JP2015194271A - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
JP2015194271A
JP2015194271A JP2014071213A JP2014071213A JP2015194271A JP 2015194271 A JP2015194271 A JP 2015194271A JP 2014071213 A JP2014071213 A JP 2014071213A JP 2014071213 A JP2014071213 A JP 2014071213A JP 2015194271 A JP2015194271 A JP 2015194271A
Authority
JP
Japan
Prior art keywords
transfer member
heat
heat transfer
heat exchange
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014071213A
Other languages
Japanese (ja)
Inventor
中村 崇
Takashi Nakamura
崇 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marelli Corp
Original Assignee
Calsonic Kansei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Calsonic Kansei Corp filed Critical Calsonic Kansei Corp
Priority to JP2014071213A priority Critical patent/JP2015194271A/en
Publication of JP2015194271A publication Critical patent/JP2015194271A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Abstract

PROBLEM TO BE SOLVED: To provide a heat exchanger capable of ensuring prompt heat exchange even if a heat storage member is not warmed up sufficiently.SOLUTION: A heat exchanger 30 configured to implement heat exchange between exhaust gas G flowing in a first channel (heat exchange unit 20) and discharged from an engine ENG and cooling water W flowing in a second channel (heat exchange unit 40) via a heat storage member 31, and is configured so that a first heat transfer member 32 connected to the heat exchange unit 20 and a second heat transfer unit 34 connected to the heat exchange unit 40 are disposed to be spaced apart in the heat storage member 31, fins 38 provided in the first heat transfer member 32 are disposed in contact with the second heat transfer member 34, and the heat exchanger 30 comprises a cylinder device 36 which moves the first heat transfer member 32 and the second transfer member 34 in a direction of separating from each other to make the fins 38 out of contact with the second heat transfer member 34 if a temperature of the heat storage member 31 is equal to or higher than a predetermined temperature (100°C or higher).

Description

本発明は、熱交換装置に関する。   The present invention relates to a heat exchange device.

特許文献1には、エンジンから排出された排気ガスの熱で暖められた温水の熱を蓄熱装置の蓄熱部材に蓄熱し、エンジンの始動直後のように、空調装置で調節される空調空気の温度が低いときに、蓄熱部材に蓄熱した熱を利用して、空調空気を暖めることが開示されている。   Patent Document 1 discloses that the temperature of conditioned air that is adjusted by an air conditioner immediately after the engine is started by storing the heat of warm water heated by the heat of exhaust gas discharged from the engine in a heat storage member of the heat storage device. It is disclosed that when the temperature is low, the conditioned air is warmed using heat stored in the heat storage member.

実開平2−76510号公報Japanese Utility Model Publication 2-76510

上記の排気熱回収システムの熱交換器では、エンジンから排出された排気ガスの熱で暖められた温水と蓄熱部材との間で熱交換を行うための第1の伝熱部材と、蓄熱部材と空調装置を流通する空調空気との間で熱交換を行うための第2の伝熱部材と、が蓄熱部材の内部で間隔を空けて設けられており、第1の伝熱部材と第2の伝熱部材との間の熱交換を、蓄熱部材を介して行うようになっている、   In the heat exchanger of the exhaust heat recovery system, the first heat transfer member for exchanging heat between the hot water heated by the heat of the exhaust gas discharged from the engine and the heat storage member, A second heat transfer member for exchanging heat with the conditioned air flowing through the air conditioner is provided in the heat storage member with an interval between the first heat transfer member and the second heat transfer member. Heat exchange with the heat transfer member is performed via the heat storage member.

ここで、特許文献1の熱交換器の場合、蓄熱部材が十分に暖められていないと、第1の伝熱部材と第2の伝熱部材との間の熱交換を適切に行うことができないので、エンジン始動直後のように、蓄熱部材が十分に暖められていない場合には、第1の伝熱部材と第2の伝熱部材との間で、迅速な熱交換を行うことができなかった。   Here, in the case of the heat exchanger of Patent Document 1, if the heat storage member is not sufficiently warmed, heat exchange between the first heat transfer member and the second heat transfer member cannot be performed appropriately. Therefore, when the heat storage member is not sufficiently warmed immediately after starting the engine, rapid heat exchange cannot be performed between the first heat transfer member and the second heat transfer member. It was.

よって、蓄熱部材が十分に暖められていない場合でも、熱交換を迅速に行えるようにすることが求められている。   Therefore, even when the heat storage member is not sufficiently warmed, it is required to perform heat exchange quickly.

本発明は、第1の流路を通流する第1の熱交換媒体と、第2の流路を通流する第2の熱交換媒体との間の熱交換を、蓄熱部材を介して行うように構成された熱交換装置であって、第1の流路に接続された第1の伝熱部材と、第2の流路に接続された第2の伝熱部材とを、蓄熱部材の内部で間隔を空けて配置すると共に、第1の伝熱部材に設けた第3の伝熱部材を、第2の伝熱部材に接触させて配置し、蓄熱部材の温度が所定温度以上になると、第1の伝熱部材と第2の伝熱部材とを互いに離間させる方向に移動させて、第3の伝熱部材と第2の伝熱部材とを非接触にする駆動手段を設けた熱交換装置とした。   The present invention performs heat exchange between the first heat exchange medium flowing through the first flow path and the second heat exchange medium flowing through the second flow path via the heat storage member. A heat exchange device configured as described above, wherein a first heat transfer member connected to the first flow path and a second heat transfer member connected to the second flow path are connected to the heat storage member. When the third heat transfer member provided on the first heat transfer member is placed in contact with the second heat transfer member and the temperature of the heat storage member is equal to or higher than a predetermined temperature, the inner heat transfer member is arranged with a space therebetween. Heat provided with driving means for moving the first heat transfer member and the second heat transfer member away from each other and bringing the third heat transfer member and the second heat transfer member into non-contact with each other An exchange device was used.

本発明によれば、蓄熱部材が十分に暖められていない場合でも、熱交換を迅速に行うことができる。   According to the present invention, heat exchange can be performed quickly even when the heat storage member is not sufficiently warmed.

実施の形態にかかる排気熱回収システムの構成図である。It is a lineblock diagram of the exhaust heat recovery system concerning an embodiment. 実施の形態にかかるシリンダ装置の動作を説明する概略図である。It is the schematic explaining operation | movement of the cylinder apparatus concerning embodiment. 実施の形態にかかる熱交換装置を説明する図である。It is a figure explaining the heat exchange apparatus concerning an embodiment. 実施の形態にかかるフィン近傍の断面斜視図である。It is a section perspective view near the fin concerning an embodiment. 他の実施の形態にかかる熱交換装置の動作を説明する図である。It is a figure explaining operation | movement of the heat exchange apparatus concerning other embodiment.

以下、本発明の熱交換装置を、エンジンの排気ガスと冷却水との間の熱交換を行う排気熱回収システムに適用した場合を例に説明する。
図1は、第1の実施形態にかかる排気熱回収システム1の全体構成を説明する概略図である。
図2は、シリンダ装置36の構造を説明する図であって、図1における領域Aを拡大した図であり、(a)は、シリンダ装置36の相変化媒体Bが固体状態である場合を、(b)は、シリンダ装置36の相変化媒体Bが液体状態である場合を、それぞれ示している。
図3は、熱交換装置30の動作を説明する図であり、(a)は、第1の伝熱部材32と第2の伝熱部材34とが、基準位置にある状態を示す図であり、(b)は、第1の伝熱部材32と第2の伝熱部材34とが、作動位置にある状態を示す図である。
なお、図1では、排気熱回収システム1のシリンダ装置36を断面で示している。
Hereinafter, a case where the heat exchange device of the present invention is applied to an exhaust heat recovery system that performs heat exchange between exhaust gas of an engine and cooling water will be described as an example.
FIG. 1 is a schematic diagram illustrating the overall configuration of an exhaust heat recovery system 1 according to the first embodiment.
2 is a diagram illustrating the structure of the cylinder device 36, and is an enlarged view of the region A in FIG. 1. FIG. 2 (a) shows a case where the phase change medium B of the cylinder device 36 is in a solid state. (B) has each shown the case where the phase change medium B of the cylinder apparatus 36 is a liquid state.
FIG. 3 is a diagram illustrating the operation of the heat exchanging device 30, and FIG. 3A is a diagram illustrating a state in which the first heat transfer member 32 and the second heat transfer member 34 are at the reference position. (B) is a figure which shows the state which has the 1st heat-transfer member 32 and the 2nd heat-transfer member 34 in an operation position.
In FIG. 1, the cylinder device 36 of the exhaust heat recovery system 1 is shown in cross section.

図1に示すように、排気熱回収システム1は、エンジンENGから排出される排気ガスGと、エンジンENGの冷却水Wとの間で熱交換を行う熱交換装置30を備えている。   As shown in FIG. 1, the exhaust heat recovery system 1 includes a heat exchange device 30 that exchanges heat between the exhaust gas G discharged from the engine ENG and the cooling water W of the engine ENG.

この排気熱回収システム1では、排気ガスGが通流する排気管10に、当該排気管10よりも大径の熱交換部20が設けられていると共に、冷却水Wが通流する配管41に、当該配管41よりも大径の熱交換部40が設けられており、これら熱交換部20、40の間に、熱交換装置30が位置している。   In the exhaust heat recovery system 1, the exhaust pipe 10 through which the exhaust gas G flows is provided with a heat exchange section 20 having a diameter larger than that of the exhaust pipe 10, and the piping 41 through which the cooling water W flows. A heat exchanging unit 40 having a diameter larger than that of the pipe 41 is provided, and the heat exchanging device 30 is located between the heat exchanging units 20 and 40.

熱交換装置30は、熱交換部20に接続された第1の伝熱部材32と、熱交換部40に接続された第2の伝熱部材34とを有しており、これら第1の伝熱部材32と第2の伝熱部材34は、蓄熱部材31の内部で、間隔を空けて互いに平行に設けられている。   The heat exchange device 30 includes a first heat transfer member 32 connected to the heat exchange unit 20 and a second heat transfer member 34 connected to the heat exchange unit 40, and these first heat transfer members 34. The heat member 32 and the second heat transfer member 34 are provided in parallel to each other with a space inside the heat storage member 31.

蓄熱部材31は、パラフィン、キシリトール、エリスリトール等の熱を蓄えることができる材料で構成されており、蓄熱部材31は、第1の伝熱部材32を介して伝達される排気ガスGの熱を蓄熱して、暖められるようになっている。   The heat storage member 31 is made of a material capable of storing heat, such as paraffin, xylitol, erythritol, and the heat storage member 31 stores heat of the exhaust gas G transmitted through the first heat transfer member 32. And it can be warmed up.

第1の伝熱部材32は、銅やアルミニウムなどの熱伝導率が高い材料で形成された円柱形状の部材であり、長手方向の一端32a側は、熱交換部20の周壁20aを貫通して、熱交換部20の内部に位置している。
熱交換部20内において第1の伝熱部材32の一端32a側は、熱交換部20を通過する排気ガスGの流路を横切って設けられており、熱交換部20を通過する排気ガスGが第1の伝熱部材32に接触することで、第1の伝熱部材32が排気ガスGの熱で暖められるようになっている。
The first heat transfer member 32 is a cylindrical member formed of a material having high thermal conductivity such as copper or aluminum, and the one end 32a side in the longitudinal direction penetrates the peripheral wall 20a of the heat exchange unit 20. The heat exchanger 20 is located inside.
In the heat exchange part 20, the one end 32 a side of the first heat transfer member 32 is provided across the flow path of the exhaust gas G passing through the heat exchange part 20, and the exhaust gas G passing through the heat exchange part 20. Is in contact with the first heat transfer member 32, so that the first heat transfer member 32 is warmed by the heat of the exhaust gas G.

ここで、第1の伝熱部材32の他端32b側は、蓄熱部材31内に位置しており、排気ガスGの熱で第1の伝熱部材32が暖められると、蓄熱部材31もまた、暖められた第1の伝熱部材32を介して伝達される熱で暖められるようになっている。   Here, the other end 32b side of the first heat transfer member 32 is located in the heat storage member 31, and when the first heat transfer member 32 is warmed by the heat of the exhaust gas G, the heat storage member 31 also Heated by the heat transmitted through the heated first heat transfer member 32.

第2の伝熱部材34もまた、上記の第1の伝熱部材32と同様に、銅やアルミニウムなどの熱伝導率が高い材料で形成された円柱形状の部材であり、第2の伝熱部材34の長手方向の一端34a側は、熱交換部40の周壁42aを貫通して、熱交換部40の内部に位置している。   Similarly to the first heat transfer member 32, the second heat transfer member 34 is also a cylindrical member formed of a material having a high thermal conductivity such as copper or aluminum. The one end 34 a side in the longitudinal direction of the member 34 passes through the peripheral wall 42 a of the heat exchange unit 40 and is located inside the heat exchange unit 40.

第2の伝熱部材34の一端34a側は、熱交換部40内において、熱交換部40を通過する冷却水Wの流路を横切って設けられており、熱交換部40を通過する冷却水Wが第2の伝熱部材34に接触することで、熱交換部40を通過する冷却水Wと第2の伝熱部材34との間で熱交換が行われるようになっている。   One end 34 a side of the second heat transfer member 34 is provided across the flow path of the cooling water W that passes through the heat exchange unit 40 in the heat exchange unit 40, and the cooling water that passes through the heat exchange unit 40. When W contacts the second heat transfer member 34, heat exchange is performed between the cooling water W that passes through the heat exchange unit 40 and the second heat transfer member 34.

ここで、第2の伝熱部材34の長手方向の他端34b側(先端側)は、蓄熱部材31内に位置しており、この蓄熱部材31は、第1の伝熱部材32を介して伝達される排気ガスGの熱で暖められるようになっている。そのため、蓄熱部材31内に他端34b側(先端側)を位置させた第2の伝熱部材34は、第1の伝熱部材32から蓄熱部材31に伝達された排気ガスGの熱で暖められるようになっており、最終的に第2の伝熱部材34に伝達された排気ガスGの熱は、熱交換部40内を通過する冷却水Wとの熱交換に利用されて、冷却水Wが、伝達された排気ガスGの熱で暖められるようになっている。   Here, the other end 34 b side (tip side) in the longitudinal direction of the second heat transfer member 34 is located in the heat storage member 31, and the heat storage member 31 is interposed via the first heat transfer member 32. The exhaust gas G that is transmitted is heated by the heat. Therefore, the second heat transfer member 34 having the other end 34b side (front end side) positioned in the heat storage member 31 is warmed by the heat of the exhaust gas G transmitted from the first heat transfer member 32 to the heat storage member 31. The heat of the exhaust gas G that is finally transmitted to the second heat transfer member 34 is used for heat exchange with the cooling water W that passes through the heat exchanging unit 40, so that the cooling water W is heated by the heat of the exhaust gas G transmitted.

蓄熱部材31の内部において、第1の伝熱部材32と第2の伝熱部材34との間には、第1の伝熱部材32の外周に固定されたフィン38が位置している。
図4は、第1の伝熱部材32の外周に固定されたフィン38を説明する図であり、(a)は、基準位置に配置された第1の伝熱部材32および第2の伝熱部材34と、フィン38の配置を説明する図であり、(b)は、(a)における面Aで、フィン38周りを切断した断面図である。
Inside the heat storage member 31, a fin 38 fixed to the outer periphery of the first heat transfer member 32 is located between the first heat transfer member 32 and the second heat transfer member 34.
FIG. 4 is a view for explaining the fins 38 fixed to the outer periphery of the first heat transfer member 32. FIG. 4A shows the first heat transfer member 32 and the second heat transfer arranged at the reference position. It is a figure explaining arrangement | positioning of the member 34 and the fin 38, (b) is sectional drawing which cut | disconnected the fin 38 circumference | surroundings in the surface A in (a).

フィン38は、銅やアルミニウムなどの熱伝導率が高い材料で形成された板状の部材であり、基準位置に配置された第1の伝熱部材32と第2の伝熱部材34は、このフィン38を介して互いに接続されている。
そのため、基準位置に配置された第1の伝熱部材32と第2の伝熱部材34との間の伝熱が、フィン38を介して行えるようになっている。
The fin 38 is a plate-like member formed of a material having high thermal conductivity such as copper or aluminum, and the first heat transfer member 32 and the second heat transfer member 34 arranged at the reference position are The fins 38 are connected to each other.
Therefore, heat transfer between the first heat transfer member 32 and the second heat transfer member 34 disposed at the reference position can be performed via the fins 38.

フィン38は、第1の伝熱部材32の第2の伝熱部材34側の外周から、第2の伝熱部材34側に延びており、第1の伝熱部材32の長手方向に間隔を空けて複数設けられている。
第1の伝熱部材32に設けられた複数のフィン38は、互いに平行に配置されており、フィン38の各々は、その先端38aを、第2の伝熱部材34の径方向から、第2の伝熱部材34に接触させている。
フィン38の先端38aは、第2の伝熱部材34の外周に沿う弧状を成しており、フィン38と第2の伝熱部材34との接触面積が確保されるようになっている。
なお、フィン38の基端(他端38b)もまた、第1の伝熱部材32の外周に沿う弧状を成しており、フィン38と第1の伝熱部材32との接触面積が確保されるようになっている。
The fins 38 extend from the outer periphery of the first heat transfer member 32 on the second heat transfer member 34 side to the second heat transfer member 34 side, and are spaced apart in the longitudinal direction of the first heat transfer member 32. A plurality of them are provided.
The plurality of fins 38 provided in the first heat transfer member 32 are arranged in parallel to each other, and each of the fins 38 has a tip 38 a extending from the radial direction of the second heat transfer member 34 in the second direction. The heat transfer member 34 is contacted.
The tips 38a of the fins 38 have an arc shape along the outer periphery of the second heat transfer member 34, and a contact area between the fins 38 and the second heat transfer member 34 is ensured.
The base end (the other end 38b) of the fin 38 also has an arc shape along the outer periphery of the first heat transfer member 32, and a contact area between the fin 38 and the first heat transfer member 32 is ensured. It has become so.

実施の形態では、フィン38の幅方向における中央部の長さL1は、第1の伝熱部材32と第2の伝熱部材34とが基準位置に配置されて、互いに平行に配置されているときに、フィン38が第2の伝熱部材34に接触できる長さに設定されている。   In the embodiment, the length L1 of the central portion in the width direction of the fin 38 is arranged in parallel to each other with the first heat transfer member 32 and the second heat transfer member 34 arranged at the reference position. Sometimes, the fin 38 is set to a length that can contact the second heat transfer member 34.

図1に示すように、蓄熱部材31の内部において、第1の伝熱部材32の他端32b側と、第2の伝熱部材34の他端34b側は、互いに離れる方向(図中左右方向)に変位可能となっており、蓄熱部材31の内部には、第1の伝熱部材32と第2の伝熱部材34とを互いに離間させる方向に進退移動させるシリンダ装置36が設けられている。   As shown in FIG. 1, in the heat storage member 31, the other end 32 b side of the first heat transfer member 32 and the other end 34 b side of the second heat transfer member 34 are separated from each other (the horizontal direction in the figure). The cylinder device 36 is provided inside the heat storage member 31 to move the first heat transfer member 32 and the second heat transfer member 34 forward and backward in the direction of separating them from each other. .

シリンダ装置36は、第2の伝熱部材34に固定された有底円筒状のシリンダ部材36aと、ピストン部材36bとから構成されており、ピストン部材36bとシリンダ部材36aとが、ピストン部材36bの長手方向で相対移動することで、ピストン部材36bが固定された第1の伝熱部材32と、シリンダ部材36aが固定された第2の伝熱部材34とが、図3の(a)に示す基準位置から、互いに離れる方向に変位して、図3の(b)に示す作動位置まで移動するようになっている。   The cylinder device 36 includes a bottomed cylindrical cylinder member 36a fixed to the second heat transfer member 34, and a piston member 36b. The piston member 36b and the cylinder member 36a are connected to the piston member 36b. FIG. 3A shows a first heat transfer member 32 to which the piston member 36b is fixed and a second heat transfer member 34 to which the cylinder member 36a is fixed by relative movement in the longitudinal direction. It is displaced from the reference position in a direction away from each other, and moves to the operating position shown in FIG.

シリンダ部材36aは、円筒状の筒部36a1の長手方向の一端が、底部36a2で封止された有底円筒形状を成しており、筒部36a1の長手方向の他端には、当該筒部36a1の開口を塞ぐリング状の壁部36a3が一体に形成されている。
シリンダ部材36aは、壁部36a3を第1の伝熱部材32に向けた状態で、底部36a2が第2の伝熱部材34に固定されている。
The cylinder member 36a has a bottomed cylindrical shape in which one end in the longitudinal direction of the cylindrical tube portion 36a1 is sealed by the bottom portion 36a2, and the other end in the longitudinal direction of the tube portion 36a1 A ring-shaped wall portion 36a3 that closes the opening 36a1 is integrally formed.
The cylinder member 36 a has a bottom portion 36 a 2 fixed to the second heat transfer member 34 with the wall portion 36 a 3 facing the first heat transfer member 32.

ピストン部材36bは、長手方向の一端が第1の伝熱部材32に固定された軸部36b1と、この軸部36b1の他端に設けられた弁部36b2と、から構成されている。
このピストン部材36bの軸部36b1は、シリンダ部材36aの壁部36a3に設けた貫通孔36a4を貫通して設けられており、軸部36b1の他端に設けた円柱形状の弁部36b2を、シリンダ部材36aの筒部36a1内に配置させている。
The piston member 36b includes a shaft portion 36b1 whose one end in the longitudinal direction is fixed to the first heat transfer member 32, and a valve portion 36b2 provided at the other end of the shaft portion 36b1.
The shaft portion 36b1 of the piston member 36b is provided through a through hole 36a4 provided in the wall portion 36a3 of the cylinder member 36a, and the columnar valve portion 36b2 provided at the other end of the shaft portion 36b1 is replaced with a cylinder. It arrange | positions in the cylinder part 36a1 of the member 36a.

実施の形態では、弁部36b2の外径D2は、筒部36a1の内径よりも僅かに小さい径で形成されていると共に、壁部36a3に設けた貫通孔36a4の穴径D1よりも大きい径で形成されている(D2>D1)いる。このため、ピストン部材36bは、筒部36a1の内側を筒部36a1の長手方向(図1における左右方向)に摺動移動可能となっていると共に、ピストン部材36bの弁部36b2が、壁部36a3側に移動した際に筒部36a1から脱落しないようになっている。   In the embodiment, the outer diameter D2 of the valve portion 36b2 is formed with a diameter slightly smaller than the inner diameter of the cylindrical portion 36a1, and is larger than the hole diameter D1 of the through hole 36a4 provided in the wall portion 36a3. It is formed (D2> D1). For this reason, the piston member 36b is slidably movable in the longitudinal direction of the cylinder part 36a1 (left and right direction in FIG. 1) inside the cylinder part 36a1, and the valve part 36b2 of the piston member 36b is the wall part 36a3. When it moves to the side, it does not fall off from the cylinder part 36a1.

ピストン部材36bの弁部36b2とシリンダ部材36aの底部36a2との間には、筒部36a1と、底部36a2と、弁部36b2とで囲まれた密閉空間37aが形成されており、この密閉空間37a内には、温度により体積が変わる相変化媒体Bが充填されている。   A sealed space 37a surrounded by the cylindrical portion 36a1, the bottom portion 36a2, and the valve portion 36b2 is formed between the valve portion 36b2 of the piston member 36b and the bottom portion 36a2 of the cylinder member 36a, and this sealed space 37a. The inside is filled with a phase change medium B whose volume changes with temperature.

弁部36b2の外周には、周方向の全周に亘って溝36b3が形成されており、溝36b3には、樹脂製のシールリング36cが外嵌されて取り付けられている。そして、この弁部36b2に設けられたシールリング36cにより、弁部36b2を挟んで密閉空間37aと反対側に形成された開放空間37bに相変化媒体Bが漏出するのを阻止している。   A groove 36b3 is formed on the outer periphery of the valve portion 36b2 over the entire circumference in the circumferential direction, and a resin seal ring 36c is externally fitted to the groove 36b3. The seal ring 36c provided in the valve portion 36b2 prevents the phase change medium B from leaking into the open space 37b formed on the opposite side of the sealed space 37a with the valve portion 36b2 interposed therebetween.

相変化媒体Bは、パラフィン、キシリトール、エリスリトールなどのように、温度が低いときには固体状態であり、温度が高くなる融解して液体状態になる材料であって、固体状態である時のほうが、液体状態であるときよりも体積が小さい材料で構成されている。
実施の形態では、所定温度未満(例えば、100℃未満)になると凝固して収縮し、所定温度以上(例えば、100℃以上)になると融解して膨張する性質を有する材料を相変化媒体Bとして採用している。
The phase change medium B is a material that is in a solid state when the temperature is low, such as paraffin, xylitol, and erythritol, and that melts into a liquid state when the temperature is high, and is more liquid when it is in the solid state. It is made of a material whose volume is smaller than that in the state.
In the embodiment, the phase change medium B is a material having a property of solidifying and shrinking when the temperature is lower than a predetermined temperature (for example, lower than 100 ° C.), and melting and expanding when the temperature is higher than the predetermined temperature (for example, 100 ° C. or higher). Adopted.

実施の形態では、第1の伝熱部材32と第2の伝熱部材34とが互いに平行となる基準位置に配置されているときに、相変化媒体Bが凝固している状態のシリンダ装置36を、第1の伝熱部材32と第2の伝熱部材34とに跨がるように設けている。
そのため、この状態でシリンダ装置36が暖められて密閉空間37a内に封止された相変化媒体Bが融解すると、ピストン部材36bとシリンダ部材36aとが相対的に移動して、第1の伝熱部材32と第2の伝熱部材34とが、互いに離間する方向に変位するようになっている。
In the embodiment, the cylinder device 36 in a state where the phase change medium B is solidified when the first heat transfer member 32 and the second heat transfer member 34 are arranged at reference positions that are parallel to each other. Is provided so as to straddle the first heat transfer member 32 and the second heat transfer member 34.
Therefore, in this state, when the cylinder device 36 is warmed and the phase change medium B sealed in the sealed space 37a is melted, the piston member 36b and the cylinder member 36a move relatively, and the first heat transfer is performed. The member 32 and the second heat transfer member 34 are displaced in directions away from each other.

次に、かかる構成の熱交換装置30の作用を説明する。
図1および図3の(a)に示すように、エンジンENGの始動直後では、排気ガスGの熱により、蓄熱部材31やシリンダ装置36の相変化媒体Bが暖められていないので、第1の伝熱部材32と第2の伝熱部材34とは、互いに平行な基準位置に配置されている(図3の(a)参照)。
Next, the operation of the heat exchange device 30 having such a configuration will be described.
As shown in FIGS. 1 and 3A, immediately after the engine ENG is started, the heat storage member 31 and the phase change medium B of the cylinder device 36 are not warmed by the heat of the exhaust gas G. The heat transfer member 32 and the second heat transfer member 34 are arranged at reference positions parallel to each other (see FIG. 3A).

この状態において、第1の伝熱部材32に固定されているフィン38は、第2の伝熱部材34と接触しており、排気ガスGの熱が第1の伝熱部材32に伝達されると、暖められた第1の伝熱部材32の熱は、フィン38を介して第2の伝熱部材34に直接伝達されるようになっている。
そのため、排気ガスGの熱が第1の伝熱部材32から第2の伝熱部材34に速やかに伝達されるので、エンジンENG始動後のごく短時間の間に、第2の伝熱部材との間で熱交換を行う冷却水Wが暖められることになる。
In this state, the fin 38 fixed to the first heat transfer member 32 is in contact with the second heat transfer member 34, and the heat of the exhaust gas G is transmitted to the first heat transfer member 32. Then, the heated heat of the first heat transfer member 32 is directly transmitted to the second heat transfer member 34 through the fins 38.
Therefore, since the heat of the exhaust gas G is quickly transmitted from the first heat transfer member 32 to the second heat transfer member 34, the second heat transfer member and the second heat transfer member The cooling water W that performs heat exchange between the two is warmed.

ここで、第1の伝熱部材32および第2の伝熱部材34の他端32b、34bと、フィン38は、蓄熱部材31内に位置しているので、第1の伝熱部材32から第2の伝熱部材34へのフィン38を介した伝熱に平行して、蓄熱部材31が暖められると共に、第1の伝熱部材32に固定されたピストン部材36bを介して、シリンダ装置36の相変化媒体Bが暖められることになる(図3、矢印参照)。
そして、暖められた相変化媒体Bの温度が所定温度以上(例えば、100℃以上)になると、固体状態の相変化媒体Bは融解して液体状態になる(相変化する)。相変化媒体Bが融解して液体状態になると、相変化媒体Bの体積は膨張して体積はV2となり(図2の(b)参照)、液体状態の相変化媒体Bの体積V2は、固体状態の相変化媒体Bの体積V1よりも大きくなる(V2>V1)。
Here, the other ends 32 b and 34 b of the first heat transfer member 32 and the second heat transfer member 34 and the fins 38 are located in the heat storage member 31. In parallel with the heat transfer through the fins 38 to the second heat transfer member 34, the heat storage member 31 is warmed and the piston member 36 b fixed to the first heat transfer member 32 is used to Phase change medium B will be warmed (see arrow in FIG. 3).
When the temperature of the warmed phase change medium B becomes equal to or higher than a predetermined temperature (for example, 100 ° C. or higher), the solid phase change medium B melts and becomes a liquid state (phase change). When the phase change medium B melts and enters a liquid state, the volume of the phase change medium B expands to V2 (see FIG. 2B), and the volume V2 of the phase change medium B in the liquid state is solid. It becomes larger than the volume V1 of the phase change medium B in the state (V2> V1).

密閉空間37a内に充填された相変化媒体Bが融解して膨張すると、膨張した相変化媒体Bにより、シリンダ部材36aの内部に位置するピストン部材36bの弁部36b2が第1の伝熱部材32側(図2における左側)に押されるので、ピストン部材36bは、第1の伝熱部材32側に移動することになる。
これにより、熱交換部20の周壁20aで支持された第1の伝熱部材32が、第2の伝熱部材34から離間する方向(フィン38と第2の伝熱部材34とが非接触となる方向)に変位するので、第1の伝熱部材32と第2の伝熱部材34は、第1の伝熱部材32に固定されているフィン38が第2の伝熱部材34から離れた状態となる作動位置まで移動することになる(図3の(b)参照)。
When the phase change medium B filled in the sealed space 37a is melted and expanded, the expanded phase change medium B causes the valve portion 36b2 of the piston member 36b located inside the cylinder member 36a to move to the first heat transfer member 32. Since it is pushed to the side (left side in FIG. 2), the piston member 36b moves to the first heat transfer member 32 side.
Thereby, the direction in which the first heat transfer member 32 supported by the peripheral wall 20a of the heat exchange unit 20 is separated from the second heat transfer member 34 (the fin 38 and the second heat transfer member 34 are not in contact with each other). The first heat transfer member 32 and the second heat transfer member 34 are separated from the second heat transfer member 34 by the fins 38 fixed to the first heat transfer member 32. It will move to the operation position which will be in a state (refer FIG.3 (b)).

この状態において、排気ガスGにより暖められた第1の伝熱部材32の熱は、フィン38を介して第2の伝熱部材34に直接伝達されないので、第1の伝熱部材32の熱は、この第1の伝熱部材32を囲む蓄熱部材31を介して、第2の伝熱部材34に伝達されることになる。   In this state, the heat of the first heat transfer member 32 warmed by the exhaust gas G is not directly transferred to the second heat transfer member 34 through the fins 38, so the heat of the first heat transfer member 32 is Then, the heat is transmitted to the second heat transfer member 34 through the heat storage member 31 surrounding the first heat transfer member 32.

なお、実施の形態では、蓄熱部材31は、図示しない断熱材から成るケースに収容されており、蓄熱部材31は、周囲から断熱された状態で設けられている。そのため、蓄熱部材31に蓄えられた熱の外部への放出がおさえられるようになっている。   In the embodiment, the heat storage member 31 is housed in a case made of a heat insulating material (not shown), and the heat storage member 31 is provided in a state of being thermally insulated from the surroundings. Therefore, the release of the heat stored in the heat storage member 31 to the outside is suppressed.

そして、上記と同様に、熱交換部40を通流する冷却水Wは、この冷却水Wの流路を横切って設けられる第2の伝熱部材34と必ず接触するので、冷却水Wは、暖められた第2の伝熱部材34を介して暖められることになる。   Then, similarly to the above, the cooling water W flowing through the heat exchanging unit 40 always comes into contact with the second heat transfer member 34 provided across the flow path of the cooling water W. It is heated through the heated second heat transfer member 34.

ここで、排気ガスGの温度は、温度調節用の冷却水Wの沸点よりも高いことが多いので、蓄熱部材31が暖められた後も、第1の伝熱部材32と第2の伝熱部材34とを、フィン38を介して伝熱可能に接続していると、温度調節用の冷却水Wが沸騰してしまう虞がある。
よって、蓄熱部材31の温度が所定温度以上(例えば、100℃以上)になったのちは、第1の伝熱部材32と第2の伝熱部材34との間の伝熱を、蓄熱部材31を介して行うようにすることで、温度調節用の冷却水Wが加熱されすぎて、沸騰することを好適に防止できるようになっている。
Here, since the temperature of the exhaust gas G is often higher than the boiling point of the cooling water W for temperature adjustment, the first heat transfer member 32 and the second heat transfer member after the heat storage member 31 is warmed. If the member 34 is connected via the fins 38 so that heat can be transferred, the cooling water W for temperature adjustment may be boiled.
Therefore, after the temperature of the heat storage member 31 becomes equal to or higher than a predetermined temperature (for example, 100 ° C. or higher), the heat transfer between the first heat transfer member 32 and the second heat transfer member 34 is performed. It is possible to suitably prevent the cooling water W for temperature adjustment from being heated excessively and boiling.

以上の通り、実施の形態では、第1の流路(熱交換部20)を通流する第1の熱交換媒体(エンジンENGから排気される排気ガスG)と、第2の流路(熱交換部40)を通流する第2の熱交換媒体(冷却水W)との間の熱交換を、蓄熱部材31を介して行うように構成された熱交換装置30であって、熱交換部20に接続された第1の伝熱部材32と、熱交換部40に接続された第2の伝熱部材34とを、蓄熱部材31の内部で間隔を空けて配置すると共に、第1の伝熱部材32に設けた第3の伝熱部材(フィン38)を、第2の伝熱部材34に接触させて配置し、蓄熱部材31の温度が所定温度以上(例えば、100℃以上)になると、第1の伝熱部材32と第2の伝熱部材34とを互いに離間させる方向に移動させて、フィン38と第2の伝熱部材34とを非接触にする駆動手段(シリンダ装置36)を設けた構成とした。   As described above, in the embodiment, the first heat exchange medium (exhaust gas G exhausted from the engine ENG) that flows through the first flow path (heat exchange unit 20) and the second flow path (heat The heat exchanging unit 30 is configured to perform heat exchange with the second heat exchange medium (cooling water W) flowing through the exchange unit 40) via the heat storage member 31, and the heat exchange unit The first heat transfer member 32 connected to 20 and the second heat transfer member 34 connected to the heat exchanging unit 40 are arranged inside the heat storage member 31 with an interval therebetween, and the first heat transfer member 34 is also connected. When the third heat transfer member (fin 38) provided on the heat member 32 is disposed in contact with the second heat transfer member 34, and the temperature of the heat storage member 31 becomes a predetermined temperature or higher (for example, 100 ° C. or higher). The first heat transfer member 32 and the second heat transfer member 34 are moved away from each other, and the fin 38 and the first heat transfer member 34 are moved away from each other. Of the heat transfer member 34 has a configuration in which a driving means for the non-contact (cylinder device 36).

このように構成すると、蓄熱部材31の温度が所定温度未満(例えば、100℃未満)である間は、第1の伝熱部材32と第2の伝熱部材34とが、フィン38を介して直接接触しているので、熱交換部20を通流する排気ガスGと、熱交換部40を通流する冷却水Wとの間の熱交換は、互いに伝熱可能に接触している第1の伝熱部材32と第2の伝熱部材34とフィン38とを介して迅速に行われる。そして、蓄熱部材31の温度が所定温度以上(例えば、100℃以上)になると、フィン38と第2の伝熱部材34とが非接触になるので、排気管10を通流する排気ガスGと熱交換部40を通流する冷却水Wとの間の熱交換は、第1の伝熱部材32と第2の伝熱部材34との間に介在させた蓄熱部材31を介して行われる。
よって、エンジン始動直後のように、排気ガスGの熱で蓄熱部材31が十分に暖められていない場合でも、排気ガスGと冷却水Wとの熱交換を迅速に行うことができる。
If comprised in this way, while the temperature of the thermal storage member 31 is less than predetermined temperature (for example, less than 100 degreeC), the 1st heat-transfer member 32 and the 2nd heat-transfer member 34 will be via the fin 38. Since they are in direct contact, the heat exchange between the exhaust gas G flowing through the heat exchanging unit 20 and the cooling water W flowing through the heat exchanging unit 40 is in contact with each other so that heat can be transferred. The heat transfer member 32, the second heat transfer member 34, and the fins 38 are quickly performed. When the temperature of the heat storage member 31 becomes equal to or higher than a predetermined temperature (for example, 100 ° C. or higher), the fin 38 and the second heat transfer member 34 are not in contact with each other, and therefore the exhaust gas G flowing through the exhaust pipe 10 Heat exchange with the cooling water W flowing through the heat exchange unit 40 is performed via the heat storage member 31 interposed between the first heat transfer member 32 and the second heat transfer member 34.
Therefore, even when the heat storage member 31 is not sufficiently warmed by the heat of the exhaust gas G just after the engine is started, heat exchange between the exhaust gas G and the cooling water W can be performed quickly.

また、第1の伝熱部材32と第2の伝熱部材34のうちの少なくとも一方は、第1の伝熱部材32と第2の伝熱部材34とを互いに離間させる方向に変位可能となっており、シリンダ装置36は、第2の伝熱部材34に設けられていると共に、第1の伝熱部材32側に壁部36a3を向けた有底筒状のシリンダ部材36aと、第1の伝熱部材32に設けられていると共に、シリンダ部材36aに内嵌させた弁部36b2が、第1の伝熱部材32と第2の伝熱部材34とを互いに離間させる方向で進退移動可能とされたピストン部材36bと、シリンダ部材36a内で、当該シリンダ部材36aの底部36a2と弁部36b2との間に充填されると共に、温度により体積変化する相変化媒体Bと、を有するシリンダ装置36であり、相変化媒体Bは、温度が低くなると(例えば、100℃未満になると)凝固して収縮する(体積が小さくなる)と共に、温度が高くなると(例えば、100℃以上になると)融解して膨張する(体積が大きくなる)材料から構成されるものとした。   Further, at least one of the first heat transfer member 32 and the second heat transfer member 34 can be displaced in a direction in which the first heat transfer member 32 and the second heat transfer member 34 are separated from each other. The cylinder device 36 is provided on the second heat transfer member 34, and has a bottomed cylindrical cylinder member 36a with the wall portion 36a3 facing the first heat transfer member 32 side, While being provided in the heat transfer member 32, the valve part 36b2 fitted in the cylinder member 36a can be moved forward and backward in a direction in which the first heat transfer member 32 and the second heat transfer member 34 are separated from each other. And a phase change medium B that is filled between the bottom portion 36a2 of the cylinder member 36a and the valve portion 36b2 in the cylinder member 36a and whose volume changes with temperature. Yes, phase change media When the temperature is low (for example, below 100 ° C.), it solidifies and shrinks (the volume decreases), and when the temperature increases (for example, above 100 ° C.), it melts and expands (the volume increases). To be composed of materials.

このように構成すると、相変化媒体Bの温度が所定温度以上(例えば、100℃以上)になると、相変化媒体Bが融解して膨張するので、相変化媒体Bが充填されるシリンダ部材36aの底部36a2と、ピストン部材36bの弁部36b2とが離間するように移動する。
そうすると、第1の伝熱部材32と第2の伝熱部材34とが互いに離間する方向に変位し、フィン38と第2の伝熱部材34とが非接触になるので、第1の伝熱部材32と第2の伝熱部材34との間の熱交換は、第1の伝熱部材32と第2の伝熱部材34との間に介在させた蓄熱部材31を介して行われる。
そして、相変化媒体Bの温度が所定温度未満(例えば、100℃未満)になると、相変化媒体Bが凝固して収縮するので、相変化媒体Bが充填されるシリンダ部材36aの底部36a2と、ピストン部材36bの弁部36b2の少なくとも一方は、他方に近づく方向に移動して基準位置に戻る。
そうすると、第1の伝熱部材32と第2の伝熱部材34とが、フィン38を介して直接接触し、第1の伝熱部材32と第2の伝熱部材34との間の熱交換が迅速に行われる。
よって、蓄熱部材31が十分に暖められていない場合でも、熱交換を迅速に行うことができる。
With this configuration, when the temperature of the phase change medium B becomes equal to or higher than a predetermined temperature (for example, 100 ° C. or higher), the phase change medium B melts and expands, so that the cylinder member 36a filled with the phase change medium B The bottom portion 36a2 and the valve portion 36b2 of the piston member 36b move so as to be separated from each other.
Then, the first heat transfer member 32 and the second heat transfer member 34 are displaced in directions away from each other, and the fins 38 and the second heat transfer member 34 are not in contact with each other. Heat exchange between the member 32 and the second heat transfer member 34 is performed via a heat storage member 31 interposed between the first heat transfer member 32 and the second heat transfer member 34.
When the temperature of the phase change medium B becomes less than a predetermined temperature (for example, less than 100 ° C.), the phase change medium B solidifies and contracts, so that the bottom portion 36a2 of the cylinder member 36a filled with the phase change medium B; At least one of the valve portions 36b2 of the piston member 36b moves in a direction approaching the other and returns to the reference position.
Then, the first heat transfer member 32 and the second heat transfer member 34 are in direct contact with each other via the fins 38, and heat exchange between the first heat transfer member 32 and the second heat transfer member 34 is performed. Is done quickly.
Therefore, even when the heat storage member 31 is not sufficiently warmed, heat exchange can be performed quickly.

また、第1の熱交換媒体は、内燃機関(エンジンENG)の排気ガスGであり、第2の熱交換媒体は、エンジンENGの温度調節用の冷却水Wである構成とした。   The first heat exchange medium is exhaust gas G of the internal combustion engine (engine ENG), and the second heat exchange medium is cooling water W for adjusting the temperature of the engine ENG.

このように構成すると、エンジンENGの始動直後のように、蓄熱部材31の温度が低い場合には、排気ガスGと温度調節用の冷却水Wとの間の熱交換は、互いに伝熱可能に接触している第1の伝熱部材32と第2の伝熱部材34とフィン38を介して迅速に行われるので、蓄熱部材31が十分に暖められていない場合でも、熱交換を迅速に行うことができる。
なお、第1の熱交換媒体を、内燃機関(エンジンENG)の温度調節用の液体(冷却水W)とし、第2の熱交換媒体をエンジンENGの排気ガスGとしても良い。
With this configuration, when the temperature of the heat storage member 31 is low, such as immediately after the start of the engine ENG, heat exchange between the exhaust gas G and the cooling water W for temperature adjustment can be mutually conducted. Since the heat transfer is performed quickly via the first heat transfer member 32, the second heat transfer member 34, and the fins 38 that are in contact with each other, heat exchange is performed quickly even when the heat storage member 31 is not sufficiently warmed. be able to.
The first heat exchange medium may be a liquid for adjusting the temperature of the internal combustion engine (engine ENG) (cooling water W), and the second heat exchange medium may be the exhaust gas G of the engine ENG.

そして、蓄熱部材31の温度が所定温度以上(例えば、100℃以上)になると、フィン38と第2の伝熱部材34とが非接触になるので、熱交換部20を通流する排気ガスGと熱交換部40を通流する温度調節用の冷却水Wとの間の熱交換は、第1の伝熱部材32と第2の伝熱部材34との間に介在させた蓄熱部材31を介して行われる。
排気ガスGの温度は、温度調節用の冷却水Wの沸点よりも高いことが多いので、蓄熱部材31が暖められた後も、第1の伝熱部材32と第2の伝熱部材34とを、フィン38を介して伝熱可能に接続していると、温度調節用の冷却水Wが沸騰してしまう虞がある。
上記のように構成して、蓄熱部材31の温度が所定温度以上(例えば、100℃以上)になったのちは、第1の伝熱部材32と第2の伝熱部材34との間の伝熱を、蓄熱部材31を介して行うようにすることで、温度調節用の冷却水Wが加熱されすぎて、沸騰することを好適に防止できる。
And if the temperature of the heat storage member 31 becomes more than predetermined temperature (for example, 100 degreeC or more), since the fin 38 and the 2nd heat-transfer member 34 will be in non-contact, the exhaust gas G which flows through the heat exchange part 20 Heat exchange between the first heat transfer member 32 and the second heat transfer member 34 is performed between the first heat transfer member 32 and the second heat transfer member 34. Done through.
Since the temperature of the exhaust gas G is often higher than the boiling point of the cooling water W for temperature adjustment, the first heat transfer member 32 and the second heat transfer member 34 can be obtained even after the heat storage member 31 is warmed. Are connected through the fins 38 so that heat can be transferred, the cooling water W for temperature adjustment may be boiled.
After the above configuration and the temperature of the heat storage member 31 reaches a predetermined temperature or higher (for example, 100 ° C. or higher), the heat transfer between the first heat transfer member 32 and the second heat transfer member 34 is performed. By performing the heat via the heat storage member 31, it is possible to suitably prevent the temperature-adjusting cooling water W from being heated excessively and boiling.

次に、第2の実施形態にかかる熱交換装置30Aについて説明する。
図5は、第2の実施形態にかかる熱交換装置30Aを説明する図である。
Next, a heat exchange device 30A according to the second embodiment will be described.
FIG. 5 is a diagram illustrating a heat exchange device 30A according to the second embodiment.

第2の実施形態にかかる熱交換装置30Aは、第1の伝熱部材32に固定されたフィン38A1と、第2の伝熱部材34に固定されたフィン38A2とを、第1の伝熱部材32と第2の伝熱部材34との間で互いに接触するように配置したという点において、前記した第1の実施形態の第1の伝熱部材32にのみフィン38を設けた構成と相違する。   The heat exchange device 30A according to the second embodiment includes a fin 38A1 fixed to the first heat transfer member 32 and a fin 38A2 fixed to the second heat transfer member 34. 32 and the second heat transfer member 34 are different from the configuration in which the fins 38 are provided only in the first heat transfer member 32 of the first embodiment described above in that they are arranged so as to be in contact with each other. .

熱交換装置30Aでは、第1の伝熱部材32と第2の伝熱部材34の外周に、それぞれフィン38A1、38A2が固定されており、フィン38A1とフィン38A2は、第1の伝熱部材32と第2の伝熱部材34の長手方向で、所定間隔で複数設けられている。
第1の伝熱部材32のフィン38A1は、第1の伝熱部材32の外周から第2の伝熱部材34側に延びていると共に、第2の伝熱部材34のフィン38A2は、第2の伝熱部材34の外周から第1の伝熱部材32側に延びており、これらフィン38A1、38A2の長さは、基準位置に配置された第1の伝熱部材32と第2の伝熱部材34との距離L1の1/2以上となるように設定されている。
In the heat exchange device 30A, the fins 38A1 and 38A2 are fixed to the outer circumferences of the first heat transfer member 32 and the second heat transfer member 34, respectively, and the fins 38A1 and 38A2 are connected to the first heat transfer member 32. And a plurality of heat transfer members 34 are provided at predetermined intervals in the longitudinal direction of the second heat transfer member 34.
The fins 38A1 of the first heat transfer member 32 extend from the outer periphery of the first heat transfer member 32 to the second heat transfer member 34 side, and the fins 38A2 of the second heat transfer member 34 are second The lengths of the fins 38A1 and 38A2 extend from the outer periphery of the heat transfer member 34 to the first heat transfer member 32 side, and the lengths of the fins 38A1 and 38A2 are the same as those of the first heat transfer member 32 and the second heat transfer member. It is set to be ½ or more of the distance L1 with the member 34.

実施形態では、第1の伝熱部材32のフィン38A1と、第2の伝熱部材34のフィン38A2は、第1の伝熱部材32と第2の伝熱部材34とが基準位置に配置された際に、接触するようになっている。   In the embodiment, for the fins 38A1 of the first heat transfer member 32 and the fins 38A2 of the second heat transfer member 34, the first heat transfer member 32 and the second heat transfer member 34 are arranged at the reference position. When touched, they come into contact.

この状態において、排気ガスGの熱が第1の伝熱部材32に伝達されると、暖められた第1の伝熱部材32の熱は、互いに接触したフィン38A1、38A2を介して第2の伝熱部材34に直接伝達されるようになっている。
そのため、排気ガスGの熱が第1の伝熱部材32から第2の伝熱部材34に速やかに伝達されるので、エンジンENG始動後のごく短時間の間に、第2の伝熱部材34との間で熱交換を行う冷却水Wが暖められることになる。
In this state, when the heat of the exhaust gas G is transmitted to the first heat transfer member 32, the heated heat of the first heat transfer member 32 is supplied to the second heat via the fins 38A1 and 38A2 that are in contact with each other. It is transmitted directly to the heat transfer member 34.
For this reason, the heat of the exhaust gas G is quickly transmitted from the first heat transfer member 32 to the second heat transfer member 34, and therefore the second heat transfer member 34 is very short after the engine ENG is started. The cooling water W that exchanges heat with the water is warmed.

そして、エンジンENGの排気ガスGの熱で蓄熱部材31および相変化媒体Bが暖まると、暖められた相変化媒体Bの温度が所定温度以上(例えば、100℃以上)になった時点で、固体状態の相変化媒体Bは融解して液体状態になる。   When the heat storage member 31 and the phase change medium B are warmed by the heat of the exhaust gas G of the engine ENG, when the temperature of the warmed phase change medium B becomes equal to or higher than a predetermined temperature (for example, 100 ° C. or higher), the solid The phase change medium B in the state melts to become a liquid state.

そうすると、融解により膨張した相変化媒体Bにより、シリンダ部材36aの内部に位置するピストン部材36bの弁部36b2が第1の伝熱部材32側(図2における左側)に押されるので、ピストン部材36bは、第2の伝熱部材34から離れる方向に移動することになる。
これにより、第1の伝熱部材32と第2の伝熱部材34とが、互いに離間する方向に移動して、第1の伝熱部材32と第2の伝熱部材34とが、図5の(b)に示す作動位置まで移動すると、第1の伝熱部材32のフィン38A1と、第2の伝熱部材34のフィン38A2とが非接触状態になる。
Then, the valve portion 36b2 of the piston member 36b located inside the cylinder member 36a is pushed to the first heat transfer member 32 side (left side in FIG. 2) by the phase change medium B expanded by melting, so that the piston member 36b Moves in a direction away from the second heat transfer member 34.
Thereby, the 1st heat transfer member 32 and the 2nd heat transfer member 34 move in the direction which mutually separates, and the 1st heat transfer member 32 and the 2nd heat transfer member 34 are FIG. If it moves to the operation position shown in (b), fin 38A1 of the 1st heat transfer member 32 and fin 38A2 of the 2nd heat transfer member 34 will be in a non-contact state.

この状態において、排気ガスGにより暖められた第1の伝熱部材32の熱は、フィン38A1、38A2を介して第2の伝熱部材34に直接伝達されないので、第1の伝熱部材32の熱は、この第1の伝熱部材32を囲む蓄熱部材31を介して、第2の伝熱部材34に伝達されることになる。   In this state, the heat of the first heat transfer member 32 warmed by the exhaust gas G is not directly transmitted to the second heat transfer member 34 through the fins 38A1 and 38A2, and therefore the first heat transfer member 32 The heat is transmitted to the second heat transfer member 34 through the heat storage member 31 surrounding the first heat transfer member 32.

これにより、熱交換部40において、第2の伝熱部材34の熱は、暖められた第2の伝熱部材34を介して冷却水Wに伝達されることになる。   Thereby, in the heat exchange part 40, the heat of the 2nd heat-transfer member 34 is transmitted to the cooling water W through the warmed 2nd heat-transfer member 34.

よって、排気ガスGの熱で暖まった第1の伝熱部材32の熱が、エンジンENG始動後も長時間継続してフィン38A1、フィン38A2を介して第2の伝熱部材34に直接伝達されることはないので、排気ガスGの熱が冷却水Wに直接伝達されることにより、冷却水Wが沸騰するのを防止できる。   Therefore, the heat of the first heat transfer member 32 warmed by the heat of the exhaust gas G is directly transmitted to the second heat transfer member 34 through the fins 38A1 and 38A2 continuously for a long time after the engine ENG is started. Since the heat of the exhaust gas G is directly transmitted to the cooling water W, it is possible to prevent the cooling water W from boiling.

以上の通り、第2の実施形態では、排気管10を通流する排気ガスGと、熱交換部40を通流する冷却水Wとの間の熱交換を、蓄熱部材31を介して行うように構成された熱交換装置30であって、熱交換部20に接続された第1の伝熱部材32と、熱交換部40に接続された第2の伝熱部材34とを、蓄熱部材31の内部で間隔を空けて配置すると共に、第1の伝熱部材32に設けた第4の伝熱部材(フィン38A1)と、第2の伝熱部材34に設けた第5の伝熱部材(フィン38A2)とを、第1の伝熱部材32と第2の伝熱部材34との間で互いに接触させて配置し、蓄熱部材31の温度が所定温度以上になると、第1の伝熱部材32と第2の伝熱部材34とを互いに離間させる方向に移動させて、フィン38A1とフィン38A2を非接触にするシリンダ装置36とした。   As described above, in the second embodiment, heat exchange between the exhaust gas G flowing through the exhaust pipe 10 and the cooling water W flowing through the heat exchange unit 40 is performed via the heat storage member 31. The heat storage device 31 includes a first heat transfer member 32 connected to the heat exchange unit 20 and a second heat transfer member 34 connected to the heat exchange unit 40. And a fourth heat transfer member (fin 38A1) provided in the first heat transfer member 32 and a fifth heat transfer member (in the second heat transfer member 34) The fins 38A2) are disposed in contact with each other between the first heat transfer member 32 and the second heat transfer member 34, and when the temperature of the heat storage member 31 becomes equal to or higher than a predetermined temperature, the first heat transfer member 32 and the second heat transfer member 34 are moved away from each other, and the fins 38A1 and 38A2 are moved. And a cylinder device 36 for the contact.

このように構成すると、蓄熱部材31の温度が所定温度未満(例えば、100℃未満)である間は、第1の伝熱部材32と第2の伝熱部材34とが、フィン38A1とフィン38A2を介して直接接触しているので、熱交換部20を通流する排気ガスGと、熱交換部40を通流する冷却水Wとの間の熱交換は、互いに伝熱可能に接触している第1の伝熱部材32と第2の伝熱部材34とフィン38A1とフィン38A2とを介して迅速に行われる。そして、蓄熱部材31の温度が所定温度以上(例えば、100℃以上)になると、フィン38A1とフィン38A2とが非接触になるので、熱交換部20を通流する排気ガスGと熱交換部40を通流する冷却水Wとの間の熱交換は、第1の伝熱部材32と第2の伝熱部材34との間に介在させた蓄熱部材31を介して行われる。
よって、エンジンENG始動直後のように、排気ガスGの熱で蓄熱部材31が十分に暖められていない場合でも、排気ガスGと冷却水Wとの熱交換を迅速に行うことができる。
If comprised in this way, while the temperature of the thermal storage member 31 is less than predetermined temperature (for example, less than 100 degreeC), the 1st heat-transfer member 32 and the 2nd heat-transfer member 34 will be the fin 38A1 and fin 38A2. Therefore, the heat exchange between the exhaust gas G flowing through the heat exchanging unit 20 and the cooling water W flowing through the heat exchanging unit 40 is in contact with each other so that heat can be transferred. The first heat transfer member 32, the second heat transfer member 34, the fins 38A1, and the fins 38A2 are quickly performed. When the temperature of the heat storage member 31 becomes equal to or higher than a predetermined temperature (for example, 100 ° C. or higher), the fins 38A1 and the fins 38A2 are not in contact with each other. Heat exchange with the cooling water W flowing therethrough is performed via a heat storage member 31 interposed between the first heat transfer member 32 and the second heat transfer member 34.
Therefore, even when the heat storage member 31 is not sufficiently warmed by the heat of the exhaust gas G, just after the engine ENG is started, heat exchange between the exhaust gas G and the cooling water W can be performed quickly.

前記した第1および第2の実施形態では、本願発明を、エンジンの排気ガスと、エンジンの冷却水との間で熱交換を行う排気熱回収システムに適用した場合を例示したが、例えば、エンジンの排気ガスと、車両用空調装置が供給する空調空気(温度が調節された空気)との間で熱交換を行う排気熱回収システムに適用しても良い。   In the first and second embodiments described above, the present invention is applied to an exhaust heat recovery system that performs heat exchange between the exhaust gas of the engine and the cooling water of the engine. The exhaust gas may be applied to an exhaust heat recovery system that exchanges heat between the exhaust gas and the conditioned air supplied by the vehicle air conditioner (temperature-adjusted air).

このように構成すると、エンジンENGの始動直後のように、蓄熱部材31の温度が低い場合には、排気ガスGと空調装置の流路を通流する空調空気との間の熱交換は、互いに伝熱可能に接触している第1の伝熱部材32と第2の伝熱部材34とフィン38を介して迅速に行われるので、蓄熱部材31が十分に暖められていない場合でも、熱交換を迅速に行うことができる。   With this configuration, when the temperature of the heat storage member 31 is low, such as immediately after the start of the engine ENG, heat exchange between the exhaust gas G and the conditioned air flowing through the flow path of the air conditioner is mutually performed. Since the heat transfer is performed quickly via the first heat transfer member 32, the second heat transfer member 34, and the fin 38 that are in contact with each other, heat exchange can be performed even when the heat storage member 31 is not sufficiently warmed. Can be done quickly.

上記の実施形態では、第1の伝熱部材32および第2の伝熱部材34は、中実の円柱形状部材としたが、伝熱可能な形状であればこれに限定されるものではない。
例えば、伝熱部材の角柱形状としてもよく、このようにした場合には、フィン38の他端38bを弧状ではなく平面に形成する。
このようにすると、第1の伝熱部材32と第2の伝熱部材34とが基準位置にあるときに、平面に形成したフィン38の他端38bと伝熱部材とが面で接触するので、接触面積を広くすることができる。よって、フィン38を介して、第1の伝熱部材32の熱を第2の伝熱部材34に効率よく伝達することができる。
In the above embodiment, the first heat transfer member 32 and the second heat transfer member 34 are solid columnar members, but the present invention is not limited to this as long as it has a heat transferable shape.
For example, the heat transfer member may have a prismatic shape, and in this case, the other end 38b of the fin 38 is formed in a flat surface instead of an arc shape.
In this case, when the first heat transfer member 32 and the second heat transfer member 34 are at the reference position, the other end 38b of the fin 38 formed on the plane and the heat transfer member are in contact with each other on the surface. The contact area can be widened. Therefore, the heat of the first heat transfer member 32 can be efficiently transferred to the second heat transfer member 34 via the fins 38.

また、第1の伝熱部材32および第2の伝熱部材34は、中空部材としてもよい。このようにした場合には、中空部に熱伝導率の高い媒体を充填することが好ましい。
第1の伝熱部材32および第2の伝熱部材34を中空部材とした場合、エンジンENGから排出された排気ガスGの熱は、各伝熱部材の肉部および熱伝導率の高い媒体を介して効率よく伝達されるので、第1の伝熱部材32と第2の伝熱部材34との間の熱交換を確実に行うことができる。
The first heat transfer member 32 and the second heat transfer member 34 may be hollow members. In such a case, it is preferable to fill the hollow portion with a medium having high thermal conductivity.
When the first heat transfer member 32 and the second heat transfer member 34 are hollow members, the heat of the exhaust gas G exhausted from the engine ENG is obtained from the meat portion of each heat transfer member and the medium having high thermal conductivity. Therefore, heat exchange between the first heat transfer member 32 and the second heat transfer member 34 can be reliably performed.

また、上記の実施形態では、第1の伝熱部材32を第1の伝熱部材32を第2の伝熱部材34に対して変位させる構成としたが、第1の伝熱部材32と第2の伝熱部材34の両方を変位させるようにしてもよい。
このようにすると、第1の伝熱部材32と第2の伝熱部材34とを離間させるための、シリンダ部材36aとピストン部材36bの移動量が少なくてすみ、第1の伝熱部材32と第2の伝熱部材34における、基準位置と作動位置の切替えを迅速に行える。
また、第2の伝熱部材34を片持ち梁状態として、第2の伝熱部材34を第1の伝熱部材32に対して変位させるようにしてもよい。このようにしても同様の作用効果を奏し得る。
In the above-described embodiment, the first heat transfer member 32 is configured to displace the first heat transfer member 32 with respect to the second heat transfer member 34. Both of the two heat transfer members 34 may be displaced.
In this way, the amount of movement of the cylinder member 36a and the piston member 36b for separating the first heat transfer member 32 and the second heat transfer member 34 can be reduced, and the first heat transfer member 32 and The second heat transfer member 34 can be quickly switched between the reference position and the operating position.
Further, the second heat transfer member 34 may be in a cantilever state, and the second heat transfer member 34 may be displaced with respect to the first heat transfer member 32. Even if it does in this way, there can exist the same effect.

また、上記の実施形態では、フィン38は厚みを有する板形状部材としたが、伝熱可能な形状であればこれに限定されるものではない。
例えば、フィン38を柱形状にしてもよく、このようにしても同様の作用効果を奏し得る。
In the above embodiment, the fin 38 is a plate-shaped member having a thickness. However, the fin 38 is not limited to this as long as it has a shape capable of transferring heat.
For example, the fins 38 may be formed in a column shape, and similar effects can be obtained even in this way.

また、上記の実施形態では、第1の伝熱部材32の他端32b側から、シリンダ装置36と、複数のフィン38とを、この順番で配置する構成としたが、シリンダ装置36は、第1の伝熱部材32と第2の伝熱部材34の長手方向の何れの位置に配置してもよい。
例えば、第1の伝熱部材32に対して、第2の伝熱部材34を変位させる場合には、フィン38よりも第2の伝熱部材34の一端34a側に近い位置に配置することが好ましい。
In the above embodiment, the cylinder device 36 and the plurality of fins 38 are arranged in this order from the other end 32b side of the first heat transfer member 32. The heat transfer member 32 may be disposed at any position in the longitudinal direction of the first heat transfer member 32 and the second heat transfer member 34.
For example, when the second heat transfer member 34 is displaced with respect to the first heat transfer member 32, the second heat transfer member 34 may be disposed closer to the one end 34 a side of the second heat transfer member 34 than the fins 38. preferable.

また、上記の実施形態では、エンジンENGから排出された排気ガスGとの熱交換を行う媒体を、エンジンENGの温度を調節する冷却水Wまたは空調装置の流路を流れる空調空気としたが、これに限定されるものではなく、例えば、熱交換を行う媒体を、吸着材を用いて空気の湿度調節を行う調湿装置に用いられる吸着材としてもよい。
このようにしても、エンジンENGの始動直後のように蓄熱部材の温度が低い状態でも、エンジンENGの排気ガスGと吸着材との間の熱交換を迅速に行うことができる。
In the above embodiment, the medium that performs heat exchange with the exhaust gas G discharged from the engine ENG is the cooling water W that adjusts the temperature of the engine ENG or the conditioned air that flows through the flow path of the air conditioner. However, the present invention is not limited to this, and for example, a medium that performs heat exchange may be an adsorbent used in a humidity control apparatus that adjusts air humidity using an adsorbent.
Even in this case, heat exchange between the exhaust gas G of the engine ENG and the adsorbent can be quickly performed even in a state where the temperature of the heat storage member is low just after the start of the engine ENG.

本発明は上記した実施形態に限定されるものではなく、その技術的思想の範囲内でなしうるさまざまな変更、改良が含まれる。   The present invention is not limited to the above-described embodiments, and includes various changes and improvements that can be made within the scope of the technical idea.

1 排気熱回収システム
10 排気管
20 熱交換部
30 熱交換装置
31 蓄熱部材
32 第1の伝熱部材
34 第2の伝熱部材
36 シリンダ装置
36a シリンダ部材
36a1 筒部
36a2 底部
36a3 壁部
36a4 貫通孔
36b ピストン部材
36b1 軸部
36b2 弁部
36c シールリング
37a 密閉空間
37b 解放空間
38 フィン
40 熱交換部
41 配管
ENG エンジン
B 相変化媒体
G 排気ガス
P ポンプ
W 冷却水
DESCRIPTION OF SYMBOLS 1 Exhaust heat recovery system 10 Exhaust pipe 20 Heat exchange part 30 Heat exchange apparatus 31 Heat storage member 32 1st heat transfer member 34 2nd heat transfer member 36 Cylinder apparatus 36a Cylinder member 36a1 Cylindrical part 36a2 Bottom part 36a3 Wall part 36a4 Through-hole 36b Piston member 36b1 Shaft part 36b2 Valve part 36c Seal ring 37a Sealed space 37b Release space 38 Fin 40 Heat exchange part 41 Piping ENG Engine B Phase change medium G Exhaust gas P Pump W Cooling water

Claims (5)

第1の流路を通流する第1の熱交換媒体と、第2の流路を通流する第2の熱交換媒体との間の熱交換を、蓄熱部材を介して行うように構成された熱交換装置であって、
前記第1の流路に接続された第1の伝熱部材と、前記第2の流路に接続された第2の伝熱部材とを、前記蓄熱部材の内部で間隔を空けて配置すると共に、前記第1の伝熱部材に設けた第3の伝熱部材を、前記第2の伝熱部材に接触させて配置し、
前記蓄熱部材の温度が所定温度以上になると、前記第1の伝熱部材と前記第2の伝熱部材とを互いに離間させる方向に移動させて、前記第3の伝熱部材と前記第2の伝熱部材とを非接触にする駆動手段を設けたことを特徴とする熱交換装置。
The heat exchange between the first heat exchange medium flowing through the first flow path and the second heat exchange medium flowing through the second flow path is performed via the heat storage member. A heat exchange device,
While arrange | positioning the 1st heat-transfer member connected to the said 1st flow path, and the 2nd heat-transfer member connected to the said 2nd flow path at intervals inside the said thermal storage member, A third heat transfer member provided on the first heat transfer member is placed in contact with the second heat transfer member;
When the temperature of the heat storage member is equal to or higher than a predetermined temperature, the first heat transfer member and the second heat transfer member are moved away from each other, and the third heat transfer member and the second heat transfer member are moved. A heat exchanging device, characterized in that a drive means for making contact with the heat transfer member is provided.
第1の流路を通流する第1の熱交換媒体と、第2の流路を通流する第2の熱交換媒体との間の熱交換を、蓄熱部材を介して行うように構成された熱交換装置であって、
前記第1の流路に接続された第1の伝熱部材と、前記第2の流路に接続された第2の伝熱部材とを、前記蓄熱部材の内部で間隔を空けて配置すると共に、前記第1の伝熱部材に設けた第4の伝熱部材と、前記第2の伝熱部材に設けた第5の伝熱部材とを、前記第1の伝熱部材と前記第2の伝熱部材との間で互いに接触させて配置し、
前記蓄熱部材の温度が所定温度以上になると、前記第1の伝熱部材と前記第2の伝熱部材とを互いに離間させる方向に移動させて、前記第4の伝熱部材と前記第5の伝熱部材を非接触にする駆動手段を設けたことを特徴とする熱交換装置。
The heat exchange between the first heat exchange medium flowing through the first flow path and the second heat exchange medium flowing through the second flow path is performed via the heat storage member. A heat exchange device,
While arrange | positioning the 1st heat-transfer member connected to the said 1st flow path, and the 2nd heat-transfer member connected to the said 2nd flow path at intervals inside the said thermal storage member, The fourth heat transfer member provided on the first heat transfer member and the fifth heat transfer member provided on the second heat transfer member are combined with the first heat transfer member and the second heat transfer member. Arranged in contact with each other between the heat transfer members,
When the temperature of the heat storage member is equal to or higher than a predetermined temperature, the first heat transfer member and the second heat transfer member are moved away from each other, and the fourth heat transfer member and the fifth heat transfer member are moved. A heat exchanging device, characterized in that a drive means for making the heat transfer member non-contact is provided.
前記第1の伝熱部材と前記第2の伝熱部材のうちの少なくとも一方は、前記第1の伝熱部材と前記第2の伝熱部材とを互いに離間させる方向に変位可能となっており、
前記駆動手段は、
前記第1の伝熱部材に設けられていると共に、前記第2の伝熱部材側に開口部を向けた有底筒状のシリンダ部材と、
前記第2の伝熱部材に設けられていると共に、前記シリンダ部材に内嵌させた弁部が、前記第1の伝熱部材と前記第2の伝熱部材とを互いに離間させる方向で進退移動可能とされたピストン部材と、
前記シリンダ部材内で、当該シリンダ部材の底部と前記弁部との間に充填され、温度により体積変化する媒体と、を有するシリンダ装置であり、
前記媒体は、温度が低くなると体積が小さくなると共に、温度が高くなると体積が大きくなることを特徴とする請求項1または請求項2に記載の熱交換装置。
At least one of the first heat transfer member and the second heat transfer member can be displaced in a direction in which the first heat transfer member and the second heat transfer member are separated from each other. ,
The driving means includes
A cylinder member with a bottomed cylindrical shape that is provided on the first heat transfer member and has an opening directed to the second heat transfer member side;
A valve portion provided in the second heat transfer member and fitted in the cylinder member moves forward and backward in a direction to separate the first heat transfer member and the second heat transfer member from each other. A piston member made possible;
In the cylinder member, a cylinder device having a medium that is filled between the bottom of the cylinder member and the valve portion and changes in volume according to temperature,
The heat exchange apparatus according to claim 1 or 2, wherein the volume of the medium decreases as the temperature decreases and increases as the temperature increases.
前記第1の熱交換媒体は、内燃機関の排気ガスまたは内燃機関の温度調節用の液体であり、前記第2の熱交換媒体は、前記内燃機関の温度調節用の液体または前記内燃機関の排気ガスであることを特徴とする請求項1から請求項3のうちの何れか一項に記載の車両用熱交換器。   The first heat exchange medium is an exhaust gas of an internal combustion engine or a liquid for adjusting the temperature of the internal combustion engine, and the second heat exchange medium is a liquid for adjusting the temperature of the internal combustion engine or an exhaust of the internal combustion engine. It is gas, The vehicle heat exchanger as described in any one of Claims 1-3 characterized by the above-mentioned. 前記第1の熱交換媒体は、内燃機関の排気ガスまたは空調装置の流路を通流する空調空気であり、前記第2の熱交換媒体は、前記空調装置の流路を通流する空調空気または前記内燃機関の排気ガスであることを特徴とする請求項1から請求項3のうちの何れか一項に記載の車両用熱交換器。   The first heat exchange medium is exhaust gas of an internal combustion engine or conditioned air flowing through the flow path of the air conditioner, and the second heat exchange medium is conditioned air flowing through the flow path of the air conditioner. 4. The vehicle heat exchanger according to claim 1, wherein the vehicle heat exchanger is exhaust gas of the internal combustion engine. 5.
JP2014071213A 2014-03-31 2014-03-31 Heat exchanger Pending JP2015194271A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014071213A JP2015194271A (en) 2014-03-31 2014-03-31 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014071213A JP2015194271A (en) 2014-03-31 2014-03-31 Heat exchanger

Publications (1)

Publication Number Publication Date
JP2015194271A true JP2015194271A (en) 2015-11-05

Family

ID=54433461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014071213A Pending JP2015194271A (en) 2014-03-31 2014-03-31 Heat exchanger

Country Status (1)

Country Link
JP (1) JP2015194271A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109764397A (en) * 2019-01-09 2019-05-17 青岛海尔空调器有限总公司 The control method that a kind of energy resource system and its heater temperature are adjusted

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109764397A (en) * 2019-01-09 2019-05-17 青岛海尔空调器有限总公司 The control method that a kind of energy resource system and its heater temperature are adjusted

Similar Documents

Publication Publication Date Title
CN103148714B (en) Heat exchanger for vehicle
JP4345754B2 (en) Thermal storage device and engine
ES2545129T3 (en) Thermoelectric device, specially designed to generate an electric current in a motor vehicle
RU2013148077A (en) HEAT PROTECTION SYSTEM OF MULTIPLE USE WITH HIGH HEAT TRANSFER SPEED
KR20190112831A (en) Heat transport apparatus
JP2015183639A (en) exhaust heat recovery system
SE1150379A1 (en) Cooling system for cooling an internal combustion engine
JP2015194271A (en) Heat exchanger
SE534871C2 (en) Thermostat for controlling the temperature of a coolant that cools an internal combustion engine
JP6034043B2 (en) Waste heat utilization system for automobile and automobile
JP5673589B2 (en) Heat engine
JP5934052B2 (en) Rankine cycle system
JP2010054162A (en) Heat storage device and warmup system for vehicle
JP4821349B2 (en) Latent heat storage device and engine
JP6429719B2 (en) Thermo actuator
ES2749206T3 (en) Seal assembly with a cooling device
JP6960651B2 (en) Electronics, heat exchangers and evaporators
KR20140123026A (en) Heat exchager
WO2018053082A1 (en) Integrated heat exchanger and coolant control valve and method of operating the same
CN108507393B (en) Solid-liquid phase change heat storage and heat extraction device with three-dimensional fin structure
JP6067441B2 (en) Brazing apparatus and brazing method
CN106246330B (en) A kind of cooling system, control valve and automobile
JP2008286141A (en) Valve mechanism and cooling system
JP6399585B2 (en) Thermo element
JP6142094B2 (en) Fluid cooling system