JP2015197293A - Fluid resistance measurement method and device - Google Patents

Fluid resistance measurement method and device Download PDF

Info

Publication number
JP2015197293A
JP2015197293A JP2014073452A JP2014073452A JP2015197293A JP 2015197293 A JP2015197293 A JP 2015197293A JP 2014073452 A JP2014073452 A JP 2014073452A JP 2014073452 A JP2014073452 A JP 2014073452A JP 2015197293 A JP2015197293 A JP 2015197293A
Authority
JP
Japan
Prior art keywords
water
fluid resistance
cylindrical base
cylindrical
fabric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014073452A
Other languages
Japanese (ja)
Other versions
JP5841631B2 (en
Inventor
鳴尾 丈司
Takeshi Naruo
丈司 鳴尾
荻野 毅
Takeshi Ogino
毅 荻野
松崎 健
Takeshi Matsuzaki
健 松崎
田中 啓之
Hiroyuki Tanaka
啓之 田中
謙次 菊地
Kenji Kikuchi
謙次 菊地
望月 修
Osamu Mochizuki
修 望月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mizuno Corp
Original Assignee
Mizuno Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mizuno Corp filed Critical Mizuno Corp
Priority to JP2014073452A priority Critical patent/JP5841631B2/en
Publication of JP2015197293A publication Critical patent/JP2015197293A/en
Application granted granted Critical
Publication of JP5841631B2 publication Critical patent/JP5841631B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method and device capable of accurately measuring the fluid resistance of swimwear fabric and the like.SOLUTION: In the fluid resistance measurement method of the present invention, first, fabric or material is attached to the outer surface of a cylindrical part of a cylindrical substrate (1) of a density higher than the water density. Then, (A) the cylindrical substrate (1) is dropped into a static water (12) in a water tank (11) in a state in which the substrate (1) is erected, and the time when the tip of the cylindrical substrate (1) travels a predetermined drop distance is measured. Alternatively, (B) the cylindrical substrate (1) is dropped from an air medium into a static water (12) in a state in which the substrate (1) is erected, and the drowning period since the tip of the cylindrical substrate (1) comes into contact with the water surface until the rear end enters water is measured. Then, the time or drowning period is used as an evaluation value of the fluid resistance of the surface of the fabric or material.

Description

本発明は、水着等の流体抵抗を測定することが可能な方法及びその装置に関するものである。   The present invention relates to a method and apparatus capable of measuring a fluid resistance such as a swimsuit.

水着生地や水泳キャップなどの素材に求められる一つの機能は、競泳時に生ずる水中での表面摩擦抵抗を下げることにある。このためには水中における表面摩擦抵抗を把握する必要がある。従来から水着の流体抵抗を測定する方法は提案されている。特許文献1には、見掛け比重0.68g/cm3に調整したアルミニウム円管の表面に水着の生地を取り付け、糸で支持しつつ水流の中に置き、糸の張力から流体抵抗を測定する方法が提案されている。特許文献2には、プレートの表面に水着生地を貼り付け、水流の中に置き、プレートのひずみを測定することにより流体抵抗を算出する方法が提案されている。 One function required for materials such as swimwear fabrics and swimming caps is to reduce the surface frictional resistance in water that occurs during swimming. For this purpose, it is necessary to grasp the surface frictional resistance in water. Conventionally, methods for measuring the fluid resistance of a swimsuit have been proposed. Patent Document 1 discloses a method in which a fabric of a swimsuit is attached to the surface of an aluminum circular tube adjusted to an apparent specific gravity of 0.68 g / cm 3 , is placed in a water stream while being supported by a thread, and the fluid resistance is measured from the tension of the thread. Has been proposed. Patent Document 2 proposes a method of calculating fluid resistance by pasting a swimsuit cloth on the surface of a plate, placing it in a water flow, and measuring the strain of the plate.

特開平7-63749号公報Japanese Patent Laid-Open No. 7-63749 WO2007/142232号WO2007 / 142232

しかし、前記従来の流体抵抗測定方法及び装置は、いずれも流体を計測対象物体の周囲に流す操作が必要であり、流体の流速によって流体抵抗が異なったり、乱流を起こすと流体抵抗に大きな影響を与えることから、正確な測定が困難であるという問題があり、さらに正確な方法の開発が望まれていた。   However, the conventional fluid resistance measurement methods and apparatuses all require an operation of flowing a fluid around the object to be measured. If the fluid resistance varies depending on the flow velocity of the fluid or if turbulent flow occurs, the fluid resistance is greatly affected. Therefore, there is a problem that accurate measurement is difficult, and further development of an accurate method has been desired.

本発明は、前記従来の問題を解決するため、水着生地や素材などの正確な流体抵抗が測定できる方法及び装置を提供する。   The present invention provides a method and an apparatus capable of measuring an accurate fluid resistance of a swimsuit fabric or a material in order to solve the conventional problems.

本発明の流体抵抗測定方法は、中内における生地又は素材表面の流体抵抗を測定する方法であって、水の密度よりも重い密度の円筒状基体の円筒部の外側面に生地又は素材を取り付け、(A)前記円筒状基体を立てた状態で水槽内の静置水に落下させ、前記円筒状基体先端が所定の落下距離を通過する時間を測定するか、あるいは(B)前記円筒状基体を立てた状態で空気中から静置した水中に落下させ、前記円筒状基体先端が水面に接触してから後端が冠水するまでの入水時間を測定し、
生地又は素材表面の流体抵抗の評価値とすることを特徴とする。
The fluid resistance measuring method of the present invention is a method for measuring the fluid resistance of the fabric or material surface in the inside, wherein the fabric or material is attached to the outer surface of the cylindrical portion of the cylindrical base having a density heavier than the density of water. (A) The cylindrical base body is dropped and placed in static water in a water tank, and the time for the tip of the cylindrical base body to pass a predetermined drop distance is measured, or (B) the cylindrical base body Measure the water entry time from when the tip of the cylindrical substrate contacts the water surface until the rear end is submerged.
It is set as the evaluation value of the fluid resistance of the cloth or material surface.

本発明の流体抵抗測定装置は、前記の流体抵抗測定方法を実施するための流体抵抗測定装置であって、円筒部の外側面に生地又は素材を取り付けが可能であり、水の密度よりも重い密度の円筒状基体と、水槽と、ハイスピードカメラと、(A)前記円筒状基体を立てた状態で水槽内の静置水に落下させ、前記円筒状基体先端が所定の落下距離を通過する時間を測定する手段を備えるか、あるいは(B)前記円筒状基体を立てた状態で空気中から静置した水中に落下させ、前記円筒状基体先端が水面に接触してから後端が冠水するまでの入水時間を測定する手段を備え、生地又は素材表面の流体抵抗の評価値とすることを特徴とする。   The fluid resistance measuring device of the present invention is a fluid resistance measuring device for carrying out the above-described fluid resistance measuring method, and can attach a cloth or a material to the outer surface of the cylindrical portion and is heavier than the density of water. A cylindrical base body having a density, a water tank, a high-speed camera, and (A) the cylindrical base body is dropped and placed in still water in the water tank, and the tip of the cylindrical base body passes a predetermined drop distance. Or a means for measuring time, or (B) the cylindrical base body is dropped and placed in air standing still, and the rear end of the cylindrical base body is submerged after the front end of the cylindrical base body contacts the water surface. Means for measuring the water entry time until the fluid resistance is evaluated as a fluid resistance evaluation value on the surface of the fabric or material.

本発明は、水槽内の静置水に円筒状基体を落下させるので、常に安定した状態で水中における落下速度と加速度を測定できる。すなわち、前記円筒状基体先端が所定の落下距離を通過する時間を正確に測定することができ、摩擦抵抗値を精度高く正確に算出できる。これは水中における水着生地や素材の摩擦抵抗値として評価でき、水着生地の開発に役立つ。   In the present invention, since the cylindrical base body is dropped in the still water in the water tank, the falling speed and acceleration in water can be measured in a stable state at all times. That is, it is possible to accurately measure the time required for the tip of the cylindrical substrate to pass a predetermined drop distance, and to calculate the frictional resistance value with high accuracy and accuracy. This can be evaluated as the frictional resistance value of swimsuit fabrics and materials in water, and is useful for the development of swimsuit fabrics.

また、円筒状基体を立てた状態で空気中から静置した水中に落下させ、前記円筒状基体先端が水面に接触してから後端が冠水するまでの入水時間を測定できすることにより、水着生地や素材表面の流体抵抗の評価値とすることができる。これは空気中から水に飛び込む際の水着生地や素材の摩擦抵抗値として評価でき、水着生地や素材の開発に役立つ。   In addition, the cylindrical base body is dropped from the air in a standing state and can be measured by measuring the water entry time from when the front end of the cylindrical base body contacts the water surface until the rear end is submerged. It can be set as an evaluation value of the fluid resistance of the cloth or material surface. This can be evaluated as the frictional resistance value of swimsuit fabrics and materials when jumping into the water from the air, and is useful for the development of swimsuit fabrics and materials.

図1Aは本発明の一実施例における円筒状基体の側面図、図1Bは同I−I線の断面図である。FIG. 1A is a side view of a cylindrical substrate according to an embodiment of the present invention, and FIG. 1B is a cross-sectional view taken along the line II. 図2は同、水中で円筒状基体が落下する時間を測定する装置を示す説明図である。FIG. 2 is an explanatory view showing an apparatus for measuring the time during which the cylindrical substrate falls in water. 図3は同、水中の所定距離を円筒状基体が落下する時間を測定する方法及び装置を示す説明図である。FIG. 3 is an explanatory view showing a method and an apparatus for measuring the time during which the cylindrical substrate falls for a predetermined distance in water. 図4は本発明の別の実施例における円筒状基体が空気中から入水するまでの時間を測定する方法及び装置を示す説明図である。FIG. 4 is an explanatory view showing a method and apparatus for measuring the time until a cylindrical substrate enters water from the air in another embodiment of the present invention. 図5Aは本発明の一実施例における円筒状基体を展開したときの斜視図、図5Bは同、平面図である。FIG. 5A is a perspective view when a cylindrical substrate is developed in one embodiment of the present invention, and FIG. 5B is a plan view of the same. 図6は本発明の一実施態様の平織部分と緯二重織部分とが交互に繰り返されているストレッチ織物の模式的平面図である。FIG. 6 is a schematic plan view of a stretch fabric in which plain weave portions and weft double weave portions are alternately repeated according to an embodiment of the present invention. 図7Aは同ストレッチ織物の模式的平面図、図7Bは同断面図である。FIG. 7A is a schematic plan view of the stretch fabric, and FIG. 7B is a cross-sectional view thereof. 図8は同ストレッチ織物を使用した水着の模式的正面図である。FIG. 8 is a schematic front view of a swimsuit using the stretch fabric. 図9は同ストレッチ織物を使用した水着の模式的裏面図である。FIG. 9 is a schematic back view of a swimsuit using the stretch fabric.

本発明で使用する円筒状基体について説明する。円筒状基体に取り付けた生地や素材表面の摩擦抵抗を計測するために、形状抵抗の影響をできるかぎりとりのぞく。そのために、例えば断面形状を翼型に似せた三次元ペンシル型の落下モデルを作成した。球と異なり落下方向を長軸とした細長形状で、前部が半球状、後部がペンシル型により、形状抵抗が大幅に小さくなる。また、落下距離が短く測定できるため、非定常運動を伴い、本来考慮すべき付加質量の効果を省くことができる。したがって、このシステムで円筒形に装着した生地や素材、表面状態の摩擦抵抗を評価できる。   The cylindrical substrate used in the present invention will be described. In order to measure the frictional resistance of the fabric or material surface attached to the cylindrical substrate, remove the influence of the shape resistance as much as possible. For that purpose, for example, a three-dimensional pencil type drop model with a cross-sectional shape resembling an airfoil was created. Unlike a sphere, it has an elongated shape with the drop direction as the major axis, the front part is hemispherical, and the rear part is a pencil type, which greatly reduces the shape resistance. Moreover, since the fall distance can be measured shortly, the effect of the additional mass that should be considered originally can be omitted with unsteady motion. Therefore, it is possible to evaluate the cloth and material worn in a cylindrical shape by this system and the frictional resistance of the surface state.

本発明で使用した円筒状基体のサイズは、一例として直径30mm,長さ300mmで、生地を装着する部分が200mmである。本実施例では、装着した生地を含めて88gになるようにし、生地およびモデルの浮力を考慮し基体の内部に錘を装着して、水中での重さが0.3Nとなるよう統一した。円筒状基体の中心にはステンレスパイプが通っており、その中をワイヤーが通っている。これによって、円筒状基体は真っ直ぐに落下し、ワイヤーとステンレスパイプとの摩擦抵抗も無視できる。   The size of the cylindrical substrate used in the present invention is, for example, 30 mm in diameter and 300 mm in length, and the portion on which the fabric is mounted is 200 mm. In this example, the weight of the cloth to be worn is 88 g including the cloth to be worn, and a weight is attached to the inside of the base in consideration of the buoyancy of the cloth and the model so that the weight in water is 0.3N. A stainless steel pipe passes through the center of the cylindrical substrate, and a wire passes through it. As a result, the cylindrical base body falls straight, and the frictional resistance between the wire and the stainless steel pipe can be ignored.

本発明においては、下記の2種類の計測方法を実施できる。
(1)第1番目は、水中での水着生地の摩擦抵抗計測水槽側面からレーザーポインターで計測基準点を標識し、その基準点から下方2点を、水着生地を着装した円筒状基体が通り過ぎる時間をハイスピード画像から計測し、これより2点におけるモデルが通過する速度および加速度を計測する。この速度、加速度を用いて、モデル質量、浮力を考慮し、非定常効果を導入した運動方程式を用いて表面抵抗を算出する。その後、非定常抵抗係数を算出し、着装した水着生地ごとに評価を行う。
(2)第2番目は、空気中から水中への入水時の抵抗評価水面上の空気中から水着生地を着装したモデルを落下させ、水面から入水させ、円筒状基体の先端から後端までが入水するまでの時間を入水時間とし、ハイスピードカメラ撮影より計測する。その入水時間を表面に作用した抵抗として評価し、入水時間が短ければ短いほど抵抗が小さい事を示す指標として、各水着生地の空気中から水への入水に作用する抵抗を評価する。
In the present invention, the following two types of measurement methods can be implemented.
(1) The first is to measure the frictional resistance of the swimsuit fabric in water. The measurement reference point is marked with a laser pointer from the side of the water tank, and the two points below the reference point pass through the cylindrical substrate on which the swimsuit fabric is worn. Is measured from the high-speed image, and the speed and acceleration through which the model passes at two points are measured. Using this speed and acceleration, the surface resistance is calculated using an equation of motion that introduces the unsteady effect, taking into account the model mass and buoyancy. Thereafter, an unsteady resistance coefficient is calculated and evaluated for each worn swimsuit fabric.
(2) Second, the resistance evaluation when entering the water from the air. Drop the model wearing the swimsuit fabric from the air above the surface of the water, let it enter from the surface of the water, and from the tip to the rear end of the cylindrical substrate The time to enter the water is taken as the water entry time and measured from high-speed camera photography. The water entry time is evaluated as the resistance acting on the surface, and the resistance acting on the water entering the water from the air of each swimsuit fabric is evaluated as an index indicating that the shorter the water entry time is, the smaller the resistance is.

円筒状基体は、先端は球面状であり、後端は先細り状であるのが好ましい。先端が球面状であると、水の抵抗は受けにくい。また、後端が先細り状であると、乱流も起こりにくく、水中を下に向かって直線的に落下しやすい。   The cylindrical substrate preferably has a spherical tip at the tip and a tapered tip at the rear end. If the tip is spherical, it is difficult to receive water resistance. Further, when the rear end is tapered, turbulent flow hardly occurs, and it is easy to fall linearly downward in water.

円筒状基体は、先端側と後部に質量があるのが好ましい。両端に質量があると、慣性モーメントが大きくなり、水中を下に向かって直線的に落下しやすい。   The cylindrical base body preferably has a mass at the front end side and the rear side. If there is a mass at both ends, the moment of inertia will increase, and it will be easy to fall straight down in the water.

円筒状基体は、密度は1000〜1200kg/m3であるのが好ましい。前記の範囲であれば、適度な落下速度となる。円筒状基体の質量は50〜200g程度が好ましい。 The density of the cylindrical substrate is preferably 1000 to 1200 kg / m 3 . If it is the said range, it will become a moderate fall speed. The mass of the cylindrical substrate is preferably about 50 to 200 g.

円筒状基体は、断面が円、楕円、長円及び扁平円から選ばれる少なくとも一つの形状であるのが好ましい。この中でも断面が扁平円形状であると、翼型に似せた三次元ペンシル型の落下モデルとすることができる。   The cylindrical substrate preferably has at least one shape whose cross section is selected from a circle, an ellipse, an ellipse and a flat circle. Among these, when the cross section is a flat circular shape, a three-dimensional pencil-type drop model resembling an airfoil can be obtained.

円筒状基体の落下時間を測定する距離はどのような長さであっても良いが、一例として100mm以上500mm以下の範囲内における特定の値が好ましい。例えば200mmである。この距離をハイスピードカメラにより高速撮影して落下時間を測定するのが好ましい。前記長さであれば、ハイスピードカメラにより高速撮影して落下時間を正確に測定できる。ハイスピードカメラの撮影速度は例えば1000〜5000fpsが好ましく、さらに好ましくは1500〜3000fpsである。   The distance for measuring the drop time of the cylindrical substrate may be any length, but as an example, a specific value within a range of 100 mm to 500 mm is preferable. For example, it is 200 mm. It is preferable to measure the fall time by photographing this distance with a high-speed camera at high speed. If it is the said length, high-speed camera can image | photograph at high speed and it can measure a fall time correctly. The shooting speed of the high-speed camera is preferably 1000 to 5000 fps, and more preferably 1500 to 3000 fps.

本発明においては、測定対象物は例えば水着の生地、キャップ素材、その他装置に装着できるものであればどのようなものでも測定できる。   In the present invention, any object can be measured as long as it can be attached to, for example, a swimsuit cloth, a cap material, or any other device.

以下図面を用いて説明する。以下の図面において、同一符号は同一物を示す。図1Aは本発明の一実施例における円筒状基体の側面図、図1Bは同I−I線の断面図である。この円筒状基体(モデル)1の先端3は球面状であり、後端4は先細り状である。円筒部2には水着の生地サンプル9を取り付ける。円筒部2に取り付ける生地サンプル9の面積は約0.016mm2である。円筒部2の下部には、おもり5を挿入する。また円筒状基体(モデル)1の軸部には中空部(パイプ)6を入れておき、ここに図3に示すようにワイヤ7を挿入する。 This will be described below with reference to the drawings. In the following drawings, the same symbols indicate the same items. FIG. 1A is a side view of a cylindrical substrate according to an embodiment of the present invention, and FIG. 1B is a cross-sectional view taken along the line II. The front end 3 of the cylindrical base body (model) 1 is spherical and the rear end 4 is tapered. A swimsuit fabric sample 9 is attached to the cylindrical portion 2. The area of the dough sample 9 attached to the cylindrical portion 2 is about 0.016 mm 2 . A weight 5 is inserted into the lower portion of the cylindrical portion 2. A hollow portion (pipe) 6 is placed in the shaft portion of the cylindrical base body (model) 1 and a wire 7 is inserted therein as shown in FIG.

図2は水中で円筒状基体が落下する時間を測定する装置10を示す説明図である。アクリル樹脂製等の透明な水槽11に水12を入れておく。水槽11の裏側には遮蔽シート13を貼り付け、後側にはランプ14を配置し、前面にはハイスピードカメラ15を配置する。この状態で水槽の上から円筒状基体(モデル)1を静かに落下させる。円筒状基体(モデル)1はワイヤ7に沿って落下する。   FIG. 2 is an explanatory view showing an apparatus 10 for measuring the time during which the cylindrical substrate falls in water. Water 12 is put in a transparent water tank 11 made of acrylic resin or the like. A shielding sheet 13 is pasted on the back side of the water tank 11, a lamp 14 is arranged on the rear side, and a high speed camera 15 is arranged on the front side. In this state, the cylindrical substrate (model) 1 is gently dropped from above the water tank. The cylindrical base body (model) 1 falls along the wire 7.

図3は同、水中の所定距離を円筒状基体が落下する時間を測定する方法及び装置を示す説明図である。まず円筒状基体(モデル)1の後端が水面に位置するように配置させ、先端16から200mm下方にレーザ点17と、その100mm下方を第1測定ポイント18とし、その100mm下方に第2測定ポイント19としておく。レーザ点17は図2に示す遮蔽シート13に穴をあけておく。このような状態で円筒状基体(モデル)1を静かに落下させ、その先端16がレーザ点17を通過したときにハイスピードカメラの高速撮影をオンとし、第1測定ポイント18から第2測定ポイント19まで落下する時間を測定する。1試料当たり10回計測してその平均値を用いる。次の計算式(数1)から加速度を求める。   FIG. 3 is an explanatory view showing a method and an apparatus for measuring the time during which the cylindrical substrate falls for a predetermined distance in water. First, the cylindrical base body (model) 1 is arranged so that the rear end thereof is located on the water surface, the laser spot 17 is 200 mm below the tip 16, the first measurement point 18 is 100 mm below, and the second measurement is 100 mm below. Let it be point 19. The laser spot 17 has a hole in the shielding sheet 13 shown in FIG. In such a state, the cylindrical base body (model) 1 is gently dropped, and when the tip 16 passes the laser point 17, the high-speed camera is turned on, and the first measurement point 18 to the second measurement point are turned on. Measure the time to drop to 19. The measurement is performed 10 times per sample and the average value is used. The acceleration is obtained from the following calculation formula (Equation 1).

Figure 2015197293
1=k1/t1
2=k2/t2
Δt=t2
(但し、k1は図3のレーザ点から第1測定ポイントまでの落下距離(mm)、
1は図3のレーザ点から第1測定ポイントまでの通過時間(秒)、
2 は第1測定ポイント18から第2測定ポイント19までの落下距離(mm)、
1は第1測定ポイント18から第2測定ポイント19までの通過時間(秒)。
本例の場合k1は200mm、k2は100mmとした。)
Figure 2015197293
u 1 = k 1 / t 1
u 2 = k 2 / t 2
Δt = t 2
(Where k 1 is the drop distance (mm) from the laser point of FIG. 3 to the first measurement point,
t 1 is the passage time (seconds) from the laser point to the first measurement point in FIG.
1 2 is a drop distance (mm) from the first measurement point 18 to the second measurement point 19;
t 1 is the passage time (seconds) from the first measurement point 18 to the second measurement point 19.
In this example, k 1 is 200 mm and k 2 is 100 mm. )

水中における水着生地の摩擦抵抗係数Cfは下記式(数2)(数3)により算出する。摩擦抵抗係数Cdの計測精度は0.001の値まで出すことができる。 The frictional resistance coefficient C f of the swimsuit fabric in water is calculated by the following equations (Equation 2) and (Equation 3). Measurement accuracy of the frictional resistance coefficient C d may be issued to a value of 0.001.

Figure 2015197293
Figure 2015197293

Figure 2015197293
但し、Wは重力でW=mg(mは円筒状基体の質量(kg),gは重力加速度(m/s2))
Bは浮力でB=ρwgV(ρwは水の密度(kg/m3),Vは円筒状基体の体積(m3))
Dは抵抗でD=Cf×(1/2)×ρu2A(Cdは水着生地の摩擦抵抗係数,ρは水の密度,uは落下速度,Aは水着生地の表面積)
Figure 2015197293
Where W is gravity and W = mg (m is the mass of the cylindrical substrate (kg), g is gravitational acceleration (m / s 2 ))
B is buoyancy, B = ρ w gV (ρ w is the density of water (kg / m 3 ), V is the volume of the cylindrical substrate (m 3 ))
D is resistance and D = C f × (1/2) × ρu 2 A (C d is the frictional resistance coefficient of the swimsuit fabric, ρ is the density of water, u is the falling speed, and A is the surface area of the swimsuit fabric)

図4は本発明の別の実施例における円筒状基体(モデル)が空気中から入水するまでの時間を測定する方法及び装置を示す説明図である。円筒状基体(モデル)1を空気中から水槽の水12に入水させる。入水前には水着生地をあらかじめ水に1分間程度浸しておいても良い。図4におけるそれぞれのステップの説明は次の通りである。
(a)円筒状基体(モデル)1が空気中に存在している状態
(b)円筒状基体(モデル)1の先端が着水した状態(t'0
(c)〜(d)入水していく状態を示す
(e)円筒状基体(モデル)1が冠水した状態(t'1
FIG. 4 is an explanatory view showing a method and apparatus for measuring the time until a cylindrical substrate (model) enters water from the air in another embodiment of the present invention. A cylindrical base body (model) 1 is made to enter water 12 in a water tank from the air. Before entering the water, the swimsuit fabric may be soaked in water for about 1 minute in advance. The description of each step in FIG. 4 is as follows.
(A) State in which cylindrical base body (model) 1 is present in the air (b) State in which tip of cylindrical base body (model) 1 has landed (t ′ 0 )
(C) to (d) showing a state of entering water (e) a state in which the cylindrical substrate (model) 1 is submerged (t ′ 1 )

ハイスピードカメラを使用して、前記t0とt1の時間を測定する。次式(数4)を用いて入水時間Tを求める。入水時間が短い材料シートは、例えば飛び込み時の摩擦抵抗が少ないと評価できる。

Figure 2015197293
Using a high-speed camera, the times t 0 and t 1 are measured. The water entry time T is obtained using the following equation (Equation 4). It can be evaluated that a material sheet having a short water entry time has a low frictional resistance when diving, for example.
Figure 2015197293

図5Aは本発明の一実施例における円筒状基体を展開したときの斜視図、図5Bは同平面図である。生地サンプルを取り付けるには、円筒部2に生地を巻き付け、円筒状治具8a,8bで押さえ、先端部3と後端部4を挿入する。   FIG. 5A is a perspective view when a cylindrical substrate is developed in one embodiment of the present invention, and FIG. 5B is a plan view thereof. In order to attach the dough sample, the dough is wound around the cylindrical portion 2, pressed by the cylindrical jigs 8a and 8b, and the front end portion 3 and the rear end portion 4 are inserted.

以下実施例により本発明を具体的に説明する。なお本発明は下記の実施例に限定されるものではない。   The present invention will be specifically described below with reference to examples. The present invention is not limited to the following examples.

<摩擦抵抗評価試験>
図1に示す円筒状基体(モデル)1の水中における重さは水着生地を取り付けた状態で0.3N、体積は1.2×10-33とした。全体は樹脂製である。中空部6は直径2.3mmとした。モデル1は直径30mm,長さ300mmで、生地を装着する部分が200mmであった。質量は、装着した生地サンプルを含めて88gになるようにし、生地およびモデルの浮力を考慮し基体の内部に錘を装着して、水中での重さが0.3Nとなるよう統一した。
<Friction resistance evaluation test>
The weight of the cylindrical substrate (model) 1 shown in FIG. 1 in water was 0.3 N with a swimsuit cloth attached, and the volume was 1.2 × 10 −3 m 3 . The whole is made of resin. The hollow portion 6 has a diameter of 2.3 mm. Model 1 had a diameter of 30 mm and a length of 300 mm, and the part to which the fabric was attached was 200 mm. The mass was set to 88 g including the attached fabric sample, and a weight was attached to the inside of the substrate in consideration of the buoyancy of the fabric and model, so that the weight in water was 0.3 N.

図2に示す水槽11は透明なアクリル樹脂製であり、高さ(H)1.7m、幅(L)と奥行きはそれぞれ0.22mとし、ハイスピードカメラ15は水槽から4.25m離した位置であって床面からの高さ0.85mに配置した。ハイスピードカメラ15の撮影速度は1900fpsとした。この状態で図3に示す測定を行い、前記式(数1〜3)を使用して水着生地の摩擦抵抗係数を測定した。   The water tank 11 shown in FIG. 2 is made of a transparent acrylic resin, has a height (H) of 1.7 m, a width (L) and a depth of 0.22 m, and the high-speed camera 15 is 4.25 m away from the water tank. And, it was arranged at a height of 0.85 m from the floor. The shooting speed of the high-speed camera 15 was 1900 fps. In this state, the measurement shown in FIG. 3 was performed, and the frictional resistance coefficient of the swimsuit fabric was measured using the above equations (Equations 1 to 3).

<入水時間>
図4に示す測定装置を使用し、前記式(数4)を使用して水着生地の入水時間を測定した。
<Incoming time>
Using the measurement apparatus shown in FIG. 4, the water entry time of the swimsuit fabric was measured using the above equation (Equation 4).

<伸長率>
JIS L1096 A法 カットストリップ法に従って測定した。試験片の幅5cm、つかみ間隔20cmとした。初荷重は試験片の幅で1mの長さにかかる重力に相当する荷重とした。引張速度20cm/minとした。17.7N(1.8kg)荷重時の伸長率(%)を測定した。伸長率はストレッチ性を示す。
<Elongation rate>
Measured according to JIS L1096 A method cut strip method. The width of the test piece was 5 cm and the holding interval was 20 cm. The initial load was a load corresponding to gravity applied to a length of 1 m in the width of the test piece. The tensile speed was 20 cm / min. The elongation percentage (%) when loaded with 17.7 N (1.8 kg) was measured. The elongation rate indicates stretch properties.

<30%伸長時の応力>
経糸と緯糸方向の伸長率測定時の30%伸長時の応力(N)を測定し、1cm当りに換算しN/cmで表示した。30%伸長時の応力は、コンプレッション(着圧)機能を評価する基準になる。
<Stress at 30% elongation>
The stress (N) at the time of 30% elongation at the time of measuring the elongation rate in the warp and weft directions was measured and converted to 1 cm and displayed as N / cm. The stress at 30% elongation is a standard for evaluating the compression function.

(実施例1)
本実施例は織物の例である。
1.糸使い
(1)経糸
芯:ポリウレタン(繊度44decitex)
被覆糸:ナイロンフィラメントウーリー加工糸(繊度33decitex、フィラメント本数48本)
シングルカバーリングヤーン(SCY)
(2)緯糸
芯:ポリウレタン(繊度44decitex)
被覆糸:ナイロンフィラメントウーリー加工糸(繊度33decitex、フィラメント本数48本)
シングルカバーリングヤーン(SCY)
2.織物
図6〜図7に示す平織部分22と緯二重織部分23とが交互に繰り返されているストレッチ織物21を製織した。エアジェット織機を使用し、平織部分22の経糸密度:186本/インチ、緯糸密度:164本/インチ、単位面積当たりの重量(目付)144g/m2、同厚さ0.25mm、全体の織物の仕上げ幅は116cmであった。
(Example 1)
This example is an example of a fabric.
1. Thread usage (1) Warp core: Polyurethane (Finety 44decitex)
Covering yarn: nylon filament wooly processed yarn (fineness 33decitex, 48 filaments)
Single covering yarn (SCY)
(2) Weft core: Polyurethane (fineness 44decitex)
Covering yarn: nylon filament wooly processed yarn (fineness 33decitex, 48 filaments)
Single covering yarn (SCY)
2. Fabric A stretch fabric 21 in which plain weave portions 22 and weft double weave portions 23 shown in FIGS. 6 to 7 are alternately repeated is woven. Using an air jet loom, the warp density of the plain weave portion 22 is 186 pieces / inch, the weft density is 164 pieces / inch, the weight per unit area (weight per unit area) is 144 g / m 2 , the same thickness is 0.25 mm, and the entire woven fabric. The finished width was 116 cm.

この織物の伸長率は経糸方向64.8%,緯糸方向65.5%、30%伸長時の応力は経糸方向が0.76N/cm、緯糸方向が0.88N/cmであった。この織物をプレーン織物という。   The stretch rate of this woven fabric was 64.8% in the warp direction, 65.5% in the weft direction, and the stress at 30% elongation was 0.76 N / cm in the warp direction and 0.88 N / cm in the weft direction. This fabric is called plain fabric.

次に前記プレーン織物の生地表面に平滑加工を施した。平滑加工は一対のロール間で加熱加圧する加工であり、ロール温度220℃、線圧5500kgf、ロール速度6〜10m/min程度とした。この織物をカレンダー加工品という。   Next, the surface of the plain woven fabric was smoothed. The smoothing process is a process of heating and pressing between a pair of rolls, and the roll temperature is 220 ° C., the linear pressure is 5500 kgf, and the roll speed is about 6 to 10 m / min. This fabric is called a calendered product.

前記プレーン織物とカレンダー加工品の摩擦抵抗係数及び入水時間は表1に示すとおりであった。   The frictional resistance coefficient and the water entry time of the plain fabric and the calendered product were as shown in Table 1.

Figure 2015197293
Figure 2015197293

前記プレーン織物とカレンダー加工品を用いて図8〜9に示す競泳用女性水着を縫製した。この水着を着用試験したところ、ストレッチ性が高く着用し易く、人体の肌への密着性も良く、競泳に適した水着であることが確認できた。   A female swimsuit for swimming shown in FIGS. 8 to 9 was sewn using the plain fabric and the calendered product. When this swimsuit was subjected to a wear test, it was confirmed that the swimsuit was suitable for swimming because of its high stretchability and ease of wearing, and good adhesion to the human skin.

(実施例2)
本実施例はハーフトリコット編物の例である。
(1)フロント
ポリエステル(繊度56decitex,フィラメント本数24本)
(2)バック
ポリウレタン(繊度44decitex)
(3)編み組織
ウェール:80本/インチ、緯糸密度:112本/インチ
単位面積当たりの重量(目付)245g/m2、同厚さ0.60mm、全体の織物の仕上げ幅は165cmであった。伸長率は経糸方向129.5%,緯糸方向90.3%、30%伸長時の応力は経糸方向が0.98N/cm、緯糸方向が0.49N/cmであった。この編物をプレーン編物という。また実施例1と同様にカレンダー加工品も作成した。前記プレーン編物とカレンダー加工品の摩擦抵抗係数及び入水時間は表2に示すとおりであった。
(Example 2)
This embodiment is an example of a half tricot knitted fabric.
(1) Front polyester (fineness 56 decitex, 24 filaments)
(2) Back polyurethane (fineness 44 decitex)
(3) Knitting structure wale: 80 yarns / inch, weft density: 112 yarns / inch Weight per unit area (weight) 245 g / m 2 , the same thickness 0.60 mm, and the finished width of the entire woven fabric was 165 cm . The elongation rate was 129.5% in the warp direction, 90.3% in the weft direction, and the stress at the time of 30% elongation was 0.98 N / cm in the warp direction and 0.49 N / cm in the weft direction. This knitted fabric is called a plain knitted fabric. In addition, a calendar processed product was also prepared as in Example 1. The frictional resistance coefficient and the water entry time of the plain knitted fabric and the calendered product were as shown in Table 2.

Figure 2015197293
Figure 2015197293

前記プレーン編物とカレンダー加工品を用いて図8〜9に示す競泳用女性水着を縫製した。この水着を着用試験したところ、ストレッチ性が高く着用し易く、人体の肌への密着性も良く、競泳に適した水着であることが確認できた。   A female swimsuit for swimming shown in FIGS. 8 to 9 was sewn using the plain knitted fabric and the calendar processed product. When this swimsuit was subjected to a wear test, it was confirmed that the swimsuit was suitable for swimming because of its high stretchability and ease of wearing, and good adhesion to the human skin.

以上のとおり、本発明の摩擦抵抗評価試験は、精度の高い測定試験であり、水中における水着生地や素材の評価試験として有用であったる。また、円筒状基体を立てた状態の落下試験も空気中から水に飛び込む際の水着生地や素材の摩擦抵抗値として評価でき、水着生地や素材の開発に役立つことが確認できた。   As described above, the frictional resistance evaluation test of the present invention is a highly accurate measurement test, and is useful as an evaluation test for swimsuit fabrics and materials in water. In addition, a drop test with a cylindrical substrate upright could be evaluated as a frictional resistance value of a swimsuit fabric or material when jumping into the water from the air, confirming that it was useful for the development of swimsuit fabric and material.

1 円筒状基体(モデル)
2 円筒部
3,16 モデルの先端
4 モデルの後端
5 おもり
6 中空部(パイプ)
7 ワイヤ
8a,8b 円筒状治具
9 生地サンプル
10 摩擦抵抗測定装置
11 水槽
12 水
13 遮蔽シート
14 ランプ
15 ハイスピードカメラ
17 レーザ点
18 第1測定ポイント
19 第2測定ポイント
1 Cylindrical substrate (model)
2 Cylindrical part 3, 16 Model tip 4 Model rear end 5 Weight 6 Hollow part (pipe)
7 Wire 8a, 8b Cylindrical jig 9 Dough sample 10 Friction resistance measuring device 11 Water tank 12 Water 13 Shielding sheet 14 Lamp 15 High speed camera 17 Laser point 18 First measurement point 19 Second measurement point

Claims (8)

水中内における生地又は素材表面の流体抵抗を測定する方法であって、
水の密度よりも重い密度の円筒状基体の円筒部の外側面に生地又は素材を取り付け、
(A)前記円筒状基体を立てた状態で水槽内の静置水に落下させ、前記円筒状基体先端が所定の落下距離を通過する時間を測定するか、あるいは
(B)前記円筒状基体を立てた状態で空気中から静置した水中に落下させ、前記円筒状基体先端が水面に接触してから後端が冠水するまでの入水時間を測定し、
生地又は素材表面の流体抵抗の評価値とすることを特徴とする流体抵抗測定方法。
A method for measuring the fluid resistance of a fabric or material surface in water,
Attach the fabric or material to the outer surface of the cylindrical part of the cylindrical base with a density heavier than that of water,
(A) The cylindrical base body is dropped in standing water in a water tank, and the time required for the tip of the cylindrical base body to pass a predetermined drop distance is measured, or (B) the cylindrical base body is Drop in standing water from standing air, measure the water entry time from the end of the cylindrical substrate contacting the water surface until the rear end is submerged,
A fluid resistance measuring method, characterized in that an evaluation value of fluid resistance on the surface of a cloth or material is used.
前記円筒状基体は、先端は球面状であり、後端は先細り状である請求項1に記載の流体抵抗測定方法。   The fluid resistance measuring method according to claim 1, wherein the cylindrical base has a spherical front end and a tapered rear end. 前記円筒状基体の後端は先細り状であり、その角度が10度から30度である請求項1又は2に記載の流体抵抗測定方法。 The fluid resistance measuring method according to claim 1 or 2, wherein a rear end of the cylindrical base body is tapered and an angle thereof is 10 degrees to 30 degrees. 前記円筒状基体は、先端側に重心がある請求項1〜3のいずれかに記載の流体抵抗測定方法。   The fluid resistance measuring method according to claim 1, wherein the cylindrical substrate has a center of gravity on a tip side. 前記円筒状基体は、密度は1000〜1200kg/m3である請求項1〜4のいずれかに記載の流体抵抗測定方法。 The fluid resistance measurement method according to claim 1, wherein the cylindrical base has a density of 1000 to 1200 kg / m 3 . 前記円筒状基体は、断面が円、楕円、長円及び扁平円から選ばれる少なくとも一つの形状である請求項1〜5のいずれかに記載の流体抵抗測定方法。   The fluid resistance measuring method according to claim 1, wherein the cylindrical base has at least one shape selected from a circle, an ellipse, an ellipse, and a flat circle in cross section. 前記所定の落下距離が100mm以上500mm以下の範囲内における特定の値であり、ハイスピードカメラにより高速撮影して落下時間を測定する請求項1〜6のいずれか1項に記載の流体抵抗測定方法。   The fluid resistance measurement method according to claim 1, wherein the predetermined drop distance is a specific value within a range of 100 mm or more and 500 mm or less, and the drop time is measured by high-speed shooting with a high-speed camera. . 請求項1〜7のいずれか1項に記載の流体抵抗測定方法を実施するための流体抵抗測定装置であって、
円筒部の外側面に生地又は素材を取り付けが可能であり、水の密度よりも重い密度の円筒状基体と水槽と、ハイスピードカメラを備え、
(A)前記円筒状基体を立てた状態で水槽内の静置水に落下させ、前記円筒状基体先端が所定の落下距離を通過する時間を測定する手段を備えるか、あるいは
(B)前記円筒状基体を立てた状態で空気中から静置した水中に落下させ、前記円筒状基体先端が水面に接触してから後端が冠水するまでの入水時間を測定する手段を備え、
生地又は素材表面の流体抵抗の評価値とすることを特徴とする流体抵抗測定装置。
A fluid resistance measuring device for carrying out the fluid resistance measuring method according to any one of claims 1 to 7,
Dough or material can be attached to the outer surface of the cylindrical part, and it has a cylindrical base body and water tank with a density heavier than the density of water, and a high-speed camera.
(A) a unit for dropping the cylindrical base body into standing water in a water tank and measuring a time for the tip of the cylindrical base body to pass a predetermined drop distance; or (B) the cylinder A means for measuring a water entry time from when the cylindrical base end is in contact with the water surface until the rear end is submerged,
An apparatus for measuring fluid resistance, characterized in that it is an evaluation value of fluid resistance on the surface of a cloth or material.
JP2014073452A 2014-03-31 2014-03-31 Method and apparatus for measuring fluid resistance Active JP5841631B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014073452A JP5841631B2 (en) 2014-03-31 2014-03-31 Method and apparatus for measuring fluid resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014073452A JP5841631B2 (en) 2014-03-31 2014-03-31 Method and apparatus for measuring fluid resistance

Publications (2)

Publication Number Publication Date
JP2015197293A true JP2015197293A (en) 2015-11-09
JP5841631B2 JP5841631B2 (en) 2016-01-13

Family

ID=54547092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014073452A Active JP5841631B2 (en) 2014-03-31 2014-03-31 Method and apparatus for measuring fluid resistance

Country Status (1)

Country Link
JP (1) JP5841631B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108801585A (en) * 2018-04-20 2018-11-13 温州大学激光与光电智能制造研究院 A kind of material surface fluid resistance test device based on laser ranging
CN113074909A (en) * 2021-05-18 2021-07-06 西安航空学院 Space multi-posture water-entering experimental device
CN113310660A (en) * 2021-05-31 2021-08-27 西南电子技术研究所(中国电子科技集团公司第十研究所) Automatic flow resistance control system for minimum flow
CN113740030A (en) * 2021-11-05 2021-12-03 水利部交通运输部国家能源局南京水利科学研究院 Pipeline resistance parameter detection system and detection method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110793749B (en) * 2019-09-25 2021-08-13 江苏科技大学 Polar region ice region object water inlet and outlet model experimental device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108801585A (en) * 2018-04-20 2018-11-13 温州大学激光与光电智能制造研究院 A kind of material surface fluid resistance test device based on laser ranging
CN108801585B (en) * 2018-04-20 2019-12-10 温州大学激光与光电智能制造研究院 Material surface fluid resistance testing device based on laser ranging
CN113074909A (en) * 2021-05-18 2021-07-06 西安航空学院 Space multi-posture water-entering experimental device
CN113074909B (en) * 2021-05-18 2023-08-01 西安航空学院 Space multi-pose water inlet experimental device
CN113310660A (en) * 2021-05-31 2021-08-27 西南电子技术研究所(中国电子科技集团公司第十研究所) Automatic flow resistance control system for minimum flow
CN113740030A (en) * 2021-11-05 2021-12-03 水利部交通运输部国家能源局南京水利科学研究院 Pipeline resistance parameter detection system and detection method

Also Published As

Publication number Publication date
JP5841631B2 (en) 2016-01-13

Similar Documents

Publication Publication Date Title
JP5841631B2 (en) Method and apparatus for measuring fluid resistance
JP6018337B2 (en) Stretch fabric and sports clothing and swimsuits including the same
JPWO2012035736A1 (en) Network structure manufacturing apparatus and network structure manufacturing method
JP2017519120A5 (en)
CN106381590B (en) Fluffy processing silk
US20190254361A1 (en) Cooling fabric
CN106868671B (en) Fluffy processing silk
Chowdhury Aerodynamics of sports fabrics and garments
Baskan et al. Running functional sport vest and short for e-textile applications
US20190075867A1 (en) Garments having muscle enhancement device and method of the making the same
JP6012817B1 (en) Swimsuit
CN110031332A (en) A kind of test method of boardness
CN208167250U (en) A kind of Yarn break checkout gear
Oggiano et al. Air permeability and drag crisis on high tech fabrics for cross country ski competitions
Moria et al. The compression effect on aerodynamic properties of sports fabrics
JP6991633B1 (en) Water absorption test method for textile fabrics and its equipment
CN101363784B (en) Method for measuring geometry and mechanical property of single layer weaving belt for fishing
Raja et al. Novel device to measure multi-directional wicking of elastic knitted fabric for active sportswear
Adanur et al. Property analysis of denim fabrics made on air-jet weaving machine part I: experimental system and tension measurements
JP6701992B2 (en) Wrinkle resistance evaluation method
CN205099878U (en) Hydraulic loom batching mechanism that flattens
CN204679065U (en) For the Simple measurement device of underwater topography under complicated flow condition
JP2003268649A (en) Mesh textile and screen printing plate using the same
Moria et al. An evaluation of swimsuit performance
US6711936B2 (en) Sock testing method and apparatus for performing the same

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151113

R150 Certificate of patent or registration of utility model

Ref document number: 5841631

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250