the result of Examples 1-4 in order. In FIG. 6A and FIG. 7A, the positions of the Cube orientation, Goss orientation, Brass orientation, and S orientation existing on each cross-sectional view are written in C, G, B, and S, respectively. According to FIGS. 6 and 7, it can be seen that, in any of the examples, the average integrated strength in the Cube orientation is high and a Cube texture is formed. It can be seen that the smaller the strain rate and the greater the true strain amount, the higher the average integrated strength in the Cube orientation.

図8は、X線ディフラクトメータを用いて観察面の集合組織を測定した結果に基づき算出された、第二の工程における切断方向である45°方向の軸密度を示す逆極点図である。図8(a)は実施例2、図8(b)は実施例4の結果である。この逆極点図中の等高線は、長手方向の結晶方位の集積強度を表している。等高線の値は、平均値を1として、平均値に対する倍数で表した平均集積強度である。図8によれば、長手方向に<110>が配向された結晶粒が多く存在することがわかる。   FIG. 8 is an inverted pole figure showing the axial density in the 45 ° direction, which is the cutting direction in the second step, calculated based on the result of measuring the texture of the observation surface using an X-ray diffractometer. FIG. 8A shows the results of Example 2, and FIG. 8B shows the results of Example 4. The contour lines in this inverse pole figure represent the integrated strength of the crystal orientation in the longitudinal direction. The value of the contour line is an average accumulation intensity expressed as a multiple of the average value, where the average value is 1. According to FIG. 8, it can be seen that there are many crystal grains in which <110> is oriented in the longitudinal direction.

図9は、実施例2〜4及び初期材の回復ひずみと、引張方向における<110>の体積率(γ相における引張方向に<110>が配向された結晶粒の体積率)との関係を示すグラフである。実施例2〜4において、初期材よりは高い回復ひずみが得られた。また、実施例4では回復ひずみが2.5%を超える値となり、実施例2、3では3.5%を超える回復ひずみが得られた。   FIG. 9 shows the relationship between the recovery strain of Examples 2 to 4 and the initial material and the volume ratio of <110> in the tensile direction (the volume ratio of crystal grains in which <110> is oriented in the tensile direction in the γ phase). It is a graph to show. In Examples 2 to 4, recovery strain higher than that of the initial material was obtained. In Example 4, the recovery strain exceeded 2.5%, and in Examples 2 and 3, recovery strain exceeding 3.5% was obtained.

図10は、実施例2〜4及び初期材の回復ひずみと、引張試験におけるひずみ量(引張ひずみ)との関係を示すグラフである。また、比較のために、非特許文献1に記載されているトレーニング処理をしていない形状記憶合金のデータも記載した。実施例2〜4によれば、非特許文献1よりも高い回復ひずみが得られた。   FIG. 10 is a graph showing the relationship between the recovery strains of Examples 2 to 4 and the initial material and the strain amount (tensile strain) in the tensile test. For comparison, data of a shape memory alloy not subjected to the training process described in Non-Patent Document 1 is also described. According to Examples 2 to 4, recovery strain higher than that of Non-Patent Document 1 was obtained.

図9及び図10において、引張方向に<110>が配向された結晶粒の体積分率が同程度にも拘らず、実施例3の方が実施例4よりも高い回復ひずみを示した。このような回復ひずみの大きさの違いは、引張方向に<110>が配向された結晶粒の大きさに起因すると考えられる。表1より、Cube方位に配向された結晶粒の平均結晶粒径は、実施例3の方が実施例4よりも小さい。このため、引張方向に<110>方位が配向された結晶粒の平均結晶粒径も実施例4より実施例3の方が小さいと言える。<110>方位は変形時にマルテンサイト変態をし易い<144>に近い方位であるが、その結晶粒径が大きくなると、マルテンサイト変態を起こす{111}<112>せん断系以外のせん断系も働きやすくなり、すべり変形(形状回復しない変形モード)が起こりやすくなると考えられる。このため、実施例4において、すべり変形の発生頻度が実施例3よりも大きくなり、結果として回復ひずみが小さくなったと考えられる。   9 and 10, Example 3 showed higher recovery strain than Example 4 despite the fact that the volume fraction of the crystal grains in which <110> was oriented in the tensile direction was the same. Such a difference in the magnitude of the recovery strain is considered to be due to the size of the crystal grains in which <110> is oriented in the tensile direction. From Table 1, the average crystal grain size of the crystal grains oriented in the Cube orientation is smaller in Example 3 than in Example 4. For this reason, it can be said that the average crystal grain size of the crystal grains in which the <110> orientation is oriented in the tensile direction is smaller in Example 3 than in Example 4. The <110> orientation is an orientation close to <144> that easily undergoes martensitic transformation during deformation, but when the crystal grain size increases, a shear system other than the {111} <112> shear system that causes martensitic transformation also works. It is considered that slip deformation (deformation mode in which the shape does not recover) is likely to occur. For this reason, in Example 4, the frequency of occurrence of slip deformation is greater than that in Example 3, and as a result, the recovery strain is considered to be reduced.

また、引張方向に<110>が配向された結晶粒の体積分率が実施例4よりも低いにも拘らず、実施例2は実施例4よりも高い回復ひずみを示した。このような回復ひずみの大きさの違いは、第一の工程において付与される真ひずみ量が、実施例4よりも実施例2の方が小さいためであると考えられる。すなわち、実施例4では、真ひずみ量が比較的大きくなったために結晶のすべり系の活動による変形が増大し、その結果実施例2よりも形状記憶特性が下がったと考えられる。   Moreover, although the volume fraction of the crystal grains in which <110> is oriented in the tensile direction is lower than that of Example 4, Example 2 showed higher recovery strain than that of Example 4. Such a difference in the magnitude of the recovery strain is considered to be because the amount of true strain applied in the first step is smaller in Example 2 than in Example 4. That is, in Example 4, since the true strain amount was relatively large, deformation due to the activity of the crystal slip system increased, and as a result, shape memory characteristics were considered to be lower than in Example 2.

[実施例5〜8]
表2に示す条件で平面ひずみ圧縮加工を行った実施例5〜8の試料を作製し、集合組織測定と回復ひずみの測定を行った。表2に示すように、実施例5、6では真ひずみ量を0.8とし、実施例7、8では真ひずみ量を1.3とし、いずれの例もひずみ速度と温度を同じ値とした。
[Examples 5 to 8]
Samples of Examples 5 to 8 subjected to plane strain compression processing under the conditions shown in Table 2 were prepared, and texture measurement and recovery strain measurement were performed. As shown in Table 2, in Examples 5 and 6, the true strain amount was 0.8, in Examples 7 and 8, the true strain amount was 1.3, and in each example, the strain rate and temperature were the same value. .

Figure 2015200022
Figure 2015200022

図11は、実施例5〜8の回復ひずみと引張ひずみとの関係を示すグラフである。また、比較のために、非特許文献1に記載されているトレーニング処理をしていない形状記憶合金のデータも記載した。実施例5〜8によれば、非特許文献1よりも高い回復ひずみが得られた。   FIG. 11 is a graph showing the relationship between recovery strain and tensile strain in Examples 5 to 8. For comparison, data of a shape memory alloy not subjected to the training process described in Non-Patent Document 1 is also described. According to Examples 5 to 8, a higher recovery strain than that of Non-Patent Document 1 was obtained.

実施例5では引張試験で付与した引張ひずみの量を9%以下としたので、同じ条件で平面ひずみ圧縮して、引張ひずみ量を9%超過とした実施例6よりも高い回復ひずみを得ることができた。同様に、実施例7では引張試験で付与した引張ひずみの量を9%以下としたので、同じ条件で平面ひずみ圧縮して、引張ひずみ量を9%超過とした実施例8よりも高い回復ひずみを得ることができた。また、表2の通り、実施例5〜8の試料中にはε相が存在していたが、ε相の体積率がいずれも7%以下となっていたので、高い回復ひずみを得ることができた。また、ε相の体積率が2%以下であった実施例5〜7においては、ε相の体積率が2%超過である実施例8よりも高い回復ひずみを得ることができた。   In Example 5, since the amount of tensile strain applied in the tensile test was 9% or less, plane strain compression was performed under the same conditions to obtain a higher recovery strain than Example 6 in which the tensile strain amount exceeded 9%. I was able to. Similarly, in Example 7, since the amount of tensile strain applied in the tensile test was 9% or less, plane strain compression was performed under the same conditions, and the recovery strain higher than that in Example 8 in which the tensile strain amount exceeded 9%. Could get. Moreover, as shown in Table 2, the ε phase was present in the samples of Examples 5 to 8. However, since the volume fraction of the ε phase was 7% or less, a high recovery strain could be obtained. did it. Further, in Examples 5 to 7 in which the volume fraction of the ε phase was 2% or less, a higher recovery strain could be obtained than in Example 8 in which the volume fraction of the ε phase was more than 2%.

以上、本発明の好ましい実施例を説明したが、本発明はこれら実施例に限定されることはない。本発明の趣旨を逸脱しない範囲で、構成の付加、省略、置換、およびその他の変更が可能である。本発明は前述した説明によって限定されることはなく、添付のクレームの範囲によってのみ限定される。   The preferred embodiments of the present invention have been described above, but the present invention is not limited to these embodiments. Additions, omissions, substitutions, and other modifications can be made without departing from the spirit of the present invention. The present invention is not limited by the above description, but only by the scope of the appended claims.

本発明の製造方法により製造した鉄基形状記憶合金、及び本発明にかかる鉄基形状記憶合金は、従来よりも高い回復ひずみを有する。このため、2つのパイプを接続するためのパイプ用継手や、レール用の継ぎ目板、制振構造用部材に好適に利用できる。   The iron-base shape memory alloy manufactured by the manufacturing method of the present invention and the iron-base shape memory alloy according to the present invention have a higher recovery strain than before. For this reason, it can utilize suitably for the joint for pipes for connecting two pipes, the joint board for rails, and the member for damping structures.

1 平面ひずみ圧縮加工機
2 圧縮治具
3 加熱炉
4 被加工材
C Cube方位({001}<100>)
G Goss方位({011}<100>)
B Brass方位({011}<211>)
S S方位({123}<634>)
DESCRIPTION OF SYMBOLS 1 Plane strain compression processing machine 2 Compression jig 3 Heating furnace 4 Work material C Cube direction ({001} <100>)
G Goss orientation ({011} <100>)
B Brass direction ({011} <211>)
SS orientation ({123} <634>)

Claims (12)

3質量%以上7質量%以下のSiと、15質量%以上33質量%以下のMnと、残部がFe及び不可避的不純物からなる被加工材を、
前記SiがFe中に固溶し単相となる温度域で、且つ、溶質原子雰囲気が転位の運動を支配し且つ結晶粒のひずみエネルギーを駆動力として結晶粒界が移動できるひずみ速度で、平面ひずみ圧縮加工を行う第一の工程と、
前記第一の工程を施した前記被加工材を、前記平面ひずみ圧縮加工における伸長方向に対して40°〜50°をなし、且つ荷重付加方向に平行な面で被加工材を切断する第二の工程と、を有する鉄基形状記憶合金の製造方法。
3 to 7 mass% Si, 15 to 33 mass% Mn, the work piece consisting of Fe and inevitable impurities in the balance,
In the temperature range where the Si is dissolved in Fe into a single phase, the solute atom atmosphere dominates the movement of dislocations, and the strain rate at which the grain boundaries can move using the strain energy of the grains as a driving force, A first step of strain compression processing;
The work material which performed said 1st process makes 40 degrees-50 degrees with respect to the expansion | extension direction in the said plane strain compression process, and cuts a work material in the surface parallel to a load addition direction. And a process for producing an iron-based shape memory alloy.
3質量%以上7質量%以下のSiと、15質量%以上33質量%以下のMnと、残部がFe及び不可避的不純物からなる被加工材を、
800℃以上1250℃以下の温度で、且つ、1×10−5−1以上1×10−1−1以下のひずみ速度で、真ひずみ量が0.5以上となるまで平面ひずみ圧縮加工を行う第一の工程と、
前記第一の工程を施した前記被加工材を、前記平面ひずみ圧縮加工における伸長方向に対して40°〜50°をなし、且つ荷重付加方向に平行な面で被加工材を切断する第二の工程と、を有する鉄基形状記憶合金の製造方法。
3 to 7 mass% Si, 15 to 33 mass% Mn, the work piece consisting of Fe and inevitable impurities in the balance,
Plane strain compression processing at a temperature of 800 ° C. to 1250 ° C. and a strain rate of 1 × 10 −5 s −1 to 1 × 10 −1 s −1 until the true strain amount is 0.5 or more. A first step of performing
The work material which performed said 1st process makes 40 degrees-50 degrees with respect to the expansion | extension direction in the said plane strain compression process, and cuts a work material in the surface parallel to a load addition direction. And a process for producing an iron-based shape memory alloy.
前記真ひずみ量が1.5以下である請求項2に記載の鉄基形状記憶合金の製造方法。   The method for producing an iron-based shape memory alloy according to claim 2, wherein the true strain amount is 1.5 or less. 前記切断面に平行な方向が形状回復容易方向である請求項1〜3のいずれかに記載の鉄基形状記憶合金の製造方法。   The method for producing an iron-based shape memory alloy according to any one of claims 1 to 3, wherein a direction parallel to the cut surface is a shape recovery easy direction. 前記被加工材が更に3質量%以上7質量%以下のCrを含む請求項1〜4のいずれかに記載の鉄基形状記憶合金の製造方法。   The method for producing an iron-based shape memory alloy according to any one of claims 1 to 4, wherein the workpiece further contains 3 mass% or more and 7 mass% or less of Cr. 前記被加工材が更に3質量%以上7質量%以下のNiを含む請求項5に記載の鉄基形状記憶合金の製造方法。   The method for producing an iron-based shape memory alloy according to claim 5, wherein the workpiece further contains 3 mass% or more and 7 mass% or less of Ni. 3質量%以上7質量%以下のSiと、15質量%以上33質量%以下のMnと、残部がFe及び不可避的不純物からなり、
形状回復容易方向における回復ひずみが、2.5%より大きい鉄基形状記憶合金。
3 mass% or more and 7 mass% or less of Si, 15 mass% or more and 33 mass% or less of Mn, and the balance consists of Fe and inevitable impurities,
An iron-based shape memory alloy having a recovery strain in the direction of easy shape recovery of greater than 2.5%.
前記形状回復容易方向に平行な<110>方位の平均集積強度が、ランダム組織のそれの2.3倍以上である請求項7に記載の鉄基形状記憶合金。   The iron-based shape memory alloy according to claim 7, wherein an average integrated strength in a <110> orientation parallel to the shape recovery easy direction is 2.3 times or more that of a random structure. 前記形状回復容易方向に対して<110>方位に配向された結晶粒の平均粒径が10μm以下である請求項7または8に記載の鉄基形状記憶合金。   The iron-based shape memory alloy according to claim 7 or 8, wherein the average grain size of the crystal grains oriented in the <110> orientation with respect to the direction of easy shape recovery is 10 µm or less. 面心立方構造を有する相において、前記形状回復容易方向を基準として、0°以上15°以下の範囲内に<110>方向に配向する結晶粒が体積分率で22%以上含まれる請求項7〜9のいずれかに記載の鉄基形状記憶合金。   The phase having a face-centered cubic structure includes 22% or more of a volume fraction of crystal grains oriented in the <110> direction within a range of 0 ° to 15 ° with respect to the shape recovery easy direction. The iron-base shape memory alloy according to any one of? 更に3質量%以上7質量%以下のCrを含む請求項7〜10のいずれかに記載の鉄基形状記憶合金。   The iron-based shape memory alloy according to any one of claims 7 to 10, further comprising 3 mass% or more and 7 mass% or less of Cr. 更に3質量%以上7質量%以下のNiを含む請求項11に記載の鉄基形状記憶合金。   The iron-based shape memory alloy according to claim 11, further comprising 3 mass% or more and 7 mass% or less of Ni.
JP2015070235A 2014-03-31 2015-03-30 Manufacturing method of iron-based shape memory alloy and iron-based shape memory alloy Pending JP2015200022A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015070235A JP2015200022A (en) 2014-03-31 2015-03-30 Manufacturing method of iron-based shape memory alloy and iron-based shape memory alloy

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014071544 2014-03-31
JP2014071544 2014-03-31
JP2015070235A JP2015200022A (en) 2014-03-31 2015-03-30 Manufacturing method of iron-based shape memory alloy and iron-based shape memory alloy

Publications (1)

Publication Number Publication Date
JP2015200022A true JP2015200022A (en) 2015-11-12

Family

ID=54551558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015070235A Pending JP2015200022A (en) 2014-03-31 2015-03-30 Manufacturing method of iron-based shape memory alloy and iron-based shape memory alloy

Country Status (1)

Country Link
JP (1) JP2015200022A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109339545A (en) * 2018-11-28 2019-02-15 上海材料研究所 Buckling-restrained energy-dissipation
CN109913764A (en) * 2019-04-10 2019-06-21 四川大学 A method of improving ferrimanganic alumel memory performance stability
WO2020108754A1 (en) * 2018-11-29 2020-06-04 Thyssenkrupp Steel Europe Ag Flat product consisting of an iron-based shape memory material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109339545A (en) * 2018-11-28 2019-02-15 上海材料研究所 Buckling-restrained energy-dissipation
WO2020108754A1 (en) * 2018-11-29 2020-06-04 Thyssenkrupp Steel Europe Ag Flat product consisting of an iron-based shape memory material
CN109913764A (en) * 2019-04-10 2019-06-21 四川大学 A method of improving ferrimanganic alumel memory performance stability

Similar Documents

Publication Publication Date Title
JP5791791B2 (en) Method for producing high elastic limit non-magnetic steel
KR102237789B1 (en) Expanded member comprising cu-al-mn alloy material and exhibiting superior anti-stress corrosion properties, and use therefor
Chmielus et al. Effects of surface roughness and training on the twinning stress of Ni–Mn–Ga single crystals
Gao et al. Yielding behavior and its effect on uniform elongation of fine grained IF steel
Hajizadeh et al. Study of texture, anisotropy and formability of cartridge brass sheets
Kwon et al. Deformation behavior of duplex austenite and ε-martensite high-Mn steel
Mine et al. Effect of high-pressure torsion processing and annealing on hydrogen embrittlement of type 304 metastable austenitic stainless steel
Rout et al. Cross rolling: a metal forming process
Li et al. Dynamic recrystallization in biomedical Co-29Cr-6Mo-0.16 N alloy with low stacking fault energy
Belyakov et al. Strain-induced submicrocrystalline grains developed in austenitic stainless steel under severe warm deformation
JP2015200022A (en) Manufacturing method of iron-based shape memory alloy and iron-based shape memory alloy
Liang et al. Microstructure evolution and deformation mechanism of NiTiFe shape memory alloy based on plane strain compression and subsequent annealing
JP2015212418A (en) High strength nonmagnetic austenitic stainless steel
JP2015517024A (en) Single crystal microstructure and related methods and equipment
Polyakova-Vachiyan et al. Dependence of the functional characteristics of thermomechanically processed titanium nickelide on the size of the structural elements of austenite
JP2009228053A (en) Titanium material and method for producing the same
Cho et al. Microstructure and mechanical properties of Al-Si-Mg alloys fabricated by twin roll casting and subsequent symmetric and asymmetric rolling
JP5843127B2 (en) Manufacturing method of high strength nonmagnetic austenitic stainless steel
US11953047B2 (en) Formed body of Cu—Al—Mn-based shape-memory alloy and method for producing same
Yamaura Microstructure and magnetostriction of heavily groove-rolled Fe-Co alloy wires
Tokutomi et al. Change in mechanical properties of fine copper wire manufactured by continuous rotary draw bending process
Vrátná et al. Investigation of microhardness and microstructure of AZ31 alloy after high pressure torsion
Joshi et al. Fabrication of fine recrystallized grains and their mechanical property in HPT processed pure magnesium
Polyakov et al. Physical simulation of hot rolling of ultra-fine grained pure titanium
JP2023550199A (en) Manufacturing method of ferritic lightweight steel and ferritic lightweight steel using the same