JP2015194547A - Optical component resin composition and optical components produced using the same - Google Patents

Optical component resin composition and optical components produced using the same Download PDF

Info

Publication number
JP2015194547A
JP2015194547A JP2014071402A JP2014071402A JP2015194547A JP 2015194547 A JP2015194547 A JP 2015194547A JP 2014071402 A JP2014071402 A JP 2014071402A JP 2014071402 A JP2014071402 A JP 2014071402A JP 2015194547 A JP2015194547 A JP 2015194547A
Authority
JP
Japan
Prior art keywords
resin composition
optical
refractive index
viscosity
optical components
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014071402A
Other languages
Japanese (ja)
Other versions
JP6418673B2 (en
Inventor
友紀子 肥後
Yukiko Higo
友紀子 肥後
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2014071402A priority Critical patent/JP6418673B2/en
Priority to PCT/JP2015/055986 priority patent/WO2015151688A1/en
Priority to SG11201606212RA priority patent/SG11201606212RA/en
Priority to CN201580005784.XA priority patent/CN105934690A/en
Priority to TW104107424A priority patent/TW201540765A/en
Publication of JP2015194547A publication Critical patent/JP2015194547A/en
Application granted granted Critical
Publication of JP6418673B2 publication Critical patent/JP6418673B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/24Di-epoxy compounds carbocyclic
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • G02B1/041Lenses

Abstract

PROBLEM TO BE SOLVED: To provide a photocurable resin composition for optical components, which is highly transparent and yet offers a high refractive index and superior heat resistance and which is suitable for such applications as an optical lens material and adhesive material between optical components.SOLUTION: An optical component resin composition has a viscosity in a range of 0.1-20 Pa s at 25°C, and a cured product thereof has a refractive index of no less than 1.57 and an Abbe number in a range of 20-40.

Description

本発明は、光学的応用を目的とする透明樹脂において光信号を低損失で通す高い透明性を有し、耐熱性に優れた光学レンズや集光拡散レンズ、光学部品間の接着等の各種光学部品材料等に好適な光硬化型樹脂組成物およびそれを用いた光学部品に関するものである。   The present invention is a transparent resin for optical applications, has high transparency that allows optical signals to pass through with low loss, and has excellent transparency and heat resistance. The present invention relates to a photocurable resin composition suitable for component materials and the like, and an optical component using the same.

最近の光学部品、例えば携帯電話やデジタルカメラ等で用いられる撮像装置では撮像用の光学レンズが搭載されているが、レンズ材料としては一般的に光学用ガラスや透明プラスチック材料が使用されている。特に、近年の撮像機能つき携帯電話の普及率増加に伴い、より安価に光学レンズを製造する必要があることから、光学的に透明、かつレンズ設計上の簡便性からポリオレフィン材料がプラスチックレンズ材料の主流となっている。一方で、撮像装置のプリント基板への搭載はこれまでソケットを用いたピン挿入タイプ、あるいは撮像素子をプリント基板上へハンダリフロー実装した後、レンズユニットを撮像素子にとりつける方式が一般的であったが、より安く大量に生産することを目的に撮像装置そのものをプリント基板上へハンダリフロー実装することが強く要望されている。   An imaging device used in recent optical components such as a mobile phone and a digital camera is equipped with an optical lens for imaging. Generally, optical glass or transparent plastic material is used as a lens material. In particular, with the increasing penetration of mobile phones with imaging functions in recent years, it is necessary to manufacture optical lenses at a lower cost. Therefore, polyolefin materials are made of plastic lens materials because of optical transparency and ease of lens design. It has become mainstream. On the other hand, mounting of an image pickup device on a printed circuit board has generally been a pin insertion type using a socket, or a method in which a lens unit is attached to an image sensor after mounting the image sensor on a printed circuit board by solder reflow. However, there is a strong demand for solder reflow mounting of the imaging device itself on a printed circuit board for the purpose of cheaper mass production.

しかしながら、撮像装置そのものをハンダリフロー方式によりプリント基板上へ実装する場合においては、上述したプラスチックレンズは軟化点以上の高温環境下に曝されることから、軟化・寸法変形するといった課題が生じてしまう。そこでこのような課題を解決するべく、光学レンズ等光学部品の材料として耐熱性の高いエポキシ樹脂を主成分とした樹脂組成物が検討されている。例えば、耐熱樹脂である光硬化型樹脂を用いたインプリント方式による製造方法が実用化されつつあるが、このインプリント方式は、成形用加工型を樹脂材料に押し当て、特定の微細パターンあるいは凹凸形状物を形成するという方法などがあげられる(例えば、特許文献1)。   However, when the imaging device itself is mounted on a printed circuit board by the solder reflow method, the above-described plastic lens is exposed to a high temperature environment above the softening point, which causes problems such as softening and dimensional deformation. . Therefore, in order to solve such a problem, a resin composition mainly composed of an epoxy resin having high heat resistance has been studied as a material for optical components such as optical lenses. For example, an imprint method using a photocurable resin that is a heat-resistant resin is being put into practical use. This imprint method applies a specific fine pattern or unevenness by pressing a molding die against a resin material. There is a method of forming a shape (for example, Patent Document 1).

最近では光学レンズの薄型化や高解像度化に伴い、より高屈折率な樹脂材料が求められている。樹脂組成物の屈折率を高めるには、高い屈折率を有する原材料を使用する必要があるが、例えば、骨格にベンゼン環を有する材料などは一般的に屈折率が高いことが知られており、屈折率を上げるためには有用であるが、相反して芳香環の光吸収に起因し透明性が低下したり、加熱変色性が悪いことが知られている。また、一般に高屈折材料は剛直な構造をとるが故に、常温で固体の性状で融点が高温であるものがほとんどである。例えば、高屈折率材料として知られるフルオレン骨格のエポキシ樹脂では種々検討がなされているが、常温で固形であり、溶融後も材料の粘度は高いため、高屈折化に伴う添加量増加に従って樹脂も高粘度となり、ハンドリング性の悪化が懸念される。また、同様に、一般に使用されているパラ位にグリシジル基を有するビフェニル骨格のエポキシ樹脂等も、常温下は固形で融点も高いため、得られる組成物が高粘度となり、ハンドリング性に劣る懸念がある。これに対して、溶剤配合や液状のエポキシ樹脂を混合する等して対策がとられてきた(特許文献2、3)。   Recently, a resin material having a higher refractive index has been demanded as an optical lens is made thinner and higher in resolution. In order to increase the refractive index of the resin composition, it is necessary to use a raw material having a high refractive index, for example, a material having a benzene ring in the skeleton is generally known to have a high refractive index, Although it is useful for increasing the refractive index, it is known that, on the contrary, the transparency is lowered due to the light absorption of the aromatic ring, and the heat discoloration is poor. In general, since high refractive materials have a rigid structure, most materials are solid at room temperature and have a high melting point. For example, fluorene skeleton epoxy resins known as high refractive index materials have been studied in various ways. However, since they are solid at room temperature and the viscosity of the material is high even after melting, the resin increases with the increase in the amount added due to higher refractive index. There is a concern that the viscosity becomes high and the handling property is deteriorated. Similarly, biphenyl skeleton epoxy resins having a glycidyl group at the para position, which are generally used, are also solid at room temperature and have a high melting point. is there. In response to this, countermeasures have been taken by blending a solvent blend or a liquid epoxy resin (Patent Documents 2 and 3).

特許第3926380号公報Japanese Patent No. 3926380 特開2012−129010号公報JP2012-129010A 特開2011−225773号公報JP 2011-225773 A

このように従来技術では、樹脂の高屈折率化では、粘度が高くなりハンドリング性に欠けるという課題や、高い透明性が得られないというような問題がある。   As described above, in the prior art, when the refractive index of the resin is increased, there is a problem that the viscosity is increased and the handling property is insufficient, and a problem that high transparency cannot be obtained.

本発明は、このような事情に鑑みてなされたもので、優れたハンドリング性と高い透明性を有しつつ、耐熱性にも優れた光学部品材料として好適な、硬化後屈折率が高屈折率となりうる光学部品用樹脂組成物およびそれを用いた光学部品の提供をその目的とする。   The present invention has been made in view of such circumstances, and has a high refractive index after curing, which is suitable as an optical component material having excellent handling properties and high transparency and excellent heat resistance. It is an object of the present invention to provide a resin composition for optical parts that can be used and an optical part using the same.

上記の目的を達成するため、本発明は、光学部品用樹脂組成物の25℃における粘度が0.1〜20Pa・sの範囲であり、光学部品用樹脂組成物の硬化物の屈折率が1.57以上で、アッベ数が20〜40の範囲である光学部品用樹脂組成物を第1の要旨とする。   In order to achieve the above object, the present invention has a viscosity of the resin composition for optical parts at 25 ° C. in the range of 0.1 to 20 Pa · s, and the refractive index of the cured product of the resin composition for optical parts is 1. The first gist is a resin composition for optical parts having an Abbe number of 20 to 40 in the range of .57 or more.

また、本発明は、上記第1の要旨に係る光学部品用樹脂組成物の硬化体からなる光学部品を第2の要旨とする。   Moreover, this invention makes the 2nd summary the optical component which consists of a hardening body of the resin composition for optical components which concerns on the said 1st summary.

本発明者らは、高屈折率を有し、耐熱性にも優れた光学部品用樹脂組成物を得るために鋭意検討を重ねた結果、硬化前の樹脂組成物の粘度、樹脂組成物の硬化物の屈折率およびアッベ数に着目し、これらの好適範囲について実験を重ねた。その結果、光学部品用樹脂組成物の25℃における粘度が0.1〜20Pa・sの範囲であり、光学部品用樹脂組成物の硬化物の屈折率が1.57以上で、かつアッベ数が20〜40の範囲である光学部品用樹脂組成物により、所期の目的が達成できることを見出し本発明に到達した。さらに、本発明の光学部品用樹脂組成物は、無溶剤系にて使用可能であるため、成形時にボイド等も発生せず、光学部品として使用するのに良好であると言える。   As a result of intensive investigations to obtain a resin composition for optical parts having a high refractive index and excellent heat resistance, the present inventors have determined that the viscosity of the resin composition before curing, the curing of the resin composition, Paying attention to the refractive index and Abbe number of the object, experiments were repeated for these preferred ranges. As a result, the viscosity at 25 ° C. of the resin composition for optical parts is in the range of 0.1 to 20 Pa · s, the refractive index of the cured product of the resin composition for optical parts is 1.57 or more, and the Abbe number is It has been found that the intended purpose can be achieved by the resin composition for optical parts in the range of 20 to 40, and the present invention has been achieved. Furthermore, since the resin composition for optical parts of the present invention can be used in a solvent-free system, it can be said that it does not generate voids or the like during molding and is good for use as an optical part.

このように、本発明の光学部品用樹脂組成物は、25℃における粘度が0.1〜20Pa・sの範囲であることから、ハンドリング性等に優れ、上述のように有機溶剤を使用せずとも上記のような粘度を示すことから、その光硬化、成型時に、有機溶剤が揮発し、硬化物中にボイドを発生させる問題を解消することができる。このように、本発明の光学部品用樹脂組成物はガラス板等の透明基板上で光硬化させることができることから、上記透明基板と一体化させることにより高品質なハイブリッドレンズを製造することも可能である。また、光学部品用樹脂組成物の硬化物は、高屈折率で低アッベであるため、透明性が高く、加熱変色も抑えることができ、薄膜での光学設計性が向上する。また、光学部品用樹脂組成物単独使用での硬化により、例えば、耐熱性の高いプラスチックレンズとして製造することも可能である。したがって、本発明の光学部品用樹脂組成物を、レンズ等の光学部品用の成形材料および光学部品固定用光硬化型接着剤等に用いる場合、高信頼性の良好な光学製品を得ることができるため有用である。   As described above, the resin composition for optical parts of the present invention has excellent handling properties and the like without using an organic solvent as described above because the viscosity at 25 ° C. is in the range of 0.1 to 20 Pa · s. Since both of them exhibit the above viscosity, the problem that the organic solvent volatilizes during the photocuring and molding and a void is generated in the cured product can be solved. Thus, since the resin composition for optical components of the present invention can be photocured on a transparent substrate such as a glass plate, a high-quality hybrid lens can be produced by integrating with the transparent substrate. It is. Moreover, since the cured product of the resin composition for optical components has a high refractive index and a low Abbe, it has high transparency, can suppress heat discoloration, and improves optical design in a thin film. Moreover, it is also possible to manufacture as a plastic lens having high heat resistance, for example, by curing with the resin composition for optical parts used alone. Therefore, when the resin composition for an optical component of the present invention is used for a molding material for an optical component such as a lens and a photo-curing adhesive for fixing the optical component, a highly reliable optical product can be obtained. Because it is useful.

また、本発明の光学部品用樹脂組成物が、後述の一般式(1)で表されるエポキシ樹脂を含有すると、高屈折でありながら、粘度を低下させる粘度調整成分としての効果を期待できるようになる。   Moreover, when the resin composition for optical components of the present invention contains an epoxy resin represented by the following general formula (1), an effect as a viscosity adjusting component that lowers the viscosity can be expected while being highly refraction. become.

さらに、屈折率が1.60以上のフルオレン型エポキシ樹脂を併用すると、より高屈折となる。   Further, when a fluorene type epoxy resin having a refractive index of 1.60 or more is used in combination, the refractive index becomes higher.

つぎに、本発明の実施の形態について詳しく説明する。ただし、本発明は、この実施の形態に限定されるものではない。   Next, embodiments of the present invention will be described in detail. However, the present invention is not limited to this embodiment.

《光学部品用樹脂組成物》
本発明の光学部品用樹脂組成物(以下、単に「樹脂組成物」という場合がある。)は、硬化前の樹脂組成物の25℃における粘度が0.1〜20Pa・sの範囲であり、樹脂組成物の硬化物の屈折率が1.57以上で、アッベ数が20〜40の範囲である。なお、粘度等の物性については、後述する。
<< Resin composition for optical parts >>
The resin composition for optical parts of the present invention (hereinafter sometimes simply referred to as “resin composition”) has a viscosity at 25 ° C. of the resin composition before curing in the range of 0.1 to 20 Pa · s, The refractive index of the cured product of the resin composition is 1.57 or more, and the Abbe number is in the range of 20-40. The physical properties such as viscosity will be described later.

このような物性を備えた本発明の光学部品用樹脂組成物は、例えば、各種エポキシ樹脂とエポキシ樹脂用硬化剤、その他の添加剤(オキセタン樹脂等)等を適宜組み合わせて得ることができる。そして、本発明の光学部品用樹脂組成物は、前述のとおり無溶剤系にて使用可能である。   The resin composition for an optical component of the present invention having such physical properties can be obtained by appropriately combining, for example, various epoxy resins, a curing agent for epoxy resins, other additives (such as oxetane resins) and the like. And the resin composition for optical components of this invention can be used by a solventless system as above-mentioned.

以下、各種成分について順に説明する。   Hereinafter, various components will be described in order.

<エポキシ樹脂>
上記エポキシ樹脂は、所望の粘度や屈折率、光硬化性の観点から各種エポキシ樹脂を適宜選択することが可能であるが、高屈化のためには、フルオレン骨格、ビフェニル骨格、ナフタレン骨格を有するエポキシ樹脂や、ビスフェノール型エポキシ樹脂等が用いられる。
<Epoxy resin>
The epoxy resin can be appropriately selected from various epoxy resins from the viewpoint of desired viscosity, refractive index, and photocurability, but has a fluorene skeleton, a biphenyl skeleton, and a naphthalene skeleton for high bending. An epoxy resin, a bisphenol type epoxy resin, or the like is used.

特に、高屈折でありながら、粘度を低下させる粘度調整成分としての効果が期待できるエポキシ樹脂としては、ベンゼン環のオルト位にグリシジル基を有するビフェニル骨格のエポキシ樹脂が好ましく、具体的には、下記の一般式(1)で表されるエポキシ樹脂があげられる。これらは単独でもしくは二種以上併せて用いられる。   In particular, as an epoxy resin that can be expected to have an effect as a viscosity adjusting component that lowers the viscosity while having a high refraction, a biphenyl skeleton epoxy resin having a glycidyl group at the ortho position of the benzene ring is preferable. An epoxy resin represented by the general formula (1) is given. These may be used alone or in combination of two or more.

Figure 2015194547
Figure 2015194547

上記式(1)において、特に好ましい態様はR1〜R8が全てH(水素原子)の場合である。 In the above formula (1), a particularly preferred embodiment is when R 1 to R 8 are all H (hydrogen atom).

上記一般式(1)で表されるエポキシ樹脂は、エポキシ当量が100〜500の範囲であることが好ましい。   The epoxy resin represented by the general formula (1) preferably has an epoxy equivalent in the range of 100 to 500.

また、上記一般式(1)で表されるエポキシ樹脂は、屈折率が1.57以上で、融点が90℃以下であることが好ましく、特に好ましくは屈折率が1.58以上で、融点が85℃以下である。   The epoxy resin represented by the general formula (1) preferably has a refractive index of 1.57 or more and a melting point of 90 ° C. or less, particularly preferably a refractive index of 1.58 or more and a melting point. It is 85 degrees C or less.

上記一般式(1)で表されるエポキシ樹脂としては、具体的には、三光社製のOPP−G等があげられる。   Specific examples of the epoxy resin represented by the general formula (1) include OPP-G manufactured by Sanko Co., Ltd.

上記一般式(1)で表されるエポキシ樹脂の含有量は、光学部品用樹脂組成物中の全樹脂成分に対して5〜75重量%であることが好ましく、特に好ましくは10〜70重量%である。すなわち、含有量が少なすぎると、目的とする低粘度で高屈折の樹脂組成物を得ることが困難となる可能性があり、含有量が多すぎると、樹脂組成物の脆性が低下する傾向がみられるからである。   The content of the epoxy resin represented by the general formula (1) is preferably 5 to 75% by weight, particularly preferably 10 to 70% by weight, based on the total resin components in the optical component resin composition. It is. That is, if the content is too small, it may be difficult to obtain a target low-viscosity and high-refractive resin composition. If the content is too large, the brittleness of the resin composition tends to decrease. Because it is seen.

さらに、高屈折率化のためには、フルオレン型エポキシ樹脂を併用することが好ましい。上記フルオレン型エポキシ樹脂は、フルオレン骨格を有するエポキシ樹脂であればよく、所望の粘度や屈折率、光硬化性の観点から各種フルオレン型エポキシ樹脂を適宜選択することが可能である。具体的には、大阪ガスケミカル社製のPG−100、EG−200等があげられる。これらは単独でもしくは2種以上併せて用いられる。   Furthermore, in order to increase the refractive index, it is preferable to use a fluorene type epoxy resin in combination. The fluorene type epoxy resin may be an epoxy resin having a fluorene skeleton, and various fluorene type epoxy resins can be appropriately selected from the viewpoint of desired viscosity, refractive index, and photocurability. Specific examples include PG-100 and EG-200 manufactured by Osaka Gas Chemical Company. These may be used alone or in combination of two or more.

上記フルオレン型エポキシ樹脂の含有量は、光学部品用樹脂組成物中の全樹脂成分に対して60重量%未満であることが好ましく、特に好ましくは50重量%未満である。すなわち、含有量が多すぎると、高粘度となりハンドリング性に欠ける傾向がみられるからである。   The content of the fluorene type epoxy resin is preferably less than 60% by weight, particularly preferably less than 50% by weight, based on the total resin component in the resin composition for optical components. That is, if the content is too large, the viscosity tends to be high and the handling property tends to be lacking.

また、上記フルオレン型エポキシ樹脂は、屈折率が1.60以上であることが好ましく、特に好ましくは屈折率が1.62以上である。   The fluorene type epoxy resin preferably has a refractive index of 1.60 or more, and particularly preferably has a refractive index of 1.62 or more.

また、ハンドリング性や信頼性を高める観点から、所望の屈折率を満たす範囲内において、上記一般式(1)で表されるエポキシ樹脂やフルオレン型エポキシ樹脂以外の1官能あるいは2官能のエポキシ樹脂等を配合することもできる。上記エポキシ樹脂としては、脂環式エポキシや水添ビスフェノール型エポキシ樹脂等があげられるが、特に高屈率化を目的とした場合、ビスフェノールA型エポキシ樹脂やビスフェノールF型エポキシ樹脂が好適に用いられる。   In addition, from the viewpoint of improving handling properties and reliability, within the range satisfying a desired refractive index, monofunctional or bifunctional epoxy resins other than the epoxy resin represented by the general formula (1) and the fluorene type epoxy resin, etc. Can also be blended. Examples of the epoxy resin include alicyclic epoxy and hydrogenated bisphenol type epoxy resin, and bisphenol A type epoxy resin and bisphenol F type epoxy resin are preferably used particularly for the purpose of increasing the refractive index. .

<エポキシ樹脂用硬化剤>
上記エポキシ樹脂用硬化剤としては、光重合開始剤や熱酸発生剤、イミダゾール系硬化触媒等のようなエポキシ樹脂の重合反応を進行させる硬化剤や、あるいは硬化助剤がその用途に応じて適宜使用される。例えば、光重合開始剤の場合としては、カチオン重合を開始させることができるものであればよく、例えば、アンチモンまたはリン等からなるアニオン成分と、スルホニウムやヨードニウム、ホスホニウム等のカチオン成分とで形成されるオニウム塩等が使用できる。具体的には芳香族スルホニウム塩、芳香族ヨードニウム塩、芳香族ホスホニウム塩、芳香族スルホキソニウム塩等を用いることができる。その中でも、光硬化性の観点から、芳香族スルホニウム塩が好ましい。
<Curing agent for epoxy resin>
As the curing agent for the epoxy resin, a curing agent that promotes the polymerization reaction of the epoxy resin such as a photopolymerization initiator, a thermal acid generator, an imidazole-based curing catalyst, or a curing aid is appropriately used depending on the application. used. For example, in the case of a photopolymerization initiator, any photopolymerization initiator may be used as long as it can initiate cationic polymerization. For example, the photopolymerization initiator is formed of an anionic component made of antimony or phosphorus and a cationic component such as sulfonium, iodonium, or phosphonium. Onium salts can be used. Specifically, aromatic sulfonium salts, aromatic iodonium salts, aromatic phosphonium salts, aromatic sulfoxonium salts, and the like can be used. Of these, aromatic sulfonium salts are preferred from the viewpoint of photocurability.

上記エポキシ樹脂用硬化剤の含有量は、例えば、光重合開始剤の場合は、光学部品用樹脂組成物の樹脂成分100重量部に対して0.05〜3重量部に設定することが好ましく、特に好ましくは0.05〜2重量部である。すなわち、含有量が少なすぎると、硬化性が悪化する傾向がみられ、多すぎると、硬化性は向上するが硬化物の透明性が損なわれる傾向がみられる。   For example, in the case of a photopolymerization initiator, the content of the epoxy resin curing agent is preferably set to 0.05 to 3 parts by weight with respect to 100 parts by weight of the resin component of the optical component resin composition. Particularly preferred is 0.05 to 2 parts by weight. That is, if the content is too small, the curability tends to deteriorate, and if it is too large, the curability is improved but the transparency of the cured product tends to be impaired.

<その他の添加剤>
本発明の光学部品用樹脂組成物には、ハンドリング性や硬化性向上の観点から、オキセタン樹脂を添加することも可能である。上記オキセタン化合物としては1分子に1個以上のオキセタン環を有するオキセタン化合物が用いられる。例えば、1,4−ビス{[(3−エチル−3−オキセタニル)メトキシ]メチル}ベンゼン、ジ[2−(3−オキセタニル)ブチル]エーテル、3−エチル−3−ヒドロキシメチルオキセタン、キシリレンビスオキセタン、3−エチル−3{[(3−エチルオキセタン−3−イル)メトキシ]メチル}オキセタン、3−エチル−3−(フェノキシメチル)オキセタン、4,4′−ビス[(3−エチル−3−オキセタニル)メトキシメチル]ビフェニル、1,4−ビス[(3−エチルオキセタン−3−イル)メトキシ]ベンゼン、1,3−ビス[(3−エチルオキセタン−3−イル)メトキシ]ベンゼン、1,2−ビス[(3−エチルオキセタン−3−イル)メトキシ]ベンゼン、4,4’−ビス[(3−エチルオキセタン−3−イル)メトキシ]ビフェニル、2,2’−ビス[(3−エチル−3−オキセタニル)メトキシ]ビフェニル、3,3’,5,5’−テトラメチル[4,4’−ビス(3−エチルオキセタン−3−イル)メトキシ]ビフェニル、2,7−ビス[(3−エチルオキセタン−3−イル)メトキシ]ナフタレン、1,6−ビス[(3−エチルオキセタン−3−イル)メトキシ]−2,2,3,3,4,4,5,5−オクタフルオロヘキサン、3(4),8(9)−ビス[(1−エチル−3−オキセタニル)メトキシ]メチル−トリシクロ[5,2,1,2,6]デカン、1,2−ビス{[2−(1−エチル−3−オキセタニル)メトキシ]エチルチオ}エタン、4,4’−ビス[(1−エチル−3−オキセタニル)メチル]チオジベンゼンチオエーテル、2,3−ビス[(3−エチルオキセタン−3−イル)メトキシメチル]ノルボルナン、2−エチル−2−[(3−エチルオキセタン−3−イル)メトキシメチル]−1,3−o−ビス[(1−エチル−3−オキセタニル)メチル]−プロパン−1,3−ジオール、2,2−ジメチル−1,3−o−ビス[(3−エチルオキセタン−3−イル)メチル]−プロパン−1,3−ジオール、2−ブチル−2−エチル−1,3−o−ビス[(3−エチルオキセタン−3−イル)メチル]−プロパン−1,3−ジオール、1,4−o−ビス[(3−エチルオキセタン−3−イル)メチル]−ブタン−1,4−ジオール、2,4,6−o−トリス[(3−エチルオキセタン−3−イル)メチル]シアヌル酸等があげられる。これらは単独でもしくは2種以上併せて用いられる。
<Other additives>
An oxetane resin can be added to the resin composition for an optical component of the present invention from the viewpoint of improving handling properties and curability. As the oxetane compound, an oxetane compound having one or more oxetane rings per molecule is used. For example, 1,4-bis {[(3-ethyl-3-oxetanyl) methoxy] methyl} benzene, di [2- (3-oxetanyl) butyl] ether, 3-ethyl-3-hydroxymethyloxetane, xylylene bis Oxetane, 3-ethyl-3 {[(3-ethyloxetane-3-yl) methoxy] methyl} oxetane, 3-ethyl-3- (phenoxymethyl) oxetane, 4,4'-bis [(3-ethyl-3 -Oxetanyl) methoxymethyl] biphenyl, 1,4-bis [(3-ethyloxetane-3-yl) methoxy] benzene, 1,3-bis [(3-ethyloxetane-3-yl) methoxy] benzene, 1, 2-bis [(3-ethyloxetane-3-yl) methoxy] benzene, 4,4′-bis [(3-ethyloxetane-3-yl) methoxy Biphenyl, 2,2′-bis [(3-ethyl-3-oxetanyl) methoxy] biphenyl, 3,3 ′, 5,5′-tetramethyl [4,4′-bis (3-ethyloxetan-3-yl) ) Methoxy] biphenyl, 2,7-bis [(3-ethyloxetane-3-yl) methoxy] naphthalene, 1,6-bis [(3-ethyloxetane-3-yl) methoxy] -2,2,3 3,4,4,5,5-octafluorohexane, 3 (4), 8 (9) -bis [(1-ethyl-3-oxetanyl) methoxy] methyl-tricyclo [5,2,1,2,6 ] Decane, 1,2-bis {[2- (1-ethyl-3-oxetanyl) methoxy] ethylthio} ethane, 4,4′-bis [(1-ethyl-3-oxetanyl) methyl] thiodibenzenethioether, 2,3-bis [(3 Ethyloxetane-3-yl) methoxymethyl] norbornane, 2-ethyl-2-[(3-ethyloxetane-3-yl) methoxymethyl] -1,3-o-bis [(1-ethyl-3-oxetanyl) Methyl] -propane-1,3-diol, 2,2-dimethyl-1,3-o-bis [(3-ethyloxetane-3-yl) methyl] -propane-1,3-diol, 2-butyl- 2-ethyl-1,3-o-bis [(3-ethyloxetane-3-yl) methyl] -propane-1,3-diol, 1,4-o-bis [(3-ethyloxetane-3-yl ) Methyl] -butane-1,4-diol, 2,4,6-o-tris [(3-ethyloxetane-3-yl) methyl] cyanuric acid and the like. These may be used alone or in combination of two or more.

上記オキセタン化合物の含有量は、光学部品用樹脂組成物中の全樹脂成分に対して5〜40重量%に設定することが好ましい。すなわち、含有量が多すぎると、所望とする高い屈折率が得られ難くなる傾向がみられる。   The content of the oxetane compound is preferably set to 5 to 40% by weight with respect to the total resin components in the optical component resin composition. That is, when there is too much content, the tendency for it to become difficult to obtain the desired high refractive index will be seen.

また、本発明の光学部品用樹脂組成物には、硬化性を高める目的で、アントラセンなどの光増感剤や酸増殖剤を配合することができる。さらには、ガラス等の基材上に硬化物を作製する用途においては、基材との接着性を高めるために、シラン系あるいはチタン系のカップリング剤を添加してもよい。また、その他の成分として、合成ゴムやシリコーン化合物等の可撓性付与剤、さらに酸化防止剤、消泡剤、各種顔料、染料、無機充填材等の添加剤も、必要に応じて適宜に配合することができる。一方で、ハンドリング性向上を目的とした有機溶剤等の添加は、成形時のボイドの発生や特性低下の観点から好ましくなく、無溶剤系として設計されることが好ましい。   The resin composition for optical parts of the present invention can be blended with a photosensitizer such as anthracene or an acid multiplier for the purpose of enhancing curability. Furthermore, in the use which produces hardened | cured material on base materials, such as glass, in order to improve adhesiveness with a base material, you may add a silane type or a titanium type coupling agent. In addition, as other components, flexibility imparting agents such as synthetic rubbers and silicone compounds, and additives such as antioxidants, antifoaming agents, various pigments, dyes, inorganic fillers, and the like are appropriately blended as necessary. can do. On the other hand, addition of an organic solvent or the like for the purpose of improving handling properties is not preferable from the viewpoint of generation of voids during molding and deterioration of characteristics, and it is preferably designed as a solventless system.

本発明の光学部品用樹脂組成物は、例えば、上記一般式(1)で表されるエポキシ樹脂やフルオレン型エポキシ樹脂等のエポキシ樹脂と、エポキシ樹脂用硬化剤と、さらには必要に応じてその他の添加剤(オキセタン化合物等)とを、所定の割合で配合し、加熱溶融混合することにより作製することができる。   The resin composition for an optical component of the present invention includes, for example, an epoxy resin represented by the general formula (1) and an epoxy resin such as a fluorene type epoxy resin, a curing agent for the epoxy resin, and other if necessary. These additives (oxetane compounds and the like) can be blended at a predetermined ratio and heated and melt mixed.

このようにして得られる本発明の光学部品用樹脂組成物は、以下の物性(1)〜(3)を全て備えており、これが本発明の特徴である。   The resin composition for optical parts of the present invention thus obtained has all the following physical properties (1) to (3), which is a feature of the present invention.

(1)粘度
本発明の光学部品用樹脂組成物は、25℃における粘度が0.1〜20Pa・sの範囲であり、好ましくは0.1〜18Pa・sの範囲である。すなわち、粘度が低すぎると、例えばインクジェット方式等で滴下する際に溶液量のコントロールが難しく、粘度が高すぎると、ハンドリング性が劣るからである。
(1) Viscosity The resin composition for optical components of the present invention has a viscosity at 25 ° C. of 0.1 to 20 Pa · s, preferably 0.1 to 18 Pa · s. That is, if the viscosity is too low, it is difficult to control the amount of the solution when dropping, for example, by an ink jet method, and if the viscosity is too high, the handling property is inferior.

上記光学部品用樹脂組成物の粘度測定は、例えば、25℃の温度条件下、東機産業社製のE80型粘度計(RE−80U)にて、標準ローター(1°34′×R24)を用いて測定することができる。   The viscosity of the resin composition for optical parts is measured, for example, by using a standard rotor (1 ° 34 ′ × R24) with an E80 type viscometer (RE-80U) manufactured by Toki Sangyo Co., Ltd. Can be measured.

(2)屈折率
本発明の光学部品用樹脂組成物は、硬化物の屈折率が1.57以上であり、好ましくは1.59〜1.64の範囲である。すなわち、硬化物の屈折率が低すぎると、例えばモバイル機器などの光学レンズ等を成形する場合にレンズが厚くなるため、カメラモジュールの低背化が難しくなる恐れがあるからである。
(2) Refractive index In the resin composition for optical components of the present invention, the cured product has a refractive index of 1.57 or more, preferably in the range of 1.59 to 1.64. That is, if the refractive index of the cured product is too low, for example, when forming an optical lens or the like for a mobile device or the like, the lens becomes thick, which may make it difficult to reduce the height of the camera module.

上記硬化物の屈折率は、例えば、光学部品用樹脂組成物(液状樹脂)を、所定の大きさ(例えば、1×1.5×0.5cm)の透明成形型に流し込み、紫外線(UV)を照射(例えば、10,000mJ/cm2)し硬化させた後、型から外し所定条件(例えば、150℃×1時間)にて加熱処理を行う。このようにして得られた成形物の表面を、グラインダーを用いて研磨した後、屈折率計(アタゴ社製)を用いて、25℃環境下での屈折率を測定することができる。 The refractive index of the cured product is, for example, by pouring a resin composition (liquid resin) for optical components into a transparent mold having a predetermined size (for example, 1 × 1.5 × 0.5 cm), and ultraviolet (UV). After being irradiated and cured (for example, 10,000 mJ / cm 2 ), it is removed from the mold and subjected to heat treatment under predetermined conditions (for example, 150 ° C. × 1 hour). After polishing the surface of the molded product thus obtained using a grinder, the refractive index in a 25 ° C. environment can be measured using a refractometer (manufactured by Atago Co., Ltd.).

(3)アッベ数
本発明の光学部品用樹脂組成物は、硬化物のアッベ数が20〜40の範囲であり、好ましくは20〜35の範囲である。すなわち、硬化物のアッベ数が小さすぎると、得られる硬化物の波長依存性が大きくなり用途によっては色にじみ等の懸念があるからである。
(3) Abbe number As for the resin composition for optical components of this invention, the Abbe number of hardened | cured material is the range of 20-40, Preferably it is the range of 20-35. That is, if the Abbe number of the cured product is too small, the wavelength dependency of the resulting cured product increases, and there are concerns such as color bleeding depending on the application.

本発明において、アッベ数とは、いわゆる光学レンズ等の光学部品(硬化体)における逆分散能を指称するものであって、JIS Z 8120に準じ、例えば、光学部品用樹脂組成物の硬化体(試験片)を用い、アッベ屈折率計により、25±10℃にて測定され、下記の数式(x)にて算出される値である。
アッベ数=([589nmにおける屈折率]−1)/([486nmにおける屈折率]−[656nmにおける屈折率])・・・(x)
In the present invention, the Abbe number refers to the reverse dispersion ability in an optical component (cured body) such as a so-called optical lens. According to JIS Z 8120, for example, a cured body of a resin composition for optical components ( It is a value measured by an Abbe refractometer at 25 ± 10 ° C. using a test piece) and calculated by the following mathematical formula (x).
Abbe number = ([refractive index at 589 nm] −1) / ([refractive index at 486 nm] − [refractive index at 656 nm]) (x)

上記硬化物のアッベ数数の測定は、例えば、硬化物(光学部品等)の表面をグラインダーにより研磨した後、屈折率計(例えば、アタゴ社製)を用いて測定することができる。   The Abbe number of the cured product can be measured using, for example, a refractometer (for example, manufactured by Atago Co., Ltd.) after polishing the surface of the cured product (such as an optical component) with a grinder.

さらに、本発明の光学部品用樹脂組成物は、40℃における粘度が0.05〜5.0Pa・sの範囲であることが好ましく、より好ましくは0.05〜4.5Pa・sの範囲である。すなわち、粘度が低すぎると、例えばインクジェット方式の場合に液量コントロールが難しい傾向がみられ、粘度が高すぎると、ハンドリング性が劣る傾向がみられる。   Furthermore, the resin composition for optical parts of the present invention preferably has a viscosity at 40 ° C. in the range of 0.05 to 5.0 Pa · s, more preferably in the range of 0.05 to 4.5 Pa · s. is there. That is, when the viscosity is too low, for example, in the case of an ink jet method, the liquid amount tends to be difficult to control, and when the viscosity is too high, the handling property tends to be inferior.

また、本発明の光学部品用樹脂組成物は、硬化物の波長400nmにおける透過率が80%以上であることが好ましく、より好ましくは83%以上である。すなわち、透過率が低すぎると、透明性が劣る傾向がみられる。   In the resin composition for optical parts of the present invention, the transmittance of the cured product at a wavelength of 400 nm is preferably 80% or more, more preferably 83% or more. That is, when the transmittance is too low, the transparency tends to be inferior.

本発明の光学部品用樹脂組成物は、例えば、つぎのようにして使用される。すなわち、ガラス等の透明基板上に上記樹脂組成物をポッティングし、その上から所望の成形加工型を押し当てることにより、上記成形加工型内へ上記樹脂組成物を充填させ、そこへ光照射を行うことにより硬化させることができる。そして、その後、上記成形加工型を成型型より取り外すことにより、透明基板上で一体化された上記樹脂組成物の硬化体(成形加工物)を得ることができる。あるいは、光を透過する透明型内へ樹脂組成物を充填し光硬化させることも可能である。本発明の光学部品用樹脂組成物は、このような製法により、例えばハイブリッドレンズを作製することができる。また、本発明の光学部品用樹脂組成物は、成形加工型内でそれ自身単独で硬化させて光学レンズ等の光学部品とすることもできる。このようにして得られた成形体(硬化体)は、成型型より取り外し、さらに必要に応じて所定の温度での加熱処理を行ってもよい。上記加熱により、硬化物の耐熱安定性を高めて、特に透明基板との積層物の場合には、基板と樹脂硬化物間の密着力を高めることができる。   The resin composition for optical parts of the present invention is used, for example, as follows. That is, the resin composition is potted on a transparent substrate such as glass, and a desired molding die is pressed onto the resin composition to fill the resin composition into the molding die, and light is irradiated there. It can be cured by doing so. Then, by removing the molding die from the molding die, a cured body (molded product) of the resin composition integrated on the transparent substrate can be obtained. Alternatively, the resin composition can be filled into a transparent mold that transmits light and photocured. The resin composition for optical parts of the present invention can produce, for example, a hybrid lens by such a production method. Moreover, the resin composition for optical components of the present invention can be cured by itself in a molding die to be an optical component such as an optical lens. The molded body (cured body) thus obtained may be removed from the mold and further subjected to heat treatment at a predetermined temperature as necessary. By the heating, the heat resistance stability of the cured product can be enhanced, and particularly in the case of a laminate with a transparent substrate, the adhesion between the substrate and the cured resin product can be enhanced.

上記光照射には、例えば、装置としてUVランプや特定波長のシングルバンドのランプ等を用いることができ、光源として、低圧水銀ランプ、高圧水銀ランプ、超高圧水銀ランプ、キセノンランプ等を用いることができる。照射量としては、2000〜200000mJ/cm2が好ましい。すなわち、照射量が上記範囲未満では、硬化不充分のために、基板上に所望の硬化物形状が得られない可能性があり、上記範囲を超えると、過度の照射による光劣化が生じ、その後の加熱処理等により着色し透明性が損なわれるおそれがあるからである。また、上記光照射後の加熱処理の条件としては、80〜170℃で1時間程度が好ましい。 For the light irradiation, for example, a UV lamp or a single band lamp having a specific wavelength can be used as an apparatus, and a low pressure mercury lamp, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a xenon lamp, or the like can be used as a light source. it can. As an irradiation amount, 2000-200000 mJ / cm < 2 > is preferable. That is, if the irradiation amount is less than the above range, the desired cured product shape may not be obtained on the substrate due to insufficient curing, and if it exceeds the above range, photodegradation occurs due to excessive irradiation, and thereafter This is because it may be colored by heat treatment or the like, and transparency may be impaired. Moreover, as conditions for the heat treatment after the light irradiation, a temperature of 80 to 170 ° C. is preferably about 1 hour.

なお、本発明の光学部品用樹脂組成物は、上記のような成形加工型によらず、シート状に成形することもできる。   In addition, the resin composition for optical components of this invention can also be shape | molded in a sheet form irrespective of the above shaping | molding molds.

そして、上記のようにして得られる本発明の光学部品用樹脂組成物は、ハンダリフロー時の熱によっても変色の小さい、熱ストレスに対し安定した機械特性が得られるといった効果が得られる。そのため、本発明の硬化物を搭載した部品等をハンダリフローにより一括搭載する際に有利に使用する事ができる。   And the resin composition for optical components of the present invention obtained as described above has the effect that the mechanical properties that are small in discoloration and stable against thermal stress are obtained even by heat during solder reflow. Therefore, it can be advantageously used when parts and the like mounted with the cured product of the present invention are collectively mounted by solder reflow.

本発明の光学部品用樹脂組成物は、先に述べたような製法により、光学レンズ等の光学部品用の成形材料(光学部品用材料)として用いられる他、光導波路や光学部品固定用光硬化型接着剤等に用いることができる。   The resin composition for an optical component of the present invention is used as a molding material (optical component material) for an optical component such as an optical lens by the manufacturing method as described above, and is light-cured for fixing an optical waveguide or an optical component. It can be used for mold adhesives.

つぎに、本発明を実施例に基づいて説明する。ただし、本発明は、これら実施例に限定されるものではない。なお、例中、「部」とあるのは、断りのない限り重量基準を意味する。   Next, the present invention will be described based on examples. However, the present invention is not limited to these examples. In the examples, “parts” means weight basis unless otherwise specified.

まず、実施例に先立ち、下記に示すエポキシ樹脂、エポキシ樹脂用硬化剤、その他の添加剤等を準備した。   First, prior to the examples, the following epoxy resins, epoxy resin curing agents, other additives, and the like were prepared.

<エポキシ樹脂>
[a−1]
前記式(1)において、R1〜R8が全てH(屈折率1.59、融点50℃、エポキシ当量226g/eq)
[a−2]
前記式(1)において、R5がフェニル基でR8が−O−Gly(Gly:グリシジル基)であり、それ以外のR1〜R7はH(屈折率1.62、融点70℃、エポキシ当量165g/eq)
[a−3]
前記式(1)において、R3が−O−Gly(Gly:グリシジル基)であり、それ以外のR1〜R8はH(屈折率1.585、融点40℃、エポキシ当量113g/eq)
<Epoxy resin>
[A-1]
In the formula (1), R 1 to R 8 are all H (refractive index 1.59, melting point 50 ° C., epoxy equivalent 226 g / eq).
[A-2]
In the formula (1), R 5 is a phenyl group and R 8 is —O—Gly (Gly: glycidyl group), and other R 1 to R 7 are H (refractive index 1.62, melting point 70 ° C., Epoxy equivalent 165 g / eq)
[A-3]
In the formula (1), R 3 is —O—Gly (Gly: glycidyl group), and other R 1 to R 8 are H (refractive index 1.585, melting point 40 ° C., epoxy equivalent 113 g / eq).

<エポキシ樹脂用硬化剤>
[b−1]
アニオン成分がSb6 -、カチオン成分が下記構造式(2)である、トリアリールスルホニウム塩系光重合開始剤(光酸発生剤)(50重量%プロピレンカーボネート溶液)
<Curing agent for epoxy resin>
[B-1]
Triarylsulfonium salt photopolymerization initiator (photoacid generator) (50 wt% propylene carbonate solution) in which the anion component is Sb 6 and the cation component is the following structural formula (2)

Figure 2015194547
Figure 2015194547

<その他の添加剤>
[c−1]
ビスフェノールA型エポキシ樹脂(エポキシ当量175g/eq、固体(25℃)、軟化点45℃、屈折率1.57)
[c−2]
フルオレン型エポキシ樹脂(エポキシ当量259g/eq、屈折率1.64)
[c−3]
3−エチル−3−{[(3−エチルオキセタン−3−イル)メトキシ]メチル}オキセタン
[c−4]
シラン系カップリング剤:3−グリシドキシプロピルメチルジエトキシシラン
[c−5]
9,10−ジヒドロ−9−オキサ−10−フォスファフェナントレン−10−オキサイド
[c−6]
フルオレン型エポキシ樹脂(エポキシ当量311g/eq、屈折率1.68)
[YX4000]
ビフェニル型エポキシ樹脂(三菱化学社製)
[YX4000H]
ビフェニル型エポキシ樹脂(三菱化学社製)
<Other additives>
[C-1]
Bisphenol A type epoxy resin (epoxy equivalent 175 g / eq, solid (25 ° C.), softening point 45 ° C., refractive index 1.57)
[C-2]
Fluorene type epoxy resin (epoxy equivalent 259 g / eq, refractive index 1.64)
[C-3]
3-ethyl-3-{[(3-ethyloxetane-3-yl) methoxy] methyl} oxetane [c-4]
Silane coupling agent: 3-glycidoxypropylmethyldiethoxysilane [c-5]
9,10-Dihydro-9-oxa-10-phosphaphenanthrene-10-oxide [c-6]
Fluorene type epoxy resin (epoxy equivalent 311 g / eq, refractive index 1.68)
[YX4000]
Biphenyl type epoxy resin (Mitsubishi Chemical Corporation)
[YX4000H]
Biphenyl type epoxy resin (Mitsubishi Chemical Corporation)

〔実施例1〜8、比較例1〜5〕
上記各成分を、後記の表1および表2に示す割合で配合し、加熱溶融混合を行い、光学部品用樹脂組成物を作製した。
[Examples 1-8, Comparative Examples 1-5]
Each of the above components were blended in the proportions shown in Table 1 and Table 2 below, followed by heat-melt mixing to produce a resin composition for optical parts.

このようにして得られた実施例および比較例の光学部品用樹脂組成物に関し、下記の基準に従って各特性評価を行った。その結果を、後記の表1および表2に併せて示す。   Each characteristic evaluation was performed according to the following reference | standard regarding the resin composition for optical components of the Example and comparative example which were obtained in this way. The results are shown in Tables 1 and 2 below.

[屈折率]
光学部品用樹脂組成物(液状樹脂)を、1×1.5×0.5cmの透明成形型に流し込み、紫外線(UV)を10,000mJ/cm2照射し硬化させた後、型から外し150℃×1時間の加熱処理を行った。このようにして得られた成形物の表面を、グラインダーを用いて研磨した後、屈折率計(アタゴ社製)を用いて、25℃環境下での屈折率を測定した。その結果、屈折率が1.57未満となったものを×、屈折率が1.57以上であったものを〇と評価した。
[Refractive index]
The resin composition for optical parts (liquid resin) is poured into a 1 × 1.5 × 0.5 cm transparent mold, cured by irradiating with ultraviolet (UV) at 10,000 mJ / cm 2 , and then removed from the mold. A heat treatment at 1 ° C. for 1 hour was performed. The surface of the molded product thus obtained was polished using a grinder, and then the refractive index in a 25 ° C. environment was measured using a refractometer (manufactured by Atago Co., Ltd.). As a result, the case where the refractive index was less than 1.57 was evaluated as x, and the case where the refractive index was 1.57 or more was evaluated as ◯.

[アッベ数]
屈折率測定サンプルを使用して、屈折率測定と同装置(アタゴ社製)のアッベ測定モードにて上述の数式(x)に基づきアッベ数を算出した。その結果、アッベ数が20未満もしくは40を超えたものを×、アッベ数が20以上40以下となったものを〇と評価した。
[Abbe number]
Using the refractive index measurement sample, the Abbe number was calculated based on the above formula (x) in the Abbe measurement mode of the same apparatus (manufactured by Atago Co., Ltd.) as the refractive index measurement. As a result, an Abbe number of less than 20 or more than 40 was evaluated as x, and an Abbe number of 20 or more and 40 or less was evaluated as ◯.

[25℃粘度]
光学部品用樹脂組成物の25℃環境下における粘度を、東機産業社製のE80型粘度計(RE−80U)にて、標準ローター(1°34′×R24)を用いて測定した。その結果、粘度が0.1Pa・s未満もしくは20Pa・sを超えたものを×、粘度が0.1Pa・s以上20Pa・s以下のものを〇として評価した。
[25 ° C viscosity]
The viscosity of the resin composition for optical components in an environment of 25 ° C. was measured with a standard rotor (1 ° 34 ′ × R24) with an E80 viscometer (RE-80U) manufactured by Toki Sangyo Co., Ltd. As a result, the case where the viscosity was less than 0.1 Pa · s or exceeded 20 Pa · s was evaluated as x, and the case where the viscosity was 0.1 Pa · s or more and 20 Pa · s or less was evaluated as ◯.

[40℃粘度]
光学部品用樹脂組成物の40℃環境下における粘度を、東機産業社製のE80型粘度計(RE−80U)にて、標準ローター(1°34′×R24)を用いて測定した。その結果、粘度が0.05Pa・s未満もしくは5Pa・sを超えたものを×、粘度が0.05Pa・s以上5Pa・s以下のものを〇として評価した。
[40 ° C viscosity]
The viscosity of the resin composition for optical components in an environment of 40 ° C. was measured with a standard rotor (1 ° 34 ′ × R24) with an E80 viscometer (RE-80U) manufactured by Toki Sangyo Co., Ltd. As a result, the case where the viscosity was less than 0.05 Pa · s or exceeded 5 Pa · s was evaluated as x, and the case where the viscosity was 0.05 Pa · s or more and 5 Pa · s or less was evaluated as ◯.

[耐熱変色性a(透明性)]
光学部品用樹脂組成物を用いて、シリコーン離型処理を施したPETフィルム(三菱化学ポリエステルフィルム社製、ダイアホイルMRF−50)上に、厚み300μmとなるよう製膜し、これに光照射(光量10,000mJ/cm2)を行い一次硬化させた。その後、150℃×1時間の加熱処理をし、硬化体(試験片)を得た。この試験片について、分光光度計(日本分光株式会社)を用いて評価し、波長400nmの光透過率を測定し確認した。その結果、光透過率が70%未満のものを×、光透過率が70%以上80%未満ものを△、光透過率が80%以上のものを〇として評価した。
[Heat-resistant discoloration a (transparency)]
Using a resin composition for optical parts, a film is formed on a PET film (Mitsubishi Chemical Polyester Film Co., Ltd., Diafoil MRF-50) that has been subjected to silicone release treatment to a thickness of 300 μm, and this is irradiated with light ( The primary curing was performed by applying 10,000 mJ / cm 2 ). Then, 150 degreeC x 1 hour heat processing were performed, and the hardening body (test piece) was obtained. About this test piece, it evaluated using the spectrophotometer (JASCO Corporation), and measured and confirmed the light transmittance of wavelength 400nm. As a result, a light transmittance of less than 70% was evaluated as x, a light transmittance of 70% to less than 80% was evaluated as Δ, and a light transmittance of 80% or more was evaluated as ◯.

[耐熱変色性b(透明性)]
光学部品用樹脂組成物を用いて、シリコーン離型処理を施したPETフィルム(三菱化学ポリエステルフィルム社製、ダイアホイルMRF−50)上に、厚み300μmとなるよう製膜し、これに光照射(光量10,000mJ/cm2)を行い一次硬化させた。その後、150℃×1時間の加熱処理をし、硬化体(試験片)を得た。この試験片にて、260℃、10秒のリフロー炉を通したものを、分光光度計(日本分光株式会社)を用いて評価し、波長400nmの光透過率を測定し確認した。その結果、光透過率が60%未満のものを×、光透過率が60%以上70%未満のものを△、光透過率が70%以上のものを〇として評価した。
[Heat-resistant discoloration b (transparency)]
Using a resin composition for optical parts, a film is formed on a PET film (Mitsubishi Chemical Polyester Film Co., Ltd., Diafoil MRF-50) that has been subjected to silicone release treatment to a thickness of 300 μm, and this is irradiated with light ( The primary curing was performed by applying 10,000 mJ / cm 2 ). Then, 150 degreeC x 1 hour heat processing were performed, and the hardening body (test piece) was obtained. The test piece passed through a reflow furnace at 260 ° C. for 10 seconds was evaluated using a spectrophotometer (JASCO Corporation), and the light transmittance at a wavelength of 400 nm was measured and confirmed. As a result, the light transmittance of less than 60% was evaluated as x, the light transmittance of 60% or more and less than 70% as Δ, and the light transmittance as 70% or more as ◯.

Figure 2015194547
Figure 2015194547

Figure 2015194547
Figure 2015194547

上記結果から、低粘度であり、高屈折率低アッベの実施例品は、比較例品に比べて、透明性に関して良好な結果が得られた。したがって、実施例品の光学部品用樹脂組成物の使用により、高い屈折率で、耐熱変色性に優れた光学レンズ等の光学部品を提供することが可能となる。また、この樹脂組成物を用いてなる光学部品は、ハンダリフロー時の熱によっても変色をすることなく、熱ストレスに対し安定した機械特性を有するため、撮像装置をハンダリフローにより一括搭載する際に有利に使用することができる。   From the above results, the example product having a low viscosity and a high refractive index and a low Abbe obtained better results regarding transparency than the comparative example product. Therefore, by using the resin composition for optical parts of the example product, it becomes possible to provide an optical part such as an optical lens having a high refractive index and excellent heat discoloration. In addition, optical components using this resin composition have stable mechanical properties against heat stress without being discolored by heat during solder reflow. It can be used advantageously.

これに対して、比較例1〜3品は、25℃での粘度が極めて高く、40℃での粘度も極めて高いため、ハンドリング性に劣る。特に比較例1,2品は、透明性が低く光学部品材料としては適さないことは明らかである。また、比較例4品は、硬化物のアッベ数が高く屈折率が低く、40℃における粘度も低すぎるため、溶液を一定量滴下する際のコントロールに難があった。比較例5品は、硬化物のアッベ数が低く、また25℃での粘度も高いため、ハンドリング性に劣る。さらに比較例5品は、数時間常温に置いただけで樹脂が白濁しており、実使用は困難であることが確認された。   On the other hand, the products of Comparative Examples 1 to 3 have a very high viscosity at 25 ° C. and a very high viscosity at 40 ° C., so that the handling properties are inferior. It is clear that Comparative Examples 1 and 2 are particularly unsuitable as optical component materials because of their low transparency. Moreover, since the comparative example 4 product had the high Abbe number of the hardened | cured material, its refractive index was low, and the viscosity in 40 degreeC was too low, there existed difficulty in control at the time of dripping a fixed amount of solutions. The product of Comparative Example 5 is inferior in handling properties because the Abbe number of the cured product is low and the viscosity at 25 ° C. is high. Furthermore, it was confirmed that the product of Comparative Example 5 was difficult to actually use because the resin was clouded only after being placed at room temperature for several hours.

本発明の光学部品用樹脂組成物は、高い透明性を有しながら、高い屈折率を有する立体造形物(硬化物)となり得るため、光学レンズ等の光学部品用の成形材料(光学部品用材料)や、光学部品固定用光硬化型接着剤等の光学用途として有用である。また、本発明の光学部品用樹脂組成物を用いた光学部品は、信頼性が高いため、光学レンズ等の光学部品(光学製品)に用いることができる。   Since the resin composition for optical parts of the present invention can be a three-dimensional molded article (cured product) having a high refractive index while having high transparency, a molding material for optical parts such as optical lenses (materials for optical parts) ) And optical applications such as a photo-curing adhesive for fixing optical components. Moreover, since the optical component using the resin composition for optical components of the present invention has high reliability, it can be used for optical components (optical products) such as optical lenses.

Claims (7)

光学部品用樹脂組成物の25℃における粘度が0.1〜20Pa・sの範囲であり、光学部品用樹脂組成物の硬化物の屈折率が1.57以上で、アッベ数が20〜40の範囲であることを特徴とする光学部品用樹脂組成物。   The resin composition for optical components has a viscosity at 25 ° C. of 0.1 to 20 Pa · s, the refractive index of the cured product of the resin composition for optical components is 1.57 or more, and the Abbe number is 20 to 40. A resin composition for optical parts, characterized by being in a range. 光学部品用樹脂組成物の40℃における粘度が0.05〜5.0Pa・sの範囲である請求項1記載の光学部品用樹脂組成物。   The resin composition for an optical component according to claim 1, wherein the resin composition for an optical component has a viscosity at 40 ° C. of 0.05 to 5.0 Pa · s. 光学部品用樹脂組成物の硬化物の波長400nmにおける透過率が80%以上である請求項1または2記載の光学部品用樹脂組成物。   The resin composition for optical components according to claim 1 or 2, wherein the cured product of the resin composition for optical components has a transmittance of 80% or more at a wavelength of 400 nm. 下記の一般式(1)で表されるエポキシ樹脂を含有する請求項1〜3のいずれか一項に記載の光学部品用樹脂組成物。
Figure 2015194547
The resin composition for optical components as described in any one of Claims 1-3 containing the epoxy resin represented by following General formula (1).
Figure 2015194547
上記一般式(1)で表されるエポキシ樹脂の屈折率が1.57以上で、融点が90℃以下である請求項4記載の光学部品用樹脂組成物。   The resin composition for an optical component according to claim 4, wherein the epoxy resin represented by the general formula (1) has a refractive index of 1.57 or more and a melting point of 90 ° C or less. さらに屈折率が1.60以上のフルオレン型エポキシ樹脂を含有する請求項5記載の光学部品用樹脂組成物。   Furthermore, the resin composition for optical components of Claim 5 containing the fluorene type epoxy resin whose refractive index is 1.60 or more. 請求項1〜6のいずれか一項に記載の光学部品用樹脂組成物の硬化体からなる光学部品。   The optical component which consists of a hardening body of the resin composition for optical components as described in any one of Claims 1-6.
JP2014071402A 2014-03-31 2014-03-31 Resin composition for optical parts and optical part using the same Active JP6418673B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2014071402A JP6418673B2 (en) 2014-03-31 2014-03-31 Resin composition for optical parts and optical part using the same
PCT/JP2015/055986 WO2015151688A1 (en) 2014-03-31 2015-02-27 Resin composition for use in optical component and optical component using same
SG11201606212RA SG11201606212RA (en) 2014-03-31 2015-02-27 Resin composition for optical component, and optical component produced by using the resin composition
CN201580005784.XA CN105934690A (en) 2014-03-31 2015-02-27 Resin composition for use in optical component and optical component using same
TW104107424A TW201540765A (en) 2014-03-31 2015-03-09 Resin composition for use in optical component and optical component using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014071402A JP6418673B2 (en) 2014-03-31 2014-03-31 Resin composition for optical parts and optical part using the same

Publications (2)

Publication Number Publication Date
JP2015194547A true JP2015194547A (en) 2015-11-05
JP6418673B2 JP6418673B2 (en) 2018-11-07

Family

ID=54240021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014071402A Active JP6418673B2 (en) 2014-03-31 2014-03-31 Resin composition for optical parts and optical part using the same

Country Status (5)

Country Link
JP (1) JP6418673B2 (en)
CN (1) CN105934690A (en)
SG (1) SG11201606212RA (en)
TW (1) TW201540765A (en)
WO (1) WO2015151688A1 (en)

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5993720A (en) * 1982-11-22 1984-05-30 Showa Denko Kk Polymerizable composition
JPH04152301A (en) * 1990-10-16 1992-05-26 Alpha Techno Co Ltd Optical resin molding
JPH04152302A (en) * 1990-10-16 1992-05-26 Alpha Techno Co Ltd Optical resin molding
JPH05271347A (en) * 1992-03-24 1993-10-19 Daiso Co Ltd Polymerizable composition and high refractive index plastic lens obtained therefrom
JP2004117955A (en) * 2002-09-27 2004-04-15 Nippon Telegr & Teleph Corp <Ntt> Manufacturing method of micro resin lens
WO2005085317A1 (en) * 2004-03-04 2005-09-15 Toagosei Co., Ltd. Ultraviolet-curing composition
JP2009084310A (en) * 2007-09-27 2009-04-23 Nippon Shokubai Co Ltd Thermo- or photo-curable resin composition, optical material and optical member
JP2009203315A (en) * 2008-02-27 2009-09-10 Dic Corp Active energy ray-curable resin composition for optical article and article
JP2010163566A (en) * 2009-01-16 2010-07-29 Three M Innovative Properties Co Epoxy resin composition
JP2011132416A (en) * 2009-12-25 2011-07-07 Nagase Chemtex Corp Thermocurable resin composition and organic-inorganic composite resin
JP2011157543A (en) * 2010-01-07 2011-08-18 Nippon Synthetic Chem Ind Co Ltd:The Actinic radiation curable composition and use thereof
WO2011102286A1 (en) * 2010-02-16 2011-08-25 ダイセル化学工業株式会社 Curable composition and cured material
JP2011208092A (en) * 2010-03-30 2011-10-20 Mitsubishi Chemicals Corp Polymerizable composition, cured product, and optical member
WO2011158725A1 (en) * 2010-06-14 2011-12-22 新日鐵化学株式会社 Ultraviolet ray-curable resin composition used in inkjet printing and optical element obtained using same
JP2012001689A (en) * 2010-06-21 2012-01-05 Adeka Corp Photocurable resin composition
JP2012251032A (en) * 2011-06-01 2012-12-20 Daicel Corp Radical-curable composition for optical material suitable for casting molding
JP2013014740A (en) * 2011-06-10 2013-01-24 Jnc Corp Photocurable inkjet ink
JP2013181077A (en) * 2012-02-29 2013-09-12 Idemitsu Kosan Co Ltd (meth)acrylate-based composition, resin, and molded article
JP2013241554A (en) * 2011-08-23 2013-12-05 Jsr Corp Photosensitive composition, method for manufacturing molded article, molded article and semiconductor device
JP2014152194A (en) * 2013-02-05 2014-08-25 Nippon Shokubai Co Ltd Curable resin composition, cured product of the same, and optical material

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008184563A (en) * 2007-01-31 2008-08-14 Nikon Corp Resin composition for high aspect ratio structure
EP2185621A1 (en) * 2007-09-27 2010-05-19 Nippon Shokubai Co., Ltd. Curable resin composition for molded bodies, molded body, and production method thereof
JP5329299B2 (en) * 2009-05-13 2013-10-30 日東電工株式会社 Optical lens
CN102955360A (en) * 2011-08-23 2013-03-06 Jsr株式会社 Photosensitive composition, method for manufacturing molded article, molded article and semiconductor device

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5993720A (en) * 1982-11-22 1984-05-30 Showa Denko Kk Polymerizable composition
JPH04152301A (en) * 1990-10-16 1992-05-26 Alpha Techno Co Ltd Optical resin molding
JPH04152302A (en) * 1990-10-16 1992-05-26 Alpha Techno Co Ltd Optical resin molding
JPH05271347A (en) * 1992-03-24 1993-10-19 Daiso Co Ltd Polymerizable composition and high refractive index plastic lens obtained therefrom
JP2004117955A (en) * 2002-09-27 2004-04-15 Nippon Telegr & Teleph Corp <Ntt> Manufacturing method of micro resin lens
WO2005085317A1 (en) * 2004-03-04 2005-09-15 Toagosei Co., Ltd. Ultraviolet-curing composition
JP2009084310A (en) * 2007-09-27 2009-04-23 Nippon Shokubai Co Ltd Thermo- or photo-curable resin composition, optical material and optical member
JP2009203315A (en) * 2008-02-27 2009-09-10 Dic Corp Active energy ray-curable resin composition for optical article and article
JP2010163566A (en) * 2009-01-16 2010-07-29 Three M Innovative Properties Co Epoxy resin composition
JP2011132416A (en) * 2009-12-25 2011-07-07 Nagase Chemtex Corp Thermocurable resin composition and organic-inorganic composite resin
JP2011157543A (en) * 2010-01-07 2011-08-18 Nippon Synthetic Chem Ind Co Ltd:The Actinic radiation curable composition and use thereof
WO2011102286A1 (en) * 2010-02-16 2011-08-25 ダイセル化学工業株式会社 Curable composition and cured material
JP2011208092A (en) * 2010-03-30 2011-10-20 Mitsubishi Chemicals Corp Polymerizable composition, cured product, and optical member
WO2011158725A1 (en) * 2010-06-14 2011-12-22 新日鐵化学株式会社 Ultraviolet ray-curable resin composition used in inkjet printing and optical element obtained using same
JP2012001689A (en) * 2010-06-21 2012-01-05 Adeka Corp Photocurable resin composition
JP2012251032A (en) * 2011-06-01 2012-12-20 Daicel Corp Radical-curable composition for optical material suitable for casting molding
JP2013014740A (en) * 2011-06-10 2013-01-24 Jnc Corp Photocurable inkjet ink
JP2013241554A (en) * 2011-08-23 2013-12-05 Jsr Corp Photosensitive composition, method for manufacturing molded article, molded article and semiconductor device
JP2013181077A (en) * 2012-02-29 2013-09-12 Idemitsu Kosan Co Ltd (meth)acrylate-based composition, resin, and molded article
JP2014152194A (en) * 2013-02-05 2014-08-25 Nippon Shokubai Co Ltd Curable resin composition, cured product of the same, and optical material

Also Published As

Publication number Publication date
TW201540765A (en) 2015-11-01
CN105934690A (en) 2016-09-07
WO2015151688A1 (en) 2015-10-08
JP6418673B2 (en) 2018-11-07
SG11201606212RA (en) 2016-10-28

Similar Documents

Publication Publication Date Title
WO2014185180A1 (en) Photo-curable resin composition for optical components, optical component using same, and optical component production method
CN104540868B (en) Solidification compound and its solidfied material, optical component and Optical devices
TWI445758B (en) Resin composition for optical components and optical component using the same
TWI427117B (en) Resin composition for optical components, optical component using the same and production method of optical lens
TW202035501A (en) Specially-shaped epoxy resin molded article, and optical device provided with same
JP5070131B2 (en) Resin composition for optical parts and optical part using the same
TWI506083B (en) Photocurable resin composition and optical component using the same
JP6418672B2 (en) Resin composition for optical parts and optical part using the same
CN105899567A (en) Curable composition, cured product thereof, and wafer level lens
WO2016031602A1 (en) Photosensitive resin composition for optical applications and optical material using same
JP6332590B2 (en) Photosensitive resin composition for optical waveguide, photocurable film for forming optical waveguide core layer, optical waveguide using the same, mixed flexible printed wiring board for optical / electrical transmission
JP6418673B2 (en) Resin composition for optical parts and optical part using the same
TWI504626B (en) Photocurable resin composition and optical component using the same
KR20120075421A (en) Light-curing resin composition and optical material
JP2010150489A (en) Ultraviolet ray curing type resin composition and optical lens prepared by using the same
JP2009288598A (en) Manufacturing method of optical lens and optical lens obtained thereby
WO2015072350A1 (en) Light-curable resin composition and light-curable resin composition sheet obtained using same
TWI516517B (en) Photocurable resin composition and optical component using the same
WO2018096967A1 (en) Photopolymerizable composition containing alicyclic epoxy compound for imprint molding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180126

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180522

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180723

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180911

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20181005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181005

R150 Certificate of patent or registration of utility model

Ref document number: 6418673

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250