JP2015198587A - Production method of frozen vegetable and food product including the same - Google Patents

Production method of frozen vegetable and food product including the same Download PDF

Info

Publication number
JP2015198587A
JP2015198587A JP2014078388A JP2014078388A JP2015198587A JP 2015198587 A JP2015198587 A JP 2015198587A JP 2014078388 A JP2014078388 A JP 2014078388A JP 2014078388 A JP2014078388 A JP 2014078388A JP 2015198587 A JP2015198587 A JP 2015198587A
Authority
JP
Japan
Prior art keywords
heating
vegetables
frozen
vegetable
dehydration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014078388A
Other languages
Japanese (ja)
Other versions
JP6673630B2 (en
Inventor
寛士 水野
Hiroshi Mizuno
寛士 水野
仁奈 田中
Nina Tanaka
仁奈 田中
早紀 橋本
Saki Hashimoto
早紀 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ajinomoto Co Inc
Original Assignee
Ajinomoto Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ajinomoto Co Inc filed Critical Ajinomoto Co Inc
Priority to JP2014078388A priority Critical patent/JP6673630B2/en
Publication of JP2015198587A publication Critical patent/JP2015198587A/en
Application granted granted Critical
Publication of JP6673630B2 publication Critical patent/JP6673630B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Preparation Of Fruits And Vegetables (AREA)
  • Storage Of Fruits Or Vegetables (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide production methods of frozen vegetables having excellent texture when being eaten and excellent external appearance, and having a high nutrient residual ratio and long-term preservation, and of food products including the frozen vegetables.SOLUTION: The production method of frozen vegetables includes: a first step of raising the temperature of vegetables until a highest-temperature part reaches 95°C or higher; a second step of dehydrating the vegetables acquired by the first step within 5 minutes until a yield ratio thereof becomes within a range of 70-90%; and a step of freezing the vegetables acquired by the second step.

Description

本発明は、喫食時の食感及び外観に優れ、栄養残存率が高く、かつ長期保存性を有する冷凍野菜及びそれらを含む食品の製造方法に関する。   The present invention relates to a frozen vegetable having excellent texture and appearance at the time of eating, having a high nutritional survival rate, and having long-term storage stability, and a method for producing a food containing them.

冷凍野菜の製造方法としては、一般的に野菜をボイル加熱してから凍結する方法が用いられている。しかしながら、ボイル加熱により野菜のペクチンが溶解し、次いで冷凍により野菜の組織が損傷し軟化することで、解凍後の食感が低下するという問題点がある。また、ボイルにより栄養成分が喪失するという問題点もある。   As a method for producing frozen vegetables, generally, a method in which vegetables are boiled and then frozen is used. However, there is a problem that the texture after thawing is lowered by melting the vegetable pectin by boiling and then damaging and softening the vegetable tissue by freezing. There is also a problem that nutrient components are lost by boiling.

冷凍野菜の食感改善方法としては、いくつかの軟化防止技術が知られている。
特許文献1には、トレハロース等の糖を含む溶液に野菜を浸漬して、組織破壊の原因となる氷結晶の成長を抑制する方法が開示されている。また、特許文献2には、エタノールに野菜を浸漬して、不凍性野菜を製造する方法が開示されている。いずれも野菜の冷凍耐性を高める方法であるが、糖による甘味やエタノールによる異味が付与することで食味が低下し、また、十分に糖やエタノールが浸透しないと野菜の硬さを向上させる効果が低い。
Several methods for preventing softening are known as methods for improving the texture of frozen vegetables.
Patent Document 1 discloses a method of suppressing the growth of ice crystals that cause tissue destruction by immersing vegetables in a solution containing sugar such as trehalose. Patent Document 2 discloses a method for producing antifreeze vegetables by immersing vegetables in ethanol. Both are methods to increase the freezing tolerance of vegetables, but the taste is lowered by adding sweetness due to sugar or the taste of ethanol, and if the sugar or ethanol does not penetrate sufficiently, the effect of improving vegetable hardness Low.

特許文献3には、塩化カルシウムや乳酸カルシウム等のカルシウム塩を含む水溶液に野菜を浸漬して、細胞質を強化する方法が開示されている。しかしながら、カルシウム塩による苦味が付与することで食味が低下し、また、十分にカルシウム塩が浸透しないと野菜の硬さを向上させる効果が低い。   Patent Document 3 discloses a method for enhancing the cytoplasm by immersing vegetables in an aqueous solution containing calcium salts such as calcium chloride and calcium lactate. However, when the bitterness by a calcium salt is provided, the taste is lowered, and if the calcium salt does not sufficiently penetrate, the effect of improving the hardness of the vegetable is low.

特許文献4には、加熱前にエタノールに野菜を浸漬して酵素を失活させることで、加熱時間を短縮する方法が開示されている。この方法では加熱時間が短いため、冷凍前は食感が保持されるが、冷凍すると氷結晶により組織が破壊され軟化するため、冷凍野菜においては十分な食感が保持されない。   Patent Document 4 discloses a method for shortening the heating time by immersing vegetables in ethanol before heating to deactivate the enzyme. In this method, since the heating time is short, the texture is maintained before freezing, but when frozen, the texture is destroyed and softened by ice crystals, so that sufficient texture is not maintained in frozen vegetables.

また、冷凍野菜の食感改善方法として、野菜を冷凍する前に半乾燥し、組織中の自由水を少なくして氷結晶を減少させる以下の技術が知られている。   Further, as a method for improving the texture of frozen vegetables, the following techniques are known in which the vegetables are semi-dried before freezing and the free water in the tissue is reduced to reduce ice crystals.

特許文献5には、浸透圧脱水を利用して野菜を乾燥する方法が開示されている。しかしながら、塩味等の異味が付与されるとともに、組織の損傷により野菜が萎れてしまう。   Patent Document 5 discloses a method of drying vegetables using osmotic pressure dehydration. However, an unpleasant taste such as salty taste is imparted, and the vegetables are wilted due to tissue damage.

特許文献6には、温風により野菜を乾燥する方法が開示されている。しかしながら、野菜が室温以上の環境で長時間脱水されるため、酵素反応や熟成が進行し、品質や鮮度が低下する。   Patent Document 6 discloses a method of drying vegetables with warm air. However, since vegetables are dehydrated for a long time in an environment at room temperature or higher, enzymatic reactions and ripening progress, and quality and freshness are reduced.

特許文献7及び8には、過熱水蒸気により酵素活性を低減し、かつ水分を減少させる方法が開示されている。しかしながら、酵素活性の強さに合わせて加熱温度や加熱時間を決定する必要があるため、履歴が変化し、品質が安定しない。また、過熱水蒸気により野菜が焦げるのを防止するため、低温で長時間加熱され、脱水時間が長くなることにより組織への負荷が大きく、その結果、野菜の硬さを向上させる効果が低下するという問題点がある。   Patent Documents 7 and 8 disclose a method of reducing enzyme activity and reducing moisture with superheated steam. However, since it is necessary to determine the heating temperature and the heating time according to the strength of the enzyme activity, the history changes and the quality is not stable. In addition, in order to prevent vegetables from being burned by superheated steam, it is heated for a long time at a low temperature, and the dehydration time is prolonged, so that the load on the tissue is large, and as a result, the effect of improving the hardness of the vegetable is reduced. There is a problem.

特許文献9には、減圧下低温で野菜を乾燥する方法が開示されている。しかしながら、減圧するための装置を必要とし、脱水に時間がかかるため生産性が悪く、熱が加わらないために酵素が失活せず保存性が悪くなるなどの問題点がある。   Patent Document 9 discloses a method of drying vegetables at a low temperature under reduced pressure. However, there is a problem in that an apparatus for decompressing is required, and it takes time for dehydration, so that productivity is poor, and heat is not applied, so that the enzyme is not deactivated and storage stability is deteriorated.

このように、従来技術では1)異味が付与される、2)硬さの向上効果が低い、3)品質が低下するなどの課題を伴い、生鮮野菜のような良食感かつ良食味である品質の冷凍野菜を製造することができない。   Thus, in the prior art, 1) the taste is imparted, 2) the effect of improving the hardness is low, 3) the quality is lowered, and the texture is good and tastes like fresh vegetables. Quality frozen vegetables cannot be produced.

特開平6−319501号公報JP-A-6-319501 特開平5−252891号公報JP-A-5-252891 特開平4−190756号公報Japanese Patent Laid-Open No. 4-190756 特開2006−204222号公報JP 2006-204222 A 特開2001−178356号公報JP 2001-178356 A 特開2005−151939号公報JP 2005-151939 A 国際公開第02/080960号International Publication No. 02/080960 特開2006−271352号公報JP 2006-271352 A 特開2007−289157号公報JP 2007-289157 A

本発明は、喫食時の食感及び外観に優れ、栄養残存率が高く、かつ長期保存性を有する冷凍野菜及びそれらを含む食品の製造方法を提供することを目的とする。   An object of this invention is to provide the manufacturing method of the frozen vegetables which are excellent in the food texture and external appearance at the time of eating, have a high nutrient residual rate, and have long-term preservation | save property, and foodstuffs containing them.

本発明者らは、上記課題を解決するために鋭意研究を重ねた結果、1)野菜を加熱むらなく水の沸点近く(95℃以上)まで昇温させ、2)歩留りが特定の範囲内になるまで短時間で脱水し、3)必要に応じて、歩留りを変化させずに酵素を失活させ、4)凍結させることで、食感や外観に優れ、かつ長期保存性を有する冷凍野菜を製造することができることを見出した。また、野菜にエタノールを含浸させた後に上記1)〜4)の処理を行うことで、さらに食感に優れ、異味の付与もない冷凍野菜及びそれらを含む食品を製造することができることを見出し、本発明を完成するに至った。
すなわち、本発明は以下に関する。
[1]野菜を、最も高温である部分が95℃以上になるまで昇温する第1の工程、及び第1の工程により得られた野菜を歩留りが70〜90%の範囲内になるまで5分以内に脱水する第2の工程、及び第2の工程により得られた野菜を凍結する工程を含む、冷凍野菜の製造方法。
[2]第1の工程終了時の野菜の品温差が30℃以内である、[1]記載の製造方法。
[3]第1の工程において野菜の最も高温である部分が70℃を超えてから5分以内に加熱して昇温する、[1]又は[2]記載の製造方法。
[4]第1の工程において加熱により平均6.0℃/s以下の速度で昇温する、[1]〜[3]のいずれかに記載の製造方法。
[5]第1の工程においてマイクロ波加熱又は蒸し加熱で昇温する、[1]〜[4]のいずれかに記載の製造方法。
[6]第2の工程において加熱により平均0.05%/s以上の速度で脱水する、[1]〜[5]のいずれかに記載の製造方法。
[7]第2の工程においてマイクロ波加熱又は過熱水蒸気による加熱で脱水する、[1]〜[6]のいずれかに記載の製造方法。
[8]第2の工程及び凍結する工程の間に、第2の工程で得られた野菜を、歩留りの変化率が5%以内となるようにして該野菜の酵素を失活させる第3の工程をさらに含む、[1]〜[7]のいずれかに記載の製造方法。
[9]第3の工程において加熱によって酵素を失活させる、[8]記載の製造方法。
[10]第3の工程において蒸し加熱によって酵素を失活させる、[8]又は[9]記載の製造方法。
[11]酵素の活性を、ペルオキシダーゼ活性500U/野菜重量100g以下に失活させる、[8]〜[10]のいずれかに記載の製造方法。
[12]第1の工程の前に、野菜にエタノールを含浸させる工程をさらに含む、[1]〜[11]のいずれかに記載の製造方法。
[13][1]〜[12]のいずれかに記載の製造方法で製造された冷凍野菜を含む食品。
As a result of intensive studies to solve the above problems, the present inventors have as follows: 1) The temperature of vegetables is raised to near the boiling point of water (95 ° C or higher) without uneven heating, and 2) the yield is within a specific range. Dehydrate in a short time until 3) If necessary, deactivate the enzyme without changing the yield, and 4) Freeze the frozen vegetables with excellent texture and appearance and long-term preservation It has been found that it can be manufactured. Moreover, after impregnating a vegetable with ethanol, it finds out that it can manufacture the frozen vegetables which are further excellent in food texture, and do not have an unpleasant taste, and the food containing them by performing the process of said 1) -4), The present invention has been completed.
That is, the present invention relates to the following.
[1] The first step of raising the temperature of the vegetables until the hottest part reaches 95 ° C. or higher, and the yield of the vegetables obtained by the first step within the range of 70 to 90%. A method for producing frozen vegetables, comprising a second step of dehydrating within minutes, and a step of freezing the vegetables obtained by the second step.
[2] The production method according to [1], wherein the temperature difference of the vegetables at the end of the first step is within 30 ° C.
[3] The production method according to [1] or [2], wherein the temperature is increased by heating within 5 minutes after the highest temperature portion of the vegetable exceeds 70 ° C in the first step.
[4] The production method according to any one of [1] to [3], wherein the temperature is increased at an average rate of 6.0 ° C./s or less by heating in the first step.
[5] The production method according to any one of [1] to [4], wherein the temperature is raised by microwave heating or steam heating in the first step.
[6] The production method according to any one of [1] to [5], wherein dehydration is performed at an average rate of 0.05% / s or more by heating in the second step.
[7] The production method according to any one of [1] to [6], wherein dehydration is performed by microwave heating or heating with superheated steam in the second step.
[8] A third step of inactivating the vegetable enzyme between the second step and the freezing step so that the yield of the vegetable obtained in the second step is 5% or less. The production method according to any one of [1] to [7], further comprising a step.
[9] The production method according to [8], wherein the enzyme is deactivated by heating in the third step.
[10] The production method according to [8] or [9], wherein the enzyme is inactivated by steaming and heating in the third step.
[11] The production method according to any one of [8] to [10], wherein the enzyme activity is inactivated to a peroxidase activity of 500 U / vegetable weight of 100 g or less.
[12] The production method according to any one of [1] to [11], further including a step of impregnating vegetables with ethanol before the first step.
[13] A food containing frozen vegetables produced by the production method according to any one of [1] to [12].

本発明によれば、喫食時の食感及び外観に優れ、栄養残存率が高く、かつ長期保存性を有する冷凍野菜及びそれらを含む食品の製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the frozen vegetables which are excellent in the texture and external appearance at the time of eating, have a high nutrient residual rate, and have long-term storage stability, and foodstuffs containing them can be provided.

図1は、キャベツを各条件下で昇温及び脱水した後、凍結及び解凍したときの、昇温速度と応力との関係、及び脱水速度と応力との関係を示す。FIG. 1 shows the relationship between the rate of temperature rise and the stress and the relationship between the rate of dehydration and the stress when the cabbage is heated and dehydrated under each condition and then frozen and thawed. 図2は、キャベツを無処理、エタノール処理又は塩化カルシウム処理した後、凍結及び解凍したときの応力値を示す。FIG. 2 shows the stress values when the cabbage is untreated, treated with ethanol or calcium chloride, and then frozen and thawed. 図3は、ボイル加熱したキャベツと急速加熱脱水したキャベツを、凍結及び解凍したときの電子顕微鏡による写真を示す。FIG. 3 shows a photograph taken with an electron microscope when the boiled cabbage and the rapidly heated dehydrated cabbage are frozen and thawed. 図4は、種々の野菜を用いて、ボイル加熱又は急速加熱脱水処理した後、凍結及び解凍したときの応力値を示す。FIG. 4 shows stress values when various vegetables are frozen and thawed after being boiled or rapidly heated and dehydrated. 図5は、ボイル加熱した種々の野菜と急速加熱脱水した種々の野菜を、凍結及び解凍したときのビタミンCの残存率を示す。FIG. 5 shows the residual rate of vitamin C when various vegetables boiled and various vegetables rapidly dehydrated are frozen and thawed. 図6は、キャベツを各条件下で処理した場合における、加熱後と凍結解凍後の応力値を示す。FIG. 6 shows the stress values after heating and after freezing and thawing when the cabbage was treated under various conditions. 図7は、キャベツを各種軟化防止技術で処理した後、凍結及び解凍したときの応力値を示す。FIG. 7 shows stress values when the cabbage is frozen and thawed after being treated with various softening prevention techniques. 図8は、キャベツを各種軟化防止技術で処理した後、凍結及び解凍したときの貯蔵弾性率を示す。FIG. 8 shows the storage elastic modulus when the cabbage is frozen and thawed after being treated with various softening prevention techniques. 図9は、キャベツを各種軟化防止技術で処理した後、凍結及び解凍したときのビタミンCの残存率を示す。FIG. 9 shows the residual ratio of vitamin C when cabbage is treated with various softening prevention techniques and then frozen and thawed. 図10は、急速加熱脱水及びエタノール処理を組み合わせて加工した野菜又はボイル加熱した野菜を用いて作成した冷凍中華丼の解凍後の外観写真を示す。FIG. 10 shows a photograph of the appearance after thawing of frozen Chinese koji made using vegetables processed by combining rapid heating dehydration and ethanol treatment or boiled vegetables.

以下に、本発明の実施の形態について説明する。   Embodiments of the present invention will be described below.

本発明において冷凍野菜とは、加熱等により解凍した後、そのまま又は調理して喫食することができるように冷凍してある野菜をいう。   In the present invention, frozen vegetables refer to vegetables that have been frozen so that they can be eaten as they are or after cooking after being thawed by heating or the like.

本発明の冷凍野菜の原料として用いられる野菜としては、特に限定されるものではないが、例えば、キャベツ、ハクサイ、チンゲンサイ、ホウレンソウ、コマツナ等の葉菜類;タマネギ、ネギ、アスパラガス等の茎菜類;ピーマン、キュウリ、ナス、カボチャ等の果菜類;ニンジン、ダイコン、カブ、レンコン等の根菜類;ブロッコリー、カリフラワー等の花菜類;シイタケ、エノキダケ、シメジ、マッシュルーム等のキノコ類等が挙げられる。   The vegetables used as the raw material of the frozen vegetables of the present invention are not particularly limited, but for example, leaf vegetables such as cabbage, Chinese cabbage, chingensai, spinach, komatsuna; stem vegetables such as onion, leek, asparagus; Fruit vegetables such as bell pepper, cucumber, eggplant, pumpkin; root vegetables such as carrot, radish, turnip, lotus root; flower vegetables such as broccoli, cauliflower; mushrooms such as shiitake mushroom, enoki mushroom, shimeji mushroom, and the like.

本発明の冷凍野菜の製造方法は、野菜を、最も高温である部分が95℃以上になるまで昇温する第1の工程、及び第1の工程により得られた野菜を歩留りが70〜90%になるまで短時間で脱水する第2の工程、及び第2の工程により得られた野菜を凍結する工程を含むことを特徴とする。   In the method for producing frozen vegetables of the present invention, the yield of the first step in which the temperature of the vegetable is raised until the highest temperature reaches 95 ° C. or higher, and the yield of the vegetable obtained in the first step is 70 to 90%. It is characterized by including the 2nd process of spin-drying | dehydrating in a short time until it becomes, and the process of freezing the vegetable obtained by the 2nd process.

第1の工程は、野菜を加熱むらが少ない状態、すなわち、野菜の品温差が30℃以内となるように、脱水が開始する直前の95℃以上になるまで昇温させる工程である。
本明細書において「野菜の品温差」とは、昇温させた野菜間での最も高温である部分と最も低温である部分の温度差を意味する(以下、本明細書において「野菜の品温差」を「加熱むら」と称することもある。)。本発明では、第1の工程終了時の野菜の品温差は30℃以内であり、好ましくは25℃以内である。
第1の工程における昇温速度は、平均6.0℃/s以下、好ましくは平均3.0℃/s以下、より好ましくは平均2.0℃/s以下、さらに好ましくは平均1.0℃/s以下である。一般的には昇温速度が遅い方が加熱むらは少ない。ただし、急速に昇温させる場合であっても、昇温後に恒温で調温したり、食品をむらなく昇温させる連続マイクロ波加熱機の様な加熱機器を用いることで、加熱むらを少なくすることができる。また、第1の工程における加熱手段は、特に限定されるものではないが、次の第2の工程で脱水する時間を短くするために、歩留りの変化率が小さい手段が好ましい。第1の工程における加熱手段としては、例えば、マイクロ波加熱又は蒸し加熱等が挙げられる。なお、マイクロ波加熱を行う場合は低出力(例えば、100〜200W)で行うのが好ましい。
第1の工程における加熱時間は、酵素反応が進行する温度帯及び時間帯をできる限り短くして異味異臭を抑え、加熱により組織が損傷して軟化するのを抑える等の品質を向上させる観点から、好ましくは野菜の最も高温である部分が70℃を超えてから5分以内である。
The first step is a step of raising the temperature of the vegetable until it reaches 95 ° C. or more immediately before the start of dehydration so that there is little uneven heating, that is, the product temperature difference of the vegetable is within 30 ° C.
In the present specification, “vegetable product temperature difference” means a temperature difference between the highest temperature portion and the lowest temperature portion between the heated vegetables (hereinafter referred to as “vegetable product temperature difference”). Is sometimes referred to as “uneven heating”.) In the present invention, the temperature difference of the vegetables at the end of the first step is within 30 ° C., preferably within 25 ° C.
The rate of temperature increase in the first step is an average of 6.0 ° C./s or less, preferably an average of 3.0 ° C./s or less, more preferably an average of 2.0 ° C./s or less, and even more preferably an average of 1.0 ° C./s or less. In general, there is less uneven heating when the rate of temperature rise is slower. However, even when the temperature is raised rapidly, the heating unevenness can be reduced by adjusting the temperature at a constant temperature after the temperature rise or by using a heating device such as a continuous microwave heater that raises the food temperature evenly. be able to. Further, the heating means in the first step is not particularly limited, but means having a small yield change rate is preferable in order to shorten the time for dehydration in the next second step. Examples of the heating means in the first step include microwave heating or steam heating. In addition, when performing microwave heating, it is preferable to carry out by low output (for example, 100-200W).
From the viewpoint of improving the quality of the heating time in the first step, the temperature zone and the time zone in which the enzyme reaction proceeds are shortened as much as possible to suppress off-flavor odor, and the tissue is prevented from being damaged and softened by heating. Preferably, it is within 5 minutes after the hottest part of the vegetable exceeds 70 ° C.

第2の工程は、第1の工程により得られた野菜を歩留りが70〜90%の範囲内になるまで短時間(好ましくは、5分以内)で脱水する工程である。
本明細書において「歩留り」とは、脱水前の野菜の重量を100%とした場合における脱水後の重量の百分率を意味する。本発明では、第2の工程において歩留りが70〜90%の範囲内になるまで脱水させる。
第2の工程における脱水手段としては、例えば、加熱による脱水が挙げられる。
第2の工程において加熱により脱水する場合の脱水速度は、0.05%/s以上、好ましくは0.1%/s以上、より好ましくは0.3%/s以上である。また、第2の工程における脱水させるための加熱手段は、特に限定されるものではないが、例えば、マイクロ波加熱又は過熱水蒸気による加熱等が挙げられる。なお、マイクロ波加熱を行う場合は高出力(例えば、700W以上)で行うのが好ましく、過熱水蒸気加熱を行う場合は高温(例えば200〜250℃)で行うのが好ましい。
第2の工程において加熱して脱水する場合の加熱時間は、加熱により組織が損傷して軟化するのを抑える等の品質を向上させる観点から、好ましくは5分以内である。
The second step is a step of dehydrating the vegetables obtained in the first step in a short time (preferably within 5 minutes) until the yield falls within the range of 70 to 90%.
In this specification, “yield” means the percentage of the weight after dehydration when the weight of vegetables before dehydration is 100%. In the present invention, dehydration is performed in the second step until the yield falls within the range of 70 to 90%.
Examples of the dehydrating means in the second step include dehydration by heating.
When dehydrating by heating in the second step, the dehydration rate is 0.05% / s or more, preferably 0.1% / s or more, more preferably 0.3% / s or more. Moreover, the heating means for dehydrating in the second step is not particularly limited, and examples thereof include microwave heating and heating with superheated steam. In addition, when performing microwave heating, it is preferable to carry out at high output (for example, 700 W or more), and when performing superheated steam heating, it is preferable to carry out at high temperature (for example, 200-250 degreeC).
The heating time in the case of heating and dehydrating in the second step is preferably within 5 minutes from the viewpoint of improving quality such as suppressing the tissue from being damaged and softened by heating.

野菜の凍結工程は、例えば、IQF(Individual Quick Frozen、個別急速凍結)装置、エアーブラスト、及びブロック凍結装置等、当業者に周知の装置を用いることができる。野菜を凍結するときに設定される温度は、野菜の種類や品質等によっても異なるが、通常-18℃以下である。凍結速度の観点から、クラックが生じない程度に、より低温で行う方が好ましい。野菜の凍結は、使用する野菜の種類や量によっても異なるが、通常30分以内に中心温度が-5℃以下であればよい。   For the vegetable freezing step, for example, devices known to those skilled in the art such as IQF (Individual Quick Frozen), air blast, and block freezing devices can be used. The temperature set when freezing vegetables varies depending on the type and quality of the vegetables, but is usually -18 ° C or lower. From the viewpoint of the freezing rate, it is preferable to carry out at a lower temperature so that cracks do not occur. The freezing of vegetables varies depending on the kind and amount of vegetables used, but the center temperature should usually be −5 ° C. or lower within 30 minutes.

本発明の冷凍野菜の製造方法は、第2の工程及び凍結する工程の間に、第2の工程で得られた野菜の酵素を、歩留りの変化率が5%以内となるように失活させる第3の工程をさらに含んでもよい。   The method for producing frozen vegetables of the present invention inactivates the vegetable enzyme obtained in the second step so that the yield change rate is within 5% between the second step and the freezing step. A third step may be further included.

第3の工程は、酵素活性が比較的高い野菜(例えば、キャベツ、ハクサイ)等を用いた場合において、第2の工程後においても野菜の酵素が十分に失活していない場合に、歩留りをほとんど変化させずに(歩留りの変化率が5%以内)酵素を失活させる工程である。
本明細書における「酵素」としては、例えば、ペルオキシダーゼ等が挙げられる。
第2の工程で脱水が完了しているため、第3の工程では歩留りをほとんど変化させないことが好ましい。第3の工程における歩留りの変化率は好ましくは5%以内であり、より好ましくは2%以内である。
第3の工程における酵素を失活させる手段としては、例えば、加熱による酵素失活が挙げられる。
第3の工程において加熱して酵素を失活させる場合の加熱条件は、歩留りをほとんど変化させない条件、すなわち、歩留りの変化率が5%以内(好ましくは2%以内)であって、酵素が失活しやすい温度(例えば、90℃以上)であれば、特に限定されるものではない。また、加熱手段としては、例えば、蒸し加熱等が挙げられる。
酵素の活性は、冷凍状態で野菜を1年間保存した後もその品質が許容される、野菜の重量が100gあたりのペルオキシダーゼ活性として、500U/野菜重量100g以下に失活させることが好ましい。ここで、ペルオキシダーゼ活性1Uは、pH8.0、37℃の条件下で1分間に過酸化水素1μmolと反応する酵素量である。
In the third step, when a vegetable having a relatively high enzyme activity (for example, cabbage, Chinese cabbage) or the like is used, the yield is increased if the vegetable enzyme is not sufficiently deactivated even after the second step. This is a process of inactivating the enzyme with almost no change (yield change rate is within 5%).
Examples of the “enzyme” in the present specification include peroxidase.
Since dehydration is completed in the second step, it is preferable that the yield is hardly changed in the third step. The yield change rate in the third step is preferably within 5%, more preferably within 2%.
Examples of means for inactivating the enzyme in the third step include enzyme inactivation by heating.
The heating conditions for inactivating the enzyme by heating in the third step are conditions that hardly change the yield, that is, the yield change rate is within 5% (preferably within 2%), and the enzyme is lost. The temperature is not particularly limited as long as it is easy to activate (for example, 90 ° C. or higher). Moreover, as a heating means, steaming heating etc. are mentioned, for example.
The enzyme activity is preferably inactivated to 500 U / vegetable weight of 100 g or less as peroxidase activity per 100 g of vegetable, the quality of which is acceptable even after the vegetable is stored for 1 year in a frozen state. Here, peroxidase activity 1U is the amount of enzyme that reacts with 1 μmol of hydrogen peroxide per minute under the conditions of pH 8.0 and 37 ° C.

本発明の冷凍野菜の製造方法は、さらに食感向上効果を得るために、第1の工程を行う前に、野菜にエタノールを含浸させる工程を含んでもよい。   The method for producing a frozen vegetable of the present invention may further include a step of impregnating the vegetable with ethanol before performing the first step in order to obtain a texture improving effect.

野菜にエタノールを含浸させる工程は、3%以上のエタノール水溶液(好ましくは、3〜60%のエタノール水溶液、より好ましくは10〜45%のエタノール水溶液)を用いて、野菜中のエタノール濃度が0.2〜8.7%の範囲内になるように野菜にエタノールを含ませて行う。
野菜にエタノールを含浸させる方法としては、特に限定されるものではないが、例えば、浸漬、散布等が挙げられる。特に浸漬は、エタノール水溶液の濃度と時間を設定することで、野菜中のエタノール濃度を高い精度で管理できる観点から好ましい。
野菜にエタノールを含浸させた後、第1の工程、第2の工程、及び必要に応じて第3の工程における加熱により、含浸させたエタノールを野菜中のエタノール濃度が1%以下になるまで除去することで、異味異臭のない高品質の冷凍野菜を製造することができる。なお、上記加熱では野菜中のエタノール濃度を1%以下にすることができない場合、エタノールを含浸させる工程を行った後に、水さらし、減圧等の加熱を伴わない除去工程を加えることが好ましい。
The step of impregnating the vegetable with ethanol uses a 3% or higher ethanol aqueous solution (preferably a 3 to 60% ethanol aqueous solution, more preferably a 10 to 45% ethanol aqueous solution), and the ethanol concentration in the vegetable is 0.2 to Add ethanol to the vegetable so that it is within the range of 8.7%.
Although it does not specifically limit as a method to make a vegetable impregnate ethanol, For example, immersion, spraying, etc. are mentioned. In particular, immersion is preferable from the viewpoint that the ethanol concentration in vegetables can be managed with high accuracy by setting the concentration and time of the aqueous ethanol solution.
After the vegetable is impregnated with ethanol, the impregnated ethanol is removed until the ethanol concentration in the vegetable is 1% or less by heating in the first step, the second step, and if necessary, the third step. By doing so, it is possible to produce high-quality frozen vegetables free from off-flavors. In addition, when the ethanol concentration in vegetables cannot be reduced to 1% or less by the above heating, it is preferable to add a removal step that does not involve heating such as water exposure and reduced pressure after performing the step of impregnating with ethanol.

本発明の冷凍野菜の製造方法によれば、加熱中に水との接触がないため、野菜に含まれる水溶性の栄養成分が流出せず、野菜中に保持される。また、本発明の冷凍野菜の製造方法によれば、野菜の酵素が失活するため、長期保存性に優れる。   According to the method for producing frozen vegetables of the present invention, since there is no contact with water during heating, water-soluble nutrient components contained in the vegetables do not flow out and are retained in the vegetables. Moreover, according to the manufacturing method of the frozen vegetables of this invention, since the enzyme of vegetables deactivates, it is excellent in long-term preservability.

本明細書における「冷凍野菜を含む食品」としては、本発明の製造方法で製造した冷凍野菜を含む食品であれば特に限定されるものではないが、例えば、本発明の製造方法で製造した冷凍野菜を混合したミックスベジタブル、本発明の製造方法で製造した冷凍野菜、魚介類及びソースを混合した中華丼等の冷凍食品が挙げられる。
本明細書における「冷凍野菜を含む食品」は、本発明の製造方法で製造した冷凍野菜を使用すること以外は、公知の食品と同様の原料を用い、公知の製造方法によって製造することができる。
The “food containing frozen vegetables” in the present specification is not particularly limited as long as it is a food containing frozen vegetables produced by the production method of the present invention. For example, the frozen food produced by the production method of the present invention is used. Examples thereof include mixed vegetables mixed with vegetables, frozen vegetables manufactured by the manufacturing method of the present invention, frozen foods such as Chinese koji mixed with seafood and sauce.
The “food containing frozen vegetables” in the present specification can be produced by a known production method using the same raw materials as known foods, except that the frozen vegetables produced by the production method of the present invention are used. .

以下、実施例により、本発明を更に詳細に説明するが、本発明は以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to a following example.

実施例1 昇温時の加熱むら及び脱水速度の検討
家庭用電子レンジを用いて40×30mmの大きさにカットしたキャベツを昇温した後、歩留り85%まで脱水した。この時、昇温及び脱水時のW数を200、500及び1000Wと変化させて、昇温速度及び脱水速度の異なる9種類の検体を作成した。コントロールとして、一般的な冷凍野菜の製法をモデルとした、98℃で2分間ボイル加熱した検体も作成した。これらの検体を凍結した後に自然解凍し、物性(応力)測定と官能評価を行った。
昇温時の加熱むらは、サーモグラフィー(チノー社製、CPA-E)を用いて測定した。各条件で加熱した後、サーモグラフィーで温度の分布を可視化し、最高温度と最低温度の差を加熱むらとした。
応力測定には、テクスチャーアナライザー(Stable Micro Systems社製、TA-XT plus)を用いた。キャベツを繊維と垂直方向で幅20mmに切断し、5枚重ねてクリップで固定した。この時、極端に太い葉脈は入らないようにした。これを幅70mm、厚さ3mmくさび型プランジャーで0.3mm/s、strain 100%で繊維を断ち切る方向に破断し、得られた最大応力を測定値とした。
官能評価の方法としては、一般的な冷凍野菜の製法をモデルとした、98℃で2分間ボイル加熱した検体を基準(1点)とし、各テストで得られたキャベツを0.5刻みで1点(基準と同様)、2点(やや良好)、3点(良好)、4点(さらに良好)、5点(非常に良好)の尺度で評価した。なお、ここでは、キャベツの硬さや張りなど他の要素も加えた総合的な感覚で食感の良否を評価した。結果を表1に示す。また、昇温速度と応力との関係、及び脱水速度と応力との関係を図1に示す。
なお、以下の表中の官能評価(食感)において用いられる「シャキ感」又は「シャキシャキ」とは、野菜を口に入れて咀嚼した際に硬さや張りを感じ、歯切れよく噛み切れる感覚を意味する。
Example 1 Examination of heating unevenness and dehydration rate at temperature rise After heating a cabbage cut to a size of 40 × 30 mm using a home-use microwave oven, it was dehydrated to a yield of 85%. At this time, nine types of specimens having different heating rates and dehydration rates were prepared by changing the W number during heating and dehydration to 200, 500, and 1000 W. As a control, a sample that was boiled at 98 ° C. for 2 minutes was also prepared using a general frozen vegetable manufacturing method as a model. After freezing these specimens, they were naturally thawed and subjected to physical property (stress) measurement and sensory evaluation.
The heating unevenness at the time of temperature increase was measured using a thermography (CPA-E, manufactured by Chino Co., Ltd.). After heating under each condition, the temperature distribution was visualized by thermography, and the difference between the maximum temperature and the minimum temperature was regarded as uneven heating.
For the stress measurement, a texture analyzer (Stable Micro Systems, TA-XT plus) was used. The cabbage was cut into a width of 20 mm in a direction perpendicular to the fibers, and five sheets were stacked and fixed with clips. At this time, extremely thick veins were avoided. This was broken by a wedge plunger with a width of 70 mm and a thickness of 3 mm with a wedge plunger at a rate of 0.3 mm / s and strain of 100%, and the maximum stress obtained was taken as the measured value.
As a method for sensory evaluation, the standard (one point) was a sample that had been boiled at 98 ° C for 2 minutes, modeled on a general frozen vegetable manufacturing method, and the cabbage obtained in each test was incremented by 0.5. Evaluation was made on a scale of points (similar to the standard), 2 points (slightly good), 3 points (good), 4 points (further good), and 5 points (very good). Here, the quality of the texture was evaluated based on a comprehensive sense including other factors such as cabbage hardness and tension. The results are shown in Table 1. Further, FIG. 1 shows the relationship between the heating rate and the stress and the relationship between the dehydration rate and the stress.
In addition, the “crispy feeling” or “crispy” used in the sensory evaluation (texture) in the table below means a sense of firmness and tightness when a vegetable is put in the mouth and chewed. To do.

昇温速度が速いほど脱水直前まで昇温した際の加熱むらが大きくなる。脱水速度を固定して比較すると、加熱むらの小さい方が食感は良好であった。一方、脱水速度が速いほど短時間で処理することが可能になる。昇温速度を固定して比較すると、脱水時間の短い方が食感は良好であった。   The higher the rate of temperature increase, the greater the unevenness of heating when the temperature is increased to just before dehydration. When the dehydration rate was fixed and compared, the texture was better when the heating unevenness was smaller. On the other hand, the faster the dehydration rate, the shorter the processing time becomes possible. When compared at a fixed rate of temperature increase, the shorter the dehydration time, the better the texture.

実施例2 蒸し加熱による昇温時の加熱むらの検討
蒸し庫を用いてキャベツ(40×30mm)を昇温させた。この時、蒸し庫の温度を変化させることで昇温後の加熱むらが異なる6種類の検体を作成した。これらの検体を、家庭用電子レンジを用いて100秒間で歩留り85%まで脱水した。得られた検体を凍結した後に自然解凍し、応力測定と官能評価を行った。
蒸し加熱における昇温時の加熱むらは、データロガー(グラフテック社製、GL450)を用い、直接温度を測定して評価した。キャベツに熱電対を差し込み、各条件の蒸し庫に投入し、データロガーを用いて温度の変化を記録し、最高温度が脱水開始前まで到達した時点の最低温度との差を加熱むらとした。応力測定と官能評価は、実施例1と同様の方法で行った。結果を表2に示す。
Example 2 Examination of heating unevenness at the time of temperature rise by steam heating The temperature of cabbage (40 × 30 mm) was raised using a steamer. At this time, six types of specimens having different heating unevenness after the temperature increase were prepared by changing the temperature of the steamer. These specimens were dehydrated to a yield of 85% in 100 seconds using a home microwave oven. The obtained specimen was frozen and then thawed naturally to perform stress measurement and sensory evaluation.
The heating unevenness at the time of temperature increase in the steaming heating was evaluated by directly measuring the temperature using a data logger (GL450, GL450). A thermocouple was inserted into the cabbage, put into a steamer of each condition, and the temperature change was recorded using a data logger, and the difference from the lowest temperature when the highest temperature reached before the start of dehydration was regarded as uneven heating. Stress measurement and sensory evaluation were performed in the same manner as in Example 1. The results are shown in Table 2.

蒸し加熱を用いて昇温させても、加熱むらが小さいほど食感が良好であった。
実施例1及び2の結果より、加熱むら(野菜の品温差)が30℃を超えると脱水速度を速くしても良食感にはならないことから、加熱むら(野菜の品温差)30℃以内が好ましいことが確認された。
Even when the temperature was raised using steaming heating, the texture was better as the heating unevenness was smaller.
From the results of Examples 1 and 2, the heating unevenness (vegetable product temperature difference) exceeds 30 ° C. Even if the dehydration rate is increased, the food texture does not become good, so the heating unevenness (vegetable product temperature difference) is within 30 ° C. Was confirmed to be preferable.

実施例3 昇温における加熱手段の検討
家庭用電子レンジ又は連続マイクロ波加熱機を用いて40×30mmの大きさにカットしたキャベツを昇温させた後、同加熱機器を用いて45秒間で歩留り85%まで脱水した。得られた検体を凍結した後に自然解凍し、官能評価を行った。官能評価は、実施例1と同様の方法で行った。結果を表3に示す。
Example 3 Examination of heating means for temperature rise After heating the cabbage cut into a size of 40 × 30 mm using a household microwave oven or continuous microwave heater, the yield is increased in 45 seconds using the same heating device. Dehydrated to 85%. The obtained specimen was frozen and then naturally thawed for sensory evaluation. The sensory evaluation was performed in the same manner as in Example 1. The results are shown in Table 3.

連続マイクロ波加熱機を用いたときの昇温速度は家庭用電子レンジを用いた場合の昇温速度の約3倍であるにもかかわらず、いずれも食感は良好であった。同一の昇温速度で比較した場合、家庭用電子レンジはマイクロ波を乱反射させ食品を温める原理の為、加熱むらは大きくなるが、連続マイクロ波加熱機は食品にマイクロ波が直接照射される原理の為、加熱むらは小さくなる。食品をむらなく昇温させる連続マイクロ波加熱機の様な加熱機器を用いた場合、昇温速度が速くとも良食感にできることが確認された。   Although the heating rate when using a continuous microwave heater was about 3 times the heating rate when using a household microwave oven, the texture was good in all cases. When compared at the same heating rate, the microwave oven diffuses the microwaves and heats the food because of the principle of heating the food, but the continuous microwave heater is the principle that microwaves are directly irradiated to the food Therefore, the heating unevenness is reduced. It has been confirmed that when a heating device such as a continuous microwave heater that raises the temperature of food uniformly is used, a good texture can be obtained even if the heating rate is high.

実施例4 昇温における時間の検討
家庭用電子レンジを用いて40×30mmの大きさにカットしたキャベツを200Wで昇温した後、1000Wで歩留り85%まで脱水した。この時キャベツの投入量を変化させることで、速度の異なる6種類の検体を作成した。得られた検体を凍結した後に自然解凍し、官能評価を行った。官能評価は、実施例1と同様の方法で行った。ただし、評価は食感と味風味について行った。結果を表4に示す。
Example 4 Examination of Time for Temperature Raising A cabbage cut into a size of 40 × 30 mm using a household microwave oven was heated at 200 W, and then dehydrated to a yield of 85% at 1000 W. At this time, six types of specimens with different speeds were prepared by changing the amount of cabbage input. The obtained specimen was frozen and then naturally thawed for sensory evaluation. The sensory evaluation was performed in the same manner as in Example 1. However, evaluation was performed about texture and taste flavor. The results are shown in Table 4.

いずれの条件でも食感向上効果が得られた。ただし、昇温時間が5分を超える検体では異味異臭が発生した。酵素反応が進行する温度帯及び時間帯をできる限り短くする為、昇温時間は5分以内が好ましいことが確認された。また、野菜の温度が約70℃を超えると野菜の軟化が進行することが知られている(日本調理科学会誌30(1),62−70,1997)。良食感を維持する観点からも、昇温は野菜の最も高温である部分が70℃を超えてから5分以内に完了することが好ましいことが確認された。   The texture improvement effect was acquired under any conditions. However, a nasty odor was generated in the sample whose temperature rise time exceeded 5 minutes. In order to shorten the temperature zone and time zone in which the enzyme reaction proceeds as short as possible, it was confirmed that the temperature raising time is preferably within 5 minutes. Moreover, it is known that softening of vegetables will progress if the temperature of vegetables exceeds about 70 degreeC (Journal of Japanese Cooking Science 30 (1), 62-70, 1997). From the viewpoint of maintaining a good food texture, it was confirmed that the temperature increase is preferably completed within 5 minutes after the highest temperature portion of the vegetable exceeds 70 ° C.

実施例5 脱水速度の検討
キャベツ(40×30mm)を蒸し加熱で昇温させ、家庭用電子レンジを用いて4種類の脱水速度にて歩留り85%まで脱水した。得られた検体を凍結した後に自然解凍し、応力測定と官能評価を行った。応力測定と官能評価は、実施例1と同様の方法で行った。結果を表5に示す。
Example 5 Examination of Dehydration Rate Cabbage (40 × 30 mm) was heated by steaming and dehydrated to a yield of 85% at 4 different dehydration rates using a household microwave oven. The obtained specimen was frozen and then thawed naturally to perform stress measurement and sensory evaluation. Stress measurement and sensory evaluation were performed in the same manner as in Example 1. The results are shown in Table 5.

脱水速度が速いほど食感が良好であった。一方、脱水時間が6分を超えると、食感があまり良くなく、品質向上効果も低いものであった。
以上の結果より、脱水を5分以内に完了させることが好ましいことが確認された。
The faster the dehydration rate, the better the texture. On the other hand, when the dehydration time exceeded 6 minutes, the texture was not very good and the quality improvement effect was low.
From the above results, it was confirmed that dehydration is preferably completed within 5 minutes.

実施例6 酵素の失活条件の検討
キャベツ(40×30mm)を、家庭用電子レンジを用いて、第一加熱(加熱むら22.6℃)にて昇温し、第二加熱(脱水時間50秒)にて歩留り85%まで脱水した。その後、検体を蒸し加熱(90秒間)又はボイル加熱(60秒間)に付し、酵素を失活させた。得られた検体を凍結した後に自然解凍し、応力測定と官能評価を行った。応力測定と官能評価は、実施例1と同様の方法で行った。
ペルオキシダーゼ(POD)活性は下記方法で測定した。検体及び33.3mM Tris-HClバッファー(pH8.0)を重量比1:3で混合し、オステライザーで破砕し、14000rpmで5分遠心分離し、上清を酵素液とした。酵素液150μl、66mM グアヤコール150μl、33.3mM Tris-HClバッファー(pH8.0)2000μlを混合し、37℃で5分間プレインキュベートした。これに3.3mM 過酸化水素150μlを添加し、470nmで1分間の吸光度上昇を測定した。過酸化水素の濃度と470nm吸光度との関係を基に作成した検量線を用いて、POD活性を算出した。pH8.0、37℃の条件下で1分間に過酸化水素1μmolと反応する酵素量を1Uとした。結果を表6に示す。
Example 6 Examination of enzyme deactivation conditions Cabbage (40 × 30 mm) was heated with first heating (heating unevenness 22.6 ° C.) using a microwave oven at home, and then second heating (dehydration time 50 seconds) And dehydrated to 85% yield. Thereafter, the specimen was steamed (90 seconds) or boiled (60 seconds) to inactivate the enzyme. The obtained specimen was frozen and then thawed naturally to perform stress measurement and sensory evaluation. Stress measurement and sensory evaluation were performed in the same manner as in Example 1.
Peroxidase (POD) activity was measured by the following method. The sample and 33.3 mM Tris-HCl buffer (pH 8.0) were mixed at a weight ratio of 1: 3, crushed with an osterizer, and centrifuged at 14000 rpm for 5 minutes, and the supernatant was used as an enzyme solution. 150 μl of enzyme solution, 150 μl of 66 mM guaiacol, 2000 μl of 33.3 mM Tris-HCl buffer (pH 8.0) were mixed and pre-incubated at 37 ° C. for 5 minutes. To this was added 150 μl of 3.3 mM hydrogen peroxide, and the absorbance increase at 470 nm for 1 minute was measured. The POD activity was calculated using a calibration curve created based on the relationship between the hydrogen peroxide concentration and the absorbance at 470 nm. The amount of enzyme that reacts with 1 μmol of hydrogen peroxide per minute under the conditions of pH 8.0 and 37 ° C. was 1 U. The results are shown in Table 6.

蒸し加熱では、最良となる歩留りを維持したまま酵素を失活させ、良食感を維持することができた。一方、ボイル加熱では、脱水後に吸水が発生して検体が軟化し、良食感にはならなかった。
なお、キャベツ、ニンジン及びタマネギを用いて、脱水後のボイル加熱による歩留りの上昇程度を確認したところ、2.6〜8.3%の範囲内であり、歩留りの上昇程度が小さいほど良食感であった。
In steaming heating, the enzyme was inactivated while maintaining the best yield, and a good texture could be maintained. On the other hand, in boil heating, water absorption occurred after dehydration, the specimen softened, and the food texture did not become good.
In addition, using cabbage, carrots, and onions, the degree of increase in yield due to boil heating after dehydration was confirmed. The range was 2.6 to 8.3%, and the lower the increase in yield, the better the texture.

実施例7 エタノール処理の検討
(1)エタノール処理及び塩化カルシウム処理の応力値の比較検討
キャベツ(40×30mm)を15%エタノール水溶液又は5%塩化カルシウム水溶液に10分間浸漬した検体、及びコントロールとして無処理の検体を、3分間蒸し加熱した後凍結した。これを自然解凍し応力を測定した。応力測定は、実施例1と同様の方法で行った。結果を図2に示す。
野菜にエタノールを含浸させた検体は、塩化カルシウムを含浸させた検体と同程度の最大応力の向上を示した。
Example 7 Examination of ethanol treatment (1) Comparative examination of stress values of ethanol treatment and calcium chloride treatment Samples of cabbage (40 x 30 mm) immersed in 15% ethanol aqueous solution or 5% calcium chloride aqueous solution for 10 minutes, and no control The treated specimens were steamed for 3 minutes, heated and then frozen. This was naturally thawed and the stress was measured. The stress measurement was performed in the same manner as in Example 1. The results are shown in FIG.
The specimen in which vegetable was impregnated with ethanol showed the same maximum stress improvement as the specimen in which calcium chloride was impregnated.

(2)野菜中のエタノール濃度の検討
キャベツ(30×40mm)をエタノールに0〜3時間浸漬後、検体中のエタノール濃度を測定した。検体中のエタノール濃度の異なる9種類の検体を作成した。その後、水さらし及び98℃で3分間の蒸し加熱によりエタノールを除去して凍結し、自然解凍後の品質を応力測定と官能により評価した。物性(応力)測定と官能評価は、実施例1と同様の方法で行った。ただし、基準(1点)はエタノール未処理、かつ蒸し加熱3分間の凍結品とした。
エタノール濃度は下記方法で測定した。検体6〜7gに水50mlを加えて蒸留した。留液を25mlに定容した後、ガスクロマトグラフ(島津製作所社製、GC-2014)にて測定した(検出器:FID、カラム:Gaskuropack55、80〜100mesh、3.2mm×3.1m(ジーエルサイエンス社製)、注入口及び検出器の温度:250℃、カラム温度:130℃、キャリアーガス:窒素25.0ml/min、ガス圧力:水素60kPa、空気50kPa、注入量:2μl)。結果を表7に示す。
(2) Examination of ethanol concentration in vegetables After cabbage (30 × 40 mm) was immersed in ethanol for 0 to 3 hours, the ethanol concentration in the specimen was measured. Nine types of specimens having different ethanol concentrations in the specimen were prepared. After that, ethanol was removed by freezing with water and steaming at 98 ° C. for 3 minutes to freeze, and the quality after natural thawing was evaluated by stress measurement and sensory evaluation. Physical property (stress) measurement and sensory evaluation were performed in the same manner as in Example 1. However, the standard (1 point) was a frozen product that had not been treated with ethanol and steamed for 3 minutes.
The ethanol concentration was measured by the following method. 50 ml of water was added to 6 to 7 g of the sample and distilled. The volume of the distillate was adjusted to 25 ml, and then measured with a gas chromatograph (manufactured by Shimadzu Corporation, GC-2014) (detector: FID, column: Gaskuropack55, 80-100 mesh, 3.2 mm × 3.1 m (manufactured by GL Sciences Inc.) ), Inlet and detector temperature: 250 ° C., column temperature: 130 ° C., carrier gas: nitrogen 25.0 ml / min, gas pressure: hydrogen 60 kPa, air 50 kPa, injection amount: 2 μl). The results are shown in Table 7.

野菜に0.7%以上のエタノールを含浸させることで良食感になることが確認された。また、エタノール濃度が高くなるほど、食感が向上した。   It was confirmed that a good texture was obtained by impregnating vegetables with 0.7% or more ethanol. Moreover, food texture improved, so that ethanol concentration became high.

キャベツ(30×40mm)を98℃で3分蒸し加熱後、15%エタノールを添加し、検体中のエタノール濃度の異なる7種類の検体を作成した。これを官能により評価した。官能評価は、実施例1と同様の方法で行った。ただし、評価は味風味について行い、基準(5点)はエタノール濃度0%品とした。結果を表8に示す。   After cabbage (30 x 40 mm) was steamed at 98 ° C for 3 minutes and heated, 15% ethanol was added to prepare 7 types of samples with different ethanol concentrations. This was sensoryly evaluated. The sensory evaluation was performed in the same manner as in Example 1. However, the evaluation was performed for taste and flavor, and the standard (5 points) was an ethanol concentration 0% product. The results are shown in Table 8.

エタノール濃度を1%以下にすることで、食味への影響が殆どなくなることが確認された。   It was confirmed that there was almost no influence on the taste by setting the ethanol concentration to 1% or less.

(3)浸漬に用いるエタノール水溶液の濃度の検討
キャベツ(30×40mm)を種々の濃度のエタノール水溶液に浸漬し、検体中のエタノール濃度を0.7%にした。その後、98℃で3分間の蒸し加熱によりエタノールを除去して凍結し、自然解凍後の品質を応力測定と官能により評価した。応力測定は、実施例1と同様の方法で行った。官能評価とエタノール濃度測定は、実施例7の(2)と同様の方法で行った。結果を表9に示す。
(3) Examination of concentration of ethanol aqueous solution used for immersion Cabbage (30 × 40 mm) was immersed in various concentrations of aqueous ethanol solution to adjust the ethanol concentration in the specimen to 0.7%. Thereafter, ethanol was removed by freezing and steaming at 98 ° C. for 3 minutes, and the quality after natural thawing was evaluated by stress measurement and sensory evaluation. The stress measurement was performed in the same manner as in Example 1. Sensory evaluation and ethanol concentration measurement were performed in the same manner as in Example 7, (2). The results are shown in Table 9.

濃度3%以上のエタノール水溶液を用いることで、明らかな食感向上効果が確認された。また、高濃度のエタノールを用いた方が食感向上効果は高かった。   A clear texture-enhancing effect was confirmed by using an aqueous ethanol solution having a concentration of 3% or more. Moreover, the texture improvement effect was higher when using high-concentration ethanol.

(4)エタノールを除去する加熱方法の検討
キャベツ(40×30mm)100gを15%エタノール水溶液に10分間浸漬した後、種々の方法で加熱してエタノールを除去した。ボイルは98℃で120秒、蒸しは98℃で180秒、炒めは240℃で120秒、揚げは180℃で5秒、マイクロ波は500Wで160秒加熱した。以上の方法で加熱した検体を凍結し、自然解凍後の品質を官能により評価した。官能評価とエタノール濃度測定は、実施例7の(2)と同様の方法で行った。結果を表10に示す。
(4) Examination of heating method for removing ethanol After 100 g of cabbage (40 × 30 mm) was immersed in a 15% aqueous ethanol solution for 10 minutes, ethanol was removed by heating by various methods. The boil was heated at 98 ° C for 120 seconds, the steaming at 98 ° C for 180 seconds, the fried food at 240 ° C for 120 seconds, the frying at 180 ° C for 5 seconds, and the microwave at 500W for 160 seconds. The specimen heated by the above method was frozen, and the quality after natural thawing was evaluated by sensory evaluation. Sensory evaluation and ethanol concentration measurement were performed in the same manner as in Example 7, (2). The results are shown in Table 10.

いずれの加熱方法でも食感向上効果、アルコールの除去が確認された。ただし、検体に熱媒体が直接接触しない方法(蒸し、炒め、マイクロ波)の方が食感向上効果が高かった。   In any heating method, the texture improvement effect and the removal of alcohol were confirmed. However, the method (steamed, fried, microwave) in which the heat medium does not directly contact the specimen had a higher texture improvement effect.

実施例8 ボイル加熱又は急速加熱脱水を行ったキャベツの電子顕微鏡による観察
キャベツ(40×30mm)を、1)98℃で2分間ボイル加熱した検体と、2)家庭用電子レンジを用いて500W(昇温速度1.7℃/s)で昇温した後、500W(脱水速度0.3%/s)で歩留り85%まで脱水した検体(以下、本発明の昇温工程及び脱水工程を「急速加熱脱水」と称する)を凍結した後に自然解凍し、電子顕微鏡で観察した写真を図3に示す。
ボイル加熱を行った検体では細胞が破壊されて大きな穴が多数見られるのに対し、急速加熱脱水を行った検体では細胞の損傷がほとんど見られなかった。
Example 8 Observation of cabbage subjected to boiling heating or rapid heating dehydration with an electron microscope 1) A specimen heated by boiling for 2 minutes at 98 ° C. and 2) 500 W ( Specimens dehydrated to a yield of 85% at 500W (dehydration rate 0.3% / s) after heating at a rate of temperature increase of 1.7 ° C / s (hereinafter referred to as "rapid heating dehydration") FIG. 3 shows a photograph that was naturally thawed after freezing and observed with an electron microscope.
In the specimen that had been boiled, the cells were destroyed and many large holes were seen, whereas in the specimen that had been heated and dehydrated, there was almost no damage to the cells.

実施例9 種々の野菜を用いた、ボイル加熱又は急速加熱脱水処理の比較検討
タマネギ(30×20mm)、ニンジン(20×50×2mm)、ピーマン(30×20mm)、ハクサイ(40×40mm)及びチンゲンサイ(40×40mm)を、1)98℃で2分間ボイル加熱、又は2)家庭用電子レンジを用いて500Wで昇温し、500Wで歩留り85%まで脱水した後凍結した。これを自然解凍し応力を測定した。応力測定は、実施例1と同様の方法で行った。ただし、検体は重ねず1枚で測定した。結果を図4に示す。
いずれの野菜でも、ボイル加熱を行った検体と比較して急速加熱脱水を行った検体の応力が向上した。
Example 9 Comparative study of boiling or rapid heating and dehydration using various vegetables Onion (30 x 20 mm), carrot (20 x 50 x 2 mm), pepper (30 x 20 mm), Chinese cabbage (40 x 40 mm) and Chinggensai (40 × 40mm) was 1) boiled at 98 ° C for 2 minutes, or 2) heated at 500W using a home microwave oven, dehydrated to 500% yield and 85% yield, and then frozen. This was naturally thawed and the stress was measured. The stress measurement was performed in the same manner as in Example 1. However, the specimens were measured with one piece without overlapping. The results are shown in FIG.
In any of the vegetables, the stress of the specimen subjected to rapid heating and dehydration was improved as compared with the specimen subjected to boiling heating.

実施例10 ビタミンCの残存率の測定
実施例8において調製したキャベツ及び実施例9において調製したタマネギのビタミンC含量を測定した。ビタミンCは下記方法で測定した。凍結状態の野菜を5g計量し、5%メタリン酸15ml及び海砂を適量加えて破砕し、遠心分離(10000rpm、5分)し、上清を分取し、Rqflex plus 10(Merck社製)を用いて定量した。加熱前の生鮮野菜のビタミンC含量を100%として残存率を求めた。結果を図5に示す。
ボイル加熱を行ったキャベツでは残存率が約58%であったのに対し、急速加熱脱水を行ったキャベツでは75%を超える高い残存率を示した。また、ボイル加熱を行ったタマネギでは残存率が約65%であったのに対し、急速加熱脱水を行ったタマネギでは95%を超える非常に高い残存率を示した。
Example 10 Measurement of Vitamin C Residual Ratio Vitamin C content of cabbage prepared in Example 8 and onion prepared in Example 9 was measured. Vitamin C was measured by the following method. Weigh 5 g of frozen vegetables, add 15 ml of 5% metaphosphoric acid and sea sand and crush them, centrifuge (10000 rpm, 5 minutes), collect the supernatant, and collect Rqflex plus 10 (Merck) And quantified. The survival rate was determined with the vitamin C content of fresh vegetables before heating as 100%. The results are shown in FIG.
The cabbage that had been boiled heated had a residual rate of about 58%, whereas the cabbage that had been rapidly heated and dehydrated showed a high residual rate of over 75%. In addition, the remaining rate was about 65% in the onion that was boiled, whereas the onion that was rapidly heated and dehydrated showed a very high rate exceeding 95%.

実施例11 急速加熱脱水及びエタノール処理の組み合わせの検討
キャベツ(40×30mm)100gを、1)無処理(蒸し加熱3分)、2)エタノール(EtOH)(15%エタノール水溶液に10分間浸漬後、蒸し加熱3分)、3)急速加熱脱水(家庭用電子レンジ200Wで240秒間加熱、次いで1000Wで50秒間加熱脱水)、又は4)急速加熱脱水+EtOH(15%エタノール水溶液に10分間浸漬後、家庭用電子レンジ200Wで240秒間加熱、次いで1000Wで50秒間加熱脱水)の4条件にて加工し、応力を測定した。これを-30℃で急速凍結した後に自然解凍し、再度応力を測定した。応力測定は、実施例1と同様の方法で行った。結果を図6に示す。
無処理の検体及びエタノール処理のみの検体では、加熱後と凍結解凍後の応力残存率がともに50%前後であったのに対し、急速加熱脱水の検体及び急速加熱脱水にエタノール処理を組み合わせた検体では、加熱後と凍結解凍後の応力残存率がともに70%前後と高かった。
エタノール処理は野菜のタンパク質を変性させることで野菜を硬化させる技術であり、急速加熱脱水は野菜の組織損傷を抑えながら脱水することにより、氷結晶を減らして凍結による損傷を低減させる技術である。これらの原理の異なる技術を組み合わせることで、より高品質を達成することが可能となる。
Example 11 Examination of Combination of Rapid Heat Dehydration and Ethanol Treatment 100 g of cabbage (40 × 30 mm) was 1) untreated (steamed for 3 minutes), 2) ethanol (EtOH) (after dipping in 15% ethanol aqueous solution for 10 minutes, 3) Rapid heating and dehydration (heating for 240 seconds in a household microwave oven for 240 seconds, then heating and dehydrating for 1000 seconds for 1000 seconds), or 4) Rapid heating and dehydration + EtOH (10% immersion in 15% ethanol aqueous solution for 10 minutes) The sample was processed under four conditions of heating in a microwave oven for 200 seconds for 240 seconds and then heating for 1000 seconds at 1000 W for 50 seconds, and the stress was measured. This was snap frozen at −30 ° C. and then naturally thawed, and the stress was measured again. The stress measurement was performed in the same manner as in Example 1. The results are shown in FIG.
In the untreated specimen and the specimen treated only with ethanol, the residual stress rate after heating and after freezing and thawing was around 50%, whereas rapid heating dehydration specimen and rapid heating dehydration specimen combined with ethanol treatment The residual stress rate after heating and after freezing and thawing was as high as around 70%.
Ethanol treatment is a technique that hardens vegetables by denaturing vegetable proteins, and rapid heat dehydration is a technique that reduces ice crystals and reduces damage due to freezing by dehydrating while suppressing tissue damage of vegetables. Higher quality can be achieved by combining technologies with different principles.

実施例12 各種軟化防止技術による食感の比較検討
各技術を用いて製造した冷凍野菜の食感を比較した。キャベツ(40×30mm)100gを下記表11に示す工程でそれぞれ加工し、自然解凍後に応力測定を行った。応力測定は、実施例1と同様の方法で行った。結果を図7に示す。
Example 12 Comparative examination of texture by various softening prevention techniques The textures of frozen vegetables produced using each technique were compared. 100 g of cabbage (40 × 30 mm) was processed in the steps shown in Table 11 below, and the stress was measured after natural thawing. The stress measurement was performed in the same manner as in Example 1. The results are shown in FIG.

先行文献に開示されている技術(塩化カルシウム浸漬、浸透圧脱水及び加熱脱水)においても応力は向上しているが、目標である未凍結品(生鮮野菜)の品質には至らなかった。一方、本発明の急速加熱脱水では、先行文献に開示されている技術よりも明らかに応力が向上し、目標に近い品質を達成することが確認された。エタノール処理の応力向上効果は公知技術と同程度であるが、急速加熱脱水と組み合わせることで異味の付与などで品質を低下させることなく、応力を生鮮野菜と同等まで向上させることが可能になった。   In the techniques (calcium chloride soaking, osmotic pressure dehydration and heat dehydration) disclosed in the prior literature, the stress is improved, but the quality of the target unfrozen product (fresh vegetables) has not been achieved. On the other hand, in the rapid heating and dehydration of the present invention, it was confirmed that the stress was clearly improved as compared with the technique disclosed in the prior art, and the quality close to the target was achieved. Although the stress improvement effect of ethanol treatment is similar to that of known technology, it has become possible to improve the stress to the same level as that of fresh vegetables without combining with rapid heating dehydration to reduce the quality due to the addition of a different taste. .

また、硬さ以外の品質として各技術による野菜の張りの効果を評価した。張りのある野菜は弾力があるため、動的粘弾性測定装置(タイセー社製、PZ-RHEO)を用いて弾力を測定した。自然解凍後のキャベツを極端に太い葉脈が入らないように10mmのプランジャーに接触させ、振幅10μm、周波数3Hzで測定し、得られた貯蔵弾性率E'を測定値とした。結果を図8に示す。
先行文献に開示されている技術では、繊維は強いが弾力がなく張りがない品質であった。一方、本発明の急速加熱脱水では応力に加えて弾力も向上し、硬さだけでなく生鮮野菜の持つ張りの向上効果も得られた。また、急速加熱脱水にエタノール処理を組み合わせることで、張りを更に向上させることが可能になった。
Moreover, the effect of vegetable tension by each technique was evaluated as quality other than hardness. Since the vegetables with tension are elastic, the elasticity was measured using a dynamic viscoelasticity measuring device (manufactured by Taisei Corporation, PZ-RHEO). The cabbage after natural thawing was brought into contact with a 10 mm plunger so that extremely thick veins did not enter, and measurement was performed at an amplitude of 10 μm and a frequency of 3 Hz. The obtained storage elastic modulus E ′ was used as a measurement value. The results are shown in FIG.
In the technique disclosed in the prior art, the fiber is strong but has no elasticity and no tension. On the other hand, the rapid heating and dehydration of the present invention improved the elasticity in addition to the stress, and obtained not only the hardness but also the effect of improving the tension of fresh vegetables. Moreover, it became possible to further improve the tension by combining ethanol treatment with rapid heating dehydration.

さらに、各技術で得られた検体の官能評価を行った。官能評価は、実施例1と同様の方法で行った。ただし、目標品質である未凍結品を基準(5点)とし、基準を上回る品質の場合は6点とし、各技術における食感(硬さ及び張り)、食味及び外観を評価項目として設定した。結果を表12に示す。   Furthermore, the sensory evaluation of the specimen obtained by each technique was performed. The sensory evaluation was performed in the same manner as in Example 1. However, the unfrozen product that is the target quality was set as the standard (5 points), and the quality exceeding the standard was set as 6 points, and the texture (hardness and tension), taste and appearance in each technology were set as evaluation items. The results are shown in Table 12.

本発明の急速加熱脱水(及びエタノール処理との組み合わせ)を用いることで、食感(硬さ及び張り)、食味及び外観を向上させ、目標に近い品質を達成できることが確認された。   It was confirmed that by using the rapid heating dehydration (and the combination with ethanol treatment) of the present invention, texture (hardness and tension), taste and appearance can be improved and a quality close to the target can be achieved.

次に、急速加熱脱水、及び急速加熱脱水とエタノール処理との組み合わせによって得られた検体のビタミンC含量を測定した。測定は、実施例10と同様の方法で行った。結果を図9に示す。
急速加熱脱水にエタノール処理を組み合わせても、高い残存率を維持できることが確認された。
Next, the vitamin C content of the specimen obtained by rapid heating dehydration and a combination of rapid heating dehydration and ethanol treatment was measured. The measurement was performed in the same manner as in Example 10. The results are shown in FIG.
It was confirmed that a high residual rate could be maintained even when combined with rapid heating dehydration and ethanol treatment.

実施例13 中華丼の作成
急速加熱脱水及びエタノール処理を組み合わせて加工した野菜又はボイル加熱した野菜を用いて中華丼を作成した。具体的には、キャベツ及びハクサイを30×40mmにカットしたもの、モヤシはそのままの状態のものを用い、計300gの野菜をそれぞれ、1)連続式のマイクロ波加熱機を用い1.5kWで80秒間加熱し、歩留り85%まで脱水し、蒸し器で90秒間加熱したもの、又は2)98℃で2分間ボイル加熱したものを、30℃以下になるまで放冷し、これをエビ等の具材及びソースと混合した後、冷凍した。解凍後、加熱調理した中華丼の外観写真を図10に示す。
ボイル加熱した野菜を用いた中華丼は、野菜が軟化しているため、つぶれたような外観となった。一方、急速加熱脱水を行った野菜を用いた中華丼は、野菜の張りが維持されているため、立体感があり、外観品質の向上が見られた。
Example 13 Preparation of Chinese koji Chinese koji was prepared using vegetables processed by combining rapid heating dehydration and ethanol treatment or boiled vegetables. Specifically, cabbage and Chinese cabbage cut to 30 x 40 mm, with the same amount of sprouts, 300 g of vegetables, 1) 1.5 kW for 80 seconds using a continuous microwave heater Heated, dehydrated to 85% yield, heated for 90 seconds with a steamer, or 2) boiled for 2 minutes at 98 ° C, allowed to cool to below 30 ° C, and this was used for ingredients such as shrimp and Frozen after mixing with sauce. FIG. 10 shows an appearance photograph of the cooked Chinese rice bowl after thawing.
The Chinese bowl using boiled vegetables had a crushed appearance because the vegetables were softened. On the other hand, Chinese koji using vegetables that had been subjected to rapid heating and dehydration had a three-dimensional effect because the tension of the vegetables was maintained, and the appearance quality was improved.

本発明は、喫食時の食感及び外観に優れ、栄養残存率が高く、かつ長期保存性を有する冷凍野菜及びそれらを含む食品の製造方法を提供することができる。   ADVANTAGE OF THE INVENTION This invention can provide the manufacturing method of the frozen vegetables which are excellent in the texture and external appearance at the time of eating, have a high nutrient residual rate, and have long-term preservation | save, and foodstuffs containing them.

Claims (13)

野菜を、最も高温である部分が95℃以上になるまで昇温する第1の工程、及び第1の工程により得られた野菜を歩留りが70〜90%の範囲内になるまで5分以内に脱水する第2の工程、及び第2の工程により得られた野菜を凍結する工程を含む、冷凍野菜の製造方法。   The first step of heating the vegetables until the hottest part reaches 95 ° C. or higher, and the vegetables obtained by the first step within 5 minutes until the yield falls within the range of 70 to 90% A method for producing frozen vegetables, comprising a second step of dehydration and a step of freezing the vegetables obtained by the second step. 第1の工程終了時の野菜の品温差が30℃以内である、請求項1記載の製造方法。   The manufacturing method of Claim 1 whose product temperature difference of the vegetables at the time of completion | finish of a 1st process is less than 30 degreeC. 第1の工程において野菜の最も高温である部分が70℃を超えてから5分以内に加熱して昇温する、請求項1又は2記載の製造方法。   The manufacturing method of Claim 1 or 2 which heats within 5 minutes after the part which is the hottest part of vegetables exceeds 70 degreeC in a 1st process. 第1の工程において加熱により平均6.0℃/s以下の速度で昇温する、請求項1〜3のいずれか1項に記載の製造方法。   The manufacturing method according to any one of claims 1 to 3, wherein the temperature is raised at an average rate of 6.0 ° C / s or less by heating in the first step. 第1の工程においてマイクロ波加熱又は蒸し加熱で昇温する、請求項1〜4のいずれか1項に記載の製造方法。   The manufacturing method according to any one of claims 1 to 4, wherein the temperature is raised by microwave heating or steaming heating in the first step. 第2の工程において加熱により平均0.05%/s以上の速度で脱水する、請求項1〜5のいずれか1項に記載の製造方法。   The production method according to any one of claims 1 to 5, wherein dehydration is carried out by heating at an average rate of 0.05% / s or more in the second step. 第2の工程においてマイクロ波加熱又は過熱水蒸気による加熱で脱水する、請求項1〜6のいずれか1項に記載の製造方法。   The manufacturing method of any one of Claims 1-6 which spin-dry | dehydrates by a microwave heating or the heating by superheated steam in a 2nd process. 第2の工程及び凍結する工程の間に、第2の工程で得られた野菜を、歩留りの変化率が5%以内となるようにして該野菜の酵素を失活させる第3の工程をさらに含む、請求項1〜7のいずれか1項に記載の製造方法。   Between the second step and the freezing step, the third step of inactivating the vegetable enzyme obtained in the second step so that the yield change rate is within 5% The manufacturing method of any one of Claims 1-7 containing. 第3の工程において加熱によって酵素を失活させる、請求項8記載の製造方法。   The production method according to claim 8, wherein the enzyme is deactivated by heating in the third step. 第3の工程において蒸し加熱によって酵素を失活させる、請求項8又は9記載の製造方法。   The production method according to claim 8 or 9, wherein the enzyme is deactivated by steaming and heating in the third step. 酵素の活性を、ペルオキシダーゼ活性500U/野菜重量100g以下に失活させる、請求項8〜10のいずれか1項に記載の製造方法。   The production method according to any one of claims 8 to 10, wherein the enzyme activity is deactivated to a peroxidase activity of 500 U or a vegetable weight of 100 g or less. 第1の工程の前に、野菜にエタノールを含浸させる工程をさらに含む、請求項1〜11のいずれか1項に記載の製造方法。   The manufacturing method according to any one of claims 1 to 11, further comprising a step of impregnating the vegetable with ethanol before the first step. 請求項1〜12のいずれか1項に記載の製造方法で製造された冷凍野菜を含む食品。   The foodstuff containing the frozen vegetable manufactured with the manufacturing method of any one of Claims 1-12.
JP2014078388A 2014-04-07 2014-04-07 Process for producing frozen vegetables and foods containing them Active JP6673630B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014078388A JP6673630B2 (en) 2014-04-07 2014-04-07 Process for producing frozen vegetables and foods containing them

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014078388A JP6673630B2 (en) 2014-04-07 2014-04-07 Process for producing frozen vegetables and foods containing them

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2018247048A Division JP2019047825A (en) 2018-12-28 2018-12-28 Frozen vegetable and manufacturing method of foods including the same

Publications (2)

Publication Number Publication Date
JP2015198587A true JP2015198587A (en) 2015-11-12
JP6673630B2 JP6673630B2 (en) 2020-03-25

Family

ID=54550539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014078388A Active JP6673630B2 (en) 2014-04-07 2014-04-07 Process for producing frozen vegetables and foods containing them

Country Status (1)

Country Link
JP (1) JP6673630B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019074216A (en) * 2017-10-12 2019-05-16 ホシザキ株式会社 Storage
JP2019201638A (en) * 2018-05-22 2019-11-28 キユーピー株式会社 Packaged rice-like food including cut cabbage
JP2021040554A (en) * 2019-09-12 2021-03-18 カゴメ株式会社 Frozen leaf vegetable, manufacturing method thereof, and method of reducing drip of frozen leaf vegetable

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07147892A (en) * 1993-11-30 1995-06-13 House Foods Corp Preparation of frozen onion
WO2002080690A1 (en) * 2001-03-30 2002-10-17 Nippon Suisan Kaisha, Ltd. Frozen vegetable foods keeping texture afeter freezing and thawing
JP2006204222A (en) * 2005-01-31 2006-08-10 Unicolloid Inc Cold vegetable sustaining vegetable texture
JP2006271352A (en) * 2005-03-28 2006-10-12 Hokkaido Method for producing frozen food

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07147892A (en) * 1993-11-30 1995-06-13 House Foods Corp Preparation of frozen onion
WO2002080690A1 (en) * 2001-03-30 2002-10-17 Nippon Suisan Kaisha, Ltd. Frozen vegetable foods keeping texture afeter freezing and thawing
JP2006204222A (en) * 2005-01-31 2006-08-10 Unicolloid Inc Cold vegetable sustaining vegetable texture
JP2006271352A (en) * 2005-03-28 2006-10-12 Hokkaido Method for producing frozen food

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
山口智子: "調理過程における野菜類の抗酸化性の評価に関する研究", 日本調理科学会誌, vol. 45, no. 2, JPN6018006788, 2012, JP, pages 88 - 95, ISSN: 0004018309 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019074216A (en) * 2017-10-12 2019-05-16 ホシザキ株式会社 Storage
JP2019201638A (en) * 2018-05-22 2019-11-28 キユーピー株式会社 Packaged rice-like food including cut cabbage
JP7231482B2 (en) 2018-05-22 2023-03-01 キユーピー株式会社 Packaged cooked rice-like food using cut cabbage
JP2021040554A (en) * 2019-09-12 2021-03-18 カゴメ株式会社 Frozen leaf vegetable, manufacturing method thereof, and method of reducing drip of frozen leaf vegetable
JP7008057B2 (en) 2019-09-12 2022-01-25 カゴメ株式会社 Frozen leafy vegetables and their manufacturing method and drip reduction method of frozen leafy vegetables

Also Published As

Publication number Publication date
JP6673630B2 (en) 2020-03-25

Similar Documents

Publication Publication Date Title
Wu et al. Effect of simultaneous infrared dry-blanching and dehydration on quality characteristics of carrot slices
Kutlu et al. Impact of different microwave treatments on food texture
TWI469740B (en) Method for making soft material of vegetable substance
Verma et al. Microwave heating: Alternative thermal process technology for food application
JP5389756B2 (en) Dried vegetables and method for producing the same
Diamante et al. Vacuum‐frying of apricot slices: Effects of frying temperature, time and maltodextrin levels on the moisture, color and texture properties
Dermesonlouoglou et al. Osmotic pretreatment for the production of novel dehydrated tomatoes and cucumbers
JP6673630B2 (en) Process for producing frozen vegetables and foods containing them
Akintunde et al. Effect of blanching methods on drying kinetics of bell paper
JPWO2016152820A1 (en) Container-packed frozen vegetables and method for producing the same
JP4646317B2 (en) How to improve the taste of food
WO2002080690A1 (en) Frozen vegetable foods keeping texture afeter freezing and thawing
KR101842881B1 (en) Method of manufacturing a soft-boiled eggs
JP2019047825A (en) Frozen vegetable and manufacturing method of foods including the same
JP2021151208A (en) Production method of frozen mushroom
Pan et al. Feasibility of using infrared heating for blanching and dehydration of fruits and vegetables
Kapadiya et al. Effect of hot water blanching treatment on quality of dried potato slices
Bodra et al. Optimization of blanching treatments of green chilli
JP4478593B2 (en) Processed food for microwave cooking containing mushrooms
Gupta et al. Osmotic dehydration of button mushroom
JP2016220554A (en) Method for producing frozen root vegetable
KR102356164B1 (en) Japchae manufacturing method with improved storage of ingredients
JP4987612B2 (en) Combined food for thawing microwave equipment
JP2015039339A (en) Frozen vegetable and manufacturing method for the same
JP6092512B2 (en) Frozen green soybeans and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170306

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180426

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20181002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181228

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20190214

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20190419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200305

R150 Certificate of patent or registration of utility model

Ref document number: 6673630

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250