JP2015199930A - Method for manufacturing resin composition for solar cell sealing material, and solar cell sealing material and solar cell module using the same - Google Patents

Method for manufacturing resin composition for solar cell sealing material, and solar cell sealing material and solar cell module using the same Download PDF

Info

Publication number
JP2015199930A
JP2015199930A JP2015067097A JP2015067097A JP2015199930A JP 2015199930 A JP2015199930 A JP 2015199930A JP 2015067097 A JP2015067097 A JP 2015067097A JP 2015067097 A JP2015067097 A JP 2015067097A JP 2015199930 A JP2015199930 A JP 2015199930A
Authority
JP
Japan
Prior art keywords
indenyl
dimethylhafnium
group
carbon atoms
solar cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015067097A
Other languages
Japanese (ja)
Other versions
JP6488817B2 (en
Inventor
清水 浩之
Hiroyuki Shimizu
浩之 清水
相宅 敬馬
Keima Aiyake
敬馬 相宅
佐藤 智彦
Tomohiko Sato
智彦 佐藤
山本 和弘
Kazuhiro Yamamoto
和弘 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Polyethylene Corp
Original Assignee
Japan Polyethylene Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Polyethylene Corp filed Critical Japan Polyethylene Corp
Priority to JP2015067097A priority Critical patent/JP6488817B2/en
Publication of JP2015199930A publication Critical patent/JP2015199930A/en
Application granted granted Critical
Publication of JP6488817B2 publication Critical patent/JP6488817B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

PROBLEM TO BE SOLVED: To provide: a method for manufacturing a resin composition for a solar cell sealing material having excellent crosslinking properties; and a solar cell sealing material and a solar cell module using the method.SOLUTION: A method is intended for manufacturing a resin composition for a solar cell sealing material containing an ethylene-α-olefin copolymer and an organic peroxide. The ethylene-α-olefin copolymer is obtained by carrying out copolymerization under the following condition (a1) using an olefin polymerization catalyst containing the following ingredient (A). The ingredient (A): 10-49 mol% in propylene concentration of a reaction system of a metallocene compound (a1).

Description

本発明は、太陽電池封止材用樹脂組成物の製造方法、並びにそれを用いた太陽電池封止材及び太陽電池モジュールに関するものである。   The present invention relates to a method for producing a resin composition for a solar cell encapsulant, and a solar cell encapsulant and a solar cell module using the same.

二酸化炭素の増加など地球環境問題がクローズアップされる中で、水力、風力、地熱などの有効利用とともに太陽光発電が再び注目されるようになった。太陽光発電は、水力、風力などと比べて規模は小さいものの、電力が必要な場所に分散して配置できることから、発電効率等の性能向上と価格の低下を目指した研究開発が推進されている。また、国や自治体で住宅用太陽光発電システム導入促進事業として設置費用を補助する施策が採られることで、徐々にその普及が進みつつある。しかしながら、更なる普及には一層の低コスト化が必要であり、そのため従来型のシリコンやガリウム−砒素などに代わる新たな素材を用いた太陽電池素子の開発だけでなく、太陽電池モジュールの製造コストをより一層低減する努力も地道に続けられている。   As global environmental issues such as an increase in carbon dioxide are highlighted, solar power generation has come into focus again along with the effective use of hydropower, wind power, and geothermal heat. Although solar power generation is smaller than hydropower, wind power, etc., it can be distributed in places where power is needed, so research and development aimed at improving performance such as power generation efficiency and reducing prices are being promoted. . In addition, the government and local governments are gradually promoting the spread of measures by substituting installation costs as a residential solar power generation system introduction promotion project. However, further cost reduction is necessary for further spread, so that not only the development of solar cell elements using new materials to replace conventional silicon and gallium arsenide, but also the manufacturing cost of solar cell modules Efforts to further reduce this are continuing.

太陽光発電は、一般にシリコン、ガリウム−砒素、銅−インジウム−セレンなどの太陽電池素子を上部透明保護材と下部基板保護材とで保護し、太陽電池素子と保護材とを樹脂製の封止材で固定し、パッケージ化した太陽電池モジュールを用いるものである。   Photovoltaic power generation generally protects solar cell elements such as silicon, gallium-arsenic, copper-indium-selenium with an upper transparent protective material and a lower substrate protective material, and the solar cell element and the protective material are sealed with resin. A solar cell module fixed with a material and packaged is used.

太陽電池モジュールを構成する封止材の条件としては、太陽電池の発電効率を低下しないように、太陽光の入射量を確保するため、透明性が良好なことが求められている。また、太陽電池モジュールは通常、屋外に設置されるから長期間太陽光に晒され温度上昇する。それにより樹脂製の封止材が流動し、モジュールが変形したりするトラブルを避けるために、耐熱性を有するものでなければならない。   As a condition of the sealing material constituting the solar cell module, in order to ensure the incident amount of sunlight so as not to decrease the power generation efficiency of the solar cell, good transparency is required. Moreover, since a solar cell module is usually installed outdoors, it is exposed to sunlight for a long period of time and the temperature rises. Therefore, in order to avoid troubles in which the resin sealing material flows and the module is deformed, it must have heat resistance.

従来から、封止材に用いる樹脂材料として、酢酸ビニル含量の高いエチレン・酢酸ビニル共重合体(EVA)が用いられてきた。そして、耐熱性を付与するため、EVAに有機過酸化物を配合して、架橋構造を付与した樹脂組成物が封止材として採用されている(たとえば、特許文献1参照)。ところが、エチレン・酢酸ビニル共重合体(EVA)系樹脂は、長期にわたって使用されると黄変、亀裂入り、発泡等の劣化・変質により耐湿性が低下して、太陽電池セルの腐食等による発電量の低下を招いていた。これらはEVA系樹脂が加水分解性の高いエステル構造を有しているために、太陽光や水分の影響を受け易いものと考えられている。   Conventionally, an ethylene / vinyl acetate copolymer (EVA) having a high vinyl acetate content has been used as a resin material used for a sealing material. And in order to provide heat resistance, the resin composition which mix | blended the organic peroxide with EVA and provided the crosslinked structure is employ | adopted as a sealing material (for example, refer patent document 1). However, ethylene / vinyl acetate copolymer (EVA) resin, when used over a long period of time, has deteriorated moisture resistance due to deterioration / deterioration such as yellowing, cracking and foaming, and power generation due to corrosion of solar cells, etc. The amount was reduced. These are considered to be easily affected by sunlight and moisture because the EVA resin has an ester structure with high hydrolyzability.

そのため、封止材に用いられる樹脂材料として、透明性、耐湿性等に優れるエチレン・α−オレフィン共重合体を用いることが提案されている。例えば、特許文献2では、結晶化度が40%以下の非晶性又は低結晶性のα−オレフィン系共重合体を用いた封止材が開示され、該α−オレフィン共重合体としてエチレンを主成分とする共重合体に架橋剤を配合することが記載されている。   Therefore, it has been proposed to use an ethylene / α-olefin copolymer that is excellent in transparency, moisture resistance, and the like as a resin material used for the sealing material. For example, Patent Document 2 discloses a sealing material using an amorphous or low crystalline α-olefin copolymer having a crystallinity of 40% or less, and ethylene is used as the α-olefin copolymer. It describes that a cross-linking agent is blended with a copolymer as a main component.

また、特許文献3では、封止材として、(a)約0.90g/cc未満の密度、(b)ASTM D−882−02により測定して約150メガパスカル(MPa)未満の2%割線係数、(c)約95℃未満の融点、(d)ポリマーの重量に基づいて少なくとも約15および約50重量%未満のα−オレフィン含量、(e)約−35℃未満のTg、ならびに(f)少なくとも約50のSCBDI、の1以上の条件を満たすポリオレフィンコポリマーを含むポリマー材料が開示されている。   In Patent Document 3, as a sealing material, (a) a density of less than about 0.90 g / cc, (b) a 2% secant of less than about 150 megapascals (MPa) as measured by ASTM D-882-02. A coefficient, (c) a melting point less than about 95 ° C., (d) an α-olefin content of at least about 15 and less than about 50% by weight based on the weight of the polymer, (e) a Tg of less than about −35 ° C., and (f ) Disclosed is a polymeric material comprising a polyolefin copolymer that meets one or more conditions of at least about 50 SCBDI.

近年、太陽電池モジュールの需要の増加に伴い、太陽電池モジュールの生産効率の向上が要求され、封止材の架橋工程も短時間化する傾向がある。一般的に、エチレン・α−オレフィン共重合体は、EVAと比較し、有機過酸化物での架橋が容易ではなく、短時間の加熱で高いゲル分率を得にくく、EVAと同程度の架橋効率を得るのが難しい。これはEVAではコモノマーである酢酸ビニル部分が容易にラジカル架橋点となりうるのに対し、一般的なエチレン・α−オレフィン共重合体で用いられるα−オレフィンコモノマー自体はラジカル架橋点にならないためである。   In recent years, with an increase in demand for solar cell modules, improvement in production efficiency of solar cell modules is required, and the crosslinking process of the sealing material tends to be shortened. In general, ethylene / α-olefin copolymers are not easily crosslinked with organic peroxides compared to EVA, and it is difficult to obtain a high gel fraction by heating in a short time. It is difficult to get efficiency. This is because, in EVA, the vinyl acetate portion which is a comonomer can easily become a radical crosslinking point, whereas the α-olefin comonomer itself used in a general ethylene / α-olefin copolymer does not become a radical crosslinking point. .

そこで、エチレンα−オレフィン共重合体の架橋効率を向上させるため、分岐数や共重合体中の二重結合(ビニル、ビニリデン、シス−ビニレン、トランス−ビニレン、三置換オレフィン)の数が多い多いエチレン・α−オレフィン共重合体を用いることが提案されている(特許文献4、5)。しかしながら、エチレン・α−オレフィン共重合体を用いた封止材には、さらなる架橋効率の改善が求められている。   Therefore, in order to improve the crosslinking efficiency of the ethylene α-olefin copolymer, the number of branches and the number of double bonds (vinyl, vinylidene, cis-vinylene, trans-vinylene, trisubstituted olefin) in the copolymer are large. It has been proposed to use an ethylene / α-olefin copolymer (Patent Documents 4 and 5). However, further improvement in crosslinking efficiency is required for a sealing material using an ethylene / α-olefin copolymer.

特開昭58−023870号公報JP 58-023870 A 特開2006−210906号公報JP 2006-210906 A 特表2010−504647号公報JP 2010-504647 A 特開2012−009688号公報JP 2012-009688 A 特開2012−009691号公報JP 2012-009691 A

本発明の目的は、かかる従来技術の問題点に鑑み、架橋特性に優れる太陽電池封止材用樹脂組成物の製造方法を提供し、さらに、それを用いることにより耐熱性、透明性、耐候性に優れる太陽電池封止材及び太陽電池モジュールを提供することにある。   The object of the present invention is to provide a method for producing a resin composition for a solar cell encapsulant that is excellent in cross-linking properties in view of the problems of the prior art, and further, by using it, heat resistance, transparency, weather resistance It is providing the solar cell sealing material and solar cell module which are excellent in this.

本発明者らは、上記問題を解決すべく鋭意検討した結果、触媒成分としてメタロセン化合物などを用い、重合反応中のプロピレン濃度を特定の範囲として製造されたエチレン・α−オレフィン共重合体は、該共重合体中にビニル、ビニリデンの二重結合を多く含むことを見出し、さらに、該共重合体を含む樹脂組成物を用いてなる太陽電池封止材は、架橋特性に優れるとの知見を得て、本発明を完成させるに至った。   As a result of intensive studies to solve the above problems, the present inventors have used a metallocene compound or the like as a catalyst component, and an ethylene / α-olefin copolymer produced with a propylene concentration during a polymerization reaction within a specific range, Finding that the copolymer contains many double bonds of vinyl and vinylidene, and further that the solar cell encapsulant using the resin composition containing the copolymer is excellent in crosslinking properties. As a result, the present invention has been completed.

即ち、本発明の第1の発明によれば、エチレン・α−オレフィン共重合体及び有機過酸化物を含む太陽電池封止材用樹脂組成物の製造方法であって、前記エチレン・α−オレフィン共重合体が、下記の成分(A)を含むオレフィン重合用触媒を用い、下記(a1)の条件下で共重合を行なうことにより得られることを特徴とする太陽電池封止材用樹脂組成物の製造方法が提供される。
成分(A):メタロセン化合物
(a1)反応系中のプロピレン濃度が10〜49モル%
That is, according to 1st invention of this invention, it is a manufacturing method of the resin composition for solar cell sealing materials containing an ethylene-alpha-olefin copolymer and an organic peroxide, Comprising: Said ethylene-alpha-olefin A resin composition for a solar cell encapsulant, wherein the copolymer is obtained by performing copolymerization under the conditions (a1) below using an olefin polymerization catalyst containing the following component (A): A manufacturing method is provided.
Component (A): Metallocene compound (a1) The propylene concentration in the reaction system is 10 to 49 mol%.

また、本発明の第2の発明によれば、第1の発明において、下記の(a1’)の条件下で共重合を行なうことを特徴とする請求項1に記載の太陽電池封止材用樹脂組成物の製造方法が提供される。
(a1’)反応系中のプロピレン濃度が20〜49モル%
Further, according to the second invention of the present invention, in the first invention, the copolymerization is performed under the following condition (a1 ′): A method for producing a resin composition is provided.
(A1 ′) The propylene concentration in the reaction system is 20 to 49 mol%.

また、本発明の第3の発明によれば、第1又は2の発明において、成分(A)が、下記一般式(I)で表されるメタロセン化合物であることを特徴とする太陽電池封止材用樹脂組成物の製造方法が提供される。

Figure 2015199930
[一般式(I)中、MはTi、Zr、又はHfであり;
−R10及びR11−R20は同一又は異なって、それぞれ水素原子、ハロゲン原子、炭素数1〜10のアルキル基、炭素数1〜10のハロゲン化アルキル基、炭素数6〜20のアリール基、炭素数1〜10のアルコキシ基、炭素数1〜6の炭化水素基を有するシリル基、炭素数1〜6の炭化水素基を有するシリル基で置換された炭素数1〜20のアルキル基、−NR23 基、−SR23基、−OSiR23 基又は−PR23 基であり(R23は、ハロゲン原子、炭素数1〜10のアルキル基、炭素数6〜20のアリール基であり)、R−R10及びR11−R20が隣接するR基同士でそれらを連結する原子と一緒になって1つ以上の芳香族環又は脂肪族環を形成してもよく、RとR若しくはRとR10、R15とR16若しくはR15とR20がそれらを連結する原子と一緒になって1つの芳香族環又は脂肪族環を形成していてもよく;
YはSi又はCであり;
21とR22は同一又は異なって、それぞれ水素原子、ハロゲン原子、炭素数1〜10のアルキル基、炭素数1〜10のフルオロアルキル基、炭素数1〜10のアルコキシ基、炭素数6〜20のアリール基、炭素数6〜10のフルオロアリール基、炭素数6〜10のアリールオキシ基、炭素数2〜10のアルケニル基、炭素数7〜40のアリールアルキル基、炭素数7〜40のアルキルアリール基、炭素数8〜40のアリールアルケニル基であり、かつ、R21とR22が同時に水素原子ではなく、R21とR22がそれらを連結する原子と一緒になって1つ以上の環を形成してもよく;
とXは同一又は異なって、それぞれ水素原子、炭素数1〜10のアルキル基、炭素数1〜10のアルコキシ基、炭素数6〜20のアリール基、炭素数6〜10のアリールオキシ基、炭素数2〜10のアルケニル基、炭素数7〜40のアリールアルキル基、炭素数7〜40のアルキルアリール基、炭素数8〜40のアリールアルケニル基、炭素数1〜6の炭化水素基を有するシリル基で置換された炭素数1〜20のアルキル基、炭素数1〜10のアミノ基、OH基、ハロゲン原子又は配位可能な中性配位子であり、XとXが、それらを連結する原子と一緒になって1つの環を形成していてもよい。] According to the third invention of the present invention, in the first or second invention, the component (A) is a metallocene compound represented by the following general formula (I). A method for producing a resin composition for a material is provided.
Figure 2015199930
[In general formula (I), M is Ti, Zr, or Hf;
R 1 -R 10 and R 11 -R 20 are the same or different and each is a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms, a halogenated alkyl group having 1 to 10 carbon atoms, or an alkyl group having 6 to 20 carbon atoms. C1-C20 alkyl substituted with an aryl group, a C1-C10 alkoxy group, a silyl group having a C1-C6 hydrocarbon group, or a silyl group having a C1-C6 hydrocarbon group Group, —NR 23 2 group, —SR 23 group, —OSiR 23 3 group or —PR 23 2 group (R 23 is a halogen atom, an alkyl group having 1 to 10 carbon atoms, an aryl having 6 to 20 carbon atoms) R 1 -R 10 and R 11 -R 20 may form one or more aromatic or aliphatic rings together with the atoms connecting them between adjacent R groups. , R 5 and R 6 or R 5 and R 1 , They may form a single aromatic ring or an aliphatic ring together with the atoms to which R 15 and R 16 or R 15 and R 20 are linked to them;
Y is Si or C;
R 21 and R 22 are the same or different and are each a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms, a fluoroalkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, or 6 to 6 carbon atoms. 20 aryl groups, C6-C10 fluoroaryl groups, C6-C10 aryloxy groups, C2-C10 alkenyl groups, C7-C40 arylalkyl groups, C7-C40 An alkylaryl group, an arylalkenyl group having 8 to 40 carbon atoms, and R 21 and R 22 are not hydrogen atoms at the same time, and R 21 and R 22 together with the atoms connecting them are one or more May form a ring;
X 1 and X 2 are the same or different and are each a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, an aryl group having 6 to 20 carbon atoms, or an aryloxy having 6 to 10 carbon atoms. Group, alkenyl group having 2 to 10 carbon atoms, arylalkyl group having 7 to 40 carbon atoms, alkylaryl group having 7 to 40 carbon atoms, arylalkenyl group having 8 to 40 carbon atoms, hydrocarbon group having 1 to 6 carbon atoms An alkyl group having 1 to 20 carbon atoms, an amino group having 1 to 10 carbon atoms, an OH group, a halogen atom or a neutral ligand capable of coordination, which is substituted with a silyl group having X 1 and X 2 , Together with atoms connecting them, may form a ring. ]

また、本発明の第4の発明によれば、第1〜3のいずれかの発明において、前記オレフィン重合用触媒が、下記の成分(B)を含むことを特徴とする太陽電池封止材用樹脂組成物の製造方法が提供される。
成分(B):成分(A)と反応してイオン対を形成する化合物又はイオン交換性層状珪酸塩
According to a fourth invention of the present invention, in any one of the first to third inventions, the catalyst for olefin polymerization contains the following component (B): A method for producing a resin composition is provided.
Component (B): Compound or ion-exchangeable layered silicate that reacts with component (A) to form an ion pair

また、本発明の第5の発明によれば、第1〜4のいずれかの発明において、前記オレフィン重合用触媒が、下記の成分(C)を含むことを特徴とする太陽電池封止材用樹脂組成物の製造方法が提供される。
成分(C):有機アルミニウム化合物
According to a fifth invention of the present invention, in any one of the first to fourth inventions, the olefin polymerization catalyst includes the following component (C): A method for producing a resin composition is provided.
Component (C): Organoaluminum compound

また、本発明の第6の発明によれば、第1〜5のいずれかの発明において、成分(B)がホウ素化合物であることを特徴とする太陽電池封止材用樹脂組成物の製造方法が提供される。   According to a sixth invention of the present invention, in any one of the first to fifth inventions, the component (B) is a boron compound, and the method for producing a resin composition for a solar cell encapsulant Is provided.

また、本発明の第7の発明によれば、第3の発明において、一般式(I)中、Yが炭素原子であることを特徴とする太陽電池封止材用樹脂組成物の製造方法が提供される。   According to a seventh aspect of the present invention, there is provided a method for producing a resin composition for a solar cell encapsulant, characterized in that, in the third aspect, in the general formula (I), Y is a carbon atom. Provided.

また、本発明の第8の発明によれば、第1〜7のいずれかの発明において、前記エチレン・α−オレフィン共重合体が下記の(b1)の特性を有することを特徴とする太陽電池封止材用樹脂組成物の製造方法が提供される。
(b1)エチレン・α−オレフィン共重合体中のビニル、ビニリデンの二重結合の合計数が0.50(個/主鎖1000C)以上である(ただし、ビニル、ビニリデンの個数は、NMRで測定した数である)
According to an eighth aspect of the present invention, in any one of the first to seventh aspects, the ethylene / α-olefin copolymer has the following characteristic (b1): A method for producing a resin composition for a sealing material is provided.
(B1) The total number of vinyl and vinylidene double bonds in the ethylene / α-olefin copolymer is 0.50 (pieces / 1000 C main chain) or more (however, the number of vinyl and vinylidene is measured by NMR) Is the number of

また、本発明の第9の発明によれば、第8の発明に係る樹脂組成物を用いることを特徴とする太陽電池封止材が提供される。   Moreover, according to the ninth invention of the present invention, there is provided a solar cell encapsulant characterized by using the resin composition according to the eighth invention.

さらに、本発明の第10の発明によれば、第9の発明に係る太陽電池封止材を用いることを特徴とする太陽電池モジュールが提供される。   Furthermore, according to the 10th invention of this invention, the solar cell module characterized by using the solar cell sealing material which concerns on 9th invention is provided.

本発明の太陽電池封止材用樹脂組成物の製造方法は、ビニル、ビニリデンの二重結合を多く含むエチレン・α−オレフィン共重合体を用いることにより、架橋速度に優れる太陽電池封止材用樹脂組成物を提供するものである。そして、該樹脂組成物を用いた太陽電池封止材は、比較的短時間で架橋できるため、太陽電池モジュールの形成が容易になり、太陽電池モジュールは、耐熱性、透明性、耐候性に優れ、かつ、製造コストが低減され、長期間安定した変換効率を維持することが期待できる。   The method for producing a resin composition for a solar cell encapsulant of the present invention is for a solar cell encapsulant having an excellent crosslinking rate by using an ethylene / α-olefin copolymer containing many vinyl and vinylidene double bonds. A resin composition is provided. And since the solar cell sealing material using the resin composition can be crosslinked in a relatively short time, the solar cell module can be easily formed, and the solar cell module is excellent in heat resistance, transparency, and weather resistance. In addition, it can be expected that the manufacturing cost is reduced and the conversion efficiency stable for a long time is maintained.

本発明の太陽電池封止材用樹脂組成物の製造方法は、メタロセン化合物を含むオレフィン重合用触媒を用い、重合系中のプロピレン濃度を特定の範囲として得られたエチレン・α−オレフィン共重合体および有機過酸化物を含むことを特徴とする。
以下、本発明において用いられる各成分、得られるエチレン・α−オレフィン共重合体及び太陽電池封止材用樹脂組成物、それを用いた太陽電池封止材、太陽電池モジュール等について、項目毎に詳細に説明する。
The method for producing a resin composition for a solar cell encapsulant of the present invention uses an ethylene / α-olefin copolymer obtained by using a catalyst for olefin polymerization containing a metallocene compound and a propylene concentration in a polymerization system within a specific range. And an organic peroxide.
Hereinafter, each component used in the present invention, the obtained ethylene / α-olefin copolymer and a resin composition for a solar cell encapsulant, a solar cell encapsulant using the same, a solar cell module, etc., for each item This will be described in detail.

1.オレフィン重合用触媒
本発明に用いられるオレフィン重合用触媒は、下記の成分(A)を含有し、さらに、好ましくは、下記の成分(B)〜(C)を含有するものである。
成分(A):メタロセン化合物
成分(B):成分(A)と反応してイオン対を形成する化合物又はイオン交換性層状珪酸塩
成分(C):有機アルミニウム化合物
1. Olefin Polymerization Catalyst The olefin polymerization catalyst used in the present invention contains the following component (A), and preferably contains the following components (B) to (C).
Component (A): Metallocene compound Component (B): Compound or ion-exchange layered silicate that reacts with component (A) to form an ion pair Component (C): Organoaluminum compound

(1)成分(A)
本発明において用いられる成分(A)は、メタロセン化合物であり、好ましくは、下記の一般式(I)で表される特定の置換基を有するメタロセン化合物である。
(1) Component (A)
Component (A) used in the present invention is a metallocene compound, preferably a metallocene compound having a specific substituent represented by the following general formula (I).

Figure 2015199930
[一般式(I)中、MはTi、Zr、又はHfであり;
−R10及びR11−R20は同一又は異なって、それぞれ水素原子、ハロゲン原子、炭素数1〜10のアルキル基、炭素数1〜10のハロゲン化アルキル基、炭素数6〜20のアリール基、炭素数1〜10のアルコキシ基、炭素数1〜6の炭化水素基を有するシリル基、炭素数1〜6の炭化水素基を有するシリル基で置換された炭素数1〜20のアルキル基、−NR23 基、−SR23基、−OSiR23 基又は−PR23 基であり(R23は、ハロゲン原子、炭素数1〜10のアルキル基、炭素数6〜20のアリール基であり)、R−R10及びR11−R20が隣接するR基同士でそれらを連結する原子と一緒になって1つ以上の芳香族環又は脂肪族環を形成してもよく、RとR若しくはRとR10、R15とR16若しくはR15とR20がそれらを連結する原子と一緒になって1つの芳香族環又は脂肪族環を形成していてもよく;
YはSi又はCであり;
21とR22は同一又は異なって、それぞれ水素原子、ハロゲン原子、炭素数1〜10のアルキル基、炭素数1〜10のフルオロアルキル基、炭素数1〜10のアルコキシ基、炭素数6〜20のアリール基、炭素数6〜10のフルオロアリール基、炭素数6〜10のアリールオキシ基、炭素数2〜10のアルケニル基、炭素数7〜40のアリールアルキル基、炭素数7〜40のアルキルアリール基、炭素数8〜40のアリールアルケニル基であり、かつ、R21とR22が同時に水素原子ではなく、R21とR22がそれらを連結する原子と一緒になって1つ以上の環を形成してもよく;
とXは同一又は異なって、それぞれ水素原子、炭素数1〜10のアルキル基、炭素数1〜10のアルコキシ基、炭素数6〜20のアリール基、炭素数6〜10のアリールオキシ基、炭素数2〜10のアルケニル基、炭素数7〜40のアリールアルキル基、炭素数7〜40のアルキルアリール基、炭素数8〜40のアリールアルケニル基、炭素数1〜6の炭化水素基を有するシリル基で置換された炭素数1〜20のアルキル基、炭素数1〜10のアミノ基、OH基、ハロゲン原子又は配位可能な中性配位子であり、XとXが、それらを連結する原子と一緒になって1つの環を形成していてもよい。]
Figure 2015199930
[In general formula (I), M is Ti, Zr, or Hf;
R 1 -R 10 and R 11 -R 20 are the same or different and each is a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms, a halogenated alkyl group having 1 to 10 carbon atoms, or an alkyl group having 6 to 20 carbon atoms. C1-C20 alkyl substituted with an aryl group, a C1-C10 alkoxy group, a silyl group having a C1-C6 hydrocarbon group, or a silyl group having a C1-C6 hydrocarbon group Group, —NR 23 2 group, —SR 23 group, —OSiR 23 3 group or —PR 23 2 group (R 23 is a halogen atom, an alkyl group having 1 to 10 carbon atoms, an aryl having 6 to 20 carbon atoms) R 1 -R 10 and R 11 -R 20 may form one or more aromatic or aliphatic rings together with the atoms connecting them between adjacent R groups. , R 5 and R 6 or R 5 and R 1 , They may form a single aromatic ring or an aliphatic ring together with the atoms to which R 15 and R 16 or R 15 and R 20 are linked to them;
Y is Si or C;
R 21 and R 22 are the same or different and are each a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms, a fluoroalkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, or 6 to 6 carbon atoms. 20 aryl groups, C6-C10 fluoroaryl groups, C6-C10 aryloxy groups, C2-C10 alkenyl groups, C7-C40 arylalkyl groups, C7-C40 An alkylaryl group, an arylalkenyl group having 8 to 40 carbon atoms, and R 21 and R 22 are not hydrogen atoms at the same time, and R 21 and R 22 together with the atoms connecting them are one or more May form a ring;
X 1 and X 2 are the same or different and are each a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, an aryl group having 6 to 20 carbon atoms, or an aryloxy having 6 to 10 carbon atoms. Group, alkenyl group having 2 to 10 carbon atoms, arylalkyl group having 7 to 40 carbon atoms, alkylaryl group having 7 to 40 carbon atoms, arylalkenyl group having 8 to 40 carbon atoms, hydrocarbon group having 1 to 6 carbon atoms An alkyl group having 1 to 20 carbon atoms, an amino group having 1 to 10 carbon atoms, an OH group, a halogen atom or a neutral ligand capable of coordination, which is substituted with a silyl group having X 1 and X 2 , Together with atoms connecting them, may form a ring. ]

一般式(I)中、Mは、Ti、Zr、又は、Hfであり、好ましくはZr、Hfであり、特に好ましくはHfである。   In general formula (I), M is Ti, Zr, or Hf, preferably Zr, Hf, and particularly preferably Hf.

一般式(I)中、X、Xとして、具体的には、塩素原子、臭素原子、ヨウ素原子、フッ素原子、メチル基、エチル基、プロピル基、n−ブチル基、i−ブチル基、フェニル基、ベンジル基、ジメチルアミノ基、ジエチルアミノ基又はトリメチルシリル基などを挙げることができる。
これらの中でも好ましくは、塩素原子、メチル基、i−ブチル基、フェニル基、ベンジル基、トリメチルシリル基であり、より好ましくは、塩素原子、メチル基、i−ブチル基、ベンジル基、トリメチルシリル基である。
In the general formula (I), as X 1 and X 2 , specifically, chlorine atom, bromine atom, iodine atom, fluorine atom, methyl group, ethyl group, propyl group, n-butyl group, i-butyl group, A phenyl group, a benzyl group, a dimethylamino group, a diethylamino group, a trimethylsilyl group, etc. can be mentioned.
Among these, a chlorine atom, a methyl group, an i-butyl group, a phenyl group, a benzyl group, and a trimethylsilyl group are preferable, and a chlorine atom, a methyl group, an i-butyl group, a benzyl group, and a trimethylsilyl group are more preferable. .

また、XとXが、配位可能な中性配位子であり、それらを連結する原子と一緒になって1つの環を形成した原子団として具体的には、1,3−ブタジエン、1,4−ジフェニル−1,3−ブタジエン、3−メチル−1,3−ペンタジエン、1,4−ジベンジル−1,3−ブタジエン、2,4−ヘキサジエン、1,3−ペンタジエン、1,4−ジトリル−1,3−ブタジエン、1,4−ビス(トリメチルシリル)−1,3−ブタジエンなどを挙げることができる。 In addition, X 1 and X 2 are coordinateable neutral ligands, and specifically, 1,3-butadiene is an atomic group that forms one ring together with atoms connecting them. 1,4-diphenyl-1,3-butadiene, 3-methyl-1,3-pentadiene, 1,4-dibenzyl-1,3-butadiene, 2,4-hexadiene, 1,3-pentadiene, 1,4 -Ditolyl-1,3-butadiene, 1,4-bis (trimethylsilyl) -1,3-butadiene and the like can be mentioned.

一般式(I)中、R〜R、R11〜R15は好ましくは水素原子である。 In general formula (I), R 1 to R 5 and R 11 to R 15 are preferably hydrogen atoms.

一般式(I)中、R〜R10、R16〜R20は好ましくは水素原子、炭素数1〜10のアルキル基、炭素数1〜10のハロゲン化アルキル基、炭素数6〜10のアリール基、炭素数1〜6の炭化水素基を有するシリル基、炭素数1〜6の炭化水素基を有するシリル基で置換された炭素数1〜20のアルキル基であり、さらに好ましくは水素原子、炭素数1〜10のアルキル基、炭素数1〜10のハロゲン化アルキル基、炭素数6〜10のアリール基、である。 In general formula (I), R 6 to R 10 and R 16 to R 20 are preferably a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, a halogenated alkyl group having 1 to 10 carbon atoms, or a carbon atom having 6 to 10 carbon atoms. An aryl group, a silyl group having a hydrocarbon group having 1 to 6 carbon atoms, an alkyl group having 1 to 20 carbon atoms substituted with a silyl group having a hydrocarbon group having 1 to 6 carbon atoms, and more preferably a hydrogen atom , An alkyl group having 1 to 10 carbon atoms, a halogenated alkyl group having 1 to 10 carbon atoms, and an aryl group having 6 to 10 carbon atoms.

一般式(I)中、Yは、生成するエチレン・αオレフィン共重合体のビニル、ビニリデン数の観点から、炭素原子であることが好ましい。   In general formula (I), Y is preferably a carbon atom from the viewpoint of the number of vinyl and vinylidene in the ethylene / α-olefin copolymer to be produced.

一般式(I)中、好ましいR23基としては、炭素数1〜10のアルキル基、炭素数6〜10のアリール基であり、好ましい−NR23 基としては、ジメチルアミド基、ジエチルアミド基、ジイソプロピルアミド基などを挙げることができる。 In general formula (I), preferred R 23 groups are alkyl groups having 1 to 10 carbon atoms and aryl groups having 6 to 10 carbon atoms, and preferred —NR 23 2 groups are dimethylamide groups, diethylamide groups, A diisopropylamide group etc. can be mentioned.

一般式(I)中、−SR23基として具体的には、メチルスルファニル基、エチルスルファニル基、イソプロピルスルファニル基、フェニルスルファニル基などを挙げることができる。 In the general formula (I), specific examples of the —SR 23 group include a methylsulfanyl group, an ethylsulfanyl group, an isopropylsulfanyl group, and a phenylsulfanyl group.

−OSiR23 基として具体的には、トリメチルシロキシ基、トリエチルシロキシキ基、トリイソプロピルシロキシ基、トリフェニルシロキシ基、tert−ブチル(ジメチル)シロキシ基などを挙げることができる。 Specific examples -OSiR 23 3 group, can be mentioned trimethylsiloxy group, triethyl siloxane Shiki group, triisopropylsiloxy group, triphenylsiloxy group, and tert- butyl (dimethyl) siloxy group.

一般式(I)中、−PR23 基として具体的にはジメチルホスフィノ基、ジエチルホスフィノ基、ジイソプロピルホスフィノ基、ジブチルホスフィノ基、ジフェニルホスフィノ基などを挙げることができる。 In the formula (I), specifically as a -PR 23 2 radical can be exemplified dimethylphosphino group, diethylphosphino group, diisopropylphosphino group, di-butyl phosphino group, and diphenylphosphino group.

一般式(I)中、R21、R22は、好ましくはハロゲン原子、炭素数1〜10のアルキル基、炭素数1〜10のフルオロアルキル基、炭素数7〜10のアリール基、フルオロアリール基、炭素数2〜10のアルケニル基、炭素数7〜40のアリールアルキル基、炭素数7〜40のアルキルアリール基、炭素数8〜40のアリールアルケニル基であり、さらに好ましくは、炭素数1〜10のアルキル基、炭素数7〜10のアリール基、炭素数2〜10のアルケニル基であり、加えて、好ましくはR21とR22が含む炭素数の和が3以上である。
また、R21とR22は連結する原子(Y)と一緒になって1つ以上の環を形成するのが好ましく、さらに好ましくは4−5員環を形成するのが好ましい。
In general formula (I), R 21 and R 22 are preferably a halogen atom, an alkyl group having 1 to 10 carbon atoms, a fluoroalkyl group having 1 to 10 carbon atoms, an aryl group having 7 to 10 carbon atoms, and a fluoroaryl group. , An alkenyl group having 2 to 10 carbon atoms, an arylalkyl group having 7 to 40 carbon atoms, an alkylaryl group having 7 to 40 carbon atoms, and an arylalkenyl group having 8 to 40 carbon atoms, more preferably 1 to 1 carbon atom. 10 alkyl groups, aryl groups having 7 to 10 carbon atoms, and alkenyl groups having 2 to 10 carbon atoms. In addition, the total number of carbon atoms contained in R 21 and R 22 is preferably 3 or more.
R 21 and R 22 preferably form one or more rings together with the connecting atom (Y), and more preferably form a 4-5 membered ring.

以下、一般式(I)に含有されうる各官能基の具体例を示す。
炭素数1〜10のアルキル基の具体例としてはメチル、エチル、n−プロピル、i−プロピル、n−ブチル、i−ブチル、s−ブチル、t−ブチル、n−ペンチル、n−ヘキシル、シクロプロピル、シクロペンチル、シクロヘキシル、n−ヘプチル、n−オクチル、n−デシルなどを挙げることができる。
Specific examples of each functional group that can be contained in the general formula (I) are shown below.
Specific examples of the alkyl group having 1 to 10 carbon atoms include methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, s-butyl, t-butyl, n-pentyl, n-hexyl, cyclo Examples thereof include propyl, cyclopentyl, cyclohexyl, n-heptyl, n-octyl, n-decyl and the like.

炭素数1〜10のハロゲン含有アルキル基は、炭素数1〜10のアルキル基の骨格上の水素原子にハロゲンが置換されたものである。炭素数1〜10のハロゲン化アルキル基のハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。
炭素数1〜10のハロゲン化アルキル基の具体例としては、フルオロメチル、ジフルオロメチル、トリフルオロメチル、クロロメチル、ジクロロメチル、トリクロロメチル、ブロモメチル、ジブロモメチル、トリブロモメチル、ヨードメチル、2,2,2−トリフルオロエチル、2,2,1,1−テトラフルオロエチル、ペンタフルオロエチル、ペンタクロロエチル、ペンタフルオロプロピル、ノナフルオロブチル、5−クロロペンチル、5,5,5−トリクロロペンチル、5−フルオロペンチル、5,5,5−トリフルオロペンチル、6−クロロヘキシル、6,6,6−トリクロロヘキシル、6−フルオロヘキシル、6,6,6−トリフルオロヘキシルを挙げることができる。
The halogen-containing alkyl group having 1 to 10 carbon atoms is a group in which a halogen atom is substituted on a hydrogen atom on the skeleton of an alkyl group having 1 to 10 carbon atoms. Examples of the halogen atom of the halogenated alkyl group having 1 to 10 carbon atoms include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
Specific examples of the halogenated alkyl group having 1 to 10 carbon atoms include fluoromethyl, difluoromethyl, trifluoromethyl, chloromethyl, dichloromethyl, trichloromethyl, bromomethyl, dibromomethyl, tribromomethyl, iodomethyl, 2,2, 2-trifluoroethyl, 2,2,1,1-tetrafluoroethyl, pentafluoroethyl, pentachloroethyl, pentafluoropropyl, nonafluorobutyl, 5-chloropentyl, 5,5,5-trichloropentyl, 5- Mention may be made of fluoropentyl, 5,5,5-trifluoropentyl, 6-chlorohexyl, 6,6,6-trichlorohexyl, 6-fluorohexyl and 6,6,6-trifluorohexyl.

炭素数6〜20のアリール基の具体例としては、フェニル、1−ナフチル、2−ナフチル、アセナフチル、フェナントリル、アントリルなどを挙げることができる。   Specific examples of the aryl group having 6 to 20 carbon atoms include phenyl, 1-naphthyl, 2-naphthyl, acenaphthyl, phenanthryl, anthryl and the like.

炭素数1〜10のフルオロアルキル基とは、炭素数1〜10のアルキル基の骨格上の水素原子にフッ素原子が置換されたものである。
具体例としては、フルオロメチル、ジフルオロメチル、トリフルオロメチル、2,2,2−トリフルオロエチル、2,2,1,1−テトラフルオロエチル、ペンタフルオロエチル、ペンタフルオロプロピル、5−フルオロペンチル、5,5,5−トリフルオロペンチル、6−フルオロヘキシル、6,6,6−トリフルオロヘキシルを挙げることができる。
A fluoroalkyl group having 1 to 10 carbon atoms is a group in which a fluorine atom is substituted for a hydrogen atom on the skeleton of an alkyl group having 1 to 10 carbon atoms.
Specific examples include fluoromethyl, difluoromethyl, trifluoromethyl, 2,2,2-trifluoroethyl, 2,2,1,1-tetrafluoroethyl, pentafluoroethyl, pentafluoropropyl, 5-fluoropentyl, Mention may be made of 5,5,5-trifluoropentyl, 6-fluorohexyl, 6,6,6-trifluorohexyl.

炭素数1〜10のアルコキシ基の具体例としてはメトキシ、エトキシ、n−プロポキシ、i−プロポキシ、n−ブトキシ,i−ブトキシ、s−ブトキシ、t−ブトキシ、n−ペントキシ,n−ヘキソキシ,シクロプロポキシ、シクロペントキシ、シクロヘキソキシ,n−オクトキシ,n−デトキシなどを挙げることができる。   Specific examples of the alkoxy group having 1 to 10 carbon atoms include methoxy, ethoxy, n-propoxy, i-propoxy, n-butoxy, i-butoxy, s-butoxy, t-butoxy, n-pentoxy, n-hexoxy, cyclo Propoxy, cyclopentoxy, cyclohexoxy, n-octoxy, n-deoxy and the like can be mentioned.

炭素数6〜10のフルオロアリール基は、炭素数6〜10のアリール基の骨格上の水素原子にフッ素原子が置換されたものである。具体例としては、ペンタフルオロフェニル、2−フルオロフェニル、3−フルオロフェニル、4−フルオロフェニル、ジ(トリフルオロメチル)フェニル、ペンタフルオロエチルフェニル、ノナフルオロ−t−ブチルフェニル、1−パーフルオロナフチル、2−パーフルオロナフチルなどを挙げることができる。   The fluoroaryl group having 6 to 10 carbon atoms is obtained by substituting a fluorine atom for a hydrogen atom on the skeleton of an aryl group having 6 to 10 carbon atoms. Specific examples include pentafluorophenyl, 2-fluorophenyl, 3-fluorophenyl, 4-fluorophenyl, di (trifluoromethyl) phenyl, pentafluoroethylphenyl, nonafluoro-t-butylphenyl, 1-perfluoronaphthyl, Examples include 2-perfluoronaphthyl.

炭素数6〜10のアリールオキシ基には、炭素数1〜4の炭化水素基が置換されていてもよく、具体例としては、フェノキシ、トリメチルフェノキシ、ジメチルフェノキシ、エチルフェノキシ、t−ブチルフェノキシ、1−ナフトキシ,2−ナフトキシなどを挙げることができる。   The aryloxy group having 6 to 10 carbon atoms may be substituted with a hydrocarbon group having 1 to 4 carbon atoms. Specific examples include phenoxy, trimethylphenoxy, dimethylphenoxy, ethylphenoxy, t-butylphenoxy, Examples include 1-naphthoxy and 2-naphthoxy.

炭素数2〜10のアルケニル基の具体例としては、ビニル、1−プロペニル、2−プロペニル、3−ブテニル、5−ヘキセニル、7−オクテニルなどを挙げることができる。   Specific examples of the alkenyl group having 2 to 10 carbon atoms include vinyl, 1-propenyl, 2-propenyl, 3-butenyl, 5-hexenyl, 7-octenyl and the like.

炭素数7〜40のアリールアルキル基には、具体的には、ベンジル、フェニルエチル、(メチルフェニル)メチル、(tert−ブチルフェニル)メチルなどを挙げることができる。   Specific examples of the arylalkyl group having 7 to 40 carbon atoms include benzyl, phenylethyl, (methylphenyl) methyl, (tert-butylphenyl) methyl, and the like.

炭素数7〜40のアルキルアリール基には、具体的には、トリル、ジメチルフェニル、エチルフェニル、トリメチルフェニル、t−ブチルフェニルなどを挙げることができる。   Specific examples of the alkylaryl group having 7 to 40 carbon atoms include tolyl, dimethylphenyl, ethylphenyl, trimethylphenyl, and t-butylphenyl.

炭素数8〜40のアリールアルケニル基には、具体的には、ビニルフェニル、(2−プロペニル)フェニル基などを挙げることができる。   Specific examples of the arylalkenyl group having 8 to 40 carbon atoms include vinylphenyl and (2-propenyl) phenyl groups.

炭素数1〜6の炭化水素基を有するシリル基で置換された炭素数1〜20のアルキル基には、具体的には、トリメチルシリル基、トリエチルシリルメチル基、トリフェニルシリルメチル基を挙げることができる。   Specific examples of the alkyl group having 1 to 20 carbon atoms substituted with a silyl group having a hydrocarbon group having 1 to 6 carbon atoms include a trimethylsilyl group, a triethylsilylmethyl group, and a triphenylsilylmethyl group. it can.

炭素数1〜10のアミノ基には、具体的には、ジメチルアミノ基、ジエチルアミノ基、ジイソプロピルアミノ基を挙げることができる。   Specific examples of the amino group having 1 to 10 carbon atoms include a dimethylamino group, a diethylamino group, and a diisopropylamino group.

炭素数1〜6の炭化水素基を有するシリル基として、具体的には、トリメチルシリル基、トリエチルシリル基、tert−ブチル(ジメチル)シリル基、トリフェニルシリル基などを挙げることができる。   Specific examples of the silyl group having a hydrocarbon group having 1 to 6 carbon atoms include trimethylsilyl group, triethylsilyl group, tert-butyl (dimethyl) silyl group, and triphenylsilyl group.

(メタロセン化合物の具体例)
一般式(I)で示される本発明のメタロセン化合物の具体例を以下に示す。これらは代表的な例示である。
(Specific examples of metallocene compounds)
Specific examples of the metallocene compound of the present invention represented by the general formula (I) are shown below. These are representative examples.

イソプロピリデン架橋メタロセン化合物:
イソプロピリデンビス(4−フェニル−1−インデニル)ジメチルハフニウム、イソプロピリデンビス(4−(3−メチルフェニル)−1−インデニル)ジメチルハフニウム、イソプロピリデンビス(4−(3−イソプロピルフェニル)−1−インデニル)ジメチルハフニウム、イソプロピリデンビス(4−(3−tert−ブチルフェニル)−1−インデニル)ジメチルハフニウム、イソプロピリデンビス(4−(4−メチルフェニル)−1−インデニル)ジメチルハフニウム、イソプロピリデンビス(4−(4−イソプロピルフェニル)−1−インデニル)ジメチルハフニウム、イソプロピリデンビス(4−(4−tert−ブチルフェニル)−1−インデニル)ジメチルハフニウム、イソプロピリデンビス(4−(4−トリフルオロメチルフェニル)−1−インデニル)ジメチルハフニウム、イソプロピリデンビス(4−(4−メトキシフェニル)−1−インデニル)ジメチルハフニウム、イソプロピリデンビス(4−(4−イソプロポキシフェニル)−1−インデニル)ジメチルハフニウム、イソプロピリデンビス(4−(4−トリメチルシリルフェニル)−1−インデニル)ジメチルハフニウム、イソプロピリデンビス(4−(4−フルオロフェニル)−1−インデニル)ジメチルハフニウム、イソプロピリデンビス(4−(4−クロロフェニル)−1−インデニル)ジメチルハフニウム、イソプロピリデンビス(4−(4−ブロモフェニル)−1−インデニル)ジメチルハフニウム、イソプロピリデンビス(4−(2−メチルフェニル)−1−インデニル)ジメチルハフニウム、イソプロピリデンビス(4−(2−エチルフェニル)−1−インデニル)ジメチルハフニウム、イソプロピリデンビス(4−(3,5−ジメチルフェニル)−1−インデニル)ジメチルハフニウム、イソプロピリデンビス(4−(3,5−ジイソプロピルフェニル)−1−インデニル)ジメチルハフニウム、イソプロピリデンビス(4−(3,5−ジ−tert−ブチルフェニル)−1−インデニル)ジメチルハフニウム、イソプロピリデンビス(4−(3,5−ジメトキシフェニル)−1−インデニル)ジメチルハフニウム、イソプロピリデンビス(4−(3,5−ジトリメチルシリルフェニル)−1−インデニル)ジメチルハフニウム、
イソプロピリデンビス(4−(3,5−ジトリフルオロメチルフェニル)−1−インデニル)ジメチルハフニウム、イソプロピリデンビス(4−(2,3−ジメチルフェニル)−1−インデニル)ジメチルハフニウム、イソプロピリデンビス(4−(2,5−ジメチルフェニル)−1−インデニル)ジメチルハフニウム、イソプロピリデンビス(4−(2,6−ジメチルフェニル)−1−インデニル)ジメチルハフニウム、イソプロピリデンビス(4−(2,3,5,6−テトラメチルフェニル)−1−インデニル)ジメチルハフニウム、イソプロピリデンビス(4−(2,3,4,5,6−ペンタメチルフェニル)−1−インデニル)ジメチルハフニウム、イソプロピリデンビス(4−(4−tert−ブチル−2−メチル−フェニル)−1−インデニル)ジメチルハフニウム、イソプロピリデンビス(4−ビフェニリル1−インデニル)ジメチルハフニウム、イソプロピリデンビス(4−(2,6−ジメチルビフェニリル)−1−インデニル)ジメチルハフニウム、イソプロピリデンビス(4−(2’,6’−ジメチルビフェニリル)−1−インデニル)ジメチルハフニウム、イソプロピリデンビス(4−(1−ナフチル)−1−インデニル)ジメチルハフニウム、イソプロピリデンビス(4−(2−ナフチル)−1−インデニル)ジメチルハフニウム、イソプロピリデンビス(4−フェナントリル−1−インデニル)ジメチルハフニウム
Isopropylidene bridged metallocene compounds:
Isopropylidenebis (4-phenyl-1-indenyl) dimethylhafnium, isopropylidenebis (4- (3-methylphenyl) -1-indenyl) dimethylhafnium, isopropylidenebis (4- (3-isopropylphenyl) -1- Indenyl) dimethylhafnium, isopropylidenebis (4- (3-tert-butylphenyl) -1-indenyl) dimethylhafnium, isopropylidenebis (4- (4-methylphenyl) -1-indenyl) dimethylhafnium, isopropylidenebis (4- (4-Isopropylphenyl) -1-indenyl) dimethylhafnium, isopropylidenebis (4- (4-tert-butylphenyl) -1-indenyl) dimethylhafnium, isopropylidenebis (4- (4-trifluoromethyl) Ruphenyl) -1-indenyl) dimethylhafnium, isopropylidenebis (4- (4-methoxyphenyl) -1-indenyl) dimethylhafnium, isopropylidenebis (4- (4-isopropoxyphenyl) -1-indenyl) dimethylhafnium Isopropylidenebis (4- (4-trimethylsilylphenyl) -1-indenyl) dimethylhafnium, isopropylidenebis (4- (4-fluorophenyl) -1-indenyl) dimethylhafnium, isopropylidenebis (4- (4- Chlorophenyl) -1-indenyl) dimethylhafnium, isopropylidenebis (4- (4-bromophenyl) -1-indenyl) dimethylhafnium, isopropylidenebis (4- (2-methylphenyl) -1-indenyl) dimethylha , Isopropylidenebis (4- (2-ethylphenyl) -1-indenyl) dimethylhafnium, isopropylidenebis (4- (3,5-dimethylphenyl) -1-indenyl) dimethylhafnium, isopropylidenebis (4- (3,5-diisopropylphenyl) -1-indenyl) dimethylhafnium, isopropylidenebis (4- (3,5-di-tert-butylphenyl) -1-indenyl) dimethylhafnium, isopropylidenebis (4- (3 , 5-dimethoxyphenyl) -1-indenyl) dimethylhafnium, isopropylidenebis (4- (3,5-ditrimethylsilylphenyl) -1-indenyl) dimethylhafnium,
Isopropylidenebis (4- (3,5-ditrifluoromethylphenyl) -1-indenyl) dimethylhafnium, isopropylidenebis (4- (2,3-dimethylphenyl) -1-indenyl) dimethylhafnium, isopropylidenebis ( 4- (2,5-dimethylphenyl) -1-indenyl) dimethylhafnium, isopropylidenebis (4- (2,6-dimethylphenyl) -1-indenyl) dimethylhafnium, isopropylidenebis (4- (2,3 , 5,6-tetramethylphenyl) -1-indenyl) dimethylhafnium, isopropylidenebis (4- (2,3,4,5,6-pentamethylphenyl) -1-indenyl) dimethylhafnium, isopropylidenebis ( 4- (4-tert-butyl-2-methyl-phenyl)- -Indenyl) dimethylhafnium, isopropylidenebis (4-biphenylyl1-indenyl) dimethylhafnium, isopropylidenebis (4- (2,6-dimethylbiphenylyl) -1-indenyl) dimethylhafnium, isopropylidenebis (4- ( 2 ', 6'-dimethylbiphenylyl) -1-indenyl) dimethylhafnium, isopropylidenebis (4- (1-naphthyl) -1-indenyl) dimethylhafnium, isopropylidenebis (4- (2-naphthyl) -1 -Indenyl) dimethylhafnium, isopropylidenebis (4-phenanthryl-1-indenyl) dimethylhafnium

シクロブチリデン架橋メタロセン化合物:
シクロブチリデンビス(4−フェニル−1−インデニル)ジメチルハフニウム、
シクロブチリデンビス(4−(3−メチルフェニル)−1−インデニル)ジメチルハフニウム、シクロブチリデンビス(4−(3−イソプロピルフェニル)−1−インデニル)ジメチルハフニウム、シクロブチリデンビス(4−(3−tert−ブチルフェニル)−1−インデニル)ジメチルハフニウム、シクロブチリデンビス(4−(4−メチルフェニル)−1−インデニル)ジメチルハフニウム、シクロブチリデンビス(4−(4−イソプロピルフェニル)−1−インデニル)ジメチルハフニウム、シクロブチリデンビス(4−(4−tert−ブチルフェニル)−1−インデニル)ジメチルハフニウム、シクロブチリデンビス(4−(4−トリフルオロメチルフェニル)−1−インデニル)ジメチルハフニウム、シクロブチリデンビス(4−(4−メトキシフェニル)−1−インデニル)ジメチルハフニウム、シクロブチリデンビス(4−(4−イソプロポキシフェニル)−1−インデニル)ジメチルハフニウム、シクロブチリデンビス(4−(4−トリメチルシリルフェニル)−1−インデニル)ジメチルハフニウム、シクロブチリデンビス(4−(4−フルオロフェニル)−1−インデニル)ジメチルハフニウム、シクロブチリデンビス(4−(4−クロロフェニル)−1−インデニル)ジメチルハフニウムシクロブチリデンビス(4−(4−ブロモフェニル)−1−インデニル)ジメチルハフニウム、シクロブチリデンビス(4−(2−メチルフェニル)−1−インデニル)ジメチルハフニウム、シクロブチリデンビス(4−(2−エチルフェニル)−1−インデニル)ジメチルハフニウム、シクロブチリデンビス(4−(3,5−ジメチルフェニル)−1−インデニル)ジメチルハフニウム、シクロブチリデンビス(4−(3,5−ジイソプロピルフェニル)−1−インデニル)ジメチルハフニウム、シクロブチリデンビス(4−(3,5−ジ−tert−ブチルフェニル)−1−インデニル)ジメチルハフニウム、シクロブチリデンビス(4−(3,5−ジメトキシフェニル)−1−インデニル)ジメチルハフニウム、シクロブチリデンビス(4−(3,5−ジトリメチルシリルフェニル)−1−インデニル)ジメチルハフニウム、シクロブチリデンビス(4−(3,5−ジトリフルオロメチルフェニル)−1−インデニル)ジメチルハフニウム、シクロブチリデンビス(4−(2,3−ジメチルフェニル)−1−インデニル)ジメチルハフニウム、シクロブチリデンビス(4−(2,5−ジメチルフェニル)−1−インデニル)ジメチルハフニウム、シクロブチリデンビス(4−(2,6−ジメチルフェニル)−1−インデニル)ジメチルハフニウム、シクロブチリデンビス(4−(2,3,5,6−テトラメチルフェニル)−1−インデニル)ジメチルハフニウム、シクロブチリデンビス(4−(2,3,4,5,6−ペンタメチルフェニル)−1−インデニル)ジメチルハフニウム、シクロブチリデンビス(4−(4−tert−ブチル−2−メチル−フェニル)−1−インデニル)ジメチルハフニウム、シクロブチリデンビス(4−ビフェニリル1−インデニル)ジメチルハフニウム、シクロブチリデンビス(4−(2,6−ジメチルビフェニリル)−1−インデニル)ジメチルハフニウム、シクロブチリデンビス(4−(2’,6’−ジメチルビフェニリル)−1−インデニル)ジメチルハフニウム、シクロブチリデンビス(4−(1−ナフチル)−1−インデニル)ジメチルハフニウム、シクロブチリデンビス(4−(2−ナフチル)−1−インデニル)ジメチルハフニウム、シクロブチリデンビス(4−フェナントリル−1−インデニル)ジメチルハフニウム、
Cyclobutylidene bridged metallocene compounds:
Cyclobutylidenebis (4-phenyl-1-indenyl) dimethylhafnium,
Cyclobutylidenebis (4- (3-methylphenyl) -1-indenyl) dimethylhafnium, cyclobutylidenebis (4- (3-isopropylphenyl) -1-indenyl) dimethylhafnium, cyclobutylidenebis (4- ( 3-tert-butylphenyl) -1-indenyl) dimethylhafnium, cyclobutylidenebis (4- (4-methylphenyl) -1-indenyl) dimethylhafnium, cyclobutylidenebis (4- (4-isopropylphenyl)- 1-indenyl) dimethylhafnium, cyclobutylidenebis (4- (4-tert-butylphenyl) -1-indenyl) dimethylhafnium, cyclobutylidenebis (4- (4-trifluoromethylphenyl) -1-indenyl) Dimethyl hafnium, cyclobutylidenebis 4- (4-methoxyphenyl) -1-indenyl) dimethylhafnium, cyclobutylidenebis (4- (4-isopropoxyphenyl) -1-indenyl) dimethylhafnium, cyclobutylidenebis (4- (4-trimethylsilylphenyl) ) -1-indenyl) dimethylhafnium, cyclobutylidenebis (4- (4-fluorophenyl) -1-indenyl) dimethylhafnium, cyclobutylidenebis (4- (4-chlorophenyl) -1-indenyl) dimethylhafniumcyclo Butylidenebis (4- (4-bromophenyl) -1-indenyl) dimethylhafnium, cyclobutylidenebis (4- (2-methylphenyl) -1-indenyl) dimethylhafnium, cyclobutylidenebis (4- (2 -Ethylphenyl) -1-indenyl Dimethylhafnium, cyclobutylidenebis (4- (3,5-dimethylphenyl) -1-indenyl) dimethylhafnium, cyclobutylidenebis (4- (3,5-diisopropylphenyl) -1-indenyl) dimethylhafnium, cyclo Butylidenebis (4- (3,5-di-tert-butylphenyl) -1-indenyl) dimethylhafnium, cyclobutylidenebis (4- (3,5-dimethoxyphenyl) -1-indenyl) dimethylhafnium, cyclo Butylidenebis (4- (3,5-ditrimethylsilylphenyl) -1-indenyl) dimethylhafnium, cyclobutylidenebis (4- (3,5-ditrifluoromethylphenyl) -1-indenyl) dimethylhafnium, cyclobuty Redenbis (4- (2,3-dimethylphenyl ) -1-Indenyl) dimethylhafnium, cyclobutylidenebis (4- (2,5-dimethylphenyl) -1-indenyl) dimethylhafnium, cyclobutylidenebis (4- (2,6-dimethylphenyl) -1- Indenyl) dimethylhafnium, cyclobutylidenebis (4- (2,3,5,6-tetramethylphenyl) -1-indenyl) dimethylhafnium, cyclobutylidenebis (4- (2,3,4,5,6) -Pentamethylphenyl) -1-indenyl) dimethylhafnium, cyclobutylidenebis (4- (4-tert-butyl-2-methyl-phenyl) -1-indenyl) dimethylhafnium, cyclobutylidenebis (4-biphenylyl1) -Indenyl) dimethylhafnium, cyclobutylidenebis (4- (2,6-dimethylbiphenyl) Enylyl) -1-indenyl) dimethylhafnium, cyclobutylidenebis (4- (2 ′, 6′-dimethylbiphenylyl) -1-indenyl) dimethylhafnium, cyclobutylidenebis (4- (1-naphthyl) -1 -Indenyl) dimethylhafnium, cyclobutylidenebis (4- (2-naphthyl) -1-indenyl) dimethylhafnium, cyclobutylidenebis (4-phenanthryl-1-indenyl) dimethylhafnium,

シクロペンチリデン架橋メタロセン化合物:
シクロペンチリデンビス(4−フェニル−1−インデニル)ジメチルハフニウム、
シクロペンチリデンビス(4−(3−メチルフェニル)−1−インデニル)ジメチルハフニウム、シクロペンチリデンビス(4−(3−イソプロピルフェニル)−1−インデニル)ジメチルハフニウム、シクロペンチリデンビス(4−(3−tert−ブチルフェニル)−1−インデニル)ジメチルハフニウム、シクロペンチリデンビス(4−(4−メチルフェニル)−1−インデニル)ジメチルハフニウム、シクロペンチリデンビス(4−(4−イソプロピルフェニル)−1−インデニル)ジメチルハフニウム、シクロペンチリデンビス(4−(4−tert−ブチルフェニル)−1−インデニル)ジメチルハフニウム、シクロペンチリデンビス(4−(4−トリフルオロメチルフェニル)−1−インデニル)ジメチルハフニウム、シクロペンチリデンビス(4−(4−メトキシフェニル)−1−インデニル)ジメチルハフニウム、シクロペンチリデンビス(4−(4−イソプロポキシフェニル)−1−インデニル)ジメチルハフニウム、シクロペンチリデンビス(4−(4−トリメチルシリルフェニル)−1−インデニル)ジメチルハフニウム、シクロペンチリデンビス(4−(4−フルオロフェニル)−1−インデニル)ジメチルハフニウム、シクロペンチリデンビス(4−(4−クロロフェニル)−1−インデニル)ジメチルハフニウム、シクロペンチリデンビス(4−(4−ブロモフェニル)−1−インデニル)ジメチルハフニウム、シクロペンチリデンビス(4−(2−メチルフェニル)−1−インデニル)ジメチルハフニウム、シクロペンチリデンビス(4−(2−エチルフェニル)−1−インデニル)ジメチルハフニウム、シクロペンチリデンビス(4−(3,5−ジメチルフェニル)−1−インデニル)ジメチルハフニウム、シクロペンチリデンビス(4−(3,5−ジイソプロピルフェニル)−1−インデニル)ジメチルハフニウム、シクロペンチリデンビス(4−(3,5−ジ−tert−ブチルフェニル)−1−インデニル)ジメチルハフニウム、シクロペンチリデンビス(4−(3,5−ジメトキシフェニル)−1−インデニル)ジメチルハフニウム、シクロペンチリデンビス(4−(3,5−ジトリメチルシリルフェニル)−1−インデニル)ジメチルハフニウム、シクロペンチリデンビス(4−(3,5−ジトリフルオロメチルフェニル)−1−インデニル)ジメチルハフニウム、シクロペンチリデンビス(4−(2,3−ジメチルフェニル)−1−インデニル)ジメチルハフニウム、シクロペンチリデンビス(4−(2,5−ジメチルフェニル)−1−インデニル)ジメチルハフニウム、
シクロペンチリデンビス(4−(2,6−ジメチルフェニル)−1−インデニル)ジメチルハフニウム、シクロペンチリデンビス(4−(2,3,5,6−テトラメチルフェニル)−1−インデニル)ジメチルハフニウム、シクロペンチリデンビス(4−(2,3,4,5,6−ペンタメチルフェニル)−1−インデニル)ジメチルハフニウム、シクロペンチリデンビス(4−(4−tert−ブチル−2−メチル−フェニル)−1−インデニル)ジメチルハフニウム、シクロペンチリデンビス(4−ビフェニリル1−インデニル)ジメチルハフニウム、シクロペンチリデンビス(4−(2,6−ジメチルビフェニリル)−1−インデニル)ジメチルハフニウム、シクロペンチリデンビス(4−(2’,6’−ジメチルビフェニリル)−1−インデニル)ジメチルハフニウム、シクロペンチリデンビス(4−(1−ナフチル)−1−インデニル)ジメチルハフニウム、シクロペンチリデンビス(4−(2−ナフチル)−1−インデニル)ジメチルハフニウム、シクロペンチリデンビス(4−フェナントリル−1−インデニル)ジメチルハフニウム
Cyclopentylidene bridged metallocene compounds:
Cyclopentylidenebis (4-phenyl-1-indenyl) dimethylhafnium,
Cyclopentylidenebis (4- (3-methylphenyl) -1-indenyl) dimethylhafnium, cyclopentylidenebis (4- (3-isopropylphenyl) -1-indenyl) dimethylhafnium, cyclopentylidenebis (4- ( 3-tert-butylphenyl) -1-indenyl) dimethylhafnium, cyclopentylidenebis (4- (4-methylphenyl) -1-indenyl) dimethylhafnium, cyclopentylidenebis (4- (4-isopropylphenyl)- 1-indenyl) dimethylhafnium, cyclopentylidenebis (4- (4-tert-butylphenyl) -1-indenyl) dimethylhafnium, cyclopentylidenebis (4- (4-trifluoromethylphenyl) -1-indenyl) Dimethyl hafnium, cyclo Nethylidenebis (4- (4-methoxyphenyl) -1-indenyl) dimethylhafnium, cyclopentylidenebis (4- (4-isopropoxyphenyl) -1-indenyl) dimethylhafnium, cyclopentylidenebis (4- (4- Trimethylsilylphenyl) -1-indenyl) dimethylhafnium, cyclopentylidenebis (4- (4-fluorophenyl) -1-indenyl) dimethylhafnium, cyclopentylidenebis (4- (4-chlorophenyl) -1-indenyl) dimethyl Hafnium, cyclopentylidenebis (4- (4-bromophenyl) -1-indenyl) dimethylhafnium, cyclopentylidenebis (4- (2-methylphenyl) -1-indenyl) dimethylhafnium, cyclopentylidenebis (4 -(2- Tylphenyl) -1-indenyl) dimethylhafnium, cyclopentylidenebis (4- (3,5-dimethylphenyl) -1-indenyl) dimethylhafnium, cyclopentylidenebis (4- (3,5-diisopropylphenyl) -1 -Indenyl) dimethylhafnium, cyclopentylidenebis (4- (3,5-di-tert-butylphenyl) -1-indenyl) dimethylhafnium, cyclopentylidenebis (4- (3,5-dimethoxyphenyl) -1 -Indenyl) dimethylhafnium, cyclopentylidenebis (4- (3,5-ditrimethylsilylphenyl) -1-indenyl) dimethylhafnium, cyclopentylidenebis (4- (3,5-ditrifluoromethylphenyl) -1- Indenyl) dimethylhafnium, cyclope N-tylidenebis (4- (2,3-dimethylphenyl) -1-indenyl) dimethylhafnium, cyclopentylidenebis (4- (2,5-dimethylphenyl) -1-indenyl) dimethylhafnium,
Cyclopentylidenebis (4- (2,6-dimethylphenyl) -1-indenyl) dimethylhafnium, cyclopentylidenebis (4- (2,3,5,6-tetramethylphenyl) -1-indenyl) dimethylhafnium Cyclopentylidenebis (4- (2,3,4,5,6-pentamethylphenyl) -1-indenyl) dimethylhafnium, cyclopentylidenebis (4- (4-tert-butyl-2-methyl-phenyl) ) -1-indenyl) dimethylhafnium, cyclopentylidenebis (4-biphenylyl1-indenyl) dimethylhafnium, cyclopentylidenebis (4- (2,6-dimethylbiphenylyl) -1-indenyl) dimethylhafnium, cyclopentyl Redenbis (4- (2 ′, 6′-dimethylbiphenylyl) -1-y Denyl) dimethylhafnium, cyclopentylidenebis (4- (1-naphthyl) -1-indenyl) dimethylhafnium, cyclopentylidenebis (4- (2-naphthyl) -1-indenyl) dimethylhafnium, cyclopentylidenebis ( 4-phenanthryl-1-indenyl) dimethylhafnium

シクロヘキシリデン架橋メタロセン化合物:
シクロヘキシリデンビス(4−フェニル−1−インデニル)ジメチルハフニウム、シクロヘキシリデンビス(4−(3−メチルフェニル)−1−インデニル)ジメチルハフニウム、シクロヘキシリデンビス(4−(3−イソプロピルフェニル)−1−インデニル)ジメチルハフニウム、シクロヘキシリデンビス(4−(3−tert−ブチルフェニル)−1−インデニル)ジメチルハフニウム、シクロヘキシリデンビス(4−(4−メチルフェニル)−1−インデニル)ジメチルハフニウム、シクロヘキシリデンビス(4−(4−イソプロピルフェニル)−1−インデニル)ジメチルハフニウム、シクロヘキシリデンビス(4−(4−tert−ブチルフェニル)−1−インデニル)ジメチルハフニウム、シクロヘキシリデンビス(4−(4−トリメチルシリルフェニル)−1−インデニル)ジメチルハフニウム、シクロヘキシリデンビス(4−(2−メチルフェニル)−1−インデニル)ジメチルハフニウム、シクロヘキシリデンビス(4−(2−エチルフェニル)−1−インデニル)ジメチルハフニウム、シクロヘキシリデンビス(4−(3,5−ジメチルフェニル)−1−インデニル)ジメチルハフニウム、シクロヘキシリデンビス(4−(3,5−ジ−tert−ブチルフェニル)−1−インデニル)ジメチルハフニウム、シクロヘキシリデンビス(4−(3,5−ジトリメチルシリルフェニル)−1−インデニル)ジメチルハフニウム、シクロヘキシリデンビス(4−(2,3−ジメチルフェニル)−1−インデニル)ジメチルハフニウム、シクロヘキシリデンビス(4−(2,5−ジメチルフェニル)−1−インデニル)ジメチルハフニウム、シクロヘキシリデンビス(4−(2,6−ジメチルフェニル)−1−インデニル)ジメチルハフニウム、シクロヘキシリデンビス(4−(4−tert−ブチル−2−メチル−フェニル)−1−インデニル)ジメチルハフニウム、シクロヘキシリデンビス(4−ビフェニリル1−インデニル)ジメチルハフニウム
Cyclohexylidene bridged metallocene compounds:
Cyclohexylidenebis (4-phenyl-1-indenyl) dimethylhafnium, cyclohexylidenebis (4- (3-methylphenyl) -1-indenyl) dimethylhafnium, cyclohexylidenebis (4- (3-isopropylphenyl) -1-indenyl) dimethylhafnium, cyclohexylidenebis (4- (3-tert-butylphenyl) -1-indenyl) dimethylhafnium, cyclohexylidenebis (4- (4-methylphenyl) -1-indenyl) dimethyl Hafnium, cyclohexylidenebis (4- (4-isopropylphenyl) -1-indenyl) dimethylhafnium, cyclohexylidenebis (4- (4-tert-butylphenyl) -1-indenyl) dimethylhafnium, cyclohexylidenebis (4- (4 Trimethylsilylphenyl) -1-indenyl) dimethylhafnium, cyclohexylidenebis (4- (2-methylphenyl) -1-indenyl) dimethylhafnium, cyclohexylidenebis (4- (2-ethylphenyl) -1-indenyl) Dimethylhafnium, cyclohexylidenebis (4- (3,5-dimethylphenyl) -1-indenyl) dimethylhafnium, cyclohexylidenebis (4- (3,5-di-tert-butylphenyl) -1-indenyl) Dimethylhafnium, cyclohexylidenebis (4- (3,5-ditrimethylsilylphenyl) -1-indenyl) dimethylhafnium, cyclohexylidenebis (4- (2,3-dimethylphenyl) -1-indenyl) dimethylhafnium, Cyclohexylidenebis (4 (2,5-dimethylphenyl) -1-indenyl) dimethylhafnium, cyclohexylidenebis (4- (2,6-dimethylphenyl) -1-indenyl) dimethylhafnium, cyclohexylidenebis (4- (4-tert -Butyl-2-methyl-phenyl) -1-indenyl) dimethylhafnium, cyclohexylidenebis (4-biphenylyl1-indenyl) dimethylhafnium

ジエチルメチレン架橋メタロセン化合物:
ジエチルメチレンビス(4−フェニル−1−インデニル)ジメチルハフニウム、ジエチルメチレンビス(4−(3−メチルフェニル)−1−インデニル)ジメチルハフニウム、ジエチルメチレンビス(4−(3−イソプロピルフェニル)−1−インデニル)ジメチルハフニウム、ジエチルメチレンビス(4−(3−tert−ブチルフェニル)−1−インデニル)ジメチルハフニウム、ジエチルメチレンビス(4−(4−メチルフェニル)−1−インデニル)ジメチルハフニウム、ジエチルメチレンビス(4−(4−イソプロピルフェニル)−1−インデニル)ジメチルハフニウム、ジエチルメチレンビス(4−(4−tert−ブチルフェニル)−1−インデニル)ジメチルハフニウム、ジエチルメチレンビス(4−(4−トリメチルシリルフェニル)−1−インデニル)ジメチルハフニウム、ジエチルメチレンビス(4−(2−メチルフェニル)−1−インデニル)ジメチルハフニウム、ジエチルメチレンビス(4−(2−エチルフェニル)−1−インデニル)ジメチルハフニウム、ジエチルメチレンビス(4−(3,5−ジメチルフェニル)−1−インデニル)ジメチルハフニウム、ジエチルメチレンビス(4−(3,5−ジ−tert−ブチルフェニル)−1−インデニル)ジメチルハフニウム、ジエチルメチレンビス(4−(3,5−ジトリメチルシリルフェニル)−1−インデニル)ジメチルハフニウム、ジエチルメチレンビス(4−(2,3−ジメチルフェニル)−1−インデニル)ジメチルハフニウム、
ジエチルメチレンビス(4−(2,5−ジメチルフェニル)−1−インデニル)ジメチルハフニウム、ジエチルメチレンビス(4−(2,6−ジメチルフェニル)−1−インデニル)ジメチルハフニウム、ジエチルメチレンビス(4−(4−tert−ブチル−2−メチル−フェニル)−1−インデニル)ジメチルハフニウム、ジエチルメチレンビス(4−ビフェニリル1−インデニル)ジメチルハフニウム
Diethylmethylene bridged metallocene compounds:
Diethylmethylenebis (4-phenyl-1-indenyl) dimethylhafnium, diethylmethylenebis (4- (3-methylphenyl) -1-indenyl) dimethylhafnium, diethylmethylenebis (4- (3-isopropylphenyl) -1- Indenyl) dimethylhafnium, diethylmethylenebis (4- (3-tert-butylphenyl) -1-indenyl) dimethylhafnium, diethylmethylenebis (4- (4-methylphenyl) -1-indenyl) dimethylhafnium, diethylmethylenebis (4- (4-Isopropylphenyl) -1-indenyl) dimethylhafnium, diethylmethylenebis (4- (4-tert-butylphenyl) -1-indenyl) dimethylhafnium, diethylmethylenebis (4- (4-trimethylsilyl) Phenyl) -1-indenyl) dimethylhafnium, diethylmethylenebis (4- (2-methylphenyl) -1-indenyl) dimethylhafnium, diethylmethylenebis (4- (2-ethylphenyl) -1-indenyl) dimethylhafnium, Diethylmethylenebis (4- (3,5-dimethylphenyl) -1-indenyl) dimethylhafnium, diethylmethylenebis (4- (3,5-di-tert-butylphenyl) -1-indenyl) dimethylhafnium, diethylmethylene Bis (4- (3,5-ditrimethylsilylphenyl) -1-indenyl) dimethylhafnium, diethylmethylenebis (4- (2,3-dimethylphenyl) -1-indenyl) dimethylhafnium,
Diethylmethylenebis (4- (2,5-dimethylphenyl) -1-indenyl) dimethylhafnium, diethylmethylenebis (4- (2,6-dimethylphenyl) -1-indenyl) dimethylhafnium, diethylmethylenebis (4- (4-tert-Butyl-2-methyl-phenyl) -1-indenyl) dimethylhafnium, diethylmethylenebis (4-biphenylyl1-indenyl) dimethylhafnium

ジn−プロピルメチレン架橋メタロセン化合物:
ジ−n−プロピルメチレンビス(4−フェニル−1−インデニル)ジメチルハフニウム、ジ−n−プロピルメチレンビス(4−(3−メチルフェニル)−1−インデニル)ジメチルハフニウム、ジ−n−プロピルメチレンビス(4−(3−イソプロピルフェニル)−1−インデニル)ジメチルハフニウム、ジ−n−プロピルメチレンビス(4−(3−tert−ブチルフェニル)−1−インデニル)ジメチルハフニウム、
ジ−n−プロピルメチレンビス(4−(4−メチルフェニル)−1−インデニル)ジメチルハフニウム、ジ−n−プロピルメチレンビス(4−(4−イソプロピルフェニル)−1−インデニル)ジメチルハフニウム、ジ−n−プロピルメチレンビス(4−(4−tert−ブチルフェニル)−1−インデニル)ジメチルハフニウム、ジ−n−プロピルメチレンビス(4−(4−トリメチルシリルフェニル)−1−インデニル)ジメチルハフニウム、ジ−n−プロピルメチレンビス(4−(2−メチルフェニル)−1−インデニル)ジメチルハフニウム、ジ−n−プロピルメチレンビス(4−(2−エチルフェニル)−1−インデニル)ジメチルハフニウム、ジ−n−プロピルメチレンビス(4−(3,5−ジメチルフェニル)−1−インデニル)ジメチルハフニウム、ジ−n−プロピルメチレンビス(4−(3,5−ジ−tert−ブチルフェニル)−1−インデニル)ジメチルハフニウム、ジ−n−プロピルメチレンビス(4−(3,5−ジトリメチルシリルフェニル)−1−インデニル)ジメチルハフニウム、ジ−n−プロピルメチレンビス(4−(2,3−ジメチルフェニル)−1−インデニル)ジメチルハフニウム、ジ−n−プロピルメチレンビス(4−(2,5−ジメチルフェニル)−1−インデニル)ジメチルハフニウム、
ジ−n−プロピルメチレンビス(4−(2,6−ジメチルフェニル)−1−インデニル)ジメチルハフニウム、ジ−n−プロピルメチレンビス(4−(4−tert−ブチル−2−メチル−フェニル)−1−インデニル)ジメチルハフニウム、ジ−n−プロピルメチレンビス(4−ビフェニリル1−インデニル)ジメチルハフニウム
Di-n-propylmethylene bridged metallocene compound:
Di-n-propylmethylenebis (4-phenyl-1-indenyl) dimethylhafnium, di-n-propylmethylenebis (4- (3-methylphenyl) -1-indenyl) dimethylhafnium, di-n-propylmethylenebis (4- (3-isopropylphenyl) -1-indenyl) dimethylhafnium, di-n-propylmethylenebis (4- (3-tert-butylphenyl) -1-indenyl) dimethylhafnium,
Di-n-propylmethylenebis (4- (4-methylphenyl) -1-indenyl) dimethylhafnium, di-n-propylmethylenebis (4- (4-isopropylphenyl) -1-indenyl) dimethylhafnium, di- n-propylmethylenebis (4- (4-tert-butylphenyl) -1-indenyl) dimethylhafnium, di-n-propylmethylenebis (4- (4-trimethylsilylphenyl) -1-indenyl) dimethylhafnium, di- n-propylmethylenebis (4- (2-methylphenyl) -1-indenyl) dimethylhafnium, di-n-propylmethylenebis (4- (2-ethylphenyl) -1-indenyl) dimethylhafnium, di-n- Propylmethylenebis (4- (3,5-dimethylphenyl) -1-indeni ) Dimethylhafnium, di-n-propylmethylenebis (4- (3,5-di-tert-butylphenyl) -1-indenyl) dimethylhafnium, di-n-propylmethylenebis (4- (3,5-di) Trimethylsilylphenyl) -1-indenyl) dimethylhafnium, di-n-propylmethylenebis (4- (2,3-dimethylphenyl) -1-indenyl) dimethylhafnium, di-n-propylmethylenebis (4- (2, 5-dimethylphenyl) -1-indenyl) dimethylhafnium,
Di-n-propylmethylenebis (4- (2,6-dimethylphenyl) -1-indenyl) dimethylhafnium, di-n-propylmethylenebis (4- (4-tert-butyl-2-methyl-phenyl)- 1-indenyl) dimethylhafnium, di-n-propylmethylenebis (4-biphenylyl1-indenyl) dimethylhafnium

ジ−iso−ブチルメチレン架橋メタロセン化合物:
ジ−iso−ブチルメチレンビス(4−フェニル−1−インデニル)ジメチルハフニウム、ジ−iso−ブチルメチレンビス(4−(3−メチルフェニル)−1−インデニル)ジメチルハフニウム、ジ−iso−ブチルメチレンビス(4−(3−イソプロピルフェニル)−1−インデニル)ジメチルハフニウム、ジ−iso−ブチルメチレンビス(4−(3−tert−ブチルフェニル)−1−インデニル)ジメチルハフニウム、ジ−iso−ブチルメチレンビス(4−(4−メチルフェニル)−1−インデニル)ジメチルハフニウム、ジ−iso−ブチルメチレンビス(4−(4−イソプロピルフェニル)−1−インデニル)ジメチルハフニウム、ジ−iso−ブチルメチレンビス(4−(4−tert−ブチルフェニル)−1−インデニル)ジメチルハフニウム、ジ−iso−ブチルメチレンビス(4−(4−トリメチルシリルフェニル)−1−インデニル)ジメチルハフニウム、
ジ−iso−ブチルメチレンビス(4−(2−メチルフェニル)−1−インデニル)ジメチルハフニウム、ジ−iso−ブチルメチレンビス(4−(2−エチルフェニル)−1−インデニル)ジメチルハフニウム、ジ−iso−ブチルメチレンビス(4−(3,5−ジメチルフェニル)−1−インデニル)ジメチルハフニウム、ジ−iso−ブチルメチレンビス(4−(3,5−ジ−tert−ブチルフェニル)−1−インデニル)ジメチルハフニウム、ジ−iso−ブチルメチレンビス(4−(3,5−ジトリメチルシリルフェニル)−1−インデニル)ジメチルハフニウム、ジ−iso−ブチルメチレンビス(4−(2,3−ジメチルフェニル)−1−インデニル)ジメチルハフニウム、ジ−iso−ブチルメチレンビス(4−(2,5−ジメチルフェニル)−1−インデニル)ジメチルハフニウム、ジ−iso−ブチルメチレンビス(4−(2,6−ジメチルフェニル)−1−インデニル)ジメチルハフニウム、ジ−iso−ブチルメチレンビス(4−(4−tert−ブチル−2−メチル−フェニル)−1−インデニル)ジメチルハフニウム、ジ−iso−ブチルメチレンビス(4−ビフェニリル1−インデニル)ジメチルハフニウム
Di-iso-butylmethylene bridged metallocene compound:
Di-iso-butylmethylenebis (4-phenyl-1-indenyl) dimethylhafnium, di-iso-butylmethylenebis (4- (3-methylphenyl) -1-indenyl) dimethylhafnium, di-iso-butylmethylenebis (4- (3-Isopropylphenyl) -1-indenyl) dimethylhafnium, di-iso-butylmethylenebis (4- (3-tert-butylphenyl) -1-indenyl) dimethylhafnium, di-iso-butylmethylenebis (4- (4-Methylphenyl) -1-indenyl) dimethylhafnium, di-iso-butylmethylenebis (4- (4-isopropylphenyl) -1-indenyl) dimethylhafnium, di-iso-butylmethylenebis (4 -(4-tert-Butylphenyl) -1-indeni ) Dimethyl hafnium, di -iso- butyl methylene bis (4- (4-trimethylsilyl-phenyl) -1-indenyl) dimethyl hafnium,
Di-iso-butylmethylenebis (4- (2-methylphenyl) -1-indenyl) dimethylhafnium, di-iso-butylmethylenebis (4- (2-ethylphenyl) -1-indenyl) dimethylhafnium, di- iso-butylmethylenebis (4- (3,5-dimethylphenyl) -1-indenyl) dimethylhafnium, di-iso-butylmethylenebis (4- (3,5-di-tert-butylphenyl) -1-indenyl ) Dimethylhafnium, di-iso-butylmethylenebis (4- (3,5-ditrimethylsilylphenyl) -1-indenyl) dimethylhafnium, di-iso-butylmethylenebis (4- (2,3-dimethylphenyl)- 1-indenyl) dimethylhafnium, di-iso-butylmethylenebis (4- (2,5 Dimethylphenyl) -1-indenyl) dimethylhafnium, di-iso-butylmethylenebis (4- (2,6-dimethylphenyl) -1-indenyl) dimethylhafnium, di-iso-butylmethylenebis (4- (4- tert-butyl-2-methyl-phenyl) -1-indenyl) dimethylhafnium, di-iso-butylmethylenebis (4-biphenylyl1-indenyl) dimethylhafnium

ジベンジルメチレン架橋メタロセン化合物:
ジベンジルメチレンビス(4−フェニル−1−インデニル)ジメチルハフニウム、
ジベンジルメチレンビス(4−(3−メチルフェニル)−1−インデニル)ジメチルハフニウム、ジベンジルメチレンビス(4−(3−イソプロピルフェニル)−1−インデニル)ジメチルハフニウム、ジベンジルメチレンビス(4−(3−tert−ブチルフェニル)−1−インデニル)ジメチルハフニウム、ジベンジルメチレンビス(4−(4−メチルフェニル)−1−インデニル)ジメチルハフニウム、
ジベンジルメチレンビス(4−(4−イソプロピルフェニル)−1−インデニル)ジメチルハフニウム、ジベンジルメチレンビス(4−(4−tert−ブチルフェニル)−1−インデニル)ジメチルハフニウム、ジベンジルメチレンビス(4−(4−トリメチルシリルフェニル)−1−インデニル)ジメチルハフニウム、ジベンジルメチレンビス(4−(2−メチルフェニル)−1−インデニル)ジメチルハフニウム、ジベンジルメチレンビス(4−(2−エチルフェニル)−1−インデニル)ジメチルハフニウム、ジベンジルメチレンビス(4−(3,5−ジメチルフェニル)−1−インデニル)ジメチルハフニウム、ジベンジルメチレンビス(4−(3,5−ジ−tert−ブチルフェニル)−1−インデニル)ジメチルハフニウム、ジベンジルメチレンビス(4−(3,5−ジトリメチルシリルフェニル)−1−インデニル)ジメチルハフニウム、ジベンジルメチレンビス(4−(2,3−ジメチルフェニル)−1−インデニル)ジメチルハフニウム、ジベンジルメチレンビス(4−(2,5−ジメチルフェニル)−1−インデニル)ジメチルハフニウム、ジベンジルメチレンビス(4−(2,6−ジメチルフェニル)−1−インデニル)ジメチルハフニウム、ジベンジルメチレンビス(4−(4−tert−ブチル−2−メチル−フェニル)−1−インデニル)ジメチルハフニウム、ジベンジルメチレンビス(4−ビフェニリル1−インデニル)ジメチルハフニウム
Dibenzylmethylene bridged metallocene compounds:
Dibenzylmethylenebis (4-phenyl-1-indenyl) dimethylhafnium,
Dibenzylmethylenebis (4- (3-methylphenyl) -1-indenyl) dimethylhafnium, dibenzylmethylenebis (4- (3-isopropylphenyl) -1-indenyl) dimethylhafnium, dibenzylmethylenebis (4- ( 3-tert-butylphenyl) -1-indenyl) dimethylhafnium, dibenzylmethylenebis (4- (4-methylphenyl) -1-indenyl) dimethylhafnium,
Dibenzylmethylenebis (4- (4-isopropylphenyl) -1-indenyl) dimethylhafnium, dibenzylmethylenebis (4- (4-tert-butylphenyl) -1-indenyl) dimethylhafnium, dibenzylmethylenebis (4 -(4-Trimethylsilylphenyl) -1-indenyl) dimethylhafnium, dibenzylmethylenebis (4- (2-methylphenyl) -1-indenyl) dimethylhafnium, dibenzylmethylenebis (4- (2-ethylphenyl)- 1-indenyl) dimethylhafnium, dibenzylmethylenebis (4- (3,5-dimethylphenyl) -1-indenyl) dimethylhafnium, dibenzylmethylenebis (4- (3,5-di-tert-butylphenyl)- 1-indenyl) dimethylhafnium, Benzylmethylenebis (4- (3,5-ditrimethylsilylphenyl) -1-indenyl) dimethylhafnium, dibenzylmethylenebis (4- (2,3-dimethylphenyl) -1-indenyl) dimethylhafnium, dibenzylmethylenebis (4- (2,5-dimethylphenyl) -1-indenyl) dimethylhafnium, dibenzylmethylenebis (4- (2,6-dimethylphenyl) -1-indenyl) dimethylhafnium, dibenzylmethylenebis (4- ( 4-tert-butyl-2-methyl-phenyl) -1-indenyl) dimethylhafnium, dibenzylmethylenebis (4-biphenylyl1-indenyl) dimethylhafnium

メチル(エチル)メチレン架橋メタロセン化合物:
メチル(エチル)メチレンビス(4−フェニル−1−インデニル)ジメチルハフニウム、メチル(エチル)メチレンビス(4−(3−メチルフェニル)−1−インデニル)ジメチルハフニウム、メチル(エチル)メチレンビス(4−(3−イソプロピルフェニル)−1−インデニル)ジメチルハフニウム、メチル(エチル)メチレンビス(4−(3−tert−ブチルフェニル)−1−インデニル)ジメチルハフニウム、メチル(エチル)メチレンビス(4−(4−メチルフェニル)−1−インデニル)ジメチルハフニウム、メチル(エチル)メチレンビス(4−(4−イソプロピルフェニル)−1−インデニル)ジメチルハフニウム、メチル(エチル)メチレンビス(4−(4−tert−ブチルフェニル)−1−インデニル)ジメチルハフニウム、メチル(エチル)メチレンビス(4−(4−トリメチルシリルフェニル)−1−インデニル)ジメチルハフニウム、メチル(エチル)メチレンビス(4−(2−メチルフェニル)−1−インデニル)ジメチルハフニウム、メチル(エチル)メチレンビス(4−(2−エチルフェニル)−1−インデニル)ジメチルハフニウム、メチル(エチル)メチレンビス(4−(3,5−ジメチルフェニル)−1−インデニル)ジメチルハフニウム、メチル(エチル)メチレンビス(4−(3,5−ジ−tert−ブチルフェニル)−1−インデニル)ジメチルハフニウム、メチル(エチル)メチレンビス(4−(3,5−ジトリメチルシリルフェニル)−1−インデニル)ジメチルハフニウム、メチル(エチル)メチレンビス(4−(2,3−ジメチルフェニル)−1−インデニル)ジメチルハフニウム、メチル(エチル)メチレンビス(4−(2,5−ジメチルフェニル)−1−インデニル)ジメチルハフニウム、メチル(エチル)メチレンビス(4−(2,6−ジメチルフェニル)−1−インデニル)ジメチルハフニウム、メチル(エチル)メチレンビス(4−(4−tert−ブチル−2−メチル−フェニル)−1−インデニル)ジメチルハフニウム、メチル(エチル)メチレンビス(4−ビフェニリル1−インデニル)ジメチルハフニウム
Methyl (ethyl) methylene bridged metallocene compounds:
Methyl (ethyl) methylenebis (4-phenyl-1-indenyl) dimethylhafnium, methyl (ethyl) methylenebis (4- (3-methylphenyl) -1-indenyl) dimethylhafnium, methyl (ethyl) methylenebis (4- (3- Isopropylphenyl) -1-indenyl) dimethylhafnium, methyl (ethyl) methylenebis (4- (3-tert-butylphenyl) -1-indenyl) dimethylhafnium, methyl (ethyl) methylenebis (4- (4-methylphenyl)- 1-indenyl) dimethylhafnium, methyl (ethyl) methylenebis (4- (4-isopropylphenyl) -1-indenyl) dimethylhafnium, methyl (ethyl) methylenebis (4- (4-tert-butylphenyl) -1-indenyl) Dimethylha Ni, methyl (ethyl) methylene bis (4- (4-trimethylsilylphenyl) -1-indenyl) dimethyl hafnium, methyl (ethyl) methylene bis (4- (2-methylphenyl) -1-indenyl) dimethyl hafnium, methyl (ethyl) Methylenebis (4- (2-ethylphenyl) -1-indenyl) dimethylhafnium, methyl (ethyl) methylenebis (4- (3,5-dimethylphenyl) -1-indenyl) dimethylhafnium, methyl (ethyl) methylenebis (4- (3,5-di-tert-butylphenyl) -1-indenyl) dimethylhafnium, methyl (ethyl) methylenebis (4- (3,5-ditrimethylsilylphenyl) -1-indenyl) dimethylhafnium, methyl (ethyl) methylenebis (4- (2,3 Dimethylphenyl) -1-indenyl) dimethylhafnium, methyl (ethyl) methylenebis (4- (2,5-dimethylphenyl) -1-indenyl) dimethylhafnium, methyl (ethyl) methylenebis (4- (2,6-dimethylphenyl) ) -1-Indenyl) dimethylhafnium, methyl (ethyl) methylenebis (4- (4-tert-butyl-2-methyl-phenyl) -1-indenyl) dimethylhafnium, methyl (ethyl) methylenebis (4-biphenylyl1-indenyl) ) Dimethyl hafnium

メチル(n−プロピル)メチレン架橋メタロセン化合物:
メチル(n−プロピル)メチレンビス(4−フェニル−1−インデニル)ジメチルハフニウム、メチル(n−プロピル)メチレンビス(4−(3−メチルフェニル)−1−インデニル)ジメチルハフニウム、メチル(n−プロピル)メチレンビス(4−(3−イソプロピルフェニル)−1−インデニル)ジメチルハフニウム、メチル(n−プロピル)メチレンビス(4−(3−tert−ブチルフェニル)−1−インデニル)ジメチルハフニウム、メチル(n−プロピル)メチレンビス(4−(4−メチルフェニル)−1−インデニル)ジメチルハフニウム、メチル(n−プロピル)メチレンビス(4−(4−イソプロピルフェニル)−1−インデニル)ジメチルハフニウム、メチル(n−プロピル)メチレンビス(4−(4−tert−ブチルフェニル)−1−インデニル)ジメチルハフニウム、メチル(n−プロピル)メチレンビス(4−(4−トリメチルシリルフェニル)−1−インデニル)ジメチルハフニウム、メチル(n−プロピル)メチレンビス(4−(2−メチルフェニル)−1−インデニル)ジメチルハフニウム、メチル(n−プロピル)メチレンビス(4−(2−エチルフェニル)−1−インデニル)ジメチルハフニウム、メチル(n−プロピル)メチレンビス(4−(3,5−ジメチルフェニル)−1−インデニル)ジメチルハフニウム、メチル(n−プロピル)メチレンビス(4−(3,5−ジ−tert−ブチルフェニル)−1−インデニル)ジメチルハフニウム、メチル(n−プロピル)メチレンビス(4−(3,5−ジトリメチルシリルフェニル)−1−インデニル)ジメチルハフニウム、メチル(n−プロピル)メチレンビス(4−(2,3−ジメチルフェニル)−1−インデニル)ジメチルハフニウム、メチル(n−プロピル)メチレンビス(4−(2,5−ジメチルフェニル)−1−インデニル)ジメチルハフニウム、メチル(n−プロピル)メチレンビス(4−(2,6−ジメチルフェニル)−1−インデニル)ジメチルハフニウム、メチル(n−プロピル)メチレンビス(4−(4−tert−ブチル−2−メチル−フェニル)−1−インデニル)ジメチルハフニウム、メチル(n−プロピル)メチレンビス(4−ビフェニリル1−インデニル)ジメチルハフニウム
Methyl (n-propyl) methylene bridged metallocene compound:
Methyl (n-propyl) methylenebis (4-phenyl-1-indenyl) dimethylhafnium, methyl (n-propyl) methylenebis (4- (3-methylphenyl) -1-indenyl) dimethylhafnium, methyl (n-propyl) methylenebis (4- (3-Isopropylphenyl) -1-indenyl) dimethylhafnium, methyl (n-propyl) methylenebis (4- (3-tert-butylphenyl) -1-indenyl) dimethylhafnium, methyl (n-propyl) methylenebis (4- (4-Methylphenyl) -1-indenyl) dimethylhafnium, methyl (n-propyl) methylenebis (4- (4-isopropylphenyl) -1-indenyl) dimethylhafnium, methyl (n-propyl) methylenebis (4 -(4-tert-bu Ruphenyl) -1-indenyl) dimethylhafnium, methyl (n-propyl) methylenebis (4- (4-trimethylsilylphenyl) -1-indenyl) dimethylhafnium, methyl (n-propyl) methylenebis (4- (2-methylphenyl) -1-indenyl) dimethylhafnium, methyl (n-propyl) methylenebis (4- (2-ethylphenyl) -1-indenyl) dimethylhafnium, methyl (n-propyl) methylenebis (4- (3,5-dimethylphenyl) -1-indenyl) dimethylhafnium, methyl (n-propyl) methylenebis (4- (3,5-di-tert-butylphenyl) -1-indenyl) dimethylhafnium, methyl (n-propyl) methylenebis (4- (3 , 5-Ditrimethylsilylphenyl)- -Indenyl) dimethylhafnium, methyl (n-propyl) methylenebis (4- (2,3-dimethylphenyl) -1-indenyl) dimethylhafnium, methyl (n-propyl) methylenebis (4- (2,5-dimethylphenyl) -1-indenyl) dimethylhafnium, methyl (n-propyl) methylenebis (4- (2,6-dimethylphenyl) -1-indenyl) dimethylhafnium, methyl (n-propyl) methylenebis (4- (4-tert-butyl) -2-methyl-phenyl) -1-indenyl) dimethylhafnium, methyl (n-propyl) methylenebis (4-biphenylyl1-indenyl) dimethylhafnium

メチル(iso−ブチル)メチレン架橋メタロセン化合物:
メチル(iso−ブチル)メチレンビス(4−フェニル−1−インデニル)ジメチルハフニウム、メチル(iso−ブチル)メチレンビス(4−(3−メチルフェニル)−1−インデニル)ジメチルハフニウム、メチル(iso−ブチル)メチレンビス(4−(3−イソプロピルフェニル)−1−インデニル)ジメチルハフニウム、メチル(iso−ブチル)メチレンビス(4−(3−tert−ブチルフェニル)−1−インデニル)ジメチルハフニウム、
メチル(iso−ブチル)メチレンビス(4−(4−メチルフェニル)−1−インデニル)ジメチルハフニウム、メチル(iso−ブチル)メチレンビス(4−(4−イソプロピルフェニル)−1−インデニル)ジメチルハフニウム、メチル(iso−ブチル)メチレンビス(4−(4−tert−ブチルフェニル)−1−インデニル)ジメチルハフニウム、メチル(iso−ブチル)メチレンビス(4−(4−トリメチルシリルフェニル)−1−インデニル)ジメチルハフニウム、メチル(iso−ブチル)メチレンビス(4−(2−メチルフェニル)−1−インデニル)ジメチルハフニウム、メチル(iso−ブチル)メチレンビス(4−(2−エチルフェニル)−1−インデニル)ジメチルハフニウム、メチル(iso−ブチル)メチレンビス(4−(3,5−ジメチルフェニル)−1−インデニル)ジメチルハフニウム、メチル(iso−ブチル)メチレンビス(4−(3,5−ジ−tert−ブチルフェニル)−1−インデニル)ジメチルハフニウム、メチル(iso−ブチル)メチレンビス(4−(3,5−ジトリメチルシリルフェニル)−1−インデニル)ジメチルハフニウム、メチル(iso−ブチル)メチレンビス(4−(2,3−ジメチルフェニル)−1−インデニル)ジメチルハフニウム、メチル(iso−ブチル)メチレンビス(4−(2,5−ジメチルフェニル)−1−インデニル)ジメチルハフニウム、メチル(iso−ブチル)メチレンビス(4−(2,6−ジメチルフェニル)−1−インデニル)ジメチルハフニウム、メチル(iso−ブチル)メチレンビス(4−(4−tert−ブチル−2−メチル−フェニル)−1−インデニル)ジメチルハフニウム、メチル(iso−ブチル)メチレンビス(4−ビフェニリル1−インデニル)ジメチルハフニウム
Methyl (iso-butyl) methylene bridged metallocene compounds:
Methyl (iso-butyl) methylenebis (4-phenyl-1-indenyl) dimethylhafnium, methyl (iso-butyl) methylenebis (4- (3-methylphenyl) -1-indenyl) dimethylhafnium, methyl (iso-butyl) methylenebis (4- (3-isopropylphenyl) -1-indenyl) dimethylhafnium, methyl (iso-butyl) methylenebis (4- (3-tert-butylphenyl) -1-indenyl) dimethylhafnium,
Methyl (iso-butyl) methylenebis (4- (4-methylphenyl) -1-indenyl) dimethylhafnium, methyl (iso-butyl) methylenebis (4- (4-isopropylphenyl) -1-indenyl) dimethylhafnium, methyl ( iso-butyl) methylenebis (4- (4-tert-butylphenyl) -1-indenyl) dimethylhafnium, methyl (iso-butyl) methylenebis (4- (4-trimethylsilylphenyl) -1-indenyl) dimethylhafnium, methyl ( iso-butyl) methylenebis (4- (2-methylphenyl) -1-indenyl) dimethylhafnium, methyl (iso-butyl) methylenebis (4- (2-ethylphenyl) -1-indenyl) dimethylhafnium, methyl (iso- Butyl) methyl Bis (4- (3,5-dimethylphenyl) -1-indenyl) dimethylhafnium, methyl (iso-butyl) methylenebis (4- (3,5-di-tert-butylphenyl) -1-indenyl) dimethylhafnium, Methyl (iso-butyl) methylenebis (4- (3,5-ditrimethylsilylphenyl) -1-indenyl) dimethylhafnium, methyl (iso-butyl) methylenebis (4- (2,3-dimethylphenyl) -1-indenyl) Dimethylhafnium, methyl (iso-butyl) methylenebis (4- (2,5-dimethylphenyl) -1-indenyl) dimethylhafnium, methyl (iso-butyl) methylenebis (4- (2,6-dimethylphenyl) -1- Indenyl) dimethylhafnium, methyl (iso-butyl) Chirenbisu (4- (4-tert-butyl-2-methyl-phenyl) - 1-indenyl) dimethyl hafnium, methyl (an iso-butyl) methylene bis (4-biphenylyl 1-indenyl) dimethyl hafnium

メチル(ベンジル)メチレン架橋メタロセン化合物:
メチル(ベンジル)メチレンビス(4−フェニル−1−インデニル)ジメチルハフニウム、メチル(ベンジル)メチレンビス(4−(3−メチルフェニル)−1−インデニル)ジメチルハフニウム、メチル(ベンジル)メチレンビス(4−(3−イソプロピルフェニル)−1−インデニル)ジメチルハフニウム、メチル(ベンジル)メチレンビス(4−(3−tert−ブチルフェニル)−1−インデニル)ジメチルハフニウム、メチル(ベンジル)メチレンビス(4−(4−メチルフェニル)−1−インデニル)ジメチルハフニウム、メチル(ベンジル)メチレンビス(4−(4−イソプロピルフェニル)−1−インデニル)ジメチルハフニウム、メチル(ベンジル)メチレンビス(4−(4−tert−ブチルフェニル)−1−インデニル)ジメチルハフニウム、メチル(ベンジル)メチレンビス(4−(4−トリメチルシリルフェニル)−1−インデニル)ジメチルハフニウム、メチル(ベンジル)メチレンビス(4−(2−メチルフェニル)−1−インデニル)ジメチルハフニウム、メチル(ベンジル)メチレンビス(4−(2−エチルフェニル)−1−インデニル)ジメチルハフニウム、メチル(ベンジル)メチレンビス(4−(3,5−ジメチルフェニル)−1−インデニル)ジメチルハフニウム、メチル(ベンジル)メチレンビス(4−(3,5−ジ−tert−ブチルフェニル)−1−インデニル)ジメチルハフニウム、メチル(ベンジル)メチレンビス(4−(3,5−ジトリメチルシリルフェニル)−1−インデニル)ジメチルハフニウム、メチル(ベンジル)メチレンビス(4−(2,3−ジメチルフェニル)−1−インデニル)ジメチルハフニウム、メチル(ベンジル)メチレンビス(4−(2,5−ジメチルフェニル)−1−インデニル)ジメチルハフニウム、メチル(ベンジル)メチレンビス(4−(2,6−ジメチルフェニル)−1−インデニル)ジメチルハフニウム、メチル(ベンジル)メチレンビス(4−(4−tert−ブチル−2−メチル−フェニル)−1−インデニル)ジメチルハフニウム、メチル(ベンジル)メチレンビス(4−ビフェニリル1−インデニル)ジメチルハフニウム
Methyl (benzyl) methylene bridged metallocene compounds:
Methyl (benzyl) methylenebis (4-phenyl-1-indenyl) dimethylhafnium, methyl (benzyl) methylenebis (4- (3-methylphenyl) -1-indenyl) dimethylhafnium, methyl (benzyl) methylenebis (4- (3- Isopropylphenyl) -1-indenyl) dimethylhafnium, methyl (benzyl) methylenebis (4- (3-tert-butylphenyl) -1-indenyl) dimethylhafnium, methyl (benzyl) methylenebis (4- (4-methylphenyl)- 1-indenyl) dimethylhafnium, methyl (benzyl) methylenebis (4- (4-isopropylphenyl) -1-indenyl) dimethylhafnium, methyl (benzyl) methylenebis (4- (4-tert-butylphenyl) -1-indeni ) Dimethylhafnium, methyl (benzyl) methylenebis (4- (4-trimethylsilylphenyl) -1-indenyl) dimethylhafnium, methyl (benzyl) methylenebis (4- (2-methylphenyl) -1-indenyl) dimethylhafnium, methyl ( Benzyl) methylenebis (4- (2-ethylphenyl) -1-indenyl) dimethylhafnium, methyl (benzyl) methylenebis (4- (3,5-dimethylphenyl) -1-indenyl) dimethylhafnium, methyl (benzyl) methylenebis ( 4- (3,5-di-tert-butylphenyl) -1-indenyl) dimethylhafnium, methyl (benzyl) methylenebis (4- (3,5-ditrimethylsilylphenyl) -1-indenyl) dimethylhafnium, methyl (benzyl Methylenebis (4- (2,3-dimethylphenyl) -1-indenyl) dimethylhafnium, methyl (benzyl) methylenebis (4- (2,5-dimethylphenyl) -1-indenyl) dimethylhafnium, methyl (benzyl) methylenebis ( 4- (2,6-dimethylphenyl) -1-indenyl) dimethylhafnium, methyl (benzyl) methylenebis (4- (4-tert-butyl-2-methyl-phenyl) -1-indenyl) dimethylhafnium, methyl (benzyl ) Methylenebis (4-biphenylyl 1-indenyl) dimethylhafnium

ジ(4−メチルフェニル)メチレン架橋メタロセン化合物:
ジ(4−メチルフェニル)メチレンビス(4−フェニル−1−インデニル)ジメチルハフニウム、ジ(4−メチルフェニル)メチレンビス(4−(3−メチルフェニル)−1−インデニル)ジメチルハフニウム、ジ(4−メチルフェニル)メチレンビス(4−(3−イソプロピルフェニル)−1−インデニル)ジメチルハフニウム、ジ(4−メチルフェニル)メチレンビス(4−(3−tert−ブチルフェニル)−1−インデニル)ジメチルハフニウム、ジ(4−メチルフェニル)メチレンビス(4−(4−メチルフェニル)−1−インデニル)ジメチルハフニウム、ジ(4−メチルフェニル)メチレンビス(4−(4−イソプロピルフェニル)−1−インデニル)ジメチルハフニウム、ジ(4−メチルフェニル)メチレンビス(4−(4−tert−ブチルフェニル)−1−インデニル)ジメチルハフニウム、ジ(4−メチルフェニル)メチレンビス(4−(4−トリメチルシリルフェニル)−1−インデニル)ジメチルハフニウム、ジ(4−メチルフェニル)メチレンビス(4−(2−メチルフェニル)−1−インデニル)ジメチルハフニウム、ジ(4−メチルフェニル)メチレンビス(4−(2−エチルフェニル)−1−インデニル)ジメチルハフニウム、ジ(4−メチルフェニル)メチレンビス(4−(3,5−ジメチルフェニル)−1−インデニル)ジメチルハフニウム、ジ(4−メチルフェニル)メチレンビス(4−(3,5−ジ−tert−ブチルフェニル)−1−インデニル)ジメチルハフニウム、ジ(4−メチルフェニル)メチレンビス(4−(3,5−ジトリメチルシリルフェニル)−1−インデニル)ジメチルハフニウム、ジ(4−メチルフェニル)メチレンビス(4−(2,3−ジメチルフェニル)−1−インデニル)ジメチルハフニウム、ジ(4−メチルフェニル)メチレンビス(4−(2,5−ジメチルフェニル)−1−インデニル)ジメチルハフニウム、ジ(4−メチルフェニル)メチレンビス(4−(2,6−ジメチルフェニル)−1−インデニル)ジメチルハフニウム、ジ(4−メチルフェニル)メチレンビス(4−(4−tert−ブチル−2−メチル−フェニル)−1−インデニル)ジメチルハフニウム、ジ(4−メチルフェニル)メチレンビス(4−ビフェニリル1−インデニル)ジメチルハフニウム
Di (4-methylphenyl) methylene bridged metallocene compound:
Di (4-methylphenyl) methylenebis (4-phenyl-1-indenyl) dimethylhafnium, di (4-methylphenyl) methylenebis (4- (3-methylphenyl) -1-indenyl) dimethylhafnium, di (4-methyl) Phenyl) methylenebis (4- (3-isopropylphenyl) -1-indenyl) dimethylhafnium, di (4-methylphenyl) methylenebis (4- (3-tert-butylphenyl) -1-indenyl) dimethylhafnium, di (4 -Methylphenyl) methylenebis (4- (4-methylphenyl) -1-indenyl) dimethylhafnium, di (4-methylphenyl) methylenebis (4- (4-isopropylphenyl) -1-indenyl) dimethylhafnium, di (4 -Methylphenyl) methylenebis (4- (4 tert-butylphenyl) -1-indenyl) dimethylhafnium, di (4-methylphenyl) methylenebis (4- (4-trimethylsilylphenyl) -1-indenyl) dimethylhafnium, di (4-methylphenyl) methylenebis (4- ( 2-methylphenyl) -1-indenyl) dimethylhafnium, di (4-methylphenyl) methylenebis (4- (2-ethylphenyl) -1-indenyl) dimethylhafnium, di (4-methylphenyl) methylenebis (4- ( 3,5-dimethylphenyl) -1-indenyl) dimethylhafnium, di (4-methylphenyl) methylenebis (4- (3,5-di-tert-butylphenyl) -1-indenyl) dimethylhafnium, di (4- Methylphenyl) methylenebis (4- (3,5-dito Methylsilylphenyl) -1-indenyl) dimethylhafnium, di (4-methylphenyl) methylenebis (4- (2,3-dimethylphenyl) -1-indenyl) dimethylhafnium, di (4-methylphenyl) methylenebis (4- (2,5-dimethylphenyl) -1-indenyl) dimethylhafnium, di (4-methylphenyl) methylenebis (4- (2,6-dimethylphenyl) -1-indenyl) dimethylhafnium, di (4-methylphenyl) Methylenebis (4- (4-tert-butyl-2-methyl-phenyl) -1-indenyl) dimethylhafnium, di (4-methylphenyl) methylenebis (4-biphenylyl1-indenyl) dimethylhafnium

ジメチルシリレン架橋メタロセン化合物:
ジメチルシリレンビス(4−フェニル−1−インデニル)ジメチルハフニウム、ジメチルシリレンビス(4−(3−メチルフェニル)−1−インデニル)ジメチルハフニウム、ジメチルシリレンビス(4−(3−イソプロピルフェニル)−1−インデニル)ジメチルハフニウム、ジメチルシリレンビス(4−(3−tert−ブチルフェニル)−1−インデニル)ジメチルハフニウム、ジメチルシリレンビス(4−(4−メチルフェニル)−1−インデニル)ジメチルハフニウム、ジメチルシリレンビス(4−(4−イソプロピルフェニル)−1−インデニル)ジメチルハフニウム、ジメチルシリレンビス(4−(4−tert−ブチルフェニル)−1−インデニル)ジメチルハフニウム、ジメチルシリレンビス(4−(4−トリフルオロメチルフェニル)−1−インデニル)ジメチルハフニウム、ジメチルシリレンビス(4−(4−メトキシフェニル)−1−インデニル)ジメチルハフニウム、ジメチルシリレンビス(4−(4−イソプロポキシフェニル)−1−インデニル)ジメチルハフニウム、ジメチルシリレンビス(4−(4−トリメチルシリルフェニル)−1−インデニル)ジメチルハフニウム、ジメチルシリレンビス(4−(4−フルオロフェニル)−1−インデニル)ジメチルハフニウム、ジメチルシリレンビス(4−(4−クロロフェニル)−1−インデニル)ジメチルハフニウム、ジメチルシリレンビス(4−(4−ブロモフェニル)−1−インデニル)ジメチルハフニウム、ジメチルシリレンビス(4−(2−メチルフェニル)−1−インデニル)ジメチルハフニウム、ジメチルシリレンビス(4−(2−エチルフェニル)−1−インデニル)ジメチルハフニウム、ジメチルシリレンビス(4−(3,5−ジメチルフェニル)−1−インデニル)ジメチルハフニウム、ジメチルシリレンビス(4−(3,5−ジイソプロピルフェニル)−1−インデニル)ジメチルハフニウム、ジメチルシリレンビス(4−(3,5−ジ−tert−ブチルフェニル)−1−インデニル)ジメチルハフニウム、ジメチルシリレンビス(4−(3,5−ジメトキシフェニル)−1−インデニル)ジメチルハフニウム、ジメチルシリレンビス(4−(3,5−ジトリメチルシリルフェニル)−1−インデニル)ジメチルハフニウム、ジメチルシリレンビス(4−(3,5−ジトリフルオロメチルフェニル)−1−インデニル)ジメチルハフニウム、ジメチルシリレンビス(4−(2,3−ジメチルフェニル)−1−インデニル)ジメチルハフニウム、ジメチルシリレンビス(4−(2,5−ジメチルフェニル)−1−インデニル)ジメチルハフニウム、ジメチルシリレンビス(4−(2,6−ジメチルフェニル)−1−インデニル)ジメチルハフニウム、ジメチルシリレンビス(4−(2,3,5,6−テトラメチルフェニル)−1−インデニル)ジメチルハフニウム、ジメチルシリレンビス(4−(2,3,4,5,6−ペンタメチルフェニル)−1−インデニル)ジメチルハフニウム、ジメチルシリレンビス(4−(4−tert−ブチル−2−メチル−フェニル)−1−インデニル)ジメチルハフニウム、ジメチルシリレンビス(4−ビフェニリル−1−インデニル)ジメチルハフニウム、ジメチルシリレンビス(4−(2,6−ジメチルビフェニリル)−1−インデニル)ジメチルハフニウム、ジメチルシリレンビス(4−(2’,6’−ジメチルビフェニリル)−1−インデニル)ジメチルハフニウム、ジメチルシリレンビス(4−(1−ナフチル)−1−インデニル)ジメチルハフニウム、ジメチルシリレンビス(4−(2−ナフチル)−1−インデニル)ジメチルハフニウム、ジメチルシリレンビス(4−フェナントリル−1−インデニル)ジメチルハフニウム、
Dimethylsilylene bridged metallocene compounds:
Dimethylsilylenebis (4-phenyl-1-indenyl) dimethylhafnium, dimethylsilylenebis (4- (3-methylphenyl) -1-indenyl) dimethylhafnium, dimethylsilylenebis (4- (3-isopropylphenyl) -1- Indenyl) dimethylhafnium, dimethylsilylenebis (4- (3-tert-butylphenyl) -1-indenyl) dimethylhafnium, dimethylsilylenebis (4- (4-methylphenyl) -1-indenyl) dimethylhafnium, dimethylsilylenebis (4- (4-Isopropylphenyl) -1-indenyl) dimethylhafnium, dimethylsilylenebis (4- (4-tert-butylphenyl) -1-indenyl) dimethylhafnium, dimethylsilylenebis (4- (4-trifluoromethyl) Ruphenyl) -1-indenyl) dimethylhafnium, dimethylsilylenebis (4- (4-methoxyphenyl) -1-indenyl) dimethylhafnium, dimethylsilylenebis (4- (4-isopropoxyphenyl) -1-indenyl) dimethylhafnium Dimethylsilylenebis (4- (4-trimethylsilylphenyl) -1-indenyl) dimethylhafnium, dimethylsilylenebis (4- (4-fluorophenyl) -1-indenyl) dimethylhafnium, dimethylsilylenebis (4- (4- Chlorophenyl) -1-indenyl) dimethylhafnium, dimethylsilylenebis (4- (4-bromophenyl) -1-indenyl) dimethylhafnium, dimethylsilylenebis (4- (2-methylphenyl) -1-indenyl) dimethylha Dimethylsilylenebis (4- (2-ethylphenyl) -1-indenyl) dimethylhafnium, dimethylsilylenebis (4- (3,5-dimethylphenyl) -1-indenyl) dimethylhafnium, dimethylsilylenebis (4- (3,5-diisopropylphenyl) -1-indenyl) dimethylhafnium, dimethylsilylenebis (4- (3,5-di-tert-butylphenyl) -1-indenyl) dimethylhafnium, dimethylsilylenebis (4- (3 , 5-dimethoxyphenyl) -1-indenyl) dimethylhafnium, dimethylsilylenebis (4- (3,5-ditrimethylsilylphenyl) -1-indenyl) dimethylhafnium, dimethylsilylenebis (4- (3,5-ditrifluoro) Methylphenyl) -1-indenyl ) Dimethylhafnium, dimethylsilylenebis (4- (2,3-dimethylphenyl) -1-indenyl) dimethylhafnium, dimethylsilylenebis (4- (2,5-dimethylphenyl) -1-indenyl) dimethylhafnium, dimethylsilylene Bis (4- (2,6-dimethylphenyl) -1-indenyl) dimethylhafnium, dimethylsilylenebis (4- (2,3,5,6-tetramethylphenyl) -1-indenyl) dimethylhafnium, dimethylsilylenebis (4- (2,3,4,5,6-pentamethylphenyl) -1-indenyl) dimethylhafnium, dimethylsilylenebis (4- (4-tert-butyl-2-methyl-phenyl) -1-indenyl) Dimethyl hafnium, dimethylsilylene bis (4-biphenylyl-1-y Denyl) dimethylhafnium, dimethylsilylenebis (4- (2,6-dimethylbiphenylyl) -1-indenyl) dimethylhafnium, dimethylsilylenebis (4- (2 ′, 6′-dimethylbiphenylyl) -1-indenyl) Dimethylhafnium, dimethylsilylenebis (4- (1-naphthyl) -1-indenyl) dimethylhafnium, dimethylsilylenebis (4- (2-naphthyl) -1-indenyl) dimethylhafnium, dimethylsilylenebis (4-phenanthryl-1) -Indenyl) dimethylhafnium,

ジエチルシリレン架橋メタロセン化合物:
ジエチルシリレンビス(4−フェニル−1−インデニル)ジメチルハフニウム、ジエチルシリレンビス(4−(3−メチルフェニル)−1−インデニル)ジメチルハフニウム、ジエチルシリレンビス(4−(3−イソプロピルフェニル)−1−インデニル)ジメチルハフニウム、ジエチルシリレンビス(4−(3−tert−ブチルフェニル)−1−インデニル)ジメチルハフニウム、ジエチルシリレンビス(4−(4−メチルフェニル)−1−インデニル)ジメチルハフニウム、ジエチルシリレンビス(4−(4−イソプロピルフェニル)−1−インデニル)ジメチルハフニウム、ジエチルシリレンビス(4−(4−tert−ブチルフェニル)−1−インデニル)ジメチルハフニウム、ジエチルシリレンビス(4−(4−トリフルオロメチルフェニル)−1−インデニル)ジメチルハフニウム、ジエチルシリレンビス(4−(4−メトキシフェニル)−1−インデニル)ジメチルハフニウム、ジエチルシリレンビス(4−(4−イソプロポキシフェニル)−1−インデニル)ジメチルハフニウム、ジエチルシリレンビス(4−(4−トリメチルシリルフェニル)−1−インデニル)ジメチルハフニウム、ジエチルシリレンビス(4−(4−フルオロフェニル)−1−インデニル)ジメチルハフニウム、ジエチルシリレンビス(4−(4−クロロフェニル)−1−インデニル)ジメチルハフニウム、ジエチルシリレンビス(4−(4−ブロモフェニル)−1−インデニル)ジメチルハフニウム、ジエチルシリレンビス(4−(2−メチルフェニル)−1−インデニル)ジメチルハフニウム、ジエチルシリレンビス(4−(2−エチルフェニル)−1−インデニル)ジメチルハフニウム、ジエチルシリレンビス(4−(3,5−ジメチルフェニル)−1−インデニル)ジメチルハフニウム、ジエチルシリレンビス(4−(3,5−ジイソプロピルフェニル)−1−インデニル)ジメチルハフニウム、ジエチルシリレンビス(4−(3,5−ジ−tert−ブチルフェニル)−1−インデニル)ジメチルハフニウム、ジエチルシリレンビス(4−(3,5−ジメトキシフェニル)−1−インデニル)ジメチルハフニウム、ジエチルシリレンビス(4−(3,5−ジトリメチルシリルフェニル)−1−インデニル)ジメチルハフニウム、ジエチルシリレンビス(4−(3,5−ジトリフルオロメチルフェニル)−1−インデニル)ジメチルハフニウム、ジエチルシリレンビス(4−(2,3−ジメチルフェニル)−1−インデニル)ジメチルハフニウム、ジエチルシリレンビス(4−(2,5−ジメチルフェニル)−1−インデニル)ジメチルハフニウム、ジエチルシリレンビス(4−(2,6−ジメチルフェニル)−1−インデニル)ジメチルハフニウム、ジエチルシリレンビス(4−(2,3,5,6−テトラメチルフェニル)−1−インデニル)ジメチルハフニウム、ジエチルシリレンビス(4−(2,3,4,5,6−ペンタメチルフェニル)−1−インデニル)ジメチルハフニウム、ジエチルシリレンビス(4−(4−tert−ブチル−2−メチル−フェニル)−1−インデニル)ジメチルハフニウム、ジエチルシリレンビス(4−ビフェニリル−1−インデニル)ジメチルハフニウム、ジエチルシリレンビス(4−(2,6−ジメチルビフェニリル)−1−インデニル)ジメチルハフニウム、ジエチルシリレンビス(4−(2’,6’−ジメチルビフェニリル)−1−インデニル)ジメチルハフニウム、ジエチルシリレンビス(4−(1−ナフチル)−1−インデニル)ジメチルハフニウム、ジエチルシリレンビス(4−(2−ナフチル)−1−インデニル)ジメチルハフニウム、ジエチルシリレンビス(4−フェナントリル−1−インデニル)ジメチルハフニウム、
Diethylsilylene bridged metallocene compounds:
Diethylsilylenebis (4-phenyl-1-indenyl) dimethylhafnium, diethylsilylenebis (4- (3-methylphenyl) -1-indenyl) dimethylhafnium, diethylsilylenebis (4- (3-isopropylphenyl) -1- Indenyl) dimethylhafnium, diethylsilylenebis (4- (3-tert-butylphenyl) -1-indenyl) dimethylhafnium, diethylsilylenebis (4- (4-methylphenyl) -1-indenyl) dimethylhafnium, diethylsilylenebis (4- (4-Isopropylphenyl) -1-indenyl) dimethylhafnium, diethylsilylenebis (4- (4-tert-butylphenyl) -1-indenyl) dimethylhafnium, diethylsilylenebis (4- (4-trifluoromethyl) Ruphenyl) -1-indenyl) dimethylhafnium, diethylsilylenebis (4- (4-methoxyphenyl) -1-indenyl) dimethylhafnium, diethylsilylenebis (4- (4-isopropoxyphenyl) -1-indenyl) dimethylhafnium , Diethylsilylenebis (4- (4-trimethylsilylphenyl) -1-indenyl) dimethylhafnium, diethylsilylenebis (4- (4-fluorophenyl) -1-indenyl) dimethylhafnium, diethylsilylenebis (4- (4- Chlorophenyl) -1-indenyl) dimethylhafnium, diethylsilylenebis (4- (4-bromophenyl) -1-indenyl) dimethylhafnium, diethylsilylenebis (4- (2-methylphenyl) -1-indenyl) dimethylha Nitrogen, diethylsilylenebis (4- (2-ethylphenyl) -1-indenyl) dimethylhafnium, diethylsilylenebis (4- (3,5-dimethylphenyl) -1-indenyl) dimethylhafnium, diethylsilylenebis (4- (3,5-diisopropylphenyl) -1-indenyl) dimethylhafnium, diethylsilylenebis (4- (3,5-di-tert-butylphenyl) -1-indenyl) dimethylhafnium, diethylsilylenebis (4- (3 , 5-Dimethoxyphenyl) -1-indenyl) dimethylhafnium, diethylsilylenebis (4- (3,5-ditrimethylsilylphenyl) -1-indenyl) dimethylhafnium, diethylsilylenebis (4- (3,5-ditrifluoro) Methylphenyl) -1-indenyl ) Dimethylhafnium, diethylsilylenebis (4- (2,3-dimethylphenyl) -1-indenyl) dimethylhafnium, diethylsilylenebis (4- (2,5-dimethylphenyl) -1-indenyl) dimethylhafnium, diethylsilylene Bis (4- (2,6-dimethylphenyl) -1-indenyl) dimethylhafnium, diethylsilylenebis (4- (2,3,5,6-tetramethylphenyl) -1-indenyl) dimethylhafnium, diethylsilylenebis (4- (2,3,4,5,6-pentamethylphenyl) -1-indenyl) dimethylhafnium, diethylsilylenebis (4- (4-tert-butyl-2-methyl-phenyl) -1-indenyl) Dimethyl hafnium, diethylsilylene bis (4-biphenylyl-1-y Denyl) dimethylhafnium, diethylsilylenebis (4- (2,6-dimethylbiphenylyl) -1-indenyl) dimethylhafnium, diethylsilylenebis (4- (2 ′, 6′-dimethylbiphenylyl) -1-indenyl) Dimethylhafnium, diethylsilylenebis (4- (1-naphthyl) -1-indenyl) dimethylhafnium, diethylsilylenebis (4- (2-naphthyl) -1-indenyl) dimethylhafnium, diethylsilylenebis (4-phenanthryl-1) -Indenyl) dimethylhafnium,

トリメチレンシリレン架橋メタロセン化合物
トリメチレンシリレンビス(4−フェニル−1−インデニル)ジメチルハフニウム、トリメチレンシリレンビス(4−(3−メチルフェニル)−1−インデニル)ジメチルハフニウム、トリメチレンシリレンビス(4−(3−イソプロピルフェニル)−1−インデニル)ジメチルハフニウム、トリメチレンシリレンビス(4−(3−tert−ブチルフェニル)−1−インデニル)ジメチルハフニウム、トリメチレンシリレンビス(4−(4−メチルフェニル)−1−インデニル)ジメチルハフニウム、トリメチレンシリレンビス(4−(4−イソプロピルフェニル)−1−インデニル)ジメチルハフニウム、トリメチレンシリレンビス(4−(4−tert−ブチルフェニル)−1−インデニル)ジメチルハフニウム、トリメチレンシリレンビス(4−(4−トリフルオロメチルフェニル)−1−インデニル)ジメチルハフニウム、トリメチレンシリレンビス(4−(4−メトキシフェニル)−1−インデニル)ジメチルハフニウム、トリメチレンシリレンビス(4−(4−イソプロポキシフェニル)−1−インデニル)ジメチルハフニウム、トリメチレンシリレンビス(4−(4−トリメチルシリルフェニル)−1−インデニル)ジメチルハフニウム、トリメチレンシリレンビス(4−(4−フルオロフェニル)−1−インデニル)ジメチルハフニウム、トリメチレンシリレンビス(4−(4−クロロフェニル)−1−インデニル)ジメチルハフニウム、トリメチレンシリレンビス(4−(4−ブロモフェニル)−1−インデニル)ジメチルハフニウム、トリメチレンシリレンビス(4−(2−メチルフェニル)−1−インデニル)ジメチルハフニウム、トリメチレンシリレンビス(4−(2−エチルフェニル)−1−インデニル)ジメチルハフニウム、トリメチレンシリレンビス(4−(3,5−ジメチルフェニル)−1−インデニル)ジメチルハフニウム、トリメチレンシリレンビス(4−(3,5−ジイソプロピルフェニル)−1−インデニル)ジメチルハフニウム、トリメチレンシリレンビス(4−(3,5−ジ−tert−ブチルフェニル)−1−インデニル)ジメチルハフニウム、トリメチレンシリレンビス(4−(3,5−ジメトキシフェニル)−1−インデニル)ジメチルハフニウム、トリメチレンシリレンビス(4−(3,5−ジトリメチルシリルフェニル)−1−インデニル)ジメチルハフニウム、トリメチレンシリレンビス(4−(3,5−ジトリフルオロメチルフェニル)−1−インデニル)ジメチルハフニウム、トリメチレンシリレンビス(4−(2,3−ジメチルフェニル)−1−インデニル)ジメチルハフニウム、トリメチレンシリレンビス(4−(2,5−ジメチルフェニル)−1−インデニル)ジメチルハフニウム、トリメチレンシリレンビス(4−(2,6−ジメチルフェニル)−1−インデニル)ジメチルハフニウム、トリメチレンシリレンビス(4−(2,3,5,6−テトラメチルフェニル)−1−インデニル)ジメチルハフニウム、トリメチレンシリレンビス(4−(2,3,4,5,6−ペンタメチルフェニル)−1−インデニル)ジメチルハフニウム、トリメチレンシリレンビス(4−(4−tert−ブチル−2−メチル−フェニル)−1−インデニル)ジメチルハフニウム、トリメチレンシリレンビス(4−ビフェニリル−1−インデニル)ジメチルハフニウム、トリメチレンシリレンビス(4−(2,6−ジメチルビフェニリル)−1−インデニル)ジメチルハフニウム、トリメチレンシリレンビス(4−(2’,6’−ジメチルビフェニリル)−1−インデニル)ジメチルハフニウム、トリメチレンシリレンビス(4−(1−ナフチル)−1−インデニル)ジメチルハフニウム、トリメチレンシリレンビス(4−(2−ナフチル)−1−インデニル)ジメチルハフニウム、トリメチレンシリレンビス(4−フェナントリル−1−インデニル)ジメチルハフニウム
Trimethylenesilylene-bridged metallocene compounds trimethylenesilylenebis (4-phenyl-1-indenyl) dimethylhafnium, trimethylenesilylenebis (4- (3-methylphenyl) -1-indenyl) dimethylhafnium, trimethylenesilylenebis (4- (3-Isopropylphenyl) -1-indenyl) dimethylhafnium, trimethylenesilylenebis (4- (3-tert-butylphenyl) -1-indenyl) dimethylhafnium, trimethylenesilylenebis (4- (4-methylphenyl) -1-indenyl) dimethylhafnium, trimethylenesilylenebis (4- (4-isopropylphenyl) -1-indenyl) dimethylhafnium, trimethylenesilylenebis (4- (4-tert-butylphenyl) -1-indenyl ) Dimethylhafnium, trimethylenesilylenebis (4- (4-trifluoromethylphenyl) -1-indenyl) dimethylhafnium, trimethylenesilylenebis (4- (4-methoxyphenyl) -1-indenyl) dimethylhafnium, trimethylene Silylenebis (4- (4-isopropoxyphenyl) -1-indenyl) dimethylhafnium, trimethylenesilylenebis (4- (4-trimethylsilylphenyl) -1-indenyl) dimethylhafnium, trimethylenesilylenebis (4- (4 -Fluorophenyl) -1-indenyl) dimethylhafnium, trimethylenesilylenebis (4- (4-chlorophenyl) -1-indenyl) dimethylhafnium, trimethylenesilylenebis (4- (4-bromophenyl) -1-indenyl) Methylhafnium, trimethylenesilylenebis (4- (2-methylphenyl) -1-indenyl) dimethylhafnium, trimethylenesilylenebis (4- (2-ethylphenyl) -1-indenyl) dimethylhafnium, trimethylenesilylenebis ( 4- (3,5-dimethylphenyl) -1-indenyl) dimethylhafnium, trimethylenesilylenebis (4- (3,5-diisopropylphenyl) -1-indenyl) dimethylhafnium, trimethylenesilylenebis (4- (3 , 5-Di-tert-butylphenyl) -1-indenyl) dimethylhafnium, trimethylenesilylenebis (4- (3,5-dimethoxyphenyl) -1-indenyl) dimethylhafnium, trimethylenesilylenebis (4- (3 , 5-Ditrimethylsilylphe L) -1-indenyl) dimethylhafnium, trimethylenesilylenebis (4- (3,5-ditrifluoromethylphenyl) -1-indenyl) dimethylhafnium, trimethylenesilylenebis (4- (2,3-dimethylphenyl) -1-indenyl) dimethylhafnium, trimethylenesilylenebis (4- (2,5-dimethylphenyl) -1-indenyl) dimethylhafnium, trimethylenesilylenebis (4- (2,6-dimethylphenyl) -1-indenyl ) Dimethylhafnium, trimethylenesilylenebis (4- (2,3,5,6-tetramethylphenyl) -1-indenyl) dimethylhafnium, trimethylenesilylenebis (4- (2,3,4,5,6-) Pentamethylphenyl) -1-indenyl) dimethylhafnium, trimethyl Rensilylene bis (4- (4-tert-butyl-2-methyl-phenyl) -1-indenyl) dimethylhafnium, trimethylenesilylenebis (4-biphenylyl-1-indenyl) dimethylhafnium, trimethylenesilylenebis (4- (2,6-Dimethylbiphenylyl) -1-indenyl) dimethylhafnium, trimethylenesilylenebis (4- (2 ′, 6′-dimethylbiphenylyl) -1-indenyl) dimethylhafnium, trimethylenesilylenebis (4- (1-naphthyl) -1-indenyl) dimethylhafnium, trimethylenesilylenebis (4- (2-naphthyl) -1-indenyl) dimethylhafnium, trimethylenesilylenebis (4-phenanthryl-1-indenyl) dimethylhafnium

テトラメチレンシリレン架橋メタロセン化合物:
テトラメチレンシリレンビス(4−フェニル−1−インデニル)ジメチルハフニウム、テトラメチレンシリレンビス(4−(3−メチルフェニル)−1−インデニル)ジメチルハフニウム、テトラメチレンシリレンビス(4−(3−イソプロピルフェニル)−1−インデニル)ジメチルハフニウム、テトラメチレンシリレンビス(4−(3−tert−ブチルフェニル)−1−インデニル)ジメチルハフニウム、テトラメチレンシリレンビス(4−(4−メチルフェニル)−1−インデニル)ジメチルハフニウム、テトラメチレンシリレンビス(4−(4−イソプロピルフェニル)−1−インデニル)ジメチルハフニウム、テトラメチレンシリレンビス(4−(4−tert−ブチルフェニル)−1−インデニル)ジメチルハフニウム、テトラメチレンシリレンビス(4−(4−トリメチルシリルフェニル)−1−インデニル)ジメチルハフニウム、テトラメチレンシリレンビス(4−(2−メチルフェニル)−1−インデニル)ジメチルハフニウム、テトラメチレンシリレンビス(4−(2−エチルフェニル)−1−インデニル)ジメチルハフニウム、テトラメチレンシリレンビス(4−(3,5−ジメチルフェニル)−1−インデニル)ジメチルハフニウム、テトラメチレンシリレンビス(4−(3,5−ジ−tert−ブチルフェニル)−1−インデニル)ジメチルハフニウム、テトラメチレンシリレンビス(4−(3,5−ジトリメチルシリルフェニル)−1−インデニル)ジメチルハフニウム、テトラメチレンシリレンビス(4−(2,3−ジメチルフェニル)−1−インデニル)ジメチルハフニウム、テトラメチレンシリレンビス(4−(2,5−ジメチルフェニル)−1−インデニル)ジメチルハフニウム、テトラメチレンシリレンビス(4−(2,6−ジメチルフェニル)−1−インデニル)ジメチルハフニウム、テトラメチレンシリレンビス(4−(4−tert−ブチル−2−メチル−フェニル)−1−インデニル)ジメチルハフニウム、テトラメチレンシリレンビス(4−ビフェニリル−1−インデニル)ジメチルハフニウム
Tetramethylenesilylene bridged metallocene compounds:
Tetramethylenesilylenebis (4-phenyl-1-indenyl) dimethylhafnium, tetramethylenesilylenebis (4- (3-methylphenyl) -1-indenyl) dimethylhafnium, tetramethylenesilylenebis (4- (3-isopropylphenyl) -1-indenyl) dimethylhafnium, tetramethylenesilylenebis (4- (3-tert-butylphenyl) -1-indenyl) dimethylhafnium, tetramethylenesilylenebis (4- (4-methylphenyl) -1-indenyl) dimethyl Hafnium, tetramethylenesilylenebis (4- (4-isopropylphenyl) -1-indenyl) dimethylhafnium, tetramethylenesilylenebis (4- (4-tert-butylphenyl) -1-indenyl) dimethylhafnium, teto Methylenesilylenebis (4- (4-trimethylsilylphenyl) -1-indenyl) dimethylhafnium, tetramethylenesilylenebis (4- (2-methylphenyl) -1-indenyl) dimethylhafnium, tetramethylenesilylenebis (4- (2 -Ethylphenyl) -1-indenyl) dimethylhafnium, tetramethylenesilylenebis (4- (3,5-dimethylphenyl) -1-indenyl) dimethylhafnium, tetramethylenesilylenebis (4- (3,5-di-tert) -Butylphenyl) -1-indenyl) dimethylhafnium, tetramethylenesilylenebis (4- (3,5-ditrimethylsilylphenyl) -1-indenyl) dimethylhafnium, tetramethylenesilylenebis (4- (2,3-dimethylphenyl) ) -1-I Denyl) dimethylhafnium, tetramethylenesilylenebis (4- (2,5-dimethylphenyl) -1-indenyl) dimethylhafnium, tetramethylenesilylenebis (4- (2,6-dimethylphenyl) -1-indenyl) dimethylhafnium Tetramethylenesilylenebis (4- (4-tert-butyl-2-methyl-phenyl) -1-indenyl) dimethylhafnium, tetramethylenesilylenebis (4-biphenylyl-1-indenyl) dimethylhafnium

ジフェニルシリレン架橋メタロセン化合物
ジフェニルシリレンビス(4−フェニル−1−インデニル)ジメチルハフニウム、ジフェニルシリレンビス(4−(3−メチルフェニル)−1−インデニル)ジメチルハフニウム、ジフェニルシリレンビス(4−(3−イソプロピルフェニル)−1−インデニル)ジメチルハフニウム、ジフェニルシリレンビス(4−(3−tert−ブチルフェニル)−1−インデニル)ジメチルハフニウム、ジフェニルシリレンビス(4−(4−メチルフェニル)−1−インデニル)ジメチルハフニウム、ジフェニルシリレンビス(4−(4−イソプロピルフェニル)−1−インデニル)ジメチルハフニウム、ジフェニルシリレンビス(4−(4−tert−ブチルフェニル)−1−インデニル)ジメチルハフニウム、ジフェニルシリレンビス(4−(4−トリメチルシリルフェニル)−1−インデニル)ジメチルハフニウム、ジフェニルシリレンビス(4−(2−メチルフェニル)−1−インデニル)ジメチルハフニウム、ジフェニルシリレンビス(4−(2−エチルフェニル)−1−インデニル)ジメチルハフニウム、ジフェニルシリレンビス(4−(3,5−ジメチルフェニル)−1−インデニル)ジメチルハフニウム、ジフェニルシリレンビス(4−(3,5−ジ−tert−ブチルフェニル)−1−インデニル)ジメチルハフニウム、ジフェニルシリレンビス(4−(3,5−ジトリメチルシリルフェニル)−1−インデニル)ジメチルハフニウム、ジフェニルシリレンビス(4−(2,3−ジメチルフェニル)−1−インデニル)ジメチルハフニウム、ジフェニルシリレンビス(4−(2,5−ジメチルフェニル)−1−インデニル)ジメチルハフニウム、ジフェニルシリレンビス(4−(2,6−ジメチルフェニル)−1−インデニル)ジメチルハフニウム、ジフェニルシリレンビス(4−(4−tert−ブチル−2−メチル−フェニル)−1−インデニル)ジメチルハフニウム、ジフェニルシリレンビス(4−ビフェニリル−1−インデニル)ジメチルハフニウム
Diphenylsilylene-bridged metallocene compounds Diphenylsilylenebis (4-phenyl-1-indenyl) dimethylhafnium, diphenylsilylenebis (4- (3-methylphenyl) -1-indenyl) dimethylhafnium, diphenylsilylenebis (4- (3-isopropyl) Phenyl) -1-indenyl) dimethylhafnium, diphenylsilylenebis (4- (3-tert-butylphenyl) -1-indenyl) dimethylhafnium, diphenylsilylenebis (4- (4-methylphenyl) -1-indenyl) dimethyl Hafnium, diphenylsilylenebis (4- (4-isopropylphenyl) -1-indenyl) dimethylhafnium, diphenylsilylenebis (4- (4-tert-butylphenyl) -1-indenyl) dimethylhafni , Diphenylsilylenebis (4- (4-trimethylsilylphenyl) -1-indenyl) dimethylhafnium, diphenylsilylenebis (4- (2-methylphenyl) -1-indenyl) dimethylhafnium, diphenylsilylenebis (4- (2 -Ethylphenyl) -1-indenyl) dimethylhafnium, diphenylsilylenebis (4- (3,5-dimethylphenyl) -1-indenyl) dimethylhafnium, diphenylsilylenebis (4- (3,5-di-tert-butyl) Phenyl) -1-indenyl) dimethylhafnium, diphenylsilylenebis (4- (3,5-ditrimethylsilylphenyl) -1-indenyl) dimethylhafnium, diphenylsilylenebis (4- (2,3-dimethylphenyl) -1- Indenyl) dimethyl Funium, diphenylsilylenebis (4- (2,5-dimethylphenyl) -1-indenyl) dimethylhafnium, diphenylsilylenebis (4- (2,6-dimethylphenyl) -1-indenyl) dimethylhafnium, diphenylsilylenebis ( 4- (4-tert-butyl-2-methyl-phenyl) -1-indenyl) dimethylhafnium, diphenylsilylenebis (4-biphenylyl-1-indenyl) dimethylhafnium

例示したメタロセン化合物中、生成するエチレン・αオレフィン共重合体のビニル、ビニリデン数の観点から、Yが炭素原子である化合物が好ましい。   Among the exemplified metallocene compounds, a compound in which Y is a carbon atom is preferred from the viewpoint of the vinyl and vinylidene numbers of the ethylene / α-olefin copolymer to be produced.

例示したメタロセン化合物中、高分子量のエチレン・αオレフィン共重合体を製造することができるという観点から、R、R11は、水素原子である化合物が好ましい。 From the viewpoint that a high molecular weight ethylene / α-olefin copolymer can be produced in the exemplified metallocene compounds, compounds in which R 1 and R 11 are hydrogen atoms are preferable.

また、例示したメタロセン化合物中、Mが、ハフニウムの代わりに、チタン、ジルコニウムに代わった化合物や、X及びXが、メチル基の代わりに、片方、もしくは両方が塩素原子、臭素原子、ヨウ素原子、フェニル基、ベンジル基、ジメチルアミノ基、ジエチルアミノ基、トリメチルシリルメチル基などに代わった化合物も、例示することができる。 In the exemplified metallocene compounds, M is a compound in which titanium and zirconium are substituted instead of hafnium, X 1 and X 2 are in place of a methyl group, one or both are chlorine atoms, bromine atoms, iodine Compounds in place of atoms, phenyl groups, benzyl groups, dimethylamino groups, diethylamino groups, trimethylsilylmethyl groups and the like can also be exemplified.

[メタロセン化合物の合成法]
本発明のメタロセン化合物の合成法としては、特に限定されず、置換基ないし結合の様式によって、任意の方法によって合成することができる。以下に、代表的な合成経路の一例を示す。
[Synthesis of metallocene compounds]
The method for synthesizing the metallocene compound of the present invention is not particularly limited, and the metallocene compound can be synthesized by any method depending on the substituent or the mode of bonding. An example of a typical synthesis route is shown below.

Figure 2015199930
Figure 2015199930

上記合成経路において、1とフェニルボロン酸を、パラジウム触媒の存在下でカップリング反応を行うことにより、2が得られる。2から3の架橋反応は、文献(特許3835846号公報)に記載の方法などにより行うことができ、水酸化カリウムなどで2をアニオン化したあと、アセトンとの反応で3が得られる。3を2等量のn−ブチルリチウムなどでジアニオン化した後、四塩化ハフニウムとの反応でメタロセン化合物4を得られる。一般的に、4はラセミ体とメソ体の混合物が得られ、精製により触媒性能に優れるラセミ体を濃縮する。また、文献(WO2000/017213)記載の方法などにより、メソ体をラセミ体に異性化し、ラセミ体の収率を向上させることが出来る。ジメチル体5は4を2当量以上のMeMgBrなどで処理することで得ることが出来る。
置換基を導入したメタロセン化合物の合成は、対応した置換原料を使用することにより合成することができ、フェニルボロン酸のかわりに、対応するボロン酸、たとえば4−イソプロピルフェニルボロン酸、3,5−ジメチルフェニルボロン酸などを用いることにより、インデニル環の4位のフェニル基上に(R−R、R15−R19)置換基を導入することができる。
架橋基上の置換基が異なるメタロセン化合物の合成は、対応した置換原料を使用することにより合成することができ、アセトンの代わりに対応するケトン類、たとえばシクロブタノン、4−ヘプテノンなどを用いることにより、架橋基上に置換基(R10、R20)を導入することができる。
In the above synthetic route, 2 is obtained by performing a coupling reaction between 1 and phenylboronic acid in the presence of a palladium catalyst. The crosslinking reaction from 2 to 3 can be performed by the method described in the literature (Japanese Patent No. 3835846), and after anionization of 2 with potassium hydroxide or the like, 3 is obtained by reaction with acetone. After metal 3 is dianionized with 2 equivalents of n-butyllithium or the like, metallocene compound 4 can be obtained by reaction with hafnium tetrachloride. Generally, 4 is a mixture of a racemate and a meso isomer, and a racemate having excellent catalytic performance is concentrated by purification. In addition, the meso form can be isomerized into a racemate by the method described in the literature (WO2000 / 017213), and the yield of the racemate can be improved. The dimethyl body 5 can be obtained by treating 4 with 2 equivalents or more of MeMgBr.
A metallocene compound having a substituent introduced therein can be synthesized by using a corresponding substituted raw material, and instead of phenylboronic acid, a corresponding boronic acid such as 4-isopropylphenylboronic acid, 3,5- By using dimethylphenylboronic acid or the like, a (R 5 -R 9 , R 15 -R 19 ) substituent can be introduced on the 4-position phenyl group of the indenyl ring.
The synthesis of metallocene compounds having different substituents on the bridging group can be synthesized by using corresponding substitution raw materials, and by using corresponding ketones such as cyclobutanone and 4-heptenone instead of acetone, Substituents (R 10 , R 20 ) can be introduced on the bridging group.

(2)成分(B)
成分(B)としては、成分(A)と反応してイオン対を形成する化合物又はイオン交換性層状珪酸塩である。成分(A)と反応してイオン対を形成する化合物としては有機アルミニウムオキシ化合物、ホウ素化合物、亜鉛化合物などを挙げることができ、好ましくは有機アルミニウムオキシ化合物又はホウ素化合物であり、更に好ましくはホウ素化合物である。これら成分(B)は、単独で用いてもよいし、二種以上を用いてもよい。
(2) Component (B)
The component (B) is a compound or ion-exchange layered silicate that reacts with the component (A) to form an ion pair. Examples of the compound that reacts with the component (A) to form an ion pair include an organoaluminum oxy compound, a boron compound, and a zinc compound, preferably an organoaluminum oxy compound or a boron compound, more preferably a boron compound. It is. These components (B) may be used independently and may use 2 or more types.

(i)有機アルミニウムオキシ化合物
成分(B)の一つである有機アルミニウムオキシ化合物は、分子中に、Al−O−Al結合を有し、その結合数は通常1〜100、好ましくは1〜50個の範囲にある。このような有機アルミニウムオキシ化合物は、通常、有機アルミニウム化合物と水または芳香族カルボン酸を反応させて得られる。
有機アルミニウムと水との反応は、通常、不活性炭化水素(溶媒)中で行われる。不活性炭化水素としては、ペンタン、ヘキサン、ヘプタン、シクロヘキサン、メチルシクロヘキサン、ベンゼン、トルエン、キシレン等の脂肪族炭化水素、脂環族炭化水素及び芳香族炭化水素が使用できるが、脂肪族炭化水素又は芳香族炭化水素を使用することが好ましい。
(I) Organoaluminum oxy compound The organoaluminum oxy compound which is one of the components (B) has an Al-O-Al bond in the molecule, and the number of bonds is usually 1 to 100, preferably 1 to 50. In the range. Such an organoaluminum oxy compound is usually obtained by reacting an organoaluminum compound with water or an aromatic carboxylic acid.
The reaction between organoaluminum and water is usually carried out in an inert hydrocarbon (solvent). As the inert hydrocarbon, aliphatic hydrocarbons such as pentane, hexane, heptane, cyclohexane, methylcyclohexane, benzene, toluene and xylene, alicyclic hydrocarbons and aromatic hydrocarbons can be used. Preference is given to using aromatic hydrocarbons.

有機アルミニウムオキシ化合物の調製に用いる有機アルミニウム化合物は、下記一般式(II)で表される化合物がいずれも使用可能であるが、好ましくはトリアルキルアルミニウムが使用される。
AlX 3−t (II)
(式中、Rは、炭素数1〜18、好ましくは1〜12のアルキル基、アルケニル基、アリール基、アラルキル基等の炭化水素基を示し、Xは、水素原子またはハロゲン原子を示し、tは、1≦t≦3の整数を示す。)
トリアルキルアルミニウムのアルキル基は、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、ペンチル基、ヘキシル基、オクチル基、デシル基、ドデシル基等のいずれでも差し支えないが、好ましくはメチル基、イソブチル基であり、更に好ましくはメチル基である。
上記有機アルミニウム化合物は、2種以上混合して使用することもできる。
As the organoaluminum compound used for the preparation of the organoaluminum oxy compound, any of compounds represented by the following general formula (II) can be used, but trialkylaluminum is preferably used.
R a t AlX a 3-t (II)
(In the formula, R a represents a hydrocarbon group such as an alkyl group, alkenyl group, aryl group, aralkyl group or the like having 1 to 18 carbon atoms, preferably 1 to 12 carbon atoms, and X a represents a hydrogen atom or a halogen atom. , T represents an integer of 1 ≦ t ≦ 3.)
The alkyl group of the trialkylaluminum may be any of methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, pentyl group, hexyl group, octyl group, decyl group, dodecyl group, etc. A methyl group and an isobutyl group are preferable, and a methyl group is more preferable.
Two or more of the above organoaluminum compounds can be mixed and used.

水と有機アルミニウム化合物との反応比(水/Alモル比)は0.25/1〜1.2/1、特に0.5/1〜1/1であることが好ましく、反応温度は、通常−70〜100C、好ましくは−20〜20Cの範囲にある。反応時間は、通常5分〜24時間、好ましくは10分〜5時間の範囲で選ばれる。反応に要する水として、単なる水のみならず、硫酸銅水和物、硫酸アルミニウム水和物等に含まれる結晶水や反応系中に水が生成しうる成分も利用することもできる。
なお、上記した有機アルミニウムオキシ化合物のうち、アルキルアルミニウムと水とを反応させて得られるものは、通常、アルミノキサンと呼ばれ、特にメチルアルミノキサン(実質的にメチルアルミノキサン(MAO)からなるものを含む )は、有機アルミニウムオキシ化合物として、好適である。
もちろん、有機アルミニウムオキシ化合物として、上記した各有機アルミニウムオキシ化合物の2種以上を組み合わせて使用することもでき、また、前記有機アルミニウムオキシ化合物を前述の不活性炭化水素溶媒に溶解又は分散させた溶液としたものを用いてもよい。
The reaction ratio of water to the organoaluminum compound (water / Al molar ratio) is preferably 0.25 / 1 to 1.2 / 1, particularly preferably 0.5 / 1 to 1/1, and the reaction temperature is usually It is in the range of −70 to 100 ° C., preferably −20 to 20 ° C. The reaction time is usually selected in the range of 5 minutes to 24 hours, preferably 10 minutes to 5 hours. As water required for the reaction, not only mere water but also crystal water contained in copper sulfate hydrate, aluminum sulfate hydrate and the like and components capable of generating water in the reaction system can be used.
Of the organoaluminum oxy compounds described above, those obtained by reacting alkylaluminum with water are usually called aluminoxanes, particularly methylaluminoxane (including those substantially consisting of methylaluminoxane (MAO)). Is suitable as an organoaluminum oxy compound.
Of course, as the organoaluminum oxy compound, two or more of the above organoaluminum oxy compounds can be used in combination, and a solution in which the organoaluminum oxy compound is dissolved or dispersed in the above-described inert hydrocarbon solvent. You may use.

有機アルミニウムオキシ化合物においては、次の一般式で表されるものを例示することもできる。   In an organoaluminum oxy compound, what is represented by the following general formula can also be illustrated.

Figure 2015199930
Figure 2015199930

一般式(III)で表される化合物は、一種類のトリアルキルアルミニウムまたは二種類以上のトリアルキルアルミニウムと、一般式:RB(OH)で表されるアルキルボロン酸との10:1〜1:1(モル比)の反応により得ることができる。一般式中、Rは、炭素数1〜10、好ましくは炭素数1〜6の炭化水素基を示す。 The compound represented by the general formula (III) is 10: 1 of one type of trialkylaluminum or two or more types of trialkylaluminum and an alkylboronic acid represented by the general formula: R c B (OH) 2. It can be obtained by a reaction of ˜1: 1 (molar ratio). In the general formula, R c represents a hydrocarbon group having 1 to 10 carbon atoms, preferably 1 to 6 carbon atoms.

(ii)ホウ素化合物
成分(B)の一つであるホウ素化合物としてボラン化合物やボレート化合物などのホウ素化合物を挙げることができる。
ボラン化合物として具体的に例示すると、トリフェニルボラン、トリ(o−トリル)ボラン、トリ(p−トリル)ボラン、トリ(m−トリル)ボラン、トリ(o−フルオロフェニル)ボラン、トリス(p−フルオロフェニル)ボラン、トリス(m−フルオロフェニル)ボラン、トリス(2,5−ジフルオロフェニル)ボラン、トリス(3,5−ジフルオロフェニル)ボラン、トリス(4−トリフルオロメチルフェニル)ボラン、トリス(3,5−ジトリフルオロメチルフェニル)ボラン、トリス(2,6−ジトリフルオロメチルフェニル)ボラン、トリス(ペンタフルオロフェニル)ボラン、トリス(パーフルオロナフチル)ボラン、トリス(パーフルオロビフェニリル)ボラン、トリス(パーフルオロアントリル)ボラン、トリス(パーフルオロビナフチル)ボラン等が挙げられる。
これらの中でも、トリス(3,5−ジトリフルオロメチルフェニル)ボラン、トリス(2,6−ジトリフルオロメチルフェニル)ボラン、トリス(ペンタフルオロフェニル)ボラン、トリス(パーフルオロナフチル)ボラン、トリス(パーフルオロビフェニリル)ボラン、トリス(パーフルオロアントリル)ボラン、トリス(パーフルオロビナフチル)ボランがより好ましく、更に好ましくはトリス(2,6−ジトリフルオロメチルフェニル)ボラン、トリス(ペンタフルオロフェニル)ボラン、トリス(パーフルオロナフチル)ボラン、トリス(パーフルオロビフェニリル)ボランが好ましい。
(Ii) Boron compound Examples of the boron compound that is one of the components (B) include boron compounds such as borane compounds and borate compounds.
Specific examples of the borane compound include triphenylborane, tri (o-tolyl) borane, tri (p-tolyl) borane, tri (m-tolyl) borane, tri (o-fluorophenyl) borane, tris (p- Fluorophenyl) borane, tris (m-fluorophenyl) borane, tris (2,5-difluorophenyl) borane, tris (3,5-difluorophenyl) borane, tris (4-trifluoromethylphenyl) borane, tris (3 , 5-ditrifluoromethylphenyl) borane, tris (2,6-ditrifluoromethylphenyl) borane, tris (pentafluorophenyl) borane, tris (perfluoronaphthyl) borane, tris (perfluorobiphenylyl) borane, tris ( Perfluoroanthryl) borane, tris (perf) Oro binaphthyl) borane, and the like.
Among these, tris (3,5-ditrifluoromethylphenyl) borane, tris (2,6-ditrifluoromethylphenyl) borane, tris (pentafluorophenyl) borane, tris (perfluoronaphthyl) borane, tris (perfluoro) Biphenylyl) borane, tris (perfluoroanthryl) borane, tris (perfluorobinaphthyl) borane are more preferred, tris (2,6-ditrifluoromethylphenyl) borane, tris (pentafluorophenyl) borane, tris (Perfluoronaphthyl) borane and tris (perfluorobiphenylyl) borane are preferred.

また、ボレート化合物を具体的に表すと、第1の例は、次の一般式(IV)で示される化物である。
[L−H][BR (IV)
式(IV)中、Lは、中性ルイス塩基であり、Hは、水素原子であり、[L−H]は、アンモニウム、アニリニウム、ホスフォニウム等のブレンステッド酸である。アンモニウムとしては、トリメチルアンモニウム、トリエチルアンモニウム、トリプロピルアンモニウム、トリブチルアンモニウム、トリ(n−ブチル)アンモニウムなどのトリアルキル置換アンモニウム、ジ(n−プロピル)アンモニウム、ジシクロヘキシルアンモニウムなどのジアルキルアンモニウムを例示できる。
また、アニリニウムとしては、N,N−ジメチルアニリニウム、N,N−ジエチルアニリニウム、N,N−2,4,6−ペンタメチルアニリニウムなどのN,N−ジアルキルアニリニウムが例示できる。
更に、ホスフォニウムとしては、トリフェニルホスフォニウム、トリブチルホスホニウム、トリ(メチルフェニル)ホスフォニウム、トリ(ジメチルフェニル)ホスフォニウム等のトリアリールホスフォニウム、トリアルキルホスフォニウムが挙げられる。
When the borate compound is specifically represented, the first example is a compound represented by the following general formula (IV).
[L 1 -H] + [BR d R e X b X c] - (IV)
In formula (IV), L 1 is a neutral Lewis base, H is a hydrogen atom, and [L 1 -H] is a Bronsted acid such as ammonium, anilinium, phosphonium or the like. Examples of ammonium include trialkylammonium such as trimethylammonium, triethylammonium, tripropylammonium, tributylammonium, and tri (n-butyl) ammonium, and dialkylammonium such as di (n-propyl) ammonium and dicyclohexylammonium.
Examples of anilinium include N, N-dialkylanilinium such as N, N-dimethylanilinium, N, N-diethylanilinium, N, N-2,4,6-pentamethylanilinium.
Furthermore, examples of the phosphonium include triarylphosphonium such as triphenylphosphonium, tributylphosphonium, tri (methylphenyl) phosphonium, and tri (dimethylphenyl) phosphonium, and trialkylphosphonium.

また、式(IV)中、R及びRは、6〜20、好ましくは6〜16の炭素原子を含む、同じか又は異なる芳香族又は置換芳香族炭化水素基で、架橋基によって互いに連結されていてもよく、置換芳香族炭化水素基の置換基としては、メチル基、エチル基、プロピル基、イソプロピル基等に代表されるアルキル基やフッ素、塩素、臭素、ヨウ素等のハロゲンが好ましい。
更に、X及びXは、ハイドライド基、ハロゲン原子、1〜20の炭素原子を含む炭化水素基、1個以上の水素原子がハロゲン原子によって置換された1〜20の炭素原子を含む置換炭化水素基である。
In formula (IV), R d and R e are the same or different aromatic or substituted aromatic hydrocarbon groups containing 6 to 20, preferably 6 to 16 carbon atoms, and are connected to each other by a bridging group. As the substituent of the substituted aromatic hydrocarbon group, an alkyl group typified by a methyl group, an ethyl group, a propyl group, an isopropyl group or the like, or a halogen such as fluorine, chlorine, bromine or iodine is preferable.
Furthermore, Xb and Xc are a hydride group, a halogen atom, a hydrocarbon group containing 1 to 20 carbon atoms, a substituted carbon atom containing 1 to 20 carbon atoms in which one or more hydrogen atoms are substituted by halogen atoms. It is a hydrogen group.

上記一般式(IV)で表される化合物の具体例としては、トリブチルアンモニウムテトラ(ペンタフルオロフェニル)ボレート、トリブチルアンモニウムテトラ(2,6−ジトリフルオロメチルフェニル)ボレート、トリブチルアンモニウムテトラ(3,5−ジトリフルオロメチルフェニル)ボレート、トリブチルアンモニウムテトラ(2,6−ジフルオロフェニル)ボレート、トリブチルアンモニウムテトラ(パーフルオロナフチル)ボレート、ジメチルアニリニウムテトラ(ペンタフルオロフェニル)ボレート、ジメチルアニリニウムテトラ(2,6−ジトリフルオロメチルフェニル)ボレート、ジメチルアニリニウムテトラ(3,5−ジトリフルオロメチルフェニル)ボレート、ジメチルアニリニウムテトラ(2,6−ジフルオロフェニル)ボレート、ジメチルアニリニウムテトラ(パーフルオロナフチル)ボレート、トリフェニルホスホニウムテトラ(ペンタフルオロフェニル)ボレート、トリフェニルホスホニウムテトラ(2,6−ジトリフルオロメチルフェニル)ボレート、トリフェニルホスホニウムテトラ(3,5−ジトリフルオロメチルフェニル)ボレート、トリフェニルホスホニウムテトラ(2,6−ジフルオロフェニル)ボレート、トリフェニルホスホニウムテトラ(パーフルオロナフチル)ボレート、トリメチルアンモニウムテトラ(2,6−ジトリフルオロメチルフェニル)ボレート、トリエチルアンモニウムテトラ(ペンタフルオロフェニル)ボレート、トリエチルアンモニウムテトラ(2,6−ジトリフルオロメチルフェニル)ボレート、トリエチルアンモニウムテトラ(パーフルオロナフチル)ボレート、トリプロピルアンモニウムテトラ(ペンタフルオロフェニル)ボレート、トリプロピルアンモニウムテトラ(2,6−ジトリフルオロメチルフェニル)ボレート、トリプロピルアンモニウムテトラ(パーフルオロナフチル)ボレート、ジ(1−プロピル)アンモニウムテトラ(ペンタフルオロフェニル)ボレート、ジシクロヘキシルアンモニウムテトラフェニルボレートなどを例示することができる。
これらの中でも、トリブチルアンモニウムテトラ(ペンタフルオロフェニル)ボレート、トリブチルアンモニウムテトラ(2,6−ジトリフルオロメチルフェニル)ボレート、トリブチルアンモニウムテトラ(3,5−ジトリフルオロメチルフェニル)ボレート、トリブチルアンモニウムテトラ(パーフルオロナフチル)ボレート、ジメチルアニリニウムテトラ(ペンタフルオロフェニル)ボレート、ジメチルアニリニウムテトラ(2,6−ジトリフルオロメチルフェニル)ボレート、ジメチルアニリニウムテトラ(3,5−ジトリフルオロメチルフェニル)ボレート、ジメチルアニリニウムテトラ(パーフルオロナフチル)ボレートが好ましい。
これらの中でも最も好ましいのは、トリブチルアンモニウムテトラ(ペンタフルオロフェニル)ボレート、トリブチルアンモニウムテトラ(2,6−ジトリフルオロメチルフェニル)ボレート、トリブチルアンモニウムテトラ(3,5−ジトリフルオロメチルフェニル)ボレート、ジメチルアニリニウムテトラ(ペンタフルオロフェニル)ボレート、ジメチルアニリニウムテトラ(2,6−ジトリフルオロメチルフェニル)ボレート、ジメチルアニリニウムテトラ(3,5−ジトリフルオロメチルフェニル)ボレート、ジメチルアニリニウムテトラ(パーフルオロナフチル)ボレートである。
Specific examples of the compound represented by the general formula (IV) include tributylammonium tetra (pentafluorophenyl) borate, tributylammonium tetra (2,6-ditrifluoromethylphenyl) borate, tributylammonium tetra (3,5- Ditrifluoromethylphenyl) borate, tributylammonium tetra (2,6-difluorophenyl) borate, tributylammonium tetra (perfluoronaphthyl) borate, dimethylanilinium tetra (pentafluorophenyl) borate, dimethylanilinium tetra (2,6- Ditrifluoromethylphenyl) borate, dimethylanilinium tetra (3,5-ditrifluoromethylphenyl) borate, dimethylanilinium tetra (2,6-difluorophene) L) borate, dimethylanilinium tetra (perfluoronaphthyl) borate, triphenylphosphonium tetra (pentafluorophenyl) borate, triphenylphosphonium tetra (2,6-ditrifluoromethylphenyl) borate, triphenylphosphonium tetra (3,5 -Ditrifluoromethylphenyl) borate, triphenylphosphonium tetra (2,6-difluorophenyl) borate, triphenylphosphonium tetra (perfluoronaphthyl) borate, trimethylammonium tetra (2,6-ditrifluoromethylphenyl) borate, triethylammonium Tetra (pentafluorophenyl) borate, triethylammonium tetra (2,6-ditrifluoromethylphenyl) borate, triethyl Ammonium tetra (perfluoronaphthyl) borate, tripropylammonium tetra (pentafluorophenyl) borate, tripropylammonium tetra (2,6-ditrifluoromethylphenyl) borate, tripropylammonium tetra (perfluoronaphthyl) borate, di (1 -Propyl) ammonium tetra (pentafluorophenyl) borate, dicyclohexylammonium tetraphenylborate and the like.
Among these, tributylammonium tetra (pentafluorophenyl) borate, tributylammonium tetra (2,6-ditrifluoromethylphenyl) borate, tributylammonium tetra (3,5-ditrifluoromethylphenyl) borate, tributylammonium tetra (perfluoro) Naphthyl) borate, dimethylanilinium tetra (pentafluorophenyl) borate, dimethylaniliniumtetra (2,6-ditrifluoromethylphenyl) borate, dimethylaniliniumtetra (3,5-ditrifluoromethylphenyl) borate, dimethylanilinium Tetra (perfluoronaphthyl) borate is preferred.
Of these, most preferred are tributylammonium tetra (pentafluorophenyl) borate, tributylammonium tetra (2,6-ditrifluoromethylphenyl) borate, tributylammonium tetra (3,5-ditrifluoromethylphenyl) borate, dimethylaniline. Nitrotetra (pentafluorophenyl) borate, dimethylaniliniumtetra (2,6-ditrifluoromethylphenyl) borate, dimethylaniliniumtetra (3,5-ditrifluoromethylphenyl) borate, dimethylaniliniumtetra (perfluoronaphthyl) It is borate.

また、ボレート化合物の第2の例は、次の一般式(V)で表される。
[L[BR (V)
式(V)中、Lは、カルボカチオン、メチルカチオン、エチルカチオン、プロピルカチオン、イソプロピルカチオン、ブチルカチオン、イソブチルカチオン、tert−ブチルカチオン、ペンチルカチオン、トロピニウムカチオン、ベンジルカチオン、トリチルカチオン、ナトリウムカチオン、プロトン等が挙げられる。また、R、R、X及びXは、前記一般式(IV)における定義と同じである。
Moreover, the 2nd example of a borate compound is represented by the following general formula (V).
[L 2] + [BR d R e X b X c] - (V)
In the formula (V), L 2 is carbocation, methyl cation, ethyl cation, propyl cation, isopropyl cation, butyl cation, isobutyl cation, tert-butyl cation, pentyl cation, tropinium cation, benzyl cation, trityl cation, sodium. A cation, a proton, etc. are mentioned. R d , R e , X b and X c are the same as defined in the general formula (IV).

上記化合物の具体例としては、トリチルテトラフェニルボレート、トリチルテトラ(o−トリル)ボレート、トリチルテトラ(p−トリル)ボレート、トリチルテトラ(m−トリル)ボレート、トリチルテトラ(o−フルオロフェニル)ボレート、トリチルテトラ(p−フルオロフェニル)ボレート、トリチルテトラ(m−フルオロフェニル)ボレート、トリチルテトラ(3,5−ジフルオロフェニル)ボレート、トリチルテトラ(ペンタフルオロフェニル)ボレート、トリチルテトラ(2,6−ジトリフルオロメチルフェニル)ボレート、トリチルテトラ(3,5−ジトリフルオロメチルフェニル)ボレート、トリチルテトラ(パーフルオロナフチル)ボレート、トロピニウムテトラフェニルボレート、トロピニウムテトラ(o−トリル)ボレート、トロピニウムテトラ(p−トリル)ボレート、トロピニウムテトラ(m−トリル)ボレート、トロピニウムテトラ(o−フルオロフェニル)ボレート、トロピニウムテトラ(p−フルオロフェニル)ボレート、トロピニウムテトラ(m−フルオロフェニル)ボレート、トロピニウムテトラ(3,5−ジフルオロフェニル)ボレート、トロピニウムテトラ(ペンタフルオロフェニル)ボレート、トロピニウムテトラ(2,6−ジトリフルオロメチルフェニル)ボレート、トロピニウムテトラ(3,5−ジトリフルオロメチルフェニル)ボレート、トロピニウムテトラ(パーフルオロナフチル)ボレート、ソジウムテトラフェニルボレート、ソジウムテトラ(o−トリル)ボレート、ソジウムテトラ(p−トリル)ボレート、ソジウムテトラ(m−トリル)ボレート、ソジウムテトラ(o−フルオロフェニル)ボレート、ソジウムテトラ(p−フルオロフェニル)ボレート、ソジウムテトラ(m−フルオロフェニル)ボレート、ソジウムテトラ(3,5−ジフルオロフェニル)ボレート、ソジウムテトラ(ペンタフルオロフェニル)ボレート、ソジウムテトラ(2,6−ジトリフルオロメチルフェニル)ボレート、ソジウムテトラ(3,5−ジトリフルオロメチルフェニル)ボレート、ソジウムテトラ(パーフルオロナフチル)ボレート、ハイドロゲンテトラフェニルボレート・2ジエチルエーテル、ハイドロゲンテトラ(3,5−ジフルオロフェニル)ボレート・2ジエチルエーテル、ハイドロゲンテトラ(ペンタフルオロフェニル)ボレート・2ジエチルエーテル、ハイドロゲンテトラ(2,6−ジトリフルオロメチルフェニル)ボレート・2ジエチルエーテル、ハイドロゲンテトラ(3,5−ジトリフルオロメチルフェニル)ボレート・2ジエチルエーテル、ハイドロゲンテトラ(パーフルオロナフチル)ボレート・2ジエチルエーテルを例示することができる。   Specific examples of the compound include trityl tetraphenyl borate, trityl tetra (o-tolyl) borate, trityl tetra (p-tolyl) borate, trityl tetra (m-tolyl) borate, trityl tetra (o-fluorophenyl) borate, Trityltetra (p-fluorophenyl) borate, trityltetra (m-fluorophenyl) borate, trityltetra (3,5-difluorophenyl) borate, trityltetra (pentafluorophenyl) borate, trityltetra (2,6-ditrifluoro) Methylphenyl) borate, trityltetra (3,5-ditrifluoromethylphenyl) borate, trityltetra (perfluoronaphthyl) borate, tropiniumtetraphenylborate, tropiniumtetra (o-tolyl) Rate, tropinium tetra (p-tolyl) borate, tropinium tetra (m-tolyl) borate, tropinium tetra (o-fluorophenyl) borate, tropinium tetra (p-fluorophenyl) borate, tropinium tetra (m- Fluorophenyl) borate, tropinium tetra (3,5-difluorophenyl) borate, tropinium tetra (pentafluorophenyl) borate, tropinium tetra (2,6-ditrifluoromethylphenyl) borate, tropinium tetra (3,5 -Ditrifluoromethylphenyl) borate, tropinium tetra (perfluoronaphthyl) borate, sodium tetraphenyl borate, sodium tetra (o-tolyl) borate, sodium tetra (p-tolyl) borate, sodium Tora (m-tolyl) borate, sodium tetra (o-fluorophenyl) borate, sodium tetra (p-fluorophenyl) borate, sodium tetra (m-fluorophenyl) borate, sodium tetra (3,5-difluorophenyl) borate, sodium tetra (pentafluoro) Phenyl) borate, sodium tetra (2,6-ditrifluoromethylphenyl) borate, sodiumtetra (3,5-ditrifluoromethylphenyl) borate, sodiumtetra (perfluoronaphthyl) borate, hydrogentetraphenylborate-2diethylether, hydrogentetra ( 3,5-difluorophenyl) borate-2 diethyl ether, hydrogen tetra (pentafluorophenyl) borate-2 diethyl ether, hydride Examples include logentetra (2,6-ditrifluoromethylphenyl) borate · 2 diethyl ether, hydrogentetra (3,5-ditrifluoromethylphenyl) borate · 2 diethyl ether, hydrogentetra (perfluoronaphthyl) borate · 2 diethyl ether be able to.

これらの中でも、トリチルテトラ(ペンタフルオロフェニル)ボレート、トリチルテトラ(2,6−ジトリフルオロメチルフェニル)ボレート、トリチルテトラ(3,5−ジトリフルオロメチルフェニル)ボレート、トリチルテトラ(パーフルオロナフチル)ボレート、トロピニウムテトラ(ペンタフルオロフェニル)ボレート、トロピニウムテトラ(2,6−ジトリフルオロメチルフェニル)ボレート、トロピニウムテトラ(3,5−ジトリフルオロメチルフェニル)ボレート、トロピニウムテトラ(パーフルオロナフチル)ボレート、ソジウムテトラ(ペンタフルオロフェニル)ボレート、ソジウムテトラ(2,6−ジトリフルオロメチルフェニル)ボレート、ソジウムテトラ(3,5−ジトリフルオロメチルフェニル)ボレート、ソジウムテトラ(パーフルオロナフチル)ボレート、ハイドロゲンテトラ(ペンタフルオロフェニル)ボレート・2ジエチルエーテル、ハイドロゲンテトラ(2,6−ジトリフルオロメチルフェニル)ボレート・2ジエチルエーテル、ハイドロゲンテトラ(3,5−ジトリフルオロメチルフェニル)ボレート・2ジエチルエーテル、ハイドロゲンテトラ(パーフルオロナフチル)ボレート・2ジエチルエーテルが好ましい。
更に好ましくは、これらの中でもトリチルテトラ(ペンタフルオロフェニル)ボレート、トリチルテトラ(2,6−ジトリフルオロメチルフェニル)ボレート、トロピニウムテトラ(ペンタフルオロフェニル)ボレート、トロピニウムテトラ(2,6−ジトリフルオロメチルフェニル)ボレート、ソジウムテトラ(ペンタフルオロフェニル)ボレート、ソジウムテトラ(2,6−ジトリフルオロメチルフェニル)ボレート、ハイドロゲンテトラ(ペンタフルオロフェニル)ボレート・2ジエチルエーテル、ハイドロゲンテトラ(2,6−ジトリフルオロメチルフェニル)ボレート・2ジエチルエーテル、ハイドロゲンテトラ(3,5−ジトリフルオロメチルフェニル)ボレート・2ジエチルエーテル、が挙げられる。
Among these, trityltetra (pentafluorophenyl) borate, trityltetra (2,6-ditrifluoromethylphenyl) borate, trityltetra (3,5-ditrifluoromethylphenyl) borate, trityltetra (perfluoronaphthyl) borate, Tropinium tetra (pentafluorophenyl) borate, tropinium tetra (2,6-ditrifluoromethylphenyl) borate, tropinium tetra (3,5-ditrifluoromethylphenyl) borate, tropinium tetra (perfluoronaphthyl) borate, Sodium tetra (pentafluorophenyl) borate, sodium tetra (2,6-ditrifluoromethylphenyl) borate, sodium tetra (3,5-ditrifluoromethylphenyl) borate, soji Mutetra (perfluoronaphthyl) borate, hydrogentetra (pentafluorophenyl) borate-2 diethyl ether, hydrogentetra (2,6-ditrifluoromethylphenyl) borate-2 diethylether, hydrogentetra (3,5-ditrifluoromethylphenyl) ) Borate · 2 diethyl ether and hydrogen tetra (perfluoronaphthyl) borate · 2 diethyl ether are preferred.
More preferably, among these, trityltetra (pentafluorophenyl) borate, trityltetra (2,6-ditrifluoromethylphenyl) borate, tropiniumtetra (pentafluorophenyl) borate, tropiniumtetra (2,6-ditrifluoro) Methylphenyl) borate, sodium tetra (pentafluorophenyl) borate, sodiumtetra (2,6-ditrifluoromethylphenyl) borate, hydrogentetra (pentafluorophenyl) borate-2diethyl ether, hydrogentetra (2,6-ditrifluoromethylphenyl) ) Borate-2 diethyl ether and hydrogen tetra (3,5-ditrifluoromethylphenyl) borate-2 diethyl ether.

また、成分(B)として、前記の有機アルミニウムオキシ化合物と、上記ボラン化合物やボレート化合物との混合物を用いることもできる。さらに、上記ボラン化合物やボレート化合物は、2種以上混合して使用することもできる。   As the component (B), a mixture of the organoaluminum oxy compound and the borane compound or borate compound can also be used. Further, two or more of the above borane compounds and borate compounds can be used in combination.

(iii)イオン交換性層状珪酸塩
成分(B)であるイオン交換性層状珪酸塩(以下、単に「珪酸塩」と略記する場合がある。)は、イオン結合などによって構成される面が互いに結合力で平行に積み重なった結晶構造を有し、且つ、含有されるイオンが交換可能である珪酸塩化合物をいう。珪酸塩は、各種公知のものが知られており、具体的には、白水春雄著「粘土鉱物学」朝倉書店(1995年)に記載されている。
本発明において、成分(B)として好ましく用いられるものは、スメクタイト族に属するもので、具体的にはモンモリロナイト、ザウコナイト、バイデライト、ノントロナイト、サポナイト、ヘクトライト、スチーブンサイトなどを挙げることができる。中でも、ゴム成分の活性、分子量の点でモンモリロナイトが好ましい。
大部分の珪酸塩は、天然には主に粘土鉱物の主成分として産出されるため、イオン交換性層状珪酸塩以外の夾雑物(石英やクリストバライトなど)が含まれることが多く、本発明で用いられるスメクタイト族の珪酸塩に交雑物が含まれていてもよい。
(Iii) Ion-exchange layered silicate The ion-exchange layered silicate component (B) (hereinafter sometimes simply referred to as “silicate”) is bonded to each other by surfaces formed by ionic bonds or the like. It refers to a silicate compound that has a crystal structure that is stacked in parallel by force and that can contain exchangeable ions. Various known silicates are known, and are specifically described in Shiramizu Haruo "Clay Mineralogy" Asakura Shoten (1995).
In the present invention, those preferably used as the component (B) belong to the smectite group, and specific examples include montmorillonite, sauconite, beidellite, nontronite, saponite, hectorite, and stevensite. Among these, montmorillonite is preferable in terms of the activity and molecular weight of the rubber component.
Since most silicates are naturally produced mainly as the main component of clay minerals, they often contain impurities (such as quartz and cristobalite) other than ion-exchanged layered silicates. Hybrids may be contained in the smectite silicate.

イオン交換性層状珪酸塩の造粒:
珪酸塩は、乾燥状態で用いてもよく、液体にスラリー化した状態で用いてもよい。また、イオン交換性層状珪酸塩の形状については、特に制限はなく、天然に産出する形状、人工的に合成した時点の形状でもよいし、また、粉砕、造粒、分級などの操作によって形状を加工したイオン交換性層状珪酸塩を用いてもよい。このうち造粒された珪酸塩を用いると、良好なポリマー粒子性状を与えるため、特に好ましい。
造粒、粉砕、分級などのイオン交換性層状珪酸塩の形状加工は、酸処理の前に行ってもよいし、酸処理を行った後に形状を加工してもよい。
Granulation of ion-exchange layered silicate:
Silicates may be used in a dry state or in a slurry state in a liquid. In addition, the shape of the ion-exchange layered silicate is not particularly limited, and may be a naturally produced shape, a shape when artificially synthesized, or a shape by operations such as pulverization, granulation, and classification. You may use the processed ion exchange layered silicate. Of these, the use of granulated silicate is particularly preferred because it gives good polymer particle properties.
The shape processing of the ion-exchange layered silicate such as granulation, pulverization, and classification may be performed before the acid treatment, or the shape may be processed after the acid treatment.

酸処理:
本発明で用いられる珪酸塩は、酸処理をして用いるが、その他の化学処理を組み合わせて、処理を行っても良い。その他の化学処理としては、アルカリ処理、塩類処理、有機物処理などが挙げられる。
珪酸塩の酸処理により、固体の酸強度を変えることができる。また、酸処理は、イオン交換や表面の不純物を取り除く効果の他、結晶構造のAl、Fe、Mg、Liなどの陽イオンの一部を溶出させる効果もある。
酸処理で用いられる酸としては、塩酸、硝酸、硫酸、リン酸、酢酸、シュウ酸、安息香酸、ステアリン酸、プロピオン酸、アクリル酸、マレイン酸、フマル酸、フタル酸などが挙げられる。これらは、2種以上を同時に使用してもよい。中でも無機酸が好ましく、硫酸、塩酸、硝酸が好ましく、さらに好ましくは硫酸である。
また、酸処理と塩類処理を組み合わせる方法が特に好ましく、塩類処理を行った後に酸処理を行う方法、酸処理を行った後に塩類処理を行う方法、塩類処理と酸処理を同時に行う方法、塩類処理を行った後に塩類処理と酸処理を同時に行う方法などがある。
Acid treatment:
The silicate used in the present invention is used after being subjected to an acid treatment, but may be treated by combining other chemical treatments. Other chemical treatments include alkali treatment, salt treatment, organic matter treatment, and the like.
The acid treatment of the silicate can change the acid strength of the solid. In addition to the effect of ion exchange and removal of surface impurities, the acid treatment also has an effect of eluting part of cations such as Al, Fe, Mg, Li having a crystal structure.
Examples of the acid used in the acid treatment include hydrochloric acid, nitric acid, sulfuric acid, phosphoric acid, acetic acid, oxalic acid, benzoic acid, stearic acid, propionic acid, acrylic acid, maleic acid, fumaric acid, and phthalic acid. Two or more of these may be used simultaneously. Of these, inorganic acids are preferable, sulfuric acid, hydrochloric acid and nitric acid are preferable, and sulfuric acid is more preferable.
In addition, a method in which acid treatment and salt treatment are combined is particularly preferable, a method in which acid treatment is performed after salt treatment, a method in which salt treatment is performed after acid treatment, a method in which salt treatment and acid treatment are performed simultaneously, salt treatment There is a method of performing salt treatment and acid treatment at the same time after the treatment.

珪酸塩の酸処理後の組成:
本発明に係る成分(B)である酸処理された珪酸塩は、Al/Siの原子比として、0.01〜0.29のものであり、好ましくは0.03〜0.25、さらに好ましくは0.05〜0.23の範囲のものが、重合触媒の活性、オレフィン重合体の分子量の点で好ましい。
Al/Si原子比は、粘土部分の酸処理強度の指標となり、Al/Si原子比を制御する方法としては、酸処理を行う酸種、酸濃度、酸処理時間、温度を調整することにより制御することができる。
珪酸塩中のアルミニウム及びケイ素は、JIS法による化学分析による方法で検量線を作成し、蛍光X線で定量するという方法で測定される。
Composition of silicate after acid treatment:
The acid-treated silicate which is the component (B) according to the present invention has an Al / Si atomic ratio of 0.01 to 0.29, preferably 0.03 to 0.25, and more preferably. Is preferably in the range of 0.05 to 0.23 in view of the activity of the polymerization catalyst and the molecular weight of the olefin polymer.
The Al / Si atomic ratio is an index of the acid treatment strength of the clay portion, and the method for controlling the Al / Si atomic ratio is controlled by adjusting the acid species for acid treatment, the acid concentration, the acid treatment time, and the temperature. can do.
Aluminum and silicon in the silicate are measured by a method in which a calibration curve is prepared by a chemical analysis method by JIS method and quantified by fluorescent X-rays.

(3)成分(C)
成分(C)は、有機アルミニウム化合物である。
有機アルミニウム化合物の一例は、次の一般式(VI)で表される。
AlR3−a (VI)
一般式中、Rは、炭素数1〜20の炭化水素基、Xは、水素原子、ハロゲン、アルコキシ基又はシロキシ基を示し、aは0より大きく3以下の数を示す。
一般式で表される有機アルミニウム化合物の具体例としては、トリメチルアルミニウム、トリエチルアルミニウム、トリプロピルアルミニウム、トリイソブチルアルミニウム、トリヘキシルアルミニウム、トリオクチルアルミニウムなどのトリアルキルアルミニウム、ジエチルアルミニウムモノクロライド、ジエチルアルミニウムモノメトキシドなどのハロゲン又はアルコキシ含有アルキルアルミニウムが挙げられる。これらの中では、トリアルキルアルミニウムが好ましいく、最も好ましいのはトリヘキシルアルミニウムまたはトリオクチルアルミニウムである。また、上記の有機アルミニウム化合物を2種以上併用してもよい。
(3) Component (C)
Component (C) is an organoaluminum compound.
An example of the organoaluminum compound is represented by the following general formula (VI).
AlR a X 3-a (VI)
In the general formula, R represents a hydrocarbon group having 1 to 20 carbon atoms, X represents a hydrogen atom, a halogen, an alkoxy group, or a siloxy group, and a represents a number greater than 0 and 3 or less.
Specific examples of the organoaluminum compound represented by the general formula include trialkylaluminum such as trimethylaluminum, triethylaluminum, tripropylaluminum, triisobutylaluminum, trihexylaluminum, and trioctylaluminum, diethylaluminum monochloride, diethylaluminum mono Mention may be made of halogens such as methoxide or alkoxy-containing alkylaluminums. Of these, trialkylaluminum is preferred, and most preferred is trihexylaluminum or trioctylaluminum. Two or more of the above organoaluminum compounds may be used in combination.

(4)触媒の調製法
本発明に係るオレフィン重合用触媒の調製法においては、成分(A)、成分(B)および成分(C)の接触方法は、特に限定されず、従来公知の方法を用いることができる。
(4) Catalyst Preparation Method In the preparation method of the catalyst for olefin polymerization according to the present invention, the contact method of component (A), component (B) and component (C) is not particularly limited, and a conventionally known method is used. Can be used.

成分(B)が有機アルミニウムオキシ化合物の場合、成分(A)と成分(B)のモル比は1:0.1〜1:100,000であることが好ましい。
また、成分(B)がホウ素化合物である場合、成分(A)と成分(B)とのモル比は好ましくは1:0.1〜1:100の範囲で用いられる。
成分(C)を用いる場合、成分(A)と成分(C)のモル比は好ましくは1:0.1〜1:10,000の範囲である。
When component (B) is an organoaluminum oxy compound, the molar ratio of component (A) to component (B) is preferably 1: 0.1 to 1: 100,000.
When component (B) is a boron compound, the molar ratio of component (A) to component (B) is preferably in the range of 1: 0.1 to 1: 100.
When component (C) is used, the molar ratio of component (A) to component (C) is preferably in the range of 1: 0.1 to 1: 10,000.

成分(B)が珪酸塩の場合、好ましい成分(A)及び成分(B)の使用量は、成分(B)1gに対し、成分(A)のメタロセン化合物0.001〜10mmol、さらに好ましくは0.001〜1mmolの範囲である。成分(C)の使用量としては、Al/メタロセン化合物のモル比が0.1以上100,000以下であり、好ましくは1以上10,000以下である。これらの使用比率は、通常の割合例を示すものであって、触媒が本発明の目的に沿うものとなっておれば、上に述べた使用比率の範囲によって、本発明が限定されることにはならない。   When the component (B) is a silicate, the amount of the component (A) and the component (B) used is preferably 0.001 to 10 mmol of the metallocene compound of the component (A) with respect to 1 g of the component (B), more preferably 0. The range is 0.001 to 1 mmol. The amount of the component (C) used is such that the molar ratio of Al / metallocene compound is 0.1 or more and 100,000 or less, preferably 1 or more and 10,000 or less. These use ratios show examples of normal ratios, and the present invention is limited by the range of use ratios described above as long as the catalyst meets the purpose of the present invention. Must not.

2.エチレン・α−オレフィン共重合体の重合条件
本発明は、上記のオレフィン重合用触媒を使用して下記(a1)、好ましくは(a1’)の重合条件下、共重合を行うことにより、太陽電池封止材用の樹脂材料として適したエチレン・α−オレフィン共重合体を製造する。
(a1)反応系中のプロピレン濃度が10〜49モル%である。
(a1’)反応系中のプロピレン濃度が20〜49モル%である。
以下、各重合条件について説明する。
(1)モノマー構成
本発明におけるエチレン・α−オレフィン共重合体は、エチレンから誘導される構成単位を主成分としたエチレンとα−オレフィンのランダム共重合体である。
コモノマーは、2種類以上のα−オレフィンを用いることも可能であり、コモノマーとして、少なくともプロピレンを含む。
コモノマーとして用いられるプロピレン以外のα−オレフィンとしては、炭素数4〜20、好ましくは4〜12のα−オレフィンである。具体的には、1−ブテン、1−ペンテン、1−ヘキセン、1−オクテン、1−ヘプテン、4−メチル−1−ペンテン、4−メチル−1−ヘキセン、4,4−ジメチル−1−ペンテン等を挙げることができる。
かかるエチレン・α−オレフィン共重合体の具体例としては、エチレン・プロピレン共重合体、エチレン・プロピレン・1−ブテン三元共重合体、エチレン・プロピレン・1−ヘキセン三元共重合体、エチレン・プロピレン・1−オクテン三元共重合体等が挙げられる。
2. Polymerization Conditions for Ethylene / α-Olefin Copolymer The present invention provides a solar cell by carrying out copolymerization under the following polymerization conditions (a1), preferably (a1 ′), using the above olefin polymerization catalyst. An ethylene / α-olefin copolymer suitable as a resin material for a sealing material is produced.
(A1) The propylene concentration in the reaction system is 10 to 49 mol%.
(A1 ′) The propylene concentration in the reaction system is 20 to 49 mol%.
Hereinafter, each polymerization condition will be described.
(1) Monomer Configuration The ethylene / α-olefin copolymer in the present invention is a random copolymer of ethylene and an α-olefin mainly composed of a structural unit derived from ethylene.
Two or more types of α-olefin can be used as the comonomer, and at least propylene is contained as a comonomer.
The α-olefin other than propylene used as a comonomer is an α-olefin having 4 to 20 carbon atoms, preferably 4 to 12 carbon atoms. Specifically, 1-butene, 1-pentene, 1-hexene, 1-octene, 1-heptene, 4-methyl-1-pentene, 4-methyl-1-hexene, 4,4-dimethyl-1-pentene Etc.
Specific examples of such ethylene / α-olefin copolymers include ethylene / propylene copolymers, ethylene / propylene / 1-butene terpolymers, ethylene / propylene / 1-hexene terpolymers, ethylene / propylene copolymers, Examples include propylene / 1-octene terpolymers.

また、プロピレン以外のコモノマーとして、1,5−ヘキサジエン、1,6−ヘプタジエン、1,7−オクタジエン、1,8−ノナジエン、1,9−デカジエン、5−ビニル−2−ノルボルネン、及び5−エチリデン−2−ノルボルネンのようなジエンを少量使用することもできる。   Further, as comonomer other than propylene, 1,5-hexadiene, 1,6-heptadiene, 1,7-octadiene, 1,8-nonadiene, 1,9-decadiene, 5-vinyl-2-norbornene, and 5-ethylidene A small amount of a diene such as 2-norbornene can also be used.

(2)プロピレン濃度
反応系中のプロピレン濃度は、10〜49モル%であり、好ましくは20〜49モル%、さらに好ましくは25〜40モル%である。
プロピレン濃度が10モル%未満である時、生成ポリマー中のビニル、ビニリデンの量が少なく架橋特性が不十分となる。また49モル%を超えると生成ポリマー中のプロピレン−プロピレン連鎖が増え、分子切断が起こりやすくなり耐久性が要求される太陽電池封止材用途として不適となる。
本発明は、反応系中のプロピレン濃度を上記範囲とすることにより、特異的にビニル、ビニリデンの合計数が多いエチレン・α−オレフィン共重合体を得ることができる。プロピレン以外の1−ヘキセン、1−オクテンといったα−オレフィンをコモノマー主成分として重合した場合、この効果は得られない。
(2) Propylene concentration The propylene concentration in the reaction system is 10 to 49 mol%, preferably 20 to 49 mol%, more preferably 25 to 40 mol%.
When the propylene concentration is less than 10 mol%, the amount of vinyl and vinylidene in the produced polymer is small and the crosslinking properties are insufficient. On the other hand, if it exceeds 49 mol%, the propylene-propylene chain in the produced polymer increases, and molecular breakage is likely to occur, making it unsuitable for use as a solar cell encapsulant that requires durability.
In the present invention, by setting the propylene concentration in the reaction system within the above range, an ethylene / α-olefin copolymer having a large total number of vinyl and vinylidene can be obtained. This effect cannot be obtained when an α-olefin such as 1-hexene or 1-octene other than propylene is polymerized as a comonomer main component.

コモノマーとしてプロピレンを、上記範囲で用いた場合、エチレン・α−オレフィン共重合中のビニル、ビニリデンの合計数が多くなる詳細な原因はわからないが、以下、重合中のポリマー鎖にプロピレンが挿入した結果、ビニリデンが多くなる原因について考えられるメカニズムを下記図を用いて説明する。   When propylene is used as a comonomer within the above range, the detailed cause of the increase in the total number of vinyl and vinylidene during ethylene / α-olefin copolymerization is not known, but the results of insertion of propylene into the polymer chain during polymerization are as follows. The possible mechanism for the increase in vinylidene will be described with reference to the following figure.

Figure 2015199930
Figure 2015199930

上記図の上側では、重合反応中のポリマー鎖(P)に、1−ヘキセン、1−オクテンといったα−オレフィンが挿入し、引き続き錯体金属(M)のβ位の水素を引抜くことで中間体1が生じることを示している。この中間体1においては、(a)又は(b)の水素からの脱離反応が考えられるが、立体的、電子的要因により(a)の水素が優先的に脱離して、中間体2が生じる。さらに中間体2から次のモノマーの挿入位置によって、3置換オレフィン又はビニリデンが生じるが、ビニリデンが生じるルートは立体的に錯体金属(M)と2級炭素との間に次のモノマーが挿入するのが困難である。従って、中間体2からは錯体金属(M)と1級炭素との挿入を経た3置換オレフィン体が優先的に生成する。
一方、上記図の下側では、重合反応中のポリマー鎖(P)に、プロピレンが挿入し、引き続き錯体金属(M)のβ位の水素を引抜かれると中間体3が生じることを示している。この中間体31においても、(a)又は(b)の水素からの脱離反応が考えられるが、立体的、電子的要因に理由により(b)の水素が優先的に脱離して、中間体4が生じる。さらに中間体4から次のモノマーがいずれに挿入してもビニリデンが生じる。
In the upper side of the above figure, an intermediate is obtained by inserting an α-olefin such as 1-hexene or 1-octene into the polymer chain (P) in the polymerization reaction, and subsequently extracting the hydrogen at the β-position of the complex metal (M). 1 is generated. In this intermediate 1, the elimination reaction of (a) or (b) from hydrogen can be considered. However, due to steric and electronic factors, the hydrogen of (a) is preferentially eliminated and intermediate 2 becomes Arise. Further, a trisubstituted olefin or vinylidene is generated from the intermediate 2 depending on the insertion position of the next monomer, but the route in which the vinylidene is generated is sterically inserted between the complex metal (M) and the secondary carbon. Is difficult. Therefore, the intermediate 2 preferentially produces a trisubstituted olefin body through insertion of the complex metal (M) and primary carbon.
On the other hand, the lower side of the above figure shows that intermediate 3 is formed when propylene is inserted into the polymer chain (P) during the polymerization reaction and subsequently hydrogen at the β-position of the complex metal (M) is withdrawn. . In this intermediate 31 as well, the elimination reaction of (a) or (b) from hydrogen is conceivable. However, due to steric and electronic factors, hydrogen of (b) is preferentially eliminated and 4 is produced. Furthermore, vinylidene is generated regardless of which of the following monomers is inserted into intermediate 4.

上記図に示されるように、プロピレン挿入後は、1−ヘキセン、1−オクテンといったα−オレフィン挿入後と対比して、優先的にビニリデンが生じると考えられる。なお、本発明において、ビニリデン等の二重結合の発生のメカニズムは、上記メカニズムに限定されるものではない。   As shown in the above figure, after insertion of propylene, vinylidene is preferentially produced as compared with after insertion of α-olefin such as 1-hexene and 1-octene. In the present invention, the mechanism of occurrence of double bonds such as vinylidene is not limited to the above mechanism.

(3)重合方法
本発明において、重合方法は、前記一般式(I)で示されるメタロセン化合物を含む重合用触媒とモノマーが効率よく接触し、オレフィンの重合または共重合を行うことができるならば、特に限定されず、高圧イオン重合法、気相法、溶液法、スラリー法等を用いることができる。
(3) Polymerization method In the present invention, the polymerization method can be carried out if the polymerization catalyst containing the metallocene compound represented by the general formula (I) and the monomer can efficiently come into contact with each other to polymerize or copolymerize the olefin. Although not particularly limited, a high pressure ion polymerization method, a gas phase method, a solution method, a slurry method, or the like can be used.

本発明において、重合温度は一般的に40〜300℃が利用される。
気相重合法、スラリー重合法においては、好ましい重合温度は40〜120℃、より好ましくは50〜110℃であり、好ましい重合圧力は0.1MPa〜10MPa、好ましくは1〜5MPaである。
溶液重合において好ましい重合温度は好ましくは50〜170℃、より好ましくは120〜170℃であり、好ましい重合圧力は0.1〜10MPa、好ましくは1〜5MPaである。
In the present invention, the polymerization temperature is generally 40 to 300 ° C.
In the gas phase polymerization method and the slurry polymerization method, a preferable polymerization temperature is 40 to 120 ° C., more preferably 50 to 110 ° C., and a preferable polymerization pressure is 0.1 MPa to 10 MPa, preferably 1 to 5 MPa.
The preferable polymerization temperature in the solution polymerization is preferably 50 to 170 ° C, more preferably 120 to 170 ° C, and the preferable polymerization pressure is 0.1 to 10 MPa, preferably 1 to 5 MPa.

高圧イオン重合において好ましい重合温度は125〜300℃であり、より好ましくは160〜280℃、さらに好ましくは、180〜280℃であり、好ましい重合圧力は40〜150MPaであり、より好ましくは50〜125MPaである。
これらの中でも、本発明に係る二重結合を調整したエチレン・オレフィン共重合体を得るためには高温で重合を行うことが望ましいため、高圧イオン重合法を利用するのが好ましい(「ポリエチレン技術読本」第4章、松浦一雄・三上尚孝 編著、2001年)。
In the high-pressure ion polymerization, a preferable polymerization temperature is 125 to 300 ° C, more preferably 160 to 280 ° C, still more preferably 180 to 280 ° C, and a preferable polymerization pressure is 40 to 150 MPa, more preferably 50 to 125 MPa. It is.
Among these, in order to obtain an ethylene / olefin copolymer with adjusted double bonds according to the present invention, it is desirable to perform polymerization at a high temperature. "Chapter 4, edited by Kazuo Matsuura and Naotaka Mikami, 2001).

(4)その他の条件
また、重合系中に、水分除去を目的とした成分、いわゆるスカベンジャーを加えても、何ら支障なく実施することができる。
なお、かかるスカベンジャーとしては、トリメチルアルミニウム、トリエチルアルミニウム、トリイソブチルアルミニウム、トリヘキシルアルミニウム、トリオクチルアルミニウムなどの有機アルミニウム化合物、前記有機アルミニウムオキシ化合物、前記有機アルミニウム化合物をアルコール類またはフェノール類で変性した変性有機アルミニウム化合物、ジエチル亜鉛、ジブチル亜鉛などの有機亜鉛化合物、ジエチルマグネシウム、ジブチルマグネシウム、エチルブチルマグネシウムなどの有機マグネシウム化合物、エチルマグネシウムクロリド、ブチルマグネシウムクロリドなどのグリニャール化合物などが使用される。これらのなかでは、トリエチルアルミニウム、トリイソブチルアルミニウム、トリヘキシルアルミニウム、トリオクチルアルミニウムが好ましく、トリイソブチルアルミニウム、トリヘキシルアルミニウム、トリオクチルアルミニウムが特に好ましい。
(4) Other conditions Moreover, even if a component for removing water, a so-called scavenger, is added to the polymerization system, it can be carried out without any trouble.
Such scavengers include organoaluminum compounds such as trimethylaluminum, triethylaluminum, triisobutylaluminum, trihexylaluminum, and trioctylaluminum, the organoaluminum oxy compound, and modified by modifying the organoaluminum compound with alcohols or phenols. Organic aluminum compounds, organic zinc compounds such as diethyl zinc and dibutyl zinc, organic magnesium compounds such as diethyl magnesium, dibutyl magnesium and ethyl butyl magnesium, and Grignard compounds such as ethyl magnesium chloride and butyl magnesium chloride are used. Among these, triethylaluminum, triisobutylaluminum, trihexylaluminum, and trioctylaluminum are preferable, and triisobutylaluminum, trihexylaluminum, and trioctylaluminum are particularly preferable.

生成重合体の分子量は、重合温度、オレフィンモノマーの濃度、触媒のモル比等の重合条件を変えることにより調節可能である。また、重合反応系に水素や上記スカベンジャー類などを連鎖移動剤として添加することでも効果的に分子量調節を行うことができる。   The molecular weight of the produced polymer can be adjusted by changing the polymerization conditions such as the polymerization temperature, the concentration of the olefin monomer, and the molar ratio of the catalyst. Further, the molecular weight can be adjusted effectively by adding hydrogen, the above-mentioned scavengers or the like as a chain transfer agent to the polymerization reaction system.

水素濃度、モノマー量、重合圧力、重合温度等の重合条件が互いに異なる2段階以上の多段階重合方式にも、支障なく適用することができる。   The present invention can also be applied to a multistage polymerization system having two or more stages having different polymerization conditions such as hydrogen concentration, monomer amount, polymerization pressure, and polymerization temperature without any trouble.

重合方式は、連続重合、回分式重合、または予備重合を行う方法も適用される。また、重合形式の組み合わせは、特に制限はなく、溶液重合2段、バルク重合2段、バルク重合後気相重合、気相重合2段といった様式も可能であり、さらには、それ以上の重合段数で製造することも可能である。   As the polymerization method, a method of performing continuous polymerization, batch polymerization, or prepolymerization is also applied. The combination of the polymerization formats is not particularly limited, and a solution polymerization two-stage, bulk polymerization two-stage, gas phase polymerization after bulk polymerization, and two-stage gas phase polymerization are possible. It is also possible to manufacture with.

3.エチレン・α−オレフィン共重合体の特性
本発明におけるエチレン・α−オレフィン共重合体は、下記(b1)の特性を満たすことが好ましい。
(b1)エチレン・α−オレフィン共重合体中のビニル、ビニリデンの二重結合の合計数が0.50(個/主鎖1000C)以上である(ただし、ビニル、ビニリデンの個数は、NMRで測定した数である)
3. Characteristics of ethylene / α-olefin copolymer The ethylene / α-olefin copolymer in the invention preferably satisfies the following characteristics (b1).
(B1) The total number of vinyl and vinylidene double bonds in the ethylene / α-olefin copolymer is 0.50 (pieces / 1000 C main chain) or more (however, the number of vinyl and vinylidene is measured by NMR) Is the number of

(1)各特性
(i)ビニル、ビニリデンの合計数
本発明におけるエチレン・α−オレフィン共重合体は、NMRで測定した主鎖1000個の炭素数当たりのビニル、ビニリデンの二重結合の合計数が0.50(個/主鎖1000C)以上であり、好ましくは0.50〜5.0(個/主鎖1000C)であり、より好ましくは0.60〜4.5(個/主鎖1000C)であり、さらに好ましくは0.70〜4.0(個/主鎖1000C)であり、最も好ましくは、0.80〜4.0(個/主鎖1000C)である。
ビニル、ビニリデンの合計数が上記範囲であると、架橋速度に優れた封止材となり、0.50個未満であると、架橋速度が十分なものとならない。ビニル、ビニリデンの合計数は、適当なメタロセン触媒の選択、重合温度、コモノマーの種類を適宜調節することにより、上記範囲に制御することができる。
なお、これら二重結合の数は、主鎖1000個の炭素数あたりの数であり、H−NMRスペクトル及び13C−NMRスペクトルの特性ピークの積分強度を用いて算出した。
(1) Each characteristic (i) Total number of vinyl and vinylidene The ethylene / α-olefin copolymer in the present invention is the total number of vinyl and vinylidene double bonds per 1000 carbon atoms measured by NMR. Is 0.50 (pieces / main chain 1000C) or more, preferably 0.50 to 5.0 (pieces / main chain 1000C), more preferably 0.60 to 4.5 (pieces / main chain 1000C). More preferably 0.70 to 4.0 (pieces / main chain 1000C), and most preferably 0.80 to 4.0 (pieces / main chain 1000C).
When the total number of vinyl and vinylidene is in the above range, a sealing material having an excellent crosslinking rate is obtained, and when it is less than 0.50, the crosslinking rate is not sufficient. The total number of vinyl and vinylidene can be controlled within the above range by appropriately selecting the appropriate metallocene catalyst, the polymerization temperature, and the type of comonomer.
In addition, the number of these double bonds is the number per 1000 carbon atoms of the main chain, and was calculated using the integrated intensity of the characteristic peaks of the 1 H-NMR spectrum and 13 C-NMR spectrum.

(ii)MFR
本発明におけるエチレン・α−オレフィン共重合体は、MFRが好ましくは0.1〜100g/10分であり、より好ましくは1〜50g/10分、さらに好ましくは2〜40g/10分である。エチレン・α−オレフィン共重合体のMFRが0.1g/10分未満では、分子量が高すぎて混練時に押出しが困難になり、MFRが100g/10分を超えると溶融粘度が低くなりすぎて、取り扱い性に欠けるものとなる。
ポリマーのMFRを調節するには、例えば、重合温度、触媒量、分子量調節剤としての水素の供給量などを適宜調整する方法がとられる。エチレン・α−オレフィン共重合体のMFRは、JIS−K6922−2:1997附属書(190℃、21.18N荷重)に準拠して測定する。
(Ii) MFR
The MFR of the ethylene / α-olefin copolymer in the present invention is preferably 0.1 to 100 g / 10 minutes, more preferably 1 to 50 g / 10 minutes, and further preferably 2 to 40 g / 10 minutes. When the MFR of the ethylene / α-olefin copolymer is less than 0.1 g / 10 min, the molecular weight is too high and extrusion becomes difficult during kneading, and when the MFR exceeds 100 g / 10 min, the melt viscosity becomes too low, It becomes lacking in handleability.
In order to adjust the MFR of the polymer, for example, a method of appropriately adjusting the polymerization temperature, the catalyst amount, the supply amount of hydrogen as a molecular weight regulator, and the like is employed. The MFR of the ethylene / α-olefin copolymer is measured according to JIS-K6922-2: 1997 appendix (190 ° C., 21.18 N load).

(iii)密度
本発明におけるエチレン・α−オレフィン共重合体は、密度が好ましくは0.860〜0.920g/cmであり、より好ましくは0.865〜0.910g/cm、さらに好ましくは0.870〜0.900g/cmである。エチレン・α−オレフィン共重合体の密度が0.860g/cm未満では、加工後のシートがブロッキングしてしまい、密度が0.920g/cmを超えると加工後のシートの透明性が悪化し好ましくない。
ポリマーの密度を調節するには、コモノマーであるα−オレフィンの含有量、重合温度、触媒量など適宜調節する方法がとられる。なお、エチレン・α−オレフィン共重合体の密度は、JIS−K6922−2:1997附属書(低密度ポリエチレンの場合)に準拠して測定する(23℃)。
(Iii) Density The ethylene / α-olefin copolymer in the present invention preferably has a density of 0.860 to 0.920 g / cm 3 , more preferably 0.865 to 0.910 g / cm 3 , and still more preferably. Is 0.870-0.900 g / cm 3 . When the density of the ethylene / α-olefin copolymer is less than 0.860 g / cm 3 , the processed sheet is blocked, and when the density exceeds 0.920 g / cm 3 , the transparency of the processed sheet is deteriorated. It is not preferable.
In order to adjust the density of the polymer, a method of appropriately adjusting the content of the α-olefin as a comonomer, the polymerization temperature, the amount of catalyst and the like is employed. The density of the ethylene / α-olefin copolymer is measured according to JIS-K6922-2: 1997 appendix (in the case of low density polyethylene) (23 ° C.).

なお、本発明におけるエチレン・α−オレフィン共重合体は、ラジカルによる架橋特性に優れるため、架橋オレフィン系ゴム(EPDM)の代替品としても用いることができる。つまり、1)架橋剤として有機過酸化物あるいは硫黄を用いることで架橋をする、2)他の熱可塑性樹脂と組み合わせて動的架橋型熱可塑性エラストマーとする、といったEPDMの利用方法をそのまま用い、架橋構造を有した材料を製造することができる。これらの方法で得られた材料は、長期耐久性をもち、耐光性、耐熱性に優れるため自動車部品、電線・ケーブル等用途に用いられる。   In addition, since the ethylene / α-olefin copolymer in the present invention is excellent in radical crosslinking properties, it can be used as a substitute for a crosslinked olefin rubber (EPDM). In other words, using the EPDM utilization method such as 1) crosslinking by using an organic peroxide or sulfur as a crosslinking agent, and 2) combining with other thermoplastic resins to form a dynamically crosslinked thermoplastic elastomer, A material having a crosslinked structure can be produced. The materials obtained by these methods have long-term durability, and are excellent in light resistance and heat resistance, so that they are used for applications such as automobile parts, electric wires and cables.

4.太陽電池封止材用樹脂組成物
本発明の太陽電池封止材用樹脂組成物は、上記エチレン・α−オレフィン共重合を含むことにより、優れた架橋性を有する。また、本発明における樹脂組成物は、樹脂成分以外の成分として、有機過酸化物、ヒンダードアミン系光安定化剤等を含むことができる。
以下に用いることのできる添加成分の具体例について説明する。
4). Resin Composition for Solar Cell Encapsulant The resin composition for a solar cell encapsulant of the present invention has excellent crosslinkability by including the ethylene / α-olefin copolymer. Moreover, the resin composition in this invention can contain an organic peroxide, a hindered amine light stabilizer, etc. as components other than a resin component.
Specific examples of additive components that can be used will be described below.

(1)有機過酸化物
本発明に用いられる有機過酸化物としては、分解温度(半減期が1時間である温度)が70〜180℃、とくに90〜160℃の有機過酸化物を用いることができる。このような有機過酸化物として、例えば、t−ブチルパーオキシイソプロピルカーボネート、t−ブチルパーオキシ−2−エチルヘキシルカーボネート、t−ブチルパーオキシアセテート、t−ブチルパーオキシベンゾエート、ジクミルパーオキサイド、2,5−ジメチル−2,5−ジ(t−ブチルパーオキシ)ヘキサン、ジ−t−ブチルパーオキサイド、2,5−ジメチル−2,5−ジ(t−ブチルパーオキシ)ヘキシン−3、1,1−ジ(t−ブチルパーオキシ)−3,3,5−トリメチルシクロヘキサン、1,1−ジ(t−ブチルパーオキシ)シクロヘキサン、メチルエチルケトンパーオキサイド、2,5−ジメチルヘキシル−2,5−ジパーオキシベンゾエート、t−ブチルハイドロパーオキサイド、p−メンタンハイドロパーオキサイド、ベンゾイルパーオキサイド、p−クロルベンゾイルパーオキサイド、t−ブチルパーオキシイソブチレート、ヒドロキシヘプチルパーオキサイド、ジクロヘキサノンパーオキサイドなどが挙げられる。
(1) Organic peroxide As the organic peroxide used in the present invention, an organic peroxide having a decomposition temperature (temperature at which the half-life is 1 hour) is 70 to 180 ° C, particularly 90 to 160 ° C. Can do. Examples of such organic peroxides include t-butyl peroxyisopropyl carbonate, t-butyl peroxy-2-ethylhexyl carbonate, t-butyl peroxyacetate, t-butyl peroxybenzoate, dicumyl peroxide, 2 , 5-dimethyl-2,5-di (t-butylperoxy) hexane, di-t-butylperoxide, 2,5-dimethyl-2,5-di (t-butylperoxy) hexyne-3, 1 , 1-di (t-butylperoxy) -3,3,5-trimethylcyclohexane, 1,1-di (t-butylperoxy) cyclohexane, methyl ethyl ketone peroxide, 2,5-dimethylhexyl-2,5- Diperoxybenzoate, t-butyl hydroperoxide, p-menthane hydroperoxy Id, benzoyl peroxide, p- chlorobenzoyl peroxide, t- butyl peroxy isobutyrate, hydroxyheptyl peroxide, and di cyclohexanone peroxide.

有機過酸化物の配合割合は、樹脂成分を100重量部としたときに、好ましくは、0.2〜5重量部であり、より好ましくは、0.5〜3重量部、さらに好ましくは、1〜2重量部である。有機過酸化物の配合割合が上記範囲よりも少ないと、架橋しないかまたは架橋に時間がかかる。また、上記範囲よりも大きいと、分散が不十分となり架橋度が不均一になりやすい。   The blending ratio of the organic peroxide is preferably 0.2 to 5 parts by weight, more preferably 0.5 to 3 parts by weight, further preferably 1 when the resin component is 100 parts by weight. ~ 2 parts by weight. When the blending ratio of the organic peroxide is less than the above range, crosslinking is not performed or it takes time for crosslinking. Moreover, when larger than the said range, dispersion | distribution will become inadequate and it will be easy to become non-uniform | crosslinked.

(2)ヒンダードアミン系光安定化剤
ヒンダードアミン系光安定化剤は、ポリマーに対して有害なラジカル種を補足し、新たなラジカルを発生しないようにするものである。ヒンダードアミン系光安定化剤には、低分子量のものから高分子量のものまで多くの種類の化合物があるが、本発明に用いられるヒンダードアミン系光安定化剤としては、従来公知のものであれば特に制限されずに用いることができる。
(2) Hindered amine light stabilizer The hindered amine light stabilizer captures radical species harmful to the polymer and prevents generation of new radicals. There are many types of hindered amine light stabilizers from low molecular weight compounds to high molecular weight compounds, and the hindered amine light stabilizers used in the present invention are particularly known as long as they are conventionally known. It can be used without limitation.

低分子量のヒンダードアミン系光安定化剤としては、デカン二酸ビス(2,2,6,6−テトラメチル−1(オクチルオキシ)−4−ピペリジニル)エステル、1,1−ジメチルエチルヒドロパーオキサイド及びオクタンの反応生成物(分子量737)70重量%とポリプロピレン30重量%からなるもの;ビス(1,2,2,6,6−ペンタメチル−4−ピペリジル)[[3,5−ビス(1,1−ジメチルエチル)−4−ヒドロキシフェニル]メチル]ブチルマロネート(分子量685);ビス(1,2,2,6,6−ペンタメチル−4−ピペリジル)セバケート及びメチル−1,2,2,6,6−ペンタメチル−4−ピペリジルセバケート混合物(分子量509);ビス(2,2,6,6−テトラメチル−4−ピペリジル)セバケート(分子量481);テトラキス(2,2,6,6−テトラメチル−4−ピペリジル)−1,2,3,4−ブタンテトラカルボキシレート(分子量791);テトラキス(1,2,2,6,6−ペンタメチル−4−ピペリジル)−1,2,3,4−ブタンテトラカルボキシレート(分子量847);2,2,6,6−テトラメチル−4−ピペリジル−1,2,3,4−ブタンテトラカルボキシレートとトリデシル−1,2,3,4−ブタンテトラカルボキシレートの混合物(分子量900);1,2,2,6,6−ペンタメチル−4−ピペリジル−1,2,3,4−ブタンテトラカルボキシレートとトリデシル−1,2,3,4−ブタンテトラカルボキシレートの混合物(分子量900)などが挙げられる。   Low molecular weight hindered amine light stabilizers include decanedioic acid bis (2,2,6,6-tetramethyl-1 (octyloxy) -4-piperidinyl) ester, 1,1-dimethylethyl hydroperoxide and Consists of 70% by weight of a reaction product of octane (molecular weight 737) and 30% by weight of polypropylene; bis (1,2,2,6,6-pentamethyl-4-piperidyl) [[3,5-bis (1,1 -Dimethylethyl) -4-hydroxyphenyl] methyl] butyl malonate (molecular weight 685); bis (1,2,2,6,6-pentamethyl-4-piperidyl) sebacate and methyl-1,2,2,6 6-pentamethyl-4-piperidyl sebacate mixture (molecular weight 509); bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate ( 481); tetrakis (2,2,6,6-tetramethyl-4-piperidyl) -1,2,3,4-butanetetracarboxylate (molecular weight 791); tetrakis (1,2,2,6, 6-pentamethyl-4-piperidyl) -1,2,3,4-butanetetracarboxylate (molecular weight 847); 2,2,6,6-tetramethyl-4-piperidyl-1,2,3,4-butane Mixture of tetracarboxylate and tridecyl-1,2,3,4-butanetetracarboxylate (molecular weight 900); 1,2,2,6,6-pentamethyl-4-piperidyl-1,2,3,4-butane Examples thereof include a mixture (molecular weight 900) of tetracarboxylate and tridecyl-1,2,3,4-butanetetracarboxylate.

高分子量のヒンダードアミン系光安定化剤としては、ポリ[{6−(1,1,3,3−テトラメチルブチル)アミノ−1,3,5−トリアジン−2,4−ジイル}{(2,2,6,6−テトラメチル−4−ピペリジル)イミノ}ヘキサメチレン{(2,2,6,6−テトラメチル−4−ピペリジル)イミノ}](分子量2,000〜3,100);コハク酸ジメチルと4−ヒドロキシ−2,2,6,6−テトラメチル−1−ピペリジンエタノールの重合物(分子量3,100〜4,000);N,N’,N”,N”’−テトラキス−(4,6−ビス−(ブチル−(N−メチル−2,2,6,6−テトラメチルピペリジン−4−イル)アミノ)−トリアジン−2−イル)−4,7−ジアザデカン−1,10−ジアミン(分子量2,286)と上記コハク酸ジメチルと4−ヒドロキシ−2,2,6,6−テトラメチル−1−ピペリジンエタノールの重合物の混合物;ジブチルアミン・1,3,5−トリアジン・N,N’−ビス(2,2,6,6−テトラメチル−4−ピペリジル−1,6−ヘキサメチレンジアミンとN−(2,2,6,6−テトラメチル−4−ピペリジル)ブチルアミンの重縮合物(分子量2,600〜3,400)、並びに、4−アクリロイルオキシ−2,2,6,6−テトラメチルピペリジン、4−アクリロイルオキシ−1,2,2,6,6−ペンタメチルピペリジン、4−アクリロイルオキシ−1−エチル−2,2,6,6−テトラメチルピペリジン、4−アクリロイルオキシ−1−プロピル−2,2,6,6−テトラメチルピペリジン、4−アクリロイルオキシ−1−ブチル−2,2,6,6−テトラメチルピペリジン、4−メタクリロイルオキシ−2,2,6,6−テトラメチルピペリジン、4−メタクリロイルオキシ−1,2,2,6,6−ペンタメチルペリジン、4−メタクリロイルオキシ−1−エチル−2,2,6,6−テトラメチルピペリジン、4−メタクリロイルオキシ−1−ブチル−2,2,6,6−テトラメチルピペリジン、4−クロトノイルオキシ−2,2,6,6−テトラメチルピペリジン、4−クロトノイルオキシ−1−プロピル−2,2,6,6−テトラメチルピペリジン等の環状アミノビニル化合物とエチレンとの共重合体などが挙げられる。上述したヒンダードアミン系光安定化剤は、一種単独で用いられてもよく、二種以上を混合して用いてもよい。   As the high molecular weight hindered amine light stabilizer, poly [{6- (1,1,3,3-tetramethylbutyl) amino-1,3,5-triazine-2,4-diyl} {(2, 2,6,6-tetramethyl-4-piperidyl) imino} hexamethylene {(2,2,6,6-tetramethyl-4-piperidyl) imino}] (molecular weight 2,000-3,100); succinic acid Polymer of dimethyl and 4-hydroxy-2,2,6,6-tetramethyl-1-piperidineethanol (molecular weight 3,100 to 4,000); N, N ′, N ″, N ″ ′-tetrakis- ( 4,6-bis- (butyl- (N-methyl-2,2,6,6-tetramethylpiperidin-4-yl) amino) -triazin-2-yl) -4,7-diazadecane-1,10- Diamine (molecular weight 2,286) and above A mixture of dimethyl succinate and 4-hydroxy-2,2,6,6-tetramethyl-1-piperidineethanol; dibutylamine, 1,3,5-triazine, N, N′-bis (2,2 , 6,6-tetramethyl-4-piperidyl-1,6-hexamethylenediamine and N- (2,2,6,6-tetramethyl-4-piperidyl) butylamine polycondensate (molecular weight 2,600-3) 400) and 4-acryloyloxy-2,2,6,6-tetramethylpiperidine, 4-acryloyloxy-1,2,2,6,6-pentamethylpiperidine, 4-acryloyloxy-1-ethyl -2,2,6,6-tetramethylpiperidine, 4-acryloyloxy-1-propyl-2,2,6,6-tetramethylpiperidine, 4-acryloyloxy 1-butyl-2,2,6,6-tetramethylpiperidine, 4-methacryloyloxy-2,2,6,6-tetramethylpiperidine, 4-methacryloyloxy-1,2,2,6,6-pentamethyl Peridine, 4-methacryloyloxy-1-ethyl-2,2,6,6-tetramethylpiperidine, 4-methacryloyloxy-1-butyl-2,2,6,6-tetramethylpiperidine, 4-crotonoyloxy Examples include copolymers of cyclic aminovinyl compounds such as -2,2,6,6-tetramethylpiperidine, 4-crotonoyloxy-1-propyl-2,2,6,6-tetramethylpiperidine and ethylene. The above-mentioned hindered amine light stabilizers may be used alone or in combination of two or more.

これらの中でも、ヒンダードアミン系光安定化剤としては、ポリ[{6−(1,1,3,3−テトラメチルブチル)アミノ−1,3,5−トリアジン−2,4−ジイル}{(2,2,6,6−テトラメチル−4−ピペリジル)イミノ}ヘキサメチレン{(2,2,6,6−テトラメチル−4−ピペリジル)イミノ}](分子量2,000〜3,100);コハク酸ジメチルと4−ヒドロキシ−2,2,6,6−テトラメチル−1−ピペリジンエタノールの重合物(分子量3,100〜4,000);N,N’,N”,N”’−テトラキス−(4,6−ビス−(ブチル−(N−メチル−2,2,6,6−テトラメチルピペリジン−4−イル)アミノ)−トリアジン−2−イル)−4,7−ジアザデカン−1,10−ジアミン(分子量2,286)と上記コハク酸ジメチルと4−ヒドロキシ−2,2,6,6−テトラメチル−1−ピペリジンエタノールの重合物の混合物;ジブチルアミン・1,3,5−トリアジン・N,N’−ビス(2,2,6,6−テトラメチル−4−ピペリジル−1,6−ヘキサメチレンジアミンとN−(2,2,6,6−テトラメチル−4−ピペリジル)ブチルアミンの重縮合物(分子量2,600〜3,400)環状アミノビニル化合物とエチレンとの共重合体を用いるのが好ましい。製品使用時に経時でのヒンダードアミン系光安定剤のブリードアウトが妨げられるからである。また、ヒンダードアミン系光安定化剤は、融点が、60℃以上であるものを用いるのが、組成物の作製しやすさの観点から好ましい。   Among these, as the hindered amine light stabilizer, poly [{6- (1,1,3,3-tetramethylbutyl) amino-1,3,5-triazine-2,4-diyl} {(2 , 2,6,6-tetramethyl-4-piperidyl) imino} hexamethylene {(2,2,6,6-tetramethyl-4-piperidyl) imino}] (molecular weight 2,000-3,100); Polymer of dimethyl acid and 4-hydroxy-2,2,6,6-tetramethyl-1-piperidineethanol (molecular weight 3,100 to 4,000); N, N ′, N ″, N ″ ′-tetrakis- (4,6-Bis- (butyl- (N-methyl-2,2,6,6-tetramethylpiperidin-4-yl) amino) -triazin-2-yl) -4,7-diazadecane-1,10 -Diamine (molecular weight 2,286) A mixture of dimethyl succinate and 4-hydroxy-2,2,6,6-tetramethyl-1-piperidineethanol; dibutylamine, 1,3,5-triazine, N, N′-bis (2 , 2,6,6-Tetramethyl-4-piperidyl-1,6-hexamethylenediamine and N- (2,2,6,6-tetramethyl-4-piperidyl) butylamine polycondensate (molecular weight 2,600) ~ 3,400) It is preferable to use a copolymer of a cyclic aminovinyl compound and ethylene, because the hindered amine light stabilizer is prevented from bleeding out over time when the product is used. An agent having a melting point of 60 ° C. or higher is preferably used from the viewpoint of easy preparation of the composition.

本発明において、ヒンダードアミン系光安定化剤の含有量は、樹脂成分100重量部に対して、0.01〜2.5重量部とすることが好ましく、より好ましくは0.01〜1.0重量部、より好ましくは0.01〜0.5重量部、さらに好ましくは0.01〜0.2重量部、最も好ましくは0.03〜0.1重量部とするのがよい。
ヒンダードアミン系光安定化剤の含有量を0.01重量部以上とすることにより安定化への効果が十分に得られ、2.5重量部以下とすることによりヒンダードアミン系光安定化剤の過剰な添加による樹脂の変色を抑えることができる。
また、本発明において、有機過酸化物とヒンダードアミン系光安定化剤との重量比(有機過酸化物:ヒンダードアミン系光安定化剤)を、好ましくは1:0.01〜1:10とし、より好ましくは1:0.02〜1:6.5とする。これにより、樹脂の黄変を顕著に抑制することが可能となる。
In the present invention, the content of the hindered amine light stabilizer is preferably 0.01 to 2.5 parts by weight, more preferably 0.01 to 1.0 parts by weight with respect to 100 parts by weight of the resin component. Parts, more preferably 0.01 to 0.5 parts by weight, still more preferably 0.01 to 0.2 parts by weight, and most preferably 0.03 to 0.1 parts by weight.
By making the content of the hindered amine light stabilizer 0.01 parts by weight or more, a sufficient effect for stabilization can be obtained, and by making the content 2.5 parts by weight or less, an excess of the hindered amine light stabilizer can be obtained. Discoloration of the resin due to the addition can be suppressed.
In the present invention, the weight ratio of the organic peroxide to the hindered amine light stabilizer (organic peroxide: hindered amine light stabilizer) is preferably 1: 0.01 to 1:10, and more Preferably it is set to 1: 0.02 to 1: 6.5. Thereby, it becomes possible to remarkably suppress yellowing of the resin.

(3)架橋助剤
本発明における樹脂組成物には、架橋助剤を配合してもよい。架橋助剤は、架橋反応を促進させ、エチレン・α−オレフィン共重合体の架橋度を高めるのに有効であり、その具体例としては、ポリアリル化合物やポリ(メタ)アクリロキシ化合物のような多不飽和化合物を例示することができる。
より具体的には、トリアリルイソシアヌレート、トリアリルシアヌレート、ジアリルフタレート、ジアリルフマレート、ジアリルマレエートのようなポリアリル化合物、エチレングリコールジアクリレート、エチレングリコールジメタクリレート、トリメチロールプロパントリメタクリレートのようなポリ(メタ)アクリロキシ化合物、ジビニルベンゼンなどを挙げることができる。架橋助剤は、樹脂成分100重量部に対し、0〜5重量部程度の割合で配合することができる。
(3) Crosslinking aid A crosslinking aid may be added to the resin composition in the present invention. The crosslinking aid is effective in promoting the crosslinking reaction and increasing the degree of crosslinking of the ethylene / α-olefin copolymer. Specific examples thereof include polyaryl compounds and poly (meth) acryloxy compounds. Saturated compounds can be exemplified.
More specifically, polyallyl compounds such as triallyl isocyanurate, triallyl cyanurate, diallyl phthalate, diallyl fumarate, diallyl maleate, ethylene glycol diacrylate, ethylene glycol dimethacrylate, trimethylolpropane trimethacrylate, etc. Examples include poly (meth) acryloxy compounds and divinylbenzene. The crosslinking aid can be blended at a ratio of about 0 to 5 parts by weight with respect to 100 parts by weight of the resin component.

(4)紫外線吸収剤
本発明の樹脂組成物には、紫外線吸収剤を配合することができる。紫外線吸収剤としては、ベンゾフェノン系、ベンゾトリアゾール系、トリアジン系、サリチル酸エステル系など各種タイプのものを挙げることができる。
ベンゾフェノン系紫外線吸収剤としては、例えば、2−ヒドロキシ−4−メトキシベンゾフェノン、2−ヒドロキシ−4−メトキシ−2’−カルボキシベンゾフェノン、2−ヒドロキシ−4−n−オクトキシベンゾフェノン、2−ヒドロキシ−4−n−ドデシルオキシベンゾフェノン、2−ヒドロキシ−4−n−オクタデシルオキシベンゾフェノン、2−ヒドロキシ−4−ベンジルオキシベンゾフェノン、2−ヒドロキシ−4−メトキシ−5−スルホベンゾフェノン、2−ヒドロキシ−5−クロロベンゾフェノン、2,4−ジヒドロキシベンゾフェノン、2,2’−ジヒドロキシ−4−メトキシベンゾフェノン、2,2’−ジヒドロキシ−4,4’−ジメトキシベンゾフェノン、2,2’,4,4’−テトラヒドロキシベンゾフェノンなどを挙げることができる。
(4) Ultraviolet absorber An ultraviolet absorber can be mix | blended with the resin composition of this invention. Examples of the ultraviolet absorber include various types such as benzophenone, benzotriazole, triazine, and salicylic acid ester.
Examples of benzophenone-based ultraviolet absorbers include 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-methoxy-2′-carboxybenzophenone, 2-hydroxy-4-n-octoxybenzophenone, and 2-hydroxy-4. -N-dodecyloxybenzophenone, 2-hydroxy-4-n-octadecyloxybenzophenone, 2-hydroxy-4-benzyloxybenzophenone, 2-hydroxy-4-methoxy-5-sulfobenzophenone, 2-hydroxy-5-chlorobenzophenone 2,2-dihydroxybenzophenone, 2,2'-dihydroxy-4-methoxybenzophenone, 2,2'-dihydroxy-4,4'-dimethoxybenzophenone, 2,2 ', 4,4'-tetrahydroxybenzophenone, etc. To mention Can.

ベンゾトリアゾール系紫外線吸収剤としては、ヒドロキシフェニル置換ベンゾトリアゾール化合物であって、例えば、2−(2−ヒドロキシ−5−メチルフェニル)ベンゾトリアゾール、2−(2−ヒドロキシ−5−t−ブチルフェニル)ベンゾトリアゾール、2−(2−ヒドロキシ−3,5−ジメチルフェニル)ベンゾトリアゾール、2−(2−メチル−4−ヒドロキシフェニル)ベンゾトリアゾール、2−(2−ヒドロキシ−3−メチル−5−t−ブチルフェニル)ベンゾトリアゾール、2−(2−ヒドロキシ−3,5−ジ−t−アミルフェニル)ベンゾトリアゾール、2−(2−ヒドロキシ−3,5−ジ−t−ブチルフェニル)ベンゾトリアゾール、などを挙げることができる。またトリアジン系紫外線吸収剤としては、2−[4,6−ビス(2,4−ジメチルフェニル)−1,3,5−トリアジン−2−イル]−5−(オクチルオキシ)フェノール、2−(4,6−ジフェニル−1,3,5−トリアジン−2−イル)−5−(ヘキシルオキシ)フェノールなどを挙げることができる。サリチル酸エステル系としては、フェニルサリチレート、p−オクチルフェニルサリチレートなどを挙げることができる。
これら紫外線吸収剤は、エチレン・α−オレフィン共重合体100重量部に対し、0〜2.0重量部配合し、好ましくは0.05〜2.0重量部、より好ましくは0.1〜1.0重量部、さらに好ましくは0.1〜0.5重量部、最も好ましくは0.2〜0.4重量部配合するのがよい。
The benzotriazole ultraviolet absorber is a hydroxyphenyl-substituted benzotriazole compound, for example, 2- (2-hydroxy-5-methylphenyl) benzotriazole, 2- (2-hydroxy-5-t-butylphenyl) Benzotriazole, 2- (2-hydroxy-3,5-dimethylphenyl) benzotriazole, 2- (2-methyl-4-hydroxyphenyl) benzotriazole, 2- (2-hydroxy-3-methyl-5-t- Butylphenyl) benzotriazole, 2- (2-hydroxy-3,5-di-t-amylphenyl) benzotriazole, 2- (2-hydroxy-3,5-di-t-butylphenyl) benzotriazole, and the like. Can be mentioned. Examples of triazine ultraviolet absorbers include 2- [4,6-bis (2,4-dimethylphenyl) -1,3,5-triazin-2-yl] -5- (octyloxy) phenol, 2- ( And 4,6-diphenyl-1,3,5-triazin-2-yl) -5- (hexyloxy) phenol. Examples of salicylic acid esters include phenyl salicylate and p-octylphenyl salicylate.
These ultraviolet absorbers are blended in an amount of 0 to 2.0 parts by weight, preferably 0.05 to 2.0 parts by weight, more preferably 0.1 to 1 part, per 100 parts by weight of the ethylene / α-olefin copolymer. 0.0 part by weight, more preferably 0.1 to 0.5 part by weight, and most preferably 0.2 to 0.4 part by weight.

(5)シランカップリング剤
本発明の樹脂組成物には、主に太陽電池の上部保護材や太陽電池素子との接着力を向上させる目的でシランカップリング剤を用いることができる。
本発明におけるシランカップリング剤としては、例えばγ−クロロプロピルトリメトキシシラン;ビニルトリクロルシラン;ビニルトリエトキシシラン;ビニルトリメトキシシラン;ビニル−トリス−(β−メトキシエトキシ)シラン;γ−メタクリロキシプロピルトリメトキシシラン;β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン;γ−グリシドキシプロピルトリメトキシシラン;ビニルトリアセトキシシラン;γ−メルカプトプロピルトリメトキシシラン;γ−アミノプロピルトリメトキシシラン;N−β−(アミノエチル)−γ−アミノプロピルトリメトキシシラン、3−アクリロキシプロピルトリメトキシシラン等を挙げることができる。好ましくは、ビニルトリメトキシシラン、γ−メタクリロキシプロピルトリメトキシシラン、3−アクリロキシプロピルトリメトキシシランである。
これらのシランカップリング剤は、エチレン・α‐オレフィン共重合体100重量部に対して0〜5重量部使用し、好ましくは0.01〜4重量部、より好ましくは0.01〜2重量部、さらに好ましくは、0.05〜1重量部で使用される。
(5) Silane Coupling Agent A silane coupling agent can be used in the resin composition of the present invention mainly for the purpose of improving the adhesion between the solar cell upper protective material and the solar cell element.
Examples of the silane coupling agent in the present invention include γ-chloropropyltrimethoxysilane; vinyltrichlorosilane; vinyltriethoxysilane; vinyltrimethoxysilane; vinyl-tris- (β-methoxyethoxy) silane; γ-methacryloxypropyl. Β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane; γ-glycidoxypropyltrimethoxysilane; vinyltriacetoxysilane; γ-mercaptopropyltrimethoxysilane; γ-aminopropyltrimethoxysilane; N-β- (aminoethyl) -γ-aminopropyltrimethoxysilane, 3-acryloxypropyltrimethoxysilane and the like can be mentioned. Vinyltrimethoxysilane, γ-methacryloxypropyltrimethoxysilane, and 3-acryloxypropyltrimethoxysilane are preferable.
These silane coupling agents are used in an amount of 0 to 5 parts by weight, preferably 0.01 to 4 parts by weight, more preferably 0.01 to 2 parts by weight, based on 100 parts by weight of the ethylene / α-olefin copolymer. More preferably, it is used at 0.05 to 1 part by weight.

(6)その他
本発明の樹脂組成物に、配合することができる任意成分としては、上記以外に通常のポリオレフィン系樹脂材料に使用される酸化防止剤、結晶核剤、透明化剤、滑剤、着色剤、分散剤、充填剤、蛍光増白剤、紫外線吸収剤、光安定剤等を挙げることができる。
(6) Others As optional components that can be blended in the resin composition of the present invention, other than the above, antioxidants, crystal nucleating agents, clearing agents, lubricants, coloring used in ordinary polyolefin resin materials Agents, dispersants, fillers, fluorescent brighteners, ultraviolet absorbers, light stabilizers and the like.

また、本発明の樹脂組成物には、柔軟性等を付与するため、本発明の目的を損なわない範囲で、チーグラー系又はメタロセン系触媒によって重合された結晶性のエチレン・α−オレフィン共重合体及び/又はEBR、EPR等のエチレン・プロピレンエラストマー若しくはSEBS、水添スチレンブロック共重合体等のスチレン系エラストマー等のゴム系化合物を3〜75重量部配合することもできる。さらに、溶融張力等を付与するため、高圧法低密度ポリエチレンを3〜75重量部配合することもできる。   Further, in order to impart flexibility and the like to the resin composition of the present invention, a crystalline ethylene / α-olefin copolymer polymerized by a Ziegler-based or metallocene-based catalyst within a range not impairing the object of the present invention. And / or rubber compounds such as ethylene / propylene elastomers such as EBR and EPR, or styrene elastomers such as SEBS and hydrogenated styrene block copolymers may be blended in an amount of 3 to 75 parts by weight. Furthermore, in order to give melt tension etc., 3-75 weight part of high pressure process low density polyethylene can also be mix | blended.

5.太陽電池封止材および太陽電池モジュール
本発明の太陽電池封止材(以下、単に「封止材」ともいう。)は、上記樹脂組成物をペレット化し、あるいはシート化したものである。
該封止材を用いれば、太陽電池素子を上下の保護材とともに固定することにより太陽電池モジュールを製作することができる。このような太陽電池モジュールとしては、種々のタイプのものを例示することができる。例えば上部透明保護材/封止材/太陽電池素子/封止材/下部保護材のように太陽電池素子の両側から封止材で挟む構成のもの、下部基板保護材の内周面上に形成させた太陽電池素子上に封止材と上部透明保護材を形成させるような構成のもの、上部透明保護材の内周面上に形成させた太陽電池素子、例えばフッ素樹脂系透明保護材上にアモルファス太陽電池素子をスパッタリング等で作成したものの上に封止材と下部保護材を形成させるような構成のものなどを挙げることができる。
5. Solar cell encapsulant and solar cell module The solar cell encapsulant of the present invention (hereinafter also simply referred to as “encapsulant”) is obtained by pelletizing or forming a sheet of the resin composition.
If this sealing material is used, a solar cell module can be manufactured by fixing a solar cell element with upper and lower protective materials. Examples of such solar cell modules include various types. For example, the upper transparent protective material / encapsulant / solar cell element / encapsulant / lower protective material sandwiched between the solar cell elements from both sides, formed on the inner peripheral surface of the lower substrate protective material A solar cell element formed on the inner peripheral surface of the upper transparent protective material, for example, a fluororesin-based transparent protective material. The thing of the structure which forms a sealing material and a lower protective material on what created the amorphous solar cell element by sputtering etc. can be mentioned.

太陽電池素子としては、特に制限されず、単結晶シリコン、多結晶シリコン、アモルファスシリコンなどのシリコン系、ガリウム−砒素、銅−インジウム−セレン、カドミウム−テルルなどのIII−V族やII−VI族化合物半導体系等の各種太陽電池素子を用いることができる。本発明においては、基板としてガラスを用いたものが好ましい。   The solar cell element is not particularly limited, and is based on silicon such as single crystal silicon, polycrystalline silicon, amorphous silicon, III-V group or II-VI group such as gallium-arsenic, copper-indium-selenium, cadmium-tellurium. Various solar cell elements such as compound semiconductors can be used. In the present invention, those using glass as the substrate are preferred.

太陽電池モジュールを構成する上部保護材としては、ガラス、アクリル樹脂、ポリカーボネート、ポリエステル、フッ素含有樹脂などを例示することができる。
また、下部保護材としては、金属や各種熱可塑性樹脂フィルムなどの単体もしくは多層のシートであり、例えば、錫、アルミ、ステンレススチールなどの金属、ガラス等の無機材料、ポリエステル、無機物蒸着ポリエステル、フッ素含有樹脂、ポリオレフィンなどの1層もしくは多層の保護材を例示することができる。このような上部及び/又は下部の保護材には、封止材との接着性を高めるためにプライマー処理を施すことができる。本発明においては、上部保護材としてガラスが好ましい。
Examples of the upper protective material constituting the solar cell module include glass, acrylic resin, polycarbonate, polyester, and fluorine-containing resin.
The lower protective material is a single or multilayer sheet such as a metal or various thermoplastic resin films, for example, a metal such as tin, aluminum or stainless steel, an inorganic material such as glass, polyester, an inorganic vapor-deposited polyester, or fluorine. Examples of the protective material include a single layer or a multilayer such as a containing resin and polyolefin. Such an upper and / or lower protective material can be subjected to a primer treatment in order to enhance the adhesion to the sealing material. In the present invention, glass is preferred as the upper protective material.

本発明の太陽電池封止材は、ペレットとして使用してもよいが、通常、0.1〜1mm程度の厚みのシート状に成形して使用される。0.1mmよりも薄いと強度が小さく、接着が不十分となり、1mmよりも厚いと透明性が低下して問題になる場合がある。好ましい厚さは、0.1〜0.8mmである。   The solar cell encapsulant of the present invention may be used as a pellet, but is usually used after being formed into a sheet having a thickness of about 0.1 to 1 mm. If the thickness is less than 0.1 mm, the strength is small and the adhesion is insufficient. If the thickness is more than 1 mm, the transparency may be lowered, which may be a problem. A preferred thickness is 0.1 to 0.8 mm.

シート状太陽電池封止材は、T−ダイ押出機、カレンダー成形機などを使用する公知のシート成形法によって製造することができる。例えばエチレン・α‐オレフィン共重合体に、架橋剤を添加し、必要に応じて、ヒンダードアミン系光安定化剤、さらには架橋助剤、シランカップリング剤、紫外線吸収剤、酸化防止剤、光安定剤等の添加剤を予めドライブレンドしてT−ダイ押出機のホッパーから供給し、80〜150℃の押出温度において、シート状に押出成形することによって得ることができる。これらドライブレンドに際して、一部又は全部の添加剤は、マスターバッチの形で使用することができる。またT−ダイ押出やカレンダー成形において、予め非晶性プロピレン系共重合体に一部又は全部の添加剤を、一軸押出機、二軸押出機、バンバリーミキサー、ニーダーなどを用いて溶融混合して得た樹脂組成物を使用することもできる。   The sheet-like solar cell encapsulant can be produced by a known sheet molding method using a T-die extruder, a calendar molding machine, or the like. For example, a cross-linking agent is added to an ethylene / α-olefin copolymer, and if necessary, a hindered amine light stabilizer, a cross-linking aid, a silane coupling agent, an ultraviolet absorber, an antioxidant, and a light stabilizer. An additive such as an agent can be dry-blended in advance and supplied from a hopper of a T-die extruder, and extruded into a sheet at an extrusion temperature of 80 to 150 ° C. In these dry blends, some or all of the additives can be used in the form of a masterbatch. In addition, in T-die extrusion or calendar molding, a part or all of the additive is previously melt-mixed into the amorphous propylene copolymer using a single screw extruder, twin screw extruder, Banbury mixer, kneader or the like. The obtained resin composition can also be used.

T−ダイ押出機により製造する場合、エチレン・α−オレフィン共重合体のMFRは、好ましくは10〜50g/10分であり、より好ましくは12〜45g/10分、さらに好ましくは15〜40g/10分である。エチレン・α−オレフィン共重合体のMFRが10g/10分未満では、分子量が高すぎて混練時に押出しが困難になり、MFRが50g/10分を超えると溶融粘度が低くなりすぎて、取り扱い性に欠けるものとなる。
カレンダー成形により製造する場合、エチレン・α−オレフィン共重合体のMFRは、好ましくは1〜10g/10分であり、より好ましくは1.5〜8.5g/10分、さらに好ましくは2〜7g/10分である。エチレン・α−オレフィン共重合体のMFRが1g/10分未満では、分子量が高すぎて混練時に剪断発熱し未架橋のシートの作成が困難になり、MFRが10g/10分を超えると溶融粘度が低くなりすぎて、カレンダー成形での取り扱い性に欠けるものとなる。
When manufactured by a T-die extruder, the MFR of the ethylene / α-olefin copolymer is preferably 10 to 50 g / 10 minutes, more preferably 12 to 45 g / 10 minutes, and further preferably 15 to 40 g / minute. 10 minutes. When the MFR of the ethylene / α-olefin copolymer is less than 10 g / 10 min, the molecular weight is too high and extrusion during kneading becomes difficult, and when the MFR exceeds 50 g / 10 min, the melt viscosity becomes too low and the handling property is too high. It will be lacking.
When manufactured by calendar molding, the MFR of the ethylene / α-olefin copolymer is preferably 1 to 10 g / 10 minutes, more preferably 1.5 to 8.5 g / 10 minutes, and further preferably 2 to 7 g. / 10 minutes. If the MFR of the ethylene / α-olefin copolymer is less than 1 g / 10 min, the molecular weight is too high, and shear heat generation occurs during kneading, making it difficult to produce an uncrosslinked sheet. If the MFR exceeds 10 g / 10 min, the melt viscosity Becomes too low, and the handleability in calender molding is lacking.

成形されたシートは、容易に保管および輸送するために紙管に巻き取られるが、このときにシート同士が密着(ブロッキングが発生)することがある。ブロッキングが発生してしまうと、次の工程でシートを繰り出して使用する際に、安定して繰り出すことができず、生産性が低下してしまう。
シート同士のブロッキングを回避するため、従来公知の方法により、シート表面をマット・シボ状の形状となるようにシート成形を行ってもよい。具体的には、T−ダイ押出やカレンダーでのシート成形では、溶融状態のシートをマット・エンボス形状に表面加工された冷却ロールと押し付けロールに挟み込むようにして冷却することでシート表面にマット・エンボス形状を転写することができる。
The formed sheet is wound around a paper tube for easy storage and transportation. At this time, the sheets may adhere to each other (blocking may occur). If blocking occurs, when the sheet is fed out and used in the next step, it cannot be stably fed out, resulting in a decrease in productivity.
In order to avoid blocking between the sheets, the sheet surface may be formed by a conventionally known method so that the surface of the sheet has a mat-like shape. Specifically, in T-die extrusion or calender sheet formation, the molten sheet is cooled by being sandwiched between a cooling roll and a pressing roll whose surface has been processed into a mat / emboss shape, and then cooled on the mat surface. Embossed shape can be transferred.

本発明の太陽電池モジュールを製造するに当たっては、本発明の封止材のシートを予め作っておき、封止材の樹脂組成物が溶融する温度、例えば150〜200℃で圧着するという方法によって、前記のような構成のモジュールを形成することができる。また本発明の封止材を押出コーティングすることによって太陽電池素子や上部保護材あるいは下部保護材と積層する方法を採用することもできる。この方法においては、わざわざシート成形することなく一段階で太陽電池モジュールを製造することが可能であり、モジュールの生産性を格段に改良することができる。   In producing the solar cell module of the present invention, a sheet of the sealing material of the present invention is prepared in advance, and the resin composition of the sealing material is melt-bonded at a temperature, for example, 150 to 200 ° C. A module having the above-described configuration can be formed. Moreover, the method of laminating | stacking with a solar cell element, an upper protection material, or a lower protection material by extrusion-coating the sealing material of this invention is also employable. In this method, it is possible to manufacture a solar cell module in one step without bothering to form a sheet, and the productivity of the module can be significantly improved.

一方、本発明の太陽電池モジュールを製造する際、有機過酸化物が実質的に分解せず、かつ本発明の封止材料が溶融するような温度で、太陽電池素子や保護材に該封止材を仮接着し、次いで昇温して充分な接着とエチレン・α−オレフィン共重合体の架橋を行うこともできる。この場合は、耐熱性が良好な太陽電池モジュールを得るために、封止材層におけるゲル分率(試料1gをキシレン100mlに浸漬し、110℃、24時間加熱した後、20メッシュ金網で濾過し未溶融分の質量分率を測定)が50〜98%、好ましくは60〜95%程度になるように架橋するのがよい。   On the other hand, when manufacturing the solar cell module of the present invention, the sealing is performed on the solar cell element or the protective material at a temperature at which the organic peroxide is not substantially decomposed and the sealing material of the present invention is melted. The material can be temporarily bonded and then heated to perform sufficient bonding and cross-linking of the ethylene / α-olefin copolymer. In this case, in order to obtain a solar cell module having good heat resistance, the gel fraction in the sealing material layer (1 g of sample was immersed in 100 ml of xylene, heated at 110 ° C. for 24 hours, and then filtered through a 20 mesh wire mesh. Crosslinking is preferably performed so that the mass fraction of unmelted portion is 50 to 98%, preferably about 60 to 95%.

太陽電池素子の封止作業では、太陽電池素子を本発明の太陽電池封止材でカバーした後、有機過酸化物が分解しない程度の温度に数分から10分程度加熱して仮接着し、次に、オーブン内において有機過酸化物が分解する150〜200℃程度の高温で5分から30分間加熱処理して接着させる等の方法がある。   In the sealing operation of the solar cell element, after the solar cell element is covered with the solar cell sealing material of the present invention, it is temporarily bonded by heating to a temperature at which the organic peroxide is not decomposed for several minutes to 10 minutes. In addition, there is a method in which an organic peroxide is decomposed in an oven at a high temperature of about 150 to 200 ° C. for 5 to 30 minutes for adhesion.

以下、本発明を実施例によって、具体的に説明するが、本発明はこれらの実施例によって限定されるものではない。なお、実施例、比較例で用いた評価方法及び使用樹脂は、以下の通りである。   EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples. The evaluation methods and resins used in the examples and comparative examples are as follows.

1.樹脂物性の評価方法
(1)メルトフローレート(MFR):エチレン・α−オレフィン共重合体のMFRは、JIS−K6922−2:1997附属書(190℃、21.18N荷重)に準拠して測定した。
(2)密度:エチレン・α−オレフィン共重合体の密度は、JIS−K6922−2:1997附属書(23℃、低密度ポリエチレンの場合)に準拠して測定した。
(3)二重結合数、コモノマー数:末端ビニル、ビニリデン、ビニレン(シス−ビニレン及びトランス−ビニレンを含む)、三置換オレフィンの数は、H−NMR及び13C−NMRにより、次の条件で測定し、コモノマー量は、主鎖1000個の炭素あたりの個数で求めた。
装置 :ブルカー・バイオスピン(株) AVANCEIII cryo−400MHz
溶媒 :o−ジクロロベンゼン/重化ブロモベンゼン = 8/2混合溶液
<試料量>
460mg/2.3ml
13C−NMR>
Hデカップル、NOEあり
・積算回数:256scan
・フリップ角:90°
・パルス間隔20秒
・AQ(取り込み時間)=5.45s D1(待ち時間)=14.55s
H−NMR>
・積算回数:1400scan
・フリップ角:1.03°
・AQ(取り込み時間)=1.8s D1(待ち時間)=0.01s
(3)Mz/Mn:GPCにより測定した。
装置:ウオーターズ社製GPC 150C型
検出器:MIRAN社製 1A赤外分光光度計(測定波長、3.42μm)
カラム:昭和電工製AD806M/S 3本(カラムの較正は、東ソー製単分散ポリスチレン(A500,A2500,F1,F2,F4,F10,F20,F40,F288の各0.5mg/ml溶液)の測定を行い、溶出体積と分子量の対数値を2次式で近似した。また、試料の分子量は、ポリスチレンとポリエチレンの粘度式を用いてポリエチレンに換算した。ここでポリスチレンの粘度式の係数は、α=0.723、logK=−3.967であり、ポリエチレンはα=0.733、logK=−3.407である。)
測定温度:140℃
濃度:10mg/10mL
注入量:0.2ml
溶媒:オルソジクロロベンゼン
流速:1.0ml/分
1. Evaluation method of resin physical properties (1) Melt flow rate (MFR): MFR of ethylene / α-olefin copolymer is measured according to JIS-K6922-2: 1997 appendix (190 ° C., 21.18 N load). did.
(2) Density: The density of the ethylene / α-olefin copolymer was measured according to JIS-K6922-2: 1997 appendix (in the case of 23 ° C., low density polyethylene).
(3) Number of double bonds, number of comonomers: terminal vinyl, vinylidene, vinylene (including cis-vinylene and trans-vinylene), the number of trisubstituted olefins are as follows according to 1 H-NMR and 13 C-NMR. The amount of comonomer was determined by the number of carbon per 1000 main chains.
Equipment: Bruker BioSpin Corporation AVANCEIII cryo-400MHz
Solvent: o-dichlorobenzene / deuterated bromobenzene = 8/2 mixed solution <sample amount>
460mg / 2.3ml
< 13C -NMR>
1 H decouple and NOE ・ Accumulation count: 256scan
・ Flip angle: 90 °
・ Pulse interval 20 seconds ・ AQ (acquisition time) = 5.45 s D1 (waiting time) = 14.55 s
<1 H-NMR>
・ Accumulation count: 1400scan
・ Flip angle: 1.03 °
AQ (loading time) = 1.8 s D1 (waiting time) = 0.01 s
(3) Mz / Mn: measured by GPC.
Apparatus: GPC 150C type manufactured by Waters Inc. Detector: 1A infrared spectrophotometer manufactured by MIRAN (measurement wavelength: 3.42 μm)
Column: Showa Denko 3 AD806M / S (column calibration is Tosoh monodispersed polystyrene (0.5 mg / ml solution of each of A500, A2500, F1, F2, F4, F10, F20, F40, and F288) The logarithmic value of the elution volume and molecular weight was approximated by a quadratic equation, and the molecular weight of the sample was converted to polyethylene using the viscosity equation of polystyrene and polyethylene, where the coefficient of the viscosity equation of polystyrene is α = 0.723, log K = -3.967, polyethylene is α = 0.733, log K = -3.407.)
Measurement temperature: 140 ° C
Concentration: 10 mg / 10 mL
Injection volume: 0.2ml
Solvent: Orthodichlorobenzene Flow rate: 1.0 ml / min

2.押出成形物(シート)の評価方法
(1)150℃ゲル分率(架橋特性)
後述の方法により太陽電池封止材として製造したシートを150℃で4、7、10、30分の時間でそれぞれ架橋し、シートのゲル分率で評価した。ゲル分率が高いほど架橋が進行しており、耐熱性が高いと評価できる。ゲル分率は、当該シートを、約1gを切り取り精秤して、キシレン100ccに浸漬し110℃で24時間処理し、ろ過後残渣を乾燥し精秤して、処理前の重量で割りゲル分率を算出する。
2. Evaluation method of extruded product (sheet) (1) 150 ° C. gel fraction (crosslinking property)
The sheet produced as a solar cell encapsulant by the method described later was crosslinked at 150 ° C. for 4, 7, 10 and 30 minutes, and evaluated by the gel fraction of the sheet. It can be evaluated that the higher the gel fraction, the more the crosslinking proceeds and the higher the heat resistance. For the gel fraction, about 1 g of the sheet was cut out and weighed accurately, immersed in 100 cc of xylene, treated at 110 ° C. for 24 hours, the residue after filtration was dried and precisely weighed, and the gel fraction was divided by the weight before treatment. Calculate the rate.

3.オレフィン重合用触媒の調製
(1)成分(A):メタロセン化合物の合成
・メタロセン化合物A:イソプロピリデンビス(4−フェニル−1−インデニル)ジメチルハフニウムの合成
3. Preparation of catalyst for olefin polymerization (1) Component (A): Synthesis of metallocene compound Metallocene compound A: Synthesis of isopropylidenebis (4-phenyl-1-indenyl) dimethylhafnium

Figure 2015199930
Figure 2015199930

(i)4−フェニル−インデンの合成
特開2008−101034号公報記載の方法に従って合成した。
(ii)2,2−ビス(4−フェニル−インデン−1−イル)プロパンの合成
100mLのガラス製反応容器に、4−フェニル−インデン1.00g(5.21mmol)、1,2−ジメトキシエタン(DME)10mL,水酸化カリウム0.583g(10.4mmol)を加え、90℃で1時間加熱還流した。反応液を0℃に冷却し、アセトン0.151g(2.60mmol)を加えた後、90℃で6時間加熱還流した。反応液を室温まで冷却し、蒸留水20mLを加えた後、分液ロートに移して酢酸エチルで3回抽出し、硫酸ナトリウムで乾燥した。硫酸ナトリウムをろ過し、溶媒を減圧で留去し、得られた粗生成物をシリカゲルカラムクロマトグラフィー (展開溶媒、ジクロロメタン:石油エーテル=1:20)で精製することで、2,2−ビス(4−フェニル−インデン−1−イル)プロパンを薄黄色固体として0.45g得た(収率41%)。
H−NMR(400MHz,CDCl):δ7.52(dd,4H),7.44(t,4H),7.41−7.34(m,4H),7.16(t,2H),7.11(dd,2H),6.59(t,2H),3.48(d,2H),1.81(s,6H).
(iii)イソプロピリデンビス(4−フェニル−1−インデニル)ハフニウムジクロリドの合成
回転子を入れ、三方コックと温度計を取り付けた200ml三口フラスコに2,2−ビス(4−フェニル−インデン−1−イル)プロパン1.50g(3.5mmol)を入れ、トルエン70mlとジエチルエーテル15mlを加えて溶解させた。ドライアイス−イソプロピルアルコール浴中で−70℃に冷却し、n−ブチルリチウム/ヘキサン(1.59M溶液)4.7ml(7.5mmol)を加えて40分間攪拌した。冷却浴を外して20℃まで昇温させ、1時間保持した後に溶媒を留去した。ここにトルエン70ml、ジエチルエーテル3mlを加えて溶解させ−70℃に冷却した。四塩化ハフニウム1.25g(3.9mmol)を加え、すぐに冷却浴を外して徐々に室温まで昇温した。得られた錯体の立体組成は1H NMRよりラセミ:メソ=33:67であった。溶媒を留去し、DME60mlを加えて60℃で3時間加熱攪拌した。この操作により錯体の立体組成はラセミ:メソ=93:7となった。上澄みをデカントで除いた後の沈殿物をジクロロメタンに溶解させ、ろ過で不溶物を除去した。ろ液を濃縮して得られた固体を少量のトルエンで洗浄後に減圧乾燥し、黄色粉末状固体のイソプロピリデンビス(4−フェニル−1−インデニル)ハフニウムジクロリドをラセミ体純度100%、収量1.25g、収率53%で得た。
H−NMR(400MHz,CDCl):δ7.78(d,J=8.8Hz,2H),7.57(dd,J=8.3Hz,4H),7.42(t,J=7.1Hz,4H),7.34(t,J=7.3Hz,2H),7.26(d,J=6.3Hz,2H),7.13−7.09(m,2H),6.72(dd,J=3.6Hz,2H),6.18(d,J=3.6Hz,2H),2.41(s,6H).
(iv)イソプロピリデンビス(4−フェニル−1−インデニル)ジメチルハフニウムの合成
回転子を入れた100ml枝付フラスコに、イソプロピリデンビス(4−フェニル−1−インデニル)ハフニウムジクロリド0.51g(0.76mmol)、トルエン40mlを入れて溶解させた。氷浴で0℃に冷却し、メチルマグネシウムブロミド/ジエチルエーテル(3.0M溶液)1.8ml(5.4mmol)を加えた後、40℃で11時間加熱攪拌した。室温でトリメチルシリルクロリド0.47ml(3.7mmol)を加えて30分間攪拌後、ジオキサン10mlを加えて30分間攪拌した。不溶物をろ過で除き、ろ液を濃縮して黄色の固体を得た。これを少量のヘキサンで洗浄後、デカントで上澄みを除いて減圧乾燥し淡黄色粉末状固体のイソプロピリデンビス(4−フェニル−1−インデニル)ジメチルハフニウムをラセミ体純度100%、収量0.32g、収率66%で得た。
H−NMR(400MHz,C):δ7.69(dd,J=8.4Hz,4H),7.35(d,J=9.0Hz,2H),7.22(t,J=7.6Hz,4H),7.15−7.09(m,4H),6.84−6.80(m,4H),5.57(d,J=3.5Hz,2H),1.77(s,6H),−0.99(s,6H).
(I) Synthesis of 4-phenyl-indene Synthesized according to the method described in JP-A-2008-101034.
(Ii) Synthesis of 2,2-bis (4-phenyl-inden-1-yl) propane In a 100 mL glass reaction vessel, 1.00 g (5.21 mmol) of 4-phenyl-indene, 1,2-dimethoxyethane (DME) 10mL and potassium hydroxide 0.583g (10.4mmol) were added, and it heated and refluxed at 90 degreeC for 1 hour. The reaction solution was cooled to 0 ° C., 0.151 g (2.60 mmol) of acetone was added, and the mixture was heated to reflux at 90 ° C. for 6 hours. The reaction solution was cooled to room temperature, 20 mL of distilled water was added, then transferred to a separatory funnel, extracted three times with ethyl acetate, and dried over sodium sulfate. Sodium sulfate was filtered off, the solvent was distilled off under reduced pressure, and the resulting crude product was purified by silica gel column chromatography (developing solvent, dichloromethane: petroleum ether = 1: 20), whereby 2,2-bis ( 0.45 g of 4-phenyl-inden-1-yl) propane was obtained as a light yellow solid (41% yield).
1 H-NMR (400 MHz, CDCl 3 ): δ 7.52 (dd, 4H), 7.44 (t, 4H), 7.41-7.34 (m, 4H), 7.16 (t, 2H) , 7.11 (dd, 2H), 6.59 (t, 2H), 3.48 (d, 2H), 1.81 (s, 6H).
(Iii) Synthesis of isopropylidenebis (4-phenyl-1-indenyl) hafnium dichloride 2,2-bis (4-phenyl-indene-1- Yl) 1.50 g (3.5 mmol) of propane was added and dissolved by adding 70 ml of toluene and 15 ml of diethyl ether. The solution was cooled to −70 ° C. in a dry ice-isopropyl alcohol bath, 4.7 ml (7.5 mmol) of n-butyllithium / hexane (1.59 M solution) was added, and the mixture was stirred for 40 minutes. The cooling bath was removed, the temperature was raised to 20 ° C., and the solvent was distilled off after maintaining for 1 hour. 70 ml of toluene and 3 ml of diethyl ether were added and dissolved therein, and cooled to -70 ° C. Hafnium tetrachloride (1.25 g, 3.9 mmol) was added, the cooling bath was immediately removed, and the temperature was gradually raised to room temperature. The steric composition of the obtained complex was racemic: meso = 33: 67 from 1H NMR. The solvent was distilled off, 60 ml of DME was added, and the mixture was heated and stirred at 60 ° C. for 3 hours. By this operation, the steric composition of the complex became racemic: meso = 93: 7. The precipitate after removing the supernatant with decant was dissolved in dichloromethane, and the insoluble material was removed by filtration. The solid obtained by concentrating the filtrate was washed with a small amount of toluene and dried under reduced pressure, and yellow powdery solid isopropylidenebis (4-phenyl-1-indenyl) hafnium dichloride was obtained with a racemic purity of 100% and a yield of 1. 25 g, 53% yield.
1 H-NMR (400 MHz, CDCl 3 ): δ 7.78 (d, J = 8.8 Hz, 2H), 7.57 (dd, J = 8.3 Hz, 4H), 7.42 (t, J = 7 .1 Hz, 4H), 7.34 (t, J = 7.3 Hz, 2H), 7.26 (d, J = 6.3 Hz, 2H), 7.13-7.09 (m, 2H), 6 .72 (dd, J = 3.6 Hz, 2H), 6.18 (d, J = 3.6 Hz, 2H), 2.41 (s, 6H).
(Iv) Synthesis of isopropylidenebis (4-phenyl-1-indenyl) dimethylhafnium In a 100 ml branch flask containing a rotator, 0.51 g of isopropylidenebis (4-phenyl-1-indenyl) hafnium dichloride (0. 76 mmol) and 40 ml of toluene were added and dissolved. The mixture was cooled to 0 ° C. in an ice bath, 1.8 ml (5.4 mmol) of methylmagnesium bromide / diethyl ether (3.0 M solution) was added, and the mixture was heated and stirred at 40 ° C. for 11 hours. At room temperature, 0.47 ml (3.7 mmol) of trimethylsilyl chloride was added and stirred for 30 minutes, and then 10 ml of dioxane was added and stirred for 30 minutes. Insoluble matter was removed by filtration, and the filtrate was concentrated to give a yellow solid. This was washed with a small amount of hexane, the supernatant was removed with decant, and dried under reduced pressure. Obtained in 66% yield.
1 H-NMR (400 MHz, C 6 D 6 ): δ 7.69 (dd, J = 8.4 Hz, 4H), 7.35 (d, J = 9.0 Hz, 2H), 7.22 (t, J = 7.6 Hz, 4H), 7.15-7.09 (m, 4H), 6.84-6.80 (m, 4H), 5.57 (d, J = 3.5 Hz, 2H), 1 .77 (s, 6H), -0.99 (s, 6H).

・メタロセン化合物B:ジメチルシリレンビス(4−フェニル−1−インデニル)ジメチルハフニウムの合成 Metallocene compound B: Synthesis of dimethylsilylene bis (4-phenyl-1-indenyl) dimethylhafnium

Figure 2015199930
Figure 2015199930

(i)ジメチルビス(4−フェニルインデン−1−イル)シランの合成
文献(Oraganometallics 1994年, 13巻, 954−963頁)記載の方法に従って合成した。
(ii)ラセミ−ジメチルシリレンビス(4−フェニル−1−インデニル)ハフニウムジクロリドの合成
200mlのガラス製反応容器に、ジメチルビス(4−フェニルインデン−1−イル)シラン4.90g(11.1mmol)、ジエチルエーテル110mlを加え、ドライアイス−ヘプタン浴で−70℃まで冷却した。ここに1.62mol/Lのn−ブチルリチウム−n−ヘキサン溶液14.0ml(22.7mmol)を滴下し、室温で3.5時間撹拌した。反応液の溶媒を減圧で留去し、トルエン100mlを加え、ドライアイス−ヘプタン浴で−70℃まで冷却した。そこに、四塩化ハフニウム3.56g(11.1mmol)を加えた。その後、徐々に室温に戻しながら17時間撹拌した。このときのラセミ体とメソ体の生成比率は55:45であった。
ジクロロメタンを200mL加え、セライトろ過した後、トルエン中で再結晶を行うことで、ジメチルシリレンビス(4−フェニル−1−インデニル)ハフニウムジクロリドのラセミ体を橙色固体として2.23g得た(収率29%)。
H−NMR(400MHz,CDCl):δ7.63(d,4H),7.53(d,2H),7.42(t,4H),7.38−7.31(m,4H),7.16(dd,2H),7.01(d,2H),6.10(d,2H),1.18(s,6H).
(iii)ラセミ−ジメチルシリレンビス(4−フェニル−1−インデニル)ジメチルハフニウムの合成
100mlのガラス製反応容器に、ジメチルシリレンビス(4−フェニル−1−インデニル)ハフニウムジクロリド1.20g(1.56mmol)、トルエン50mLを加えた、ここに3.0mol/Lの臭化メチルマグネシウム−ジエチルエーテル溶液3.6mL(10.8mmol)を室温で滴下した後、80℃で1時間攪拌した。反応液を氷浴で0℃に冷却した後、クロロトリメチルシラン0.98mL(7.76mmol)を加え、室温で30分攪拌し、続けて1,4−ジオキサン2.0mL(23.4mmol)を加え、室温でさらに30分攪拌した。懸濁液をセライトろ過した後、溶媒を減圧で留去した。得られた黄色固体をヘキサン10mLで懸濁し、ガラスフリットでろ過し、固体をさらに5mLのヘキサンで3回洗浄することで、ジメチルシリレンビス(4−フェニル−1−インデニル)ジメチルハフニウムのラセミ体を黄色固体として837mg得た(収率85%)。
H−NMR(400MHz,C):δ7.70(dd,4H),7.27−7.18(m,8H),7.15−7.07(m,4H),6.90(dd,2H),5.63(d,2H),0.60(s,6H),−1.07(s,6H).
(I) Synthesis of dimethylbis (4-phenylinden-1-yl) silane The compound was synthesized according to the method described in the literature (Oraganometallics 1994, 13, 954-963).
(Ii) Synthesis of racemic-dimethylsilylenebis (4-phenyl-1-indenyl) hafnium dichloride In a 200 ml glass reaction vessel, 4.90 g (11.1 mmol) of dimethylbis (4-phenylinden-1-yl) silane Then, 110 ml of diethyl ether was added, and the mixture was cooled to −70 ° C. in a dry ice-heptane bath. A 1.62 mol / L n-butyllithium-n-hexane solution (14.0 ml, 22.7 mmol) was added dropwise thereto, and the mixture was stirred at room temperature for 3.5 hours. The solvent of the reaction solution was distilled off under reduced pressure, 100 ml of toluene was added, and the mixture was cooled to -70 ° C in a dry ice-heptane bath. Thereto was added 3.56 g (11.1 mmol) of hafnium tetrachloride. Thereafter, the mixture was stirred for 17 hours while gradually returning to room temperature. The production ratio of the racemic body and the meso body at this time was 55:45.
After adding 200 mL of dichloromethane and filtering through Celite, recrystallization in toluene gave 2.23 g of a racemic dimethylsilylene bis (4-phenyl-1-indenyl) hafnium dichloride as an orange solid (yield 29). %).
1 H-NMR (400 MHz, CDCl 3 ): δ 7.63 (d, 4H), 7.53 (d, 2H), 7.42 (t, 4H), 7.38-7.31 (m, 4H) 7.16 (dd, 2H), 7.01 (d, 2H), 6.10 (d, 2H), 1.18 (s, 6H).
(Iii) Synthesis of racemic-dimethylsilylenebis (4-phenyl-1-indenyl) dimethylhafnium In a 100 ml glass reaction vessel, 1.20 g (1.56 mmol) of dimethylsilylenebis (4-phenyl-1-indenyl) hafnium dichloride ), Toluene (50 mL) was added, and a 3.0 mol / L methylmagnesium bromide-diethyl ether solution (3.6 mL, 10.8 mmol) was added dropwise at room temperature, followed by stirring at 80 ° C. for 1 hour. After cooling the reaction solution to 0 ° C. in an ice bath, 0.98 mL (7.76 mmol) of chlorotrimethylsilane was added and stirred at room temperature for 30 minutes, followed by 2.0 mL (23.4 mmol) of 1,4-dioxane. The mixture was further stirred at room temperature for 30 minutes. The suspension was filtered through celite, and the solvent was evaporated under reduced pressure. The obtained yellow solid was suspended in 10 mL of hexane, filtered through a glass frit, and the solid was further washed with 5 mL of hexane three times to obtain a racemic dimethylsilylenebis (4-phenyl-1-indenyl) dimethylhafnium. 837 mg was obtained as a yellow solid (yield 85%).
1 H-NMR (400 MHz, C 6 D 6 ): δ 7.70 (dd, 4H), 7.27-7.18 (m, 8H), 7.15-7.07 (m, 4H), 6. 90 (dd, 2H), 5.63 (d, 2H), 0.60 (s, 6H), -1.07 (s, 6H).

(2)エチレン・α−オレフィン共重合体の製造
高圧イオン重合:エチレン/プロピレン/1−ヘキセン共重合
表1に示した実施例1〜10、比較例1〜8の重合反応を、十分に乾燥し、窒素で置換した5.0Lのステンレス製オートクレーブ反応器(攪拌装置付)中で行った。原料の供給は表1に示したエチレン、プロピレン、1−ヘキセンの比を保ちながら原料ガスの合計が40kg/時になるよう連続的に行い、圧力の調整は排出側の圧力調整弁で約80MPaに保った。重合温度の制御は触媒の供給速度で制御した。また、スカベンジャーとして30mg/Lに調製したトリ(n−オクチル)アルミニウム(成分(C))/ヘプタン溶液を連続的に供給した。
メタロセン化合物(成分(A))と助触媒のMeN(H)C][B(C](成分(B))は別々にトルエン溶液を調製し(それぞれ20−50mg/L、37−120mg/L)、メタロセン化合物と助触媒のモル比が1:1.5になるように配管中で混合しながら重合系に連続供給した。
表1に、各実施例1〜10及び比較例1〜8における、用いたメタロセン化合物、供給した各モノマーのモル比、重合温度といった重合条件、及び得られたポリマーのMFR,密度、NMR測定から求めたプロピレン・ヘキセン含量、各種オレフィン含量を記載した。
(2) Production of ethylene / α-olefin copolymer High-pressure ion polymerization: ethylene / propylene / 1-hexene copolymer The polymerization reactions of Examples 1 to 10 and Comparative Examples 1 to 8 shown in Table 1 were sufficiently dried. And in a 5.0 L stainless steel autoclave reactor (with a stirrer) substituted with nitrogen. The supply of the raw material is continuously performed so that the total of the raw material gases is 40 kg / hour while maintaining the ratio of ethylene, propylene, and 1-hexene shown in Table 1, and the pressure is adjusted to about 80 MPa with a pressure adjusting valve on the discharge side Kept. The polymerization temperature was controlled by the catalyst feed rate. Moreover, the tri (n-octyl) aluminum (component (C)) / heptane solution prepared to 30 mg / L as a scavenger was supplied continuously.
The metallocene compound (component (A)) and the co-catalyst Me 2 N (H) C 6 H 5 ] [B (C 6 F 5 ) 4 ] (component (B)) were separately prepared in toluene solutions (each 20 −50 mg / L, 37-120 mg / L), and the mixture was continuously fed to the polymerization system while being mixed in the piping so that the molar ratio of the metallocene compound to the promoter was 1: 1.5.
Table 1 shows the polymerization conditions such as the metallocene compound used, the molar ratio of each monomer supplied, and the polymerization temperature in each of Examples 1 to 10 and Comparative Examples 1 to 8, and the MFR, density, and NMR measurements of the obtained polymer. The obtained propylene / hexene content and various olefin contents were described.

溶液重合:エチレン/プロピレン共重合
(実施例11)十分に乾燥し、窒素で置換した2.4Lのステンレス製オートクレーブ(攪拌、温度制御装置付)にトルエン1000mL、トリ(n−オクチル)アルミニウム0.15mmol、プロピレン10mLを入れて、100度に昇温した。反応器内の温度が安定した後、エチレン分圧として0.5MPaGになるまで加圧し、気相部のエチレンとプロピレンのモル比をガスクロで測定した。エチレンおよびプロピレンのフィード量、気相部の体積およびガスクロの分析値から液相部に溶解しているエチレンとプロピレンの組成を計算し、モノマー組成(液相中のエチレンとプロピレンのモル比 88/12)を算出した。その後メタロセン化合物A 0.3μmol−トルエン1mL溶液と助触媒[MeN(H)C][B(C]0.3μmol−トルエン1mL溶液を室温・窒素下で接触後に室温で10分間攪拌した溶液を窒素で圧入して重合を開始した。その後、重合開始時の内圧を維持するようにエチレンをフィードし、撹拌しながら15分間重合を行った。エタノールを窒素で圧入することにより反応を停止し、降温後、ポリマーを含むトルエンを回収した。そこにアセトン1000mlを添加してポリマーを析出させ、ろ過することでポリマーを得た。ポリマー収量は7.2gであった。
Solution Polymerization: Ethylene / Propylene Copolymerization (Example 11) To a 2.4 L stainless steel autoclave (stirring with temperature controller) sufficiently dried and substituted with nitrogen, 1000 mL of toluene, tri (n-octyl) aluminum 15 mmol and 10 mL of propylene were added and the temperature was raised to 100 degrees. After the temperature in the reactor was stabilized, the pressure was increased to 0.5 MPaG as the ethylene partial pressure, and the molar ratio of ethylene and propylene in the gas phase was measured by gas chromatography. The composition of ethylene and propylene dissolved in the liquid phase part is calculated from the feed amount of ethylene and propylene, the volume of the gas phase part and the analysis value of gas chromatography, and the monomer composition (molar ratio of ethylene and propylene in the liquid phase is 88 / 12) was calculated. Thereafter, the metallocene compound A 0.3 μmol-toluene 1 mL solution and the cocatalyst [Me 2 N (H) C 6 H 5 ] [B (C 6 F 5 ) 4 ] 0.3 μmol-toluene 1 mL solution were contacted at room temperature and under nitrogen. Thereafter, the solution stirred for 10 minutes at room temperature was injected with nitrogen to initiate polymerization. Thereafter, ethylene was fed so as to maintain the internal pressure at the start of polymerization, and polymerization was carried out for 15 minutes while stirring. The reaction was stopped by press-fitting ethanol with nitrogen, and the toluene containing the polymer was recovered after the temperature was lowered. 1000 ml of acetone was added thereto to precipitate a polymer, followed by filtration to obtain a polymer. The polymer yield was 7.2 g.

(比較例9)プロピレンの量を5mlとした以外は実施例11と同じ方法で重合を行った。その時の液相内のエチレンとプロピレンのモル比は94/6となった。またポリマー収量は7.2gであった。
表2に、実施例11及び比較例9で得られたポリマーのMFR、密度、NMR測定から求めたプロピレン含量、各種オレフィン含量を記載した。
(Comparative Example 9) Polymerization was carried out in the same manner as in Example 11 except that the amount of propylene was changed to 5 ml. The molar ratio of ethylene and propylene in the liquid phase at that time was 94/6. The polymer yield was 7.2 g.
Table 2 shows the MFR, density, and propylene content determined from NMR measurement of the polymers obtained in Example 11 and Comparative Example 9, and various olefin contents.

4.太陽電池封止材の製造
上記で得られたエチレン・α−オレフィン共重合体100重量部に対して、有機過酸化物として、t−ブチルパーオキシ−2−エチルへキシルカーボネイト(アルケマ吉富社製、TBEC)を1.0重量部、ヒンダードアミン系光安定化剤として、コハク酸ジメチルと4−ヒドロキシ−2,2,6,6−テトラメチル−1−ピペリジンエタノールの重合物(BASF社製、TINUVIN 622LD)0.05重量部、紫外線吸収剤として、2−ヒドロキシ−4−n−オクトキシベンゾフェノン(サンケミカル社製 CYTEC UV531)0.3重量部、シランカップリング剤として、γ−メタクリロキシプロピルトリメトキシシラン(信越化学工業社製、KBM503)0.3重量部、酸化防止剤として、n−オクダデシル−3−(3’,5’−ジ−t−ブチル−4’−ヒドロキシフェニル)プロピオネート(BASF社製 IRGANOX(登録商標)1076)0.025重量部を配合した。これを十分に混合し、40mmφ単軸押出機を用いて設定温度100℃、押出量(17kg/時)の条件でペレット化した。
得られたペレットを、150℃−0kg/cmの条件で、3分予熱した後、150℃−100kg/cmの条件で27分加圧(150℃で30分間プレス成形)し、その後、30℃に設定された冷却プレスに100kg/cmの加圧の条件で、10分間冷却することで、厚み0.7mmのシートを作製した。シートの架橋特性を評価した。評価結果を表1に示す。
4). Manufacture of solar cell encapsulant For 100 parts by weight of the ethylene / α-olefin copolymer obtained above, t-butylperoxy-2-ethylhexyl carbonate (manufactured by Arkema Yoshitomi Co., Ltd.) is used as the organic peroxide. , TBEC) as a hindered amine light stabilizer, a polymer of dimethyl succinate and 4-hydroxy-2,2,6,6-tetramethyl-1-piperidineethanol (manufactured by BASF, TINUVIN) 622LD) 0.05 part by weight, as a UV absorber, 2-hydroxy-4-n-octoxybenzophenone (CYTEC UV531 manufactured by Sun Chemical Co., Ltd.) 0.3 part by weight, and as a silane coupling agent, γ-methacryloxypropyltri 0.3 parts by weight of methoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., KBM503), as an antioxidant, n-octane Decyl-3- (3 ', 5'-di -t- butyl-4'-hydroxyphenyl) propionate (BASF Corp. IRGANOX (R) 1076) was blended 0.025 part by weight. This was sufficiently mixed and pelletized using a 40 mmφ single screw extruder under the conditions of a set temperature of 100 ° C. and an extrusion rate (17 kg / hour).
The resulting pellet, in the conditions of 150 ℃ -0kg / cm 2, after 3 minutes preheat, 150 ℃ -100kg / cm (30 minutes press molding at 0.99 ° C.) 27 minutes pressurization at 2 conditions, and then, A sheet having a thickness of 0.7 mm was produced by cooling for 10 minutes in a cooling press set to 30 ° C. under a pressure of 100 kg / cm 2 . The cross-linking properties of the sheet were evaluated. The evaluation results are shown in Table 1.

Figure 2015199930
Figure 2015199930

Figure 2015199930
Figure 2015199930

[実施例と比較例の対比結果の考察]
表1、表2から明らかなように、同じ重合温度の重合結果である実施例1〜4および比較例1、2並びに実施例11および比較例9から、ビニル+ビニリデン量を増やすには重合時のプロピレン濃度を高くすることが有効であることが分かる。またプロピレン濃度が10%以上の場合、ビニル+ビニリデンの含量が主鎖1000炭素当たり0.5個を超える樹脂組成物を得ることが可能であることが分かる。さらに、実施例9,10、及び比較例8を比べることにより、錯体Bでもプロピレン濃度が10%以上の場合、ビニル+ビニリデンの含量が主鎖1000炭素当たり0.5個を超えることが分かる。
加えて、実施例4,5の比較、及び実施例6〜8を比較することにより、ビニル+ビニリデンの量を増やすには重合温度を高くすることが有効であることが分かる。また、実施例1〜4と比較例5,6、及び実施例9と比較例8を比べることによりコモノマーとしてプロピレン以外を用いた場合、ビニル+ビニリデンの生成量が少なく、コモノマー濃度が10%以上の場合でも主鎖1000炭素当たり0.5個を超えないことが分かる。
[Consideration of Comparison Results of Examples and Comparative Examples]
As apparent from Tables 1 and 2, from Examples 1 to 4 and Comparative Examples 1 and 2, and Example 11 and Comparative Example 9 which are polymerization results at the same polymerization temperature, the amount of vinyl + vinylidene was increased during polymerization. It can be seen that it is effective to increase the propylene concentration. It can also be seen that when the propylene concentration is 10% or more, it is possible to obtain a resin composition having a vinyl + vinylidene content exceeding 0.5 per 1000 carbons of the main chain. Further, by comparing Examples 9 and 10 and Comparative Example 8, it can be seen that the content of vinyl + vinylidene exceeds 0.5 per 1000 carbons of the main chain when the propylene concentration is 10% or more even in complex B.
In addition, by comparing Examples 4 and 5 and Examples 6 to 8, it can be seen that increasing the polymerization temperature is effective for increasing the amount of vinyl + vinylidene. In addition, when Examples 1 to 4 were compared with Comparative Examples 5 and 6 and Example 9 and Comparative Example 8 were used other than propylene as a comonomer, the amount of vinyl + vinylidene produced was small, and the comonomer concentration was 10% or more. It can be seen that the number of carbon atoms does not exceed 0.5 per 1000 carbons in the main chain.

架橋速度への効果検証:架橋速度はビニル・ビニリデンの数の他にポリマーのMFRにも依存することから、同程度のMFRでビニル・ビニリデン数の異なるポリマーの架橋特性(耐熱性)を比較した。MFRが約2の実施例1と比較例5・比較例8、MFRが約6.5の実施例3と比較例6、およびMFRが約25の実施例4と比較例7をそれぞれ比べると、ビニル+ビニリデン数が多い実施例の方がゲル分率の値が大きいことから耐熱性に優れていることがわかる。   Verification of effect on cross-linking rate: Cross-linking rate depends on MFR of polymer in addition to the number of vinyl / vinylidene, so cross-linking characteristics (heat resistance) of polymers having different vinyl / vinylidene numbers with comparable MFR were compared. . Comparing Example 1 with an MFR of about 2 and Comparative Example 5 and Comparative Example 8, Example 3 with an MFR of about 6.5 and Comparative Example 6, and Example 4 with an MFR of about 25 and Comparative Example 7, It can be seen that the example having a larger number of vinyl + vinylidene has better heat resistance since the gel fraction has a larger value.

以上から明らかなように、メタロセンを用いたエチレン・α−オレフィン共重合で、コモノマーとしてプロピレンを一定濃度(10mol%)以上用いた場合、生成するポリマー中のビニル、ビニリデン量が増え(主鎖1000炭素あたりの数が0.50個以上となり)、封止材に要求される架橋特性が大幅に改善された樹脂組成物を製造でき、工業的価値が極めて大きい。   As is apparent from the above, when ethylene / α-olefin copolymerization using metallocene is used with a certain concentration (10 mol%) or more of propylene as a comonomer, the amount of vinyl and vinylidene in the polymer to be produced increases (main chain 1000 The number per carbon is 0.50 or more), and it is possible to produce a resin composition in which the crosslinking characteristics required for the sealing material are greatly improved, and the industrial value is extremely high.

本発明の太陽電池封止材用樹脂組成物の製造方法は、樹脂材料としてビニル、ビニリデン数の多いエチレン・α−オレフィン共重合体を用いることにより、架橋特性に非常に優れ、短時間で架橋可能な太陽電池封止材を提供することができる。また、該太陽電池封止材を用いることにより、耐熱性、透明性、耐候性に優れ、かつ、製造コストと低減された太陽電池モジュールを提供することができ、工業的価値が極めて大きい。   The method for producing a resin composition for a solar cell encapsulant of the present invention uses a vinyl and ethylene / α-olefin copolymer having a high vinylidene number as a resin material, so that it has excellent cross-linking properties and can be cross-linked in a short time. A possible solar cell encapsulant can be provided. In addition, by using the solar cell encapsulant, it is possible to provide a solar cell module that is excellent in heat resistance, transparency, and weather resistance, and that has a reduced manufacturing cost, and has extremely high industrial value.

Claims (10)

エチレン・α−オレフィン共重合体及び有機過酸化物を含む太陽電池封止材用樹脂組成物の製造方法であって、
前記エチレン・α−オレフィン共重合体が、下記の成分(A)を含むオレフィン重合用触媒を用い、下記(a1)の条件下で共重合を行なうことにより得られることを特徴とする太陽電池封止材用樹脂組成物の製造方法。
成分(A):メタロセン化合物
(a1)反応系中のプロピレン濃度が10〜49モル%
A method for producing a resin composition for a solar cell encapsulant comprising an ethylene / α-olefin copolymer and an organic peroxide,
The above-mentioned ethylene / α-olefin copolymer is obtained by carrying out copolymerization under the conditions of (a1) below using an olefin polymerization catalyst containing the following component (A): A method for producing a resin composition for a stopper.
Component (A): Metallocene compound (a1) The propylene concentration in the reaction system is 10 to 49 mol%.
下記の(a1’)の条件下で共重合を行なうことを特徴とする請求項1に記載の太陽電池封止材用樹脂組成物の製造方法。
(a1’)反応系中のプロピレン濃度が20〜49モル%
The method for producing a resin composition for a solar cell sealing material according to claim 1, wherein the copolymerization is performed under the following condition (a1 ').
(A1 ′) The propylene concentration in the reaction system is 20 to 49 mol%.
成分(A)が、下記一般式(I)で表されるメタロセン化合物であることを特徴とする請求項1又は2に記載の太陽電池封止材用樹脂組成物の製造方法。
Figure 2015199930
[一般式(I)中、MはTi、Zr、又はHfであり;
−R10及びR11−R20は同一又は異なって、それぞれ水素原子、ハロゲン原子、炭素数1〜10のアルキル基、炭素数1〜10のハロゲン化アルキル基、炭素数6〜20のアリール基、炭素数1〜10のアルコキシ基、炭素数1〜6の炭化水素基を有するシリル基、炭素数1〜6の炭化水素基を有するシリル基で置換された炭素数1〜20のアルキル基、−NR23 基、−SR23基、−OSiR23 基又は−PR23 基であり(R23は、ハロゲン原子、炭素数1〜10のアルキル基、炭素数6〜20のアリール基であり)、R−R10及びR11−R20が隣接するR基同士でそれらを連結する原子と一緒になって1つ以上の芳香族環又は脂肪族環を形成してもよく、RとR若しくはRとR10、R15とR16若しくはR15とR20がそれらを連結する原子と一緒になって1つの芳香族環又は脂肪族環を形成していてもよく;
YはSi又はCであり;
21とR22は同一又は異なって、それぞれ水素原子、ハロゲン原子、炭素数1〜10のアルキル基、炭素数1〜10のフルオロアルキル基、炭素数1〜10のアルコキシ基、炭素数6〜20のアリール基、炭素数6〜10のフルオロアリール基、炭素数6〜10のアリールオキシ基、炭素数2〜10のアルケニル基、炭素数7〜40のアリールアルキル基、炭素数7〜40のアルキルアリール基、炭素数8〜40のアリールアルケニル基であり、かつ、R21とR22が同時に水素原子ではなく、R21とR22がそれらを連結する原子と一緒になって1つ以上の環を形成してもよく;
とXは同一又は異なって、それぞれ水素原子、炭素数1〜10のアルキル基、炭素数1〜10のアルコキシ基、炭素数6〜20のアリール基、炭素数6〜10のアリールオキシ基、炭素数2〜10のアルケニル基、炭素数7〜40のアリールアルキル基、炭素数7〜40のアルキルアリール基、炭素数8〜40のアリールアルケニル基、炭素数1〜6の炭化水素基を有するシリル基で置換された炭素数1〜20のアルキル基、炭素数1〜10のアミノ基、OH基、ハロゲン原子又は配位可能な中性配位子であり、XとXが、それらを連結する原子と一緒になって1つの環を形成していてもよい。]
Component (A) is a metallocene compound represented by the following general formula (I), The manufacturing method of the resin composition for solar cell sealing materials of Claim 1 or 2 characterized by the above-mentioned.
Figure 2015199930
[In general formula (I), M is Ti, Zr, or Hf;
R 1 -R 10 and R 11 -R 20 are the same or different and each is a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms, a halogenated alkyl group having 1 to 10 carbon atoms, or an alkyl group having 6 to 20 carbon atoms. C1-C20 alkyl substituted with an aryl group, a C1-C10 alkoxy group, a silyl group having a C1-C6 hydrocarbon group, or a silyl group having a C1-C6 hydrocarbon group Group, —NR 23 2 group, —SR 23 group, —OSiR 23 3 group or —PR 23 2 group (R 23 is a halogen atom, an alkyl group having 1 to 10 carbon atoms, an aryl having 6 to 20 carbon atoms) R 1 -R 10 and R 11 -R 20 may form one or more aromatic or aliphatic rings together with the atoms connecting them between adjacent R groups. , R 5 and R 6 or R 5 and R 1 , They may form a single aromatic ring or an aliphatic ring together with the atoms to which R 15 and R 16 or R 15 and R 20 are linked to them;
Y is Si or C;
R 21 and R 22 are the same or different and are each a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms, a fluoroalkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, or 6 to 6 carbon atoms. 20 aryl groups, C6-C10 fluoroaryl groups, C6-C10 aryloxy groups, C2-C10 alkenyl groups, C7-C40 arylalkyl groups, C7-C40 An alkylaryl group, an arylalkenyl group having 8 to 40 carbon atoms, and R 21 and R 22 are not hydrogen atoms at the same time, and R 21 and R 22 together with the atoms connecting them are one or more May form a ring;
X 1 and X 2 are the same or different and are each a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, an aryl group having 6 to 20 carbon atoms, or an aryloxy having 6 to 10 carbon atoms. Group, alkenyl group having 2 to 10 carbon atoms, arylalkyl group having 7 to 40 carbon atoms, alkylaryl group having 7 to 40 carbon atoms, arylalkenyl group having 8 to 40 carbon atoms, hydrocarbon group having 1 to 6 carbon atoms An alkyl group having 1 to 20 carbon atoms, an amino group having 1 to 10 carbon atoms, an OH group, a halogen atom or a neutral ligand capable of coordination, which is substituted with a silyl group having X 1 and X 2 , Together with atoms connecting them, may form a ring. ]
前記オレフィン重合用触媒が、下記の成分(B)を含むことを特徴とする請求項1〜3のいずれかに記載の太陽電池封止材用樹脂組成物の製造方法。
成分(B):成分(A)と反応してイオン対を形成する化合物又はイオン交換性層状珪酸塩
The said olefin polymerization catalyst contains the following component (B), The manufacturing method of the resin composition for solar cell sealing materials in any one of Claims 1-3 characterized by the above-mentioned.
Component (B): Compound or ion-exchangeable layered silicate that reacts with component (A) to form an ion pair
前記オレフィン重合用触媒が、下記の成分(C)を含むことを特徴とする請求項1〜4のいずれかに記載の太陽電池封止材用樹脂組成物の製造方法。
成分(C):有機アルミニウム化合物
The said olefin polymerization catalyst contains the following component (C), The manufacturing method of the resin composition for solar cell sealing materials in any one of Claims 1-4 characterized by the above-mentioned.
Component (C): Organoaluminum compound
成分(B)がホウ素化合物であることを特徴とする請求項1〜5のいずれかに記載の太陽電池封止材用樹脂組成物の製造方法。   Component (B) is a boron compound, The manufacturing method of the resin composition for solar cell sealing materials in any one of Claims 1-5 characterized by the above-mentioned. 一般式(I)中、Yが炭素原子であることを特徴とする請求項3〜5のいずれかに記載の太陽電池封止材用樹脂組成物の製造方法。   In general formula (I), Y is a carbon atom, The manufacturing method of the resin composition for solar cell sealing materials in any one of Claims 3-5 characterized by the above-mentioned. 前記エチレン・α−オレフィン共重合体が下記の(b1)の特性を有することを特徴とする請求項1〜7のいずれかに記載の太陽電池封止材用樹脂組成物の製造方法。
(b1)エチレン・α−オレフィン共重合体中のビニル、ビニリデンの二重結合の合計数が0.50(個/主鎖1000C)以上である(ただし、ビニル、ビニリデンの個数は、NMRで測定した数である)
The method for producing a resin composition for a solar cell encapsulant according to any one of claims 1 to 7, wherein the ethylene / α-olefin copolymer has the following property (b1).
(B1) The total number of vinyl and vinylidene double bonds in the ethylene / α-olefin copolymer is 0.50 (pieces / 1000 C main chain) or more (however, the number of vinyl and vinylidene is measured by NMR) Is the number of
請求項8に記載の方法により製造された前記樹脂組成物を用いることを特徴とする太陽電池封止材。   A solar cell encapsulant comprising the resin composition produced by the method according to claim 8. 請求項9に記載の方法により製造された前記太陽電池封止材を用いることを特徴とする太陽電池モジュール。   A solar cell module using the solar cell encapsulant manufactured by the method according to claim 9.
JP2015067097A 2014-03-31 2015-03-27 Method for producing resin composition for solar cell encapsulant, solar cell encapsulant and solar cell module using the same Active JP6488817B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015067097A JP6488817B2 (en) 2014-03-31 2015-03-27 Method for producing resin composition for solar cell encapsulant, solar cell encapsulant and solar cell module using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014072586 2014-03-31
JP2014072586 2014-03-31
JP2015067097A JP6488817B2 (en) 2014-03-31 2015-03-27 Method for producing resin composition for solar cell encapsulant, solar cell encapsulant and solar cell module using the same

Publications (2)

Publication Number Publication Date
JP2015199930A true JP2015199930A (en) 2015-11-12
JP6488817B2 JP6488817B2 (en) 2019-03-27

Family

ID=54551498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015067097A Active JP6488817B2 (en) 2014-03-31 2015-03-27 Method for producing resin composition for solar cell encapsulant, solar cell encapsulant and solar cell module using the same

Country Status (1)

Country Link
JP (1) JP6488817B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017110221A (en) * 2015-12-14 2017-06-22 日本ポリエチレン株式会社 Polyethylene resin, polyethylene resin composition and solar cell encapsulation material and solar cell module using the same
JP2018109117A (en) * 2016-12-29 2018-07-12 日本ポリエチレン株式会社 Method for producing polyethylene resin, and solar cell sealing material and solar cell module including polyethylene resin produced by the method
WO2018180483A1 (en) * 2017-03-28 2018-10-04 三井化学株式会社 Resin composition, sheet, solar cell sealing material, solar cell module, and method for producing sheet for solar cell sealing material
WO2019121735A1 (en) * 2017-12-18 2019-06-27 Borealis Ag Cable made from crosslinkable composition with antioxidant and beneficial methane formation
KR20190127564A (en) * 2018-05-04 2019-11-13 주식회사 엘지화학 Ethylene/alpha-olefin Copolymer, Method For Preparing The Same And Resin Composition For Optical Film Comprising The Same
KR20190127521A (en) * 2018-05-04 2019-11-13 주식회사 엘지화학 Resin Composition For Optical Film Comprising Ethylene/alpha-olefin Copolymer, And Optical Film Comprising The Same
JP2021507033A (en) * 2017-12-18 2021-02-22 ボレアリス エージー Crosslinkable compositions containing antioxidants, as well as methane formations and articles.
JP2021520444A (en) * 2018-05-04 2021-08-19 エルジー・ケム・リミテッド Ethylene / α-olefin copolymer and its production method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08311264A (en) * 1995-05-24 1996-11-26 Mitsui Petrochem Ind Ltd Vulcanizable rubber composition
JPH10218921A (en) * 1997-01-31 1998-08-18 Hoechst Ag Production of metallocene catalyst system
JP2012009691A (en) * 2010-06-25 2012-01-12 Japan Polyethylene Corp Resin composition for solar cell sealing material and solar cell sealing material using the same, and solar cell module
WO2012070245A1 (en) * 2010-11-24 2012-05-31 三井化学株式会社 Solar cell encapsulant and solar cell module using same
JP2013139558A (en) * 2011-12-06 2013-07-18 Japan Polyethylene Corp Resin composition for sealing solar cell, and solar cell sealant and solar cell module using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08311264A (en) * 1995-05-24 1996-11-26 Mitsui Petrochem Ind Ltd Vulcanizable rubber composition
JPH10218921A (en) * 1997-01-31 1998-08-18 Hoechst Ag Production of metallocene catalyst system
JP2012009691A (en) * 2010-06-25 2012-01-12 Japan Polyethylene Corp Resin composition for solar cell sealing material and solar cell sealing material using the same, and solar cell module
WO2012070245A1 (en) * 2010-11-24 2012-05-31 三井化学株式会社 Solar cell encapsulant and solar cell module using same
JP2013139558A (en) * 2011-12-06 2013-07-18 Japan Polyethylene Corp Resin composition for sealing solar cell, and solar cell sealant and solar cell module using the same

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017110221A (en) * 2015-12-14 2017-06-22 日本ポリエチレン株式会社 Polyethylene resin, polyethylene resin composition and solar cell encapsulation material and solar cell module using the same
JP2018109117A (en) * 2016-12-29 2018-07-12 日本ポリエチレン株式会社 Method for producing polyethylene resin, and solar cell sealing material and solar cell module including polyethylene resin produced by the method
WO2018180483A1 (en) * 2017-03-28 2018-10-04 三井化学株式会社 Resin composition, sheet, solar cell sealing material, solar cell module, and method for producing sheet for solar cell sealing material
JPWO2018180483A1 (en) * 2017-03-28 2019-12-12 三井化学株式会社 Resin composition, sheet, solar cell encapsulant, solar cell module, method for producing solar cell encapsulant sheet
US11674017B2 (en) 2017-12-18 2023-06-13 Borealis Ag Cable made from crosslinkable composition with antioxidant and beneficial methane formation
WO2019121735A1 (en) * 2017-12-18 2019-06-27 Borealis Ag Cable made from crosslinkable composition with antioxidant and beneficial methane formation
JP7451405B2 (en) 2017-12-18 2024-03-18 ボレアリス エージー Crosslinkable compositions and methane formation and articles containing antioxidants
CN111491996A (en) * 2017-12-18 2020-08-04 博里利斯股份公司 Cable made of a crosslinkable composition with an antioxidant and advantageously methane formation
JP2021507033A (en) * 2017-12-18 2021-02-22 ボレアリス エージー Crosslinkable compositions containing antioxidants, as well as methane formations and articles.
US11674016B2 (en) 2017-12-18 2023-06-13 Borealis Ag Crosslinkable composition with antioxidant and methane formation and article
CN111491996B (en) * 2017-12-18 2022-05-24 博里利斯股份公司 Cable made of a crosslinkable composition with an antioxidant and advantageously methane formation
KR20190127564A (en) * 2018-05-04 2019-11-13 주식회사 엘지화학 Ethylene/alpha-olefin Copolymer, Method For Preparing The Same And Resin Composition For Optical Film Comprising The Same
KR102527751B1 (en) 2018-05-04 2023-05-03 주식회사 엘지화학 Resin Composition For Optical Film Comprising Ethylene/alpha-olefin Copolymer, And Optical Film Comprising The Same
JP7086432B2 (en) 2018-05-04 2022-06-20 エルジー・ケム・リミテッド Ethylene / α-olefin copolymer and its production method
JP2021520444A (en) * 2018-05-04 2021-08-19 エルジー・ケム・リミテッド Ethylene / α-olefin copolymer and its production method
KR102622329B1 (en) 2018-05-04 2024-01-09 주식회사 엘지화학 Ethylene/alpha-olefin Copolymer, Method For Preparing The Same And Resin Composition For Optical Film Comprising The Same
KR20190127521A (en) * 2018-05-04 2019-11-13 주식회사 엘지화학 Resin Composition For Optical Film Comprising Ethylene/alpha-olefin Copolymer, And Optical Film Comprising The Same

Also Published As

Publication number Publication date
JP6488817B2 (en) 2019-03-27

Similar Documents

Publication Publication Date Title
JP6488817B2 (en) Method for producing resin composition for solar cell encapsulant, solar cell encapsulant and solar cell module using the same
AU719500B2 (en) 3-heteroatom substituted cyclopentadienyl-containing metal complexes and olefin polymerization process
KR101314496B1 (en) Encapsulation material composition and photovoltaic cell module comprising the same
JP5355087B2 (en) Solar cell sealing thermoplastic resin composition, solar cell sealing sheet, and solar cell
JP6428199B2 (en) Resin composition for solar cell encapsulant, and solar cell encapsulant and solar cell module using the same
KR101191126B1 (en) Encapsulant sheet, preparation method thereof, and photovoltaic module comprising the same
KR102622329B1 (en) Ethylene/alpha-olefin Copolymer, Method For Preparing The Same And Resin Composition For Optical Film Comprising The Same
JP5922232B2 (en) Solar cell module
JP5592032B1 (en) Resin composition for solar cell encapsulant, and solar cell encapsulant and solar cell module using the same
JP6394327B2 (en) Crosslinking ethylene / α-olefin copolymer, crosslinkable resin composition, and crosslinked product using the same
JP5830600B2 (en) Solar cell encapsulant and solar cell module
KR102387101B1 (en) A composition for an encapsulant film comprising ethylene/alpha-olefin copolymer and an encapsulant film comprising the same
JP6984128B2 (en) Manufacturing method of polyethylene resin, solar cell encapsulant and solar cell module using polyethylene resin manufactured by the method.
JP2017183479A (en) Polyethylene resin composition for solar battery sealing material, solar battery sealing material arranged by use thereof, and solar battery module
KR20210121031A (en) Curable composition comprising unsaturated polyolefin
JP2017110221A (en) Polyethylene resin, polyethylene resin composition and solar cell encapsulation material and solar cell module using the same
KR101289332B1 (en) Compositon for adhesive sheet and adhesive sheet prepared by using the same
KR20100123505A (en) Encapsulant sheet, preparation method thereof, and photovoltaic module comprising the same
JP2014208774A (en) Ethylenic copolymer, and solar cell encapsulation material and solar cell module using the same
JP6898426B2 (en) Method for manufacturing resin composition, sheet, solar cell encapsulant, solar cell module, sheet for solar cell encapsulant
JP7331414B2 (en) Polyethylene resin, solar cell encapsulant and solar cell module using the same
JP7418900B2 (en) Composition for encapsulant film containing ethylene/α-olefin copolymer and encapsulant film containing the same
JP7258411B2 (en) Composition for sealing material film containing ethylene/α-olefin copolymer and sealing material film containing the same
JP7374312B2 (en) Composition for encapsulant film and encapsulant film containing the same
JP6547484B2 (en) Method for producing ethylene-based polymer having unsaturated bond

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170710

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190211

R150 Certificate of patent or registration of utility model

Ref document number: 6488817

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250