JP2015193581A - Novel sterol compound and cholesterol absorption inhibitor containing this - Google Patents

Novel sterol compound and cholesterol absorption inhibitor containing this Download PDF

Info

Publication number
JP2015193581A
JP2015193581A JP2014142190A JP2014142190A JP2015193581A JP 2015193581 A JP2015193581 A JP 2015193581A JP 2014142190 A JP2014142190 A JP 2014142190A JP 2014142190 A JP2014142190 A JP 2014142190A JP 2015193581 A JP2015193581 A JP 2015193581A
Authority
JP
Japan
Prior art keywords
cholesterol
compound
cells
ezetimibe
absorption inhibitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014142190A
Other languages
Japanese (ja)
Other versions
JP6430736B2 (en
Inventor
千場 智尋
Tomohiro Senba
智尋 千場
櫻田 剛史
Takashi Sakurada
剛史 櫻田
伸夫 魚津
Nobuo Uozu
伸夫 魚津
河岸 洋和
Hirokazu Kawagishi
洋和 河岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fancl Corp
Shizuoka University NUC
Original Assignee
Fancl Corp
Shizuoka University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fancl Corp, Shizuoka University NUC filed Critical Fancl Corp
Priority to JP2014142190A priority Critical patent/JP6430736B2/en
Publication of JP2015193581A publication Critical patent/JP2015193581A/en
Application granted granted Critical
Publication of JP6430736B2 publication Critical patent/JP6430736B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Steroid Compounds (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Cosmetics (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a novel sterol compound and a cholesterol absorption inhibitor.SOLUTION: The invention provides a novel sterol compound represented by the following chemical formula (I), and a cholesterol absorption inhibitor containing this.

Description

本発明は、新規ステロール系化合物に関する。さらに本発明は新規ステロール系化合物を含有するコレステロール吸収阻害剤に関する。   The present invention relates to a novel sterol compound. Furthermore, the present invention relates to a cholesterol absorption inhibitor containing a novel sterol compound.

血中コレステロールの上昇は冠状動脈性心疾患の主要な危険因子である。血中コレステロールを低下させるためには、基本的に、低コレステロールの食物、胆汁酸性の金属イオン封鎖剤(コレスチラミンおよびコレスチポール)、ニコチン酸(ナイアシン)、フィブラート類およびプロブコールの摂取などに限られていた。しかしこれらの薬剤や療法には治療の限界があった。
近年、ロバスタチン、シンバスタチンおよびプラバスタチン(HMG−CoAレダクターゼ阻害剤)が、冠動脈および頸動脈におけるアテローム性病変の進行を遅延させることが確認された。さらにシンバスタチンおよびプラバスタチンが冠状動脈性心臓病のリスクを低下させることが明らかとなった。
Increased blood cholesterol is a major risk factor for coronary heart disease. In order to lower blood cholesterol, it is basically limited to low cholesterol food, bile acidic sequestrants (cholestyramine and colestipol), nicotinic acid (niacin), fibrates and probucol. It was. However, these drugs and therapies have limited treatment.
Recently, lovastatin, simvastatin and pravastatin (HMG-CoA reductase inhibitors) have been shown to delay the progression of atheromatous lesions in the coronary and carotid arteries. Furthermore, simvastatin and pravastatin were found to reduce the risk of coronary heart disease.

動脈硬化疾患において、コレステリルエステルは、アテローム性病変の主要な構成成分であり、動脈壁細胞におけるコレステロールの主要な貯蔵形態である。このコレステリルエステルの形成は、食餌性コレステロールの腸管吸収における重要なステップでもある。
小腸上皮細胞に取り込まれたコレステロールは、小腸上皮細胞内の小胞体にてコレステリルエステルに変換された後、カイロミクロンを形成して体内に吸収されることが知られている。従って、コレステリルエステルの形成阻害が、食餌性コレステロールの腸管吸収を阻止することが推測され、これに伴う血中コレステロールの減少が、アテローム性病変形成の進行を抑制し、動脈硬化の予防や改善につながるものと考えられている。
In arteriosclerotic diseases, cholesteryl esters are a major component of atherosclerotic lesions and a major storage form of cholesterol in arterial wall cells. The formation of this cholesteryl ester is also an important step in the intestinal absorption of dietary cholesterol.
It is known that cholesterol taken into small intestinal epithelial cells is converted into cholesteryl ester in the endoplasmic reticulum in small intestinal epithelial cells, and then formed into chylomicron and absorbed into the body. Therefore, it is speculated that the inhibition of cholesteryl ester formation prevents intestinal absorption of dietary cholesterol, and the concomitant reduction in blood cholesterol suppresses the progression of atheromatous lesion formation, and prevents or improves arteriosclerosis. It is thought to be connected.

またエゼチミブ(Ezetimibe)などの特定のヒドロキシ置換アゼチジノン(特許文献1:米国特許第5,767,115号明細書)は、アテローム性動脈硬化症の治療および予防におけるコレステロール低下剤として有用であることが知られている。エゼチミブのコレステロール低下作用は、ノックアウトマウスやトランスジェニックマウスの研究から、小腸のコレステロール吸収を担う膜蛋白質であるNiemann Pick Type C 1 like 1(以下NPC1L1という)とエゼチミブが結合することによって阻害されることが明らかとなった(特許文献2:特開2010−252798号公報)。
従って、エゼチミブとNPC1L1の結合を阻害する物質は、消化管内のコレステロール吸収を阻害し、アテローム性動脈硬化を改善することが期待されている。
Certain hydroxy-substituted azetidinones such as ezetimibe (US Pat. No. 5,767,115) may also be useful as cholesterol lowering agents in the treatment and prevention of atherosclerosis. Are known. The cholesterol-lowering action of ezetimibe is inhibited by binding of ezetimibe with Niemann Pick Type C 1 like 1 (hereinafter referred to as NPC1L1), which is a membrane protein responsible for cholesterol absorption in the small intestine, from studies on knockout mice and transgenic mice. Became clear (Patent Document 2: JP 2010-252798 A).
Therefore, a substance that inhibits the binding between ezetimibe and NPC1L1 is expected to inhibit cholesterol absorption in the gastrointestinal tract and improve atherosclerosis.

近年キノコの子実体から血中コレステロール低下効果のある物質や、動脈硬化の予防効果を有するものが得られている。特許文献3にはプレウロツス・エリンギ(Pleurotus eryngi)var. ferulaeやプレウロツス・オストレアツス(Pleurotus ostreatus)などプレウロツス属のキノコが高コレステロール血症の治療剤であるロバスタチンを産生することが開示されている(特許文献3:特表2003−520576号公報)。また特許文献4には担子菌類のシイタケ、キクラゲ、マイタケ、レイシがアディポネクチンを分泌促進しコレステロール低下に効果を示すことが開示されている(特許文献4:特開2008−297256号公報)。このようにキノコ類の特定の種の子実体がコレステロールを低下させ、動脈硬化を軽減する作用を示すことは従前から知られていた。   In recent years, substances having a blood cholesterol lowering effect and those having an effect of preventing arteriosclerosis have been obtained from fruit bodies of mushrooms. In Patent Document 3, Pleurotus eringi var. It has been disclosed that mushrooms of the genus Pleurotus such as ferulae and Pleurotus ostreatus produce lovastatin, which is a therapeutic agent for hypercholesterolemia (Patent Document 3: JP 2003-520576 A). Further, Patent Document 4 discloses that basidiomycetous fungi, shiitake, jellyfish, maitake, and litchi promote secretion of adiponectin and show an effect on lowering cholesterol (Patent Document 4: JP 2008-297256 A). Thus, it has been known for a long time that the fruiting bodies of specific species of mushrooms have the effect of lowering cholesterol and reducing arteriosclerosis.

本発明者らは、担子菌の一種であるクロサルノコシカケ抽出物中に、NPC1L1蛋白質と結合し、コレステロールの吸収を抑制する成分が存在し、コレステロール低下剤として有用であることを見出してすでに特許出願している(特願2013−033089号、特願2013−215687号)。   The present inventors have already found that the extract of Kurosarokoshikatake, a kind of basidiomycete, binds to the NPC1L1 protein and suppresses absorption of cholesterol and is useful as a cholesterol lowering agent. (Japanese Patent Application Nos. 2013-033089 and 2013-215687).

米国特許第5,767,115号明細書US Pat. No. 5,767,115 特開2010−252798号公報JP 2010-252798 A 特表2003−520576号公報Japanese translation of PCT publication No. 2003-520576 特開2008−297256号公報JP 2008-297256 A

本発明は、新規な化合物およびこれを含有する高コレステロール吸収阻害剤、高コレステロール血症の改善剤、高脂血症の改善剤を提供することを課題とする。   An object of the present invention is to provide a novel compound and a hypercholesterol absorption inhibitor, a hypercholesterolemia improving agent, and a hyperlipidemia improving agent containing the same.

本発明者らはクロサルノコシカケの示すコレステロール吸収阻害作用について研究を行い、コレステロール吸収阻害を示す新規な化合物を単離し、化学構造を決定した。   The present inventors conducted research on the cholesterol absorption inhibitory effect of black salmon mushroom, isolated a novel compound exhibiting cholesterol absorption inhibition, and determined the chemical structure.

本発明の構成は次の通りである。
(1)次の化学式(I)で表される化合物。
(2)(1)記載の化合物を含有するコレステロール吸収阻害剤。
(3)(1)記載の化合物を含有する高コレステロール血症改善剤。
(4)(1)記載の化合物を含有する高脂血症改善剤。
(5)(1)記載の化合物を含有する医薬組成物。
(6)(1)記載の化合物を含有する化粧品。
(7)(1)記載の化合物を添加した飲食品。
The configuration of the present invention is as follows.
(1) A compound represented by the following chemical formula (I):
(2) A cholesterol absorption inhibitor containing the compound according to (1).
(3) A hypercholesterolemia improving agent comprising the compound according to (1).
(4) A hyperlipidemia improving agent comprising the compound according to (1).
(5) A pharmaceutical composition comprising the compound according to (1).
(6) Cosmetics containing the compound according to (1).
(7) A food or drink to which the compound according to (1) is added.

本発明により、コレステロール吸収阻害作用を有する新規ステロール系化合物提供される。また新規なコレステロール吸収阻害剤及び高コレステロール血症改善剤が提供される。また高脂血症改善剤が提供される。   According to the present invention, a novel sterol compound having an action of inhibiting cholesterol absorption is provided. Also provided are novel cholesterol absorption inhibitors and hypercholesterolemia-improving agents. An agent for improving hyperlipidemia is also provided.

化学式(I)の化合物がエゼチミブとNPC1L1の結合阻害をすることを示すグラフである。It is a graph which shows that the compound of Chemical formula (I) inhibits the coupling | bonding of ezetimibe and NPC1L1. 化学式(I)の化合物を含む抽出物がコレステロール血症の改善作用を有することを示すグラフである。It is a graph which shows that the extract containing the compound of Chemical formula (I) has the improvement effect of cholesterolemia. 化学式(I)の化合物を含む抽出物が高脂血症の改善作用を有することを示すグラフである。It is a graph which shows that the extract containing the compound of Chemical formula (I) has an action for improving hyperlipidemia. 化学式(I)の化合物がエゼチミブと同様にヒト大腸がん由来の細胞株であるCaco2細胞へのNPC1L1を介したコレステロールの吸収阻害をすることを示すグラフである。It is a graph which shows that the compound of chemical formula (I) inhibits the absorption of cholesterol through NPC1L1 to Caco2 cells, which are cell lines derived from human colon cancer, like ezetimibe. 化学式(I)の化合物がエゼチミブと同様にヒト大腸がん由来の細胞株であるCaco2細胞へのNPC1L1を介したコレステロールの吸収阻害をして細胞内のコレステロールエステル濃度を低下させることを示すグラフである。It is a graph which shows that the compound of chemical formula (I) inhibits absorption of cholesterol via NPC1L1 to Caco2 cells, which are cell lines derived from human colon cancer, as in ezetimibe, and reduces intracellular cholesterol ester concentration. is there.

本発明は下記の化学式(I)で表される新規ステロール系化合物およびこの化合物を有効成分とするコレステロール吸収阻害剤及び高コレステロール血症改善剤である。   The present invention is a novel sterol compound represented by the following chemical formula (I), a cholesterol absorption inhibitor and a hypercholesterolemia ameliorating agent comprising this compound as an active ingredient.

本発明の新規ステロール系化合物のIUPAC名称は、Acetic acid 15−hydroxy−17−(1−hydroxymethyl−5−methyl−hex−4−enyl)−4,4,10,13,14−pentamethyl−2,3,4,5,6,7,10,11,12,13,14,15,16,17−tetradecahydro−1H−cyclopenta[α]phenanthren−3−yl esterである。この化合物はクロサルノコシカケ(Fomitopsis nigra)の子実体若しくは菌糸体から抽出することができる。またコレステロール吸収阻害剤とする場合、化学式(I)の化合物が含有されている抽出物を、コレステロール吸収阻害剤として使用することもできる。
抽出は、水、低級脂肪族アルコール(メタノール、エタノール、イソプロピルアルコールなど)、低級脂肪族ケトン(アセトンなど)、ヘキサンなどの溶媒を用いる。抽出物を含む溶媒あるいは、これらを含む溶媒により当業者が通常行う抽出処理により抽出する。製造した抽出エキスは、加熱処理、凍結乾燥あるいは減圧乾燥等の処理により、濃縮エキスや乾燥エキスにすることができる。
The IUPAC name of the novel sterol compound of the present invention is Acetic acid 15-hydroxy-17- (1-hydroxymethyl-5-methyl-hex-4-enyl) -4,4,10,13,14-pentamethyl-2, 3,4,5,6,7,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta [α] phenanthren-3-yl ester. This compound can be extracted from the fruiting body or mycelium of Fomitopsis nigra. Moreover, when setting it as a cholesterol absorption inhibitor, the extract containing the compound of Chemical formula (I) can also be used as a cholesterol absorption inhibitor.
The extraction uses a solvent such as water, a lower aliphatic alcohol (such as methanol, ethanol, isopropyl alcohol), a lower aliphatic ketone (such as acetone), or hexane. Extraction is performed by a solvent containing the extract or a solvent containing these by an extraction process usually performed by those skilled in the art. The produced extract can be made into a concentrated extract or a dry extract by a treatment such as heat treatment, freeze-drying or reduced-pressure drying.

本発明の化合物あるいはこの化合物を含む抽出エキスをコレステロール吸収阻害剤または予防もしくは改善剤として使用するにあたっては、通常使用される任意成分を含有する錠剤、顆粒剤、散剤、カプセル剤、液剤などの剤形で経口により投与することができる。任意成分としては、例えば、賦形剤、結合剤、被覆剤、滑沢剤、糖衣剤、崩壊剤、増量剤、矯味矯臭剤、乳化・可溶化・分散剤、安定剤、pH調整剤、等張剤などが挙げられる。これらを常法に従って処理することにより、本発明のコレステロール吸収阻害剤等を製造することができる。   When using the compound of the present invention or an extract containing this compound as a cholesterol absorption inhibitor or preventive or ameliorating agent, agents such as tablets, granules, powders, capsules, and liquids containing any commonly used optional ingredient It can be administered orally in the form. Examples of optional components include excipients, binders, coating agents, lubricants, sugar coatings, disintegrating agents, bulking agents, flavoring agents, emulsifying / solubilizing / dispersing agents, stabilizers, pH adjusting agents, and the like. Examples include tonicity agents. By treating these according to a conventional method, the cholesterol absorption inhibitor of the present invention can be produced.

本発明の化学式(I)の化合物を含有するコレステロール吸収抑制剤又は高コレステロール血症改善剤として使用する場合の投与量は、年齢、性別、体重などによって異なるが、通常、化合物として、成人1日あたり約0.01mg〜1g、好ましくは1mg〜500mgである。
なお、剤には、医薬品のみならず、医薬部外品、健康食品なども包含される。
The dose for use as a cholesterol absorption inhibitor or hypercholesterolemia-improving agent containing the compound of formula (I) of the present invention varies depending on age, sex, body weight, etc. The amount is about 0.01 mg to 1 g, preferably 1 mg to 500 mg per unit.
The agent includes not only pharmaceutical products but also quasi drugs and health foods.

以下に実施例および試験例を挙げ、本発明をさらに具体的に説明する。
(コレステロール吸収阻害剤の製造例)
天然より採集したクロサルノコシカケ(Fomitopsis nigra)の未乾燥の子実体42kgを約4倍量のエタノール及び等量のアセトンで室温下、順次浸漬抽出後、エタノール及びアセトンの抽出液を混合し、ロータリーエバポレーターを用いて不溶物が析出しないよう溶媒を減圧濃縮した。
次に、濃縮液500mlにヘキサン1Lを加え、分液漏斗を用いて液々分配した。この操作を複数回繰返し、回収したヘキサン層はロータリーエバポレーターを用いて濃縮乾固させ、40.3gのヘキサン抽出部を得た。この内、ヘキサン抽出部28.3gを100mlメタノールに溶解させ、950mlヘキサン、950mlの80%アセトニトリル水を加えて液々分配し、ロータリーエバポレーターを用いて濃縮乾固させた。その結果、ヘキサン層6.8g、中間層5.2g、80%アセトニトリル層13.6gを得た。この液々分配による分画物は、後述する動物試験に供した。
Hereinafter, the present invention will be described more specifically with reference to examples and test examples.
(Production example of cholesterol absorption inhibitor)
Extracted 42 kg of dried fruit bodies of black moss mushroom (Fomitopsis nigra) collected from nature with about 4 times the amount of ethanol and an equal amount of acetone at room temperature, and then mixed with ethanol and acetone extract. Was used to concentrate the solvent under reduced pressure so that insolubles did not precipitate.
Next, 1 L of hexane was added to 500 ml of the concentrated liquid, and the liquid was partitioned using a separatory funnel. This operation was repeated a plurality of times, and the recovered hexane layer was concentrated and dried using a rotary evaporator to obtain 40.3 g of a hexane extraction part. Of these, 28.3 g of the hexane extractor was dissolved in 100 ml of methanol, 950 ml of hexane and 950 ml of 80% acetonitrile in water were added, and the mixture was partitioned and concentrated to dryness using a rotary evaporator. As a result, 6.8 g of a hexane layer, 5.2 g of an intermediate layer, and 13.6 g of an 80% acetonitrile layer were obtained. The fraction obtained by liquid-liquid distribution was subjected to the animal test described later.

次に80%アセトニトリル層11.6gをYMC GEL ODS−A(YMC製)オープンクロマトグラフィー(桐山製作所製φ40×300mm)に供した。75%アセトニトリル水にて溶出させ8画分に分離し、減圧下溶媒除去し、3番目の画分(Fr3)を910.6mg回収した。
次にこのFr3 795.7mgを更に、YMC GEL ODS−Aオープンクロマトグラフィー(桐山製作所製φ22×500mm)に供し、65%アセトニトリル水により12画分に分離した。そのうちこの画分中の9番目の画分(Fr3−9)を回収し、減圧下で溶媒を除去した。このFr3−9を94.8mg得た。
次いでFr3−9全量を分取高速液体クロマトグラフィー(カラム:DevelosilXG C30−M5:Nomura Chemical製)溶離液アセトニトリル:0.1%ギ酸水溶液(35:65)で溶出し、6画分分離した。最終の6番目の画分(Fr3−9−6)を回収し、減圧下で溶媒を除去し、Fr3−9−6を15.22mg得た。この全量をDevelosilXG C30−M5カラムを用いて、溶離液アセトニトリル:0.1%ギ酸水溶液(40:60)で2つの画分で溶出し、2番目の画分(Fr3−9−6−2)を回収した。溶媒を除去し、Fr3−9−6−2の乾燥物として5.27mgを単離した。
Next, 11.6 g of 80% acetonitrile layer was subjected to YMC GEL ODS-A (manufactured by YMC) open chromatography (φ40 × 300 mm manufactured by Kiriyama Seisakusho). Elution was performed with 75% aqueous acetonitrile, and the mixture was separated into 8 fractions. The solvent was removed under reduced pressure, and 910.6 mg of the third fraction (Fr3) was recovered.
Next, 795.7 mg of this Fr3 was further subjected to YMC GEL ODS-A open chromatography (Kiriyama Seisakusho φ22 × 500 mm) and separated into 12 fractions with 65% acetonitrile water. Among them, the ninth fraction (Fr3-9) in this fraction was collected, and the solvent was removed under reduced pressure. 94.8 mg of this Fr3-9 was obtained.
Next, the entire amount of Fr3-9 was eluted with preparative high performance liquid chromatography (column: Develosil XG C30-M5: manufactured by Nomura Chemical) eluent acetonitrile: 0.1% formic acid aqueous solution (35:65), and 6 fractions were separated. The final sixth fraction (Fr3-9-6) was collected and the solvent was removed under reduced pressure to obtain 15.22 mg of Fr3-9-6. This total amount was eluted in two fractions using a Develosil XG C30-M5 column with eluent acetonitrile: 0.1% aqueous formic acid (40:60) and the second fraction (Fr3-9-6-2). Was recovered. The solvent was removed and 5.27 mg was isolated as a dry product of Fr3-9-6-2.

(構造決定)
単離した画分(精製物)をLC/MS、NMRにより構造を決定した。
LC/MS
液体クロマトグラフ部
装置: Waters社製ACQUITY UPLC
カラム: Waters社製 ACQUITY UPLC BEH C18(2.1 mmID×100 mm)
移動層: A; 0.1%ギ酸水溶液40%、B; アセトニトリル60%
検出器: UV 210−400 nm

質量分離部
装置: Waters社製 Synapt G2−S型
イオン化法: エレクトロスプレーイオン化法、ネガティブモード
測定範囲: m/z=50−2000

NMR
装置: Bruker BioSpin社製AVANCE500型(CryoProbe)
核種: H, 13
溶媒: 重メタノール(以下、CDODと略記)
温度: 室温
測定法: DEPT、COSY、HMQC、HMBC
基準物質: TMSを0 ppm(内部標準)とした

また、NMRスペクトル解析では化学シフト(δ値)をppm単位で、結合定数をHz単位で示し、略号を使用し、各々 s; singlet, dd; double doublet, t; triplet, tt; triple tripletで表した。更に、ピークの帰属は、トリテルペン骨格の炭素番号をもとに表記した。

得られたマススペクトルデータ、NMRデータは、以下のとおりである。
NMRスペクトル:
1) 1H-NMR (CD3OD); δ 0.80(3H, s, Me-18), 0.88(3H, s, Me-29),0.95(3H, s, Me-28), 0.97(3H, s, Me-30), 1.04(3H, s, Me-19), 1.36(1H, H2-22), 1.44(1H, H2-22), 1.50(1H, H2-1), 1.53(1H, H-5), 1.53(2H, H2-6), 1.54(1H, H2-12), 1.60(3H, s, Me-26), 1.62(1H, H2-2), 1.62(1H, H-20), 1.67(1H, H2-12), 1.67(3H, s, Me-27), 1.78(1H, H2-16), 1.92(1H, H2-1), 1.93(1H, H2-2), 1.94(1H, H2-16), 1.95(1H, H2-23), 1.98(1H, H-17), 2.05(1H, H2-23), 2.05(3H, s, COCH3), 2.26(2H, H2-11), 4.04(1H, dd, J=5.2, 11.3 Hz, H2-21), 4.19(1H, dd, J=6.0, 9.4 Hz, H-5), 2.17(2H, H2-7) 4.29(1H, dd, J=3.1, 11.3 Hz, H2-21), 4.64(1H, t, J=2.7 Hz, H-3), 5.10(1H, tt, J=1.3, 7.2 Hz, H-24)

2)13C-NMR (CD3OD); δ 16.9(C-18), 17.8(C-26), 17.8(C-30), 19.2(C-6), 19.4(C-19), 21.2(COCH3), 21.9(C-2), 22.3(C-28), 24.2(C-7), 25.7(C-23), 25.9(C-27), 27.7(C-11), 28.2(C-29) 31.2(C-22), 31.9(C-1), 32.1(C-12), 37.8(C-4), 38.2(C-10), 39.6(C-16), 41.0(C-20), 44.8(C-17), 45.9(C-13), 46.7(C-5), 53.1(C-14), 66.4(C-21), 73.8(C-15), 79.6(C-3), 125.7(C-24), 132.4(C-25), 135.4(C-8), 136.4(C-9), 172.6(COCH3)

MSスペクトル:
高分解能ESIMS m/z 499.3788[M−H] , C3251, req
uires 499.3787
以上のデータから化学式は次のとおり決定した。
(Structure determination)
The structure of the isolated fraction (purified product) was determined by LC / MS and NMR.
LC / MS
Liquid chromatograph unit: Waters ACQUITY UPLC
Column: ACQUITY UPLC BEH C18 (2.1 mm ID × 100 mm) manufactured by Waters
Moving bed: A; 40% 0.1% aqueous formic acid solution, B; 60% acetonitrile
Detector: UV 210-400 nm

Mass separation unit Device: Synapt G2-S type manufactured by Waters Ionization method: Electrospray ionization method, negative mode Measurement range: m / z = 50-2000

NMR
Apparatus: AVANCE500 type (CryoProbe) manufactured by Bruker BioSpin
Nuclide: 1 H, 13 C
Solvent: heavy methanol (hereinafter abbreviated as CD 3 OD)
Temperature: Room temperature Measurement method: DEPT, COSY, HMQC, HMBC
Reference substance: TMS set to 0 ppm (internal standard)

In NMR spectrum analysis, chemical shift (δ value) is expressed in ppm, binding constant is expressed in Hz, abbreviations are used, and each is expressed by s; singlelet, dd; double doublet, t; triplet, tt; triple triplet. did. Furthermore, the peak assignment was expressed based on the carbon number of the triterpene skeleton.

The obtained mass spectrum data and NMR data are as follows.
NMR spectrum:
1) 1 H-NMR (CD 3 OD); δ 0.80 ( 3 H, s, Me-18), 0.88 ( 3 H, s, Me-29), 0.95 ( 3 H, s, Me-28), 0.97 ( 3 H, s, Me-30), 1.04 ( 3 H, s, Me-19), 1.36 ( 1 H, H 2 -22), 1.44 ( 1 H, H 2 -22), 1.50 ( 1 H, H 2 -1), 1.53 ( 1 H, H-5), 1.53 ( 2 H, H 2 -6), 1.54 ( 1 H, H 2 -12), 1.60 ( 3 H, s, Me-26), 1.62 ( 1 H, H 2 -2), 1.62 ( 1 H, H-20), 1.67 ( 1 H, H 2 -12), 1.67 ( 3 H, s, Me-27), 1.78 ( 1 H, H 2 -16), 1.92 ( 1 H, H 2 -1), 1.93 ( 1 H, H 2 -2), 1.94 ( 1 H, H 2 -16), 1.95 ( 1 H, H 2 -23), 1.98 ( 1 H, H-17), 2.05 ( 1 H, H 2 -23), 2.05 ( 3 H, s, COCH 3 ), 2.26 ( 2 H, H 2 -11), 4.04 ( 1 H, dd, J = 5.2, 11.3 Hz, H 2 -21), 4.19 ( 1 H, dd, J = 6.0, 9.4 Hz, H-5), 2.17 ( 2 H, H 2 -7) 4.29 ( 1 H, dd, J = 3.1, 11.3 Hz, H 2 -21), 4.64 ( 1 H, t, J = 2.7 Hz, H-3), 5.10 ( 1 H, tt, J = 1.3, 7.2 Hz, H-24)

2) 13 C-NMR (CD 3 OD); δ 16.9 (C-18), 17.8 (C-26), 17.8 (C-30), 19.2 (C-6), 19.4 (C-19), 21.2 ( COCH 3 ), 21.9 (C-2), 22.3 (C-28), 24.2 (C-7), 25.7 (C-23), 25.9 (C-27), 27.7 (C-11), 28.2 (C- 29) 31.2 (C-22), 31.9 (C-1), 32.1 (C-12), 37.8 (C-4), 38.2 (C-10), 39.6 (C-16), 41.0 (C-20) , 44.8 (C-17), 45.9 (C-13), 46.7 (C-5), 53.1 (C-14), 66.4 (C-21), 73.8 (C-15), 79.6 (C-3), 125.7 (C-24), 132.4 (C-25), 135.4 (C-8), 136.4 (C-9), 172.6 (COCH 3 )

MS spectrum:
High resolution ESIMS m / z 499.3788 [M−H] , C 32 H 51 O 4 , req
uires 499.3787
From the above data, the chemical formula was determined as follows.

この新規ステロール系化合物のIUPAC名称は、Acetic acid 15−hydroxy−17−(1−hydroxymethyl−5−methyl−hex−4−enyl)−4,4,10,13,14−pentamethyl−2,3,4,5,6,7,10,11,12,13,14,15,16,17−tetradecahydro−1H−cyclopenta[α]phenanthren−3−yl esterである。 The IUPAC name of this novel sterol compound is Acetic acid 15-hydroxy-17- (1-hydroxymethyl-5-methyl-hex-4-enyl) -4,4,10,13,14-pentamethyl-2,3, 4,5,6,7,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta [α] phenanthren-3-yl ester.

(試験1:エゼチミブの結合阻害試験)
製造例で得られた化学式(I)の化合物を、下記の試験法でNPC1L1とエゼチミブの結合阻害活性を評価する試験を行った。
(1)ラットNPC1L1遺伝子のクローニング
ラット空腸由来1本鎖cDNA(ジェノスタッフ株式会社製)を鋳型にiProof High−Fidelity DNA ポリメラーゼ(Bio−Rad社製)を用いたPCR法により、5’端にHind III、3’端にXba Iを付加したrNPC1L1全長を増幅し、Zero Blunt TOPO PCRクローニング キット(Invitrogen社製)を用いてpCR4 Blunt TOPOベクターにクローニングした。クローニングしたDNA配列を配列表配列番号1に示す。
なお、rNPC1L1全長増幅に使用したプライマー及びPCR条件は次のとおりである。
Sense: 5’− aagcttaccatggcagctgcctggctgggatggc−3’(配列番号2)
Antisense: 5’− tctagattagaacttttggtcacttttgggc−3’(配列番号3)
(Test 1: Ezetimibe binding inhibition test)
The compound of the formula (I) obtained in the production example was subjected to a test for evaluating the binding inhibitory activity between NPC1L1 and ezetimibe by the following test method.
(1) Cloning of rat NPC1L1 gene By PCR using iProof High-Fidelity DNA polymerase (manufactured by Bio-Rad) using rat jejunum-derived single-stranded cDNA (manufactured by Geno Staff) as a template, Hind at the 5 'end III The full length of rNPC1L1 with Xba I added at the 3 ′ end was amplified and cloned into the pCR4 Blunt TOPO vector using the Zero Blunt TOPO PCR Cloning Kit (Invitrogen). The cloned DNA sequence is shown in SEQ ID NO: 1 in the sequence listing.
The primers and PCR conditions used for rNPC1L1 full-length amplification are as follows.
Sense: 5'- aagcttacatgggcaggctgcctggctgggaggg-3 '(SEQ ID NO: 2)
Antisense: 5'- tctagattagaactttttgggtactttgggg-3 '(SEQ ID NO: 3)

PCR条件
1.98℃ 30秒、2.98℃ 10秒、3.68℃ 30秒、4.72℃ 1.5分、5.72℃ 10分、2〜4の加温サイクルを35サイクル実施する。
PCR conditions 1.98 ° C. for 30 seconds, 2.98 ° C. for 10 seconds, 3.68 ° C. for 30 seconds, 4.72 ° C. for 1.5 minutes, 5.72 ° C. for 10 minutes, 35 cycles of 2-4 heating cycles To do.

(2)ラットNPC1L1安定発現細胞の作製
pCR4 Blunt TOPO rNPC1L1ベクターをHind III及びXba I処理し、アガロース電気泳動後、QIAquick Gel Extraction Kit(QIAGEN社製)を用いてrNPC1L1を抽出し、発現用ベクターpcDNA3.1(Invitrogen社製)のHind III、Xba Iサイトにサブクローニングした。作製したpcDNA3.1 rNPC1L1の配列はプレミックスシーケンス解析サービス(タカラバイオ社製)を利用して確認を行った。
シーケンス用primer
Sense:5’−cactgcttactggcttatcg−3’(配列番号4)
Sense:5’−gccttttatcagcgcagcttt−3’(配列番号5)
Sense:5’−aactctcaccccataccatc−3’(配列番号6)
Sense:5’−cagtacttccagaacaaccg−3’(配列番号7)
Sense:5’−ttctactcctacctgggtgt−3’(配列番号8)
Sense:5’−cttcttccgcaagatatacgc−3’(配列番号9)
Sense:5’−ccacagcggaacagtttcat−3’(配列番号10)
Sense:5’−tccctcatcaaccttgtcac−3’(配列番号11)
Sense:5’−gtccatgcttcttgctgatg−3’(配列番号12)
(2) Preparation of rat NPC1L1 stably expressing cells The pCR4 Blunt TOPO rNPC1L1 vector was treated with Hind III and Xba I, and after agarose electrophoresis, the vector for rNPC1L1 was extracted using QIAquick Gel Extraction Kit (manufactured by QIAGEN). .1 (manufactured by Invitrogen) was subcloned into the Hind III and Xba I sites. The sequence of the prepared pcDNA3.1 rNPC1L1 was confirmed using a premix sequence analysis service (manufactured by Takara Bio Inc.).
Sequencer primer
Sense: 5'-cactgcttactgggcttatcg-3 '(SEQ ID NO: 4)
Sense: 5'-gccttttattcaggcgcacttt-3 '(SEQ ID NO: 5)
Sense: 5′-aactctaccaccataccatc-3 ′ (SEQ ID NO: 6)
Sense: 5′-cagtacttccagaacaaccg-3 ′ (SEQ ID NO: 7)
Sense: 5'-ttctactcctacctggggtgt-3 '(SEQ ID NO: 8)
Sense: 5'-ctttttccgcaagatatacgc-3 '(SEQ ID NO: 9)
Sense: 5′-ccacagcggagaacattttcat-3 ′ (SEQ ID NO: 10)
Sense: 5′-tcccccatcaactttgtcac-3 ′ (SEQ ID NO: 11)
Sense: 5'-gtccatgctttctgtctgatg-3 '(SEQ ID NO: 12)

次いで、ヒト腎臓由来HEK293細胞(ATCC)に、Fugene HD(Roche)を用いてpcDNA3.1 rNPC1L1をトランスフェクションし、最終濃度1mg/ml G418−sulfate(Wako)にてセレクションを行った。更に限界希釈法によりセレクションを行い、HEK/rNPC1L1安定発現細胞の単一クローンを得た。   Subsequently, pcDNA3.1 rNPC1L1 was transfected into human kidney-derived HEK293 cells (ATCC) using Fugene HD (Roche), and selection was performed at a final concentration of 1 mg / ml G418-sulfate (Wako). Further, selection was performed by a limiting dilution method to obtain a single clone of HEK / rNPC1L1 stably expressing cells.

(3)膜画分の調製
φ150mmdish(Nunc社製)にHEK293/rNPC1L1安定発現細胞を播種し、DMEM(Nacalai tesque社製)+10%FBS(Gibco社製)にてコンフルエントになるまで培養し、最終濃度4mM Sodium Butyrate(Sigma Aldrich社製)24時間処理後の細胞をCell Dissociation Buffer(Invitrogen社製)を用いて回収した。800rpm、3分の遠心後、残渣の細胞を8%Sucrose含有20mM HEPES/Tris Buffer(pH7.4)+proteinase inhibitor(Roche社製)に懸濁し、超音波を用いて破砕した。4000rpm、4℃、10分の遠心後、上清を48000rpm(125000G)、4℃、3時間、超遠心し、残渣を膜画分として回収した。
膜画分は160mM NaCl、5%Glycerol含有20mM HEPES/Tris Bufferに再懸濁し、BCA assay(Thermo Scientific Pierce社製)にて蛋白質濃度を定量後、使用するまで−80℃に保存した。
(3) Preparation of membrane fraction HEK293 / rNPC1L1 stably expressing cells are seeded on φ150 mm dish (Nunc), cultured in DMEM (Nacalai tesque) + 10% FBS (Gibco) until confluent. The cells after treatment for 24 hours at a concentration of 4 mM Sodium Butyrate (manufactured by Sigma Aldrich) were collected using a Cell Dissociation Buffer (manufactured by Invitrogen). After centrifugation at 800 rpm for 3 minutes, the remaining cells were suspended in 20 mM HEPES / Tris Buffer (pH 7.4) + proteinase inhibitor (Roche) containing 8% sucrose and disrupted using ultrasonic waves. After centrifugation at 4000 rpm, 4 ° C. for 10 minutes, the supernatant was ultracentrifuged at 48000 rpm (125000 G), 4 ° C. for 3 hours, and the residue was collected as a membrane fraction.
The membrane fraction was resuspended in 20 mM HEPES / Tris Buffer containing 160 mM NaCl and 5% Glycerol, and the protein concentration was quantified with BCA assay (manufactured by Thermo Scientific Pierce) and stored at −80 ° C. until use.

(4)結合阻害実験
96well plate(Nunc社製)に最終濃度25nM [H]Ezetimibe−glucuronide(American Radiolabeled Chemicals, Inc.製)、1.25mg/ml HEK/rNPC1L1由来膜蛋白質、各濃度の被験物質を緩衝液A(26mM NaHCO、0.96mM NaHPO、5mM HEPES、5.5mM Glucose、117mM NaCl、5.4mM KCl、0.03% Sodium taurocholate、0.05% Digitonin、pH7.4)に加えTotal volume 30μlとなるよう調製し、室温、1時間反応させた。反応液はHarvester(PerkinElmer社製)を用いてUniFilter−96 GF/C(PerkinElmer社製)にトラップし、ミリQ水(ミリポア社製)を用いて遊離[H]Ezetimibe−glucuronideを洗浄した。乾燥後、Microscint−20(PerkinElmer社製)を15μl/well添加し、Topcount(PerkinElmer社製)によりrNPC1L1と結合した[H]Ezetimibe−glucuronideの放射活性を測定した。
(4) Binding inhibition experiment 96 well plate (manufactured by Nunc) with final concentration of 25 nM [ 3 H] Ezetimibe-glucuronide (manufactured by American Radiolabeled Chemicals, Inc.), 1.25 mg / ml HEK / rNPC1L1-derived membrane protein The substance was added to buffer A (26 mM NaHCO 3 , 0.96 mM NaH 2 PO 4 , 5 mM HEPES, 5.5 mM Glucose, 117 mM NaCl, 5.4 mM KCl, 0.03% Sodium taurocholate, 0.05% Digitonin, pH 7.4). ) And a total volume of 30 μl, and reacted at room temperature for 1 hour. The reaction solution was trapped in UniFilter-96 GF / C (manufactured by PerkinElmer) using Harvester (manufactured by PerkinElmer), and free [ 3 H] Ezetimibe-glucuronide was washed using MilliQ water (manufactured by Millipore). After drying, 15 μl / well of Microscint-20 (PerkinElmer) was added, and the radioactivity of [ 3 H] Ezetimibe-glucuronide bound to rNPC1L1 was measured with Topcount (PerkinElmer).

(5)結果
クロサルノコシカケから抽出し、単離された新規ステロール系化合物(化学式(I)の化合物)は、ジメチルスルホキシド(DMSO)に溶解し、最終濃度4μMから12段階の3倍希釈系列を作製し、上記の手順で放射活性を測定し、その結果からIC50を算出した。IC50は35.6μMと低濃度でNPC1L1とエゼチミブの結合を阻害した。
(5) Results The novel sterol compound (the compound of the chemical formula (I)) extracted and isolated from the black salmon mushroom is dissolved in dimethyl sulfoxide (DMSO), and a 12-fold three-fold dilution series is prepared from a final concentration of 4 μM. Then, the radioactivity was measured by the above procedure, and IC50 was calculated from the result. IC50 inhibited the binding of NPC1L1 and ezetimibe at a low concentration of 35.6 μM.

IC50を算出した希釈系列の阻害を図1に示す。
クロサルノコシカケから単離した新規ステロール系化合物は、エゼチミブがNPC1L1に結合する反応を強く抑制した。従ってエゼチミブと同様に、NPC1L1の機能を阻害し、コレステロールの腸管吸収を阻害する。
The inhibition of the dilution series for which the IC50 was calculated is shown in FIG.
The novel sterol compound isolated from Black Sarcophagus strongly inhibited the reaction of ezetimibe binding to NPC1L1. Therefore, like ezetimibe, it inhibits the function of NPC1L1 and inhibits intestinal absorption of cholesterol.

(試験2:高コレステロール血症ラットを用いたコレステロール低下試験)
本発明の化合物を含む抽出物(製造例に記載したヘキサン層、中間層、80%アセトニトリル層)を用いて、高コレステロール含有食餌を摂取した場合に発生する高コレステロール血症に対する治療効果を確認した。
(Test 2: Cholesterol reduction test using hypercholesterolemic rats)
Using the extract containing the compound of the present invention (hexane layer, intermediate layer, 80% acetonitrile layer described in Production Examples), the therapeutic effect on hypercholesterolemia that occurs when a high cholesterol-containing diet is ingested was confirmed. .

1.試験動物
1週間の馴化後、体重測定を行い、層別連続無作為化法により群分けした8週齢のWistar雄ラット(日本SLC)を実験に供した。
高コレステロール血症は、高コレステロール食(CRF−1を元に1%コレステロール、0.5%コール酸を添加;オリエンタル酵母工業株式会社)を与え、誘導した。高コレステロール血症を確認するため、通常食(CRF−1;オリエンタル酵母工業株式会社)を与えたノーマル群を設定した。
群設定は、通常食を与えたノーマル群に加え、高コレステロール食を与えて、高コレステロール血症を誘導した状態にコーン油を投与したコントロール群、エゼチミブ(コスモバイオ株式会社)0.3mg/kgを投与した陽性対照のエゼチミブ群、上記方法で製造したクロサルノコシカケヘキサン抽出部(分離前)、ヘキサン層、中間層、80%アセトニトリル層を各500mg/kg投与した(各群6匹の設定)。
1. Test animals After acclimatization for 1 week, body weights were measured, and 8-week-old Wistar male rats (Japan SLC) grouped by stratified continuous randomization were used for the experiment.
Hypercholesterolemia was induced by giving a high cholesterol diet (1% cholesterol and 0.5% cholic acid added based on CRF-1; Oriental Yeast Co., Ltd.). In order to confirm hypercholesterolemia, a normal group fed with a normal diet (CRF-1; Oriental Yeast Co., Ltd.) was set up.
The group setting is a control group in which corn oil is administered in a state in which hypercholesterolemia is induced in addition to a normal group given a normal diet, 0.3 mg / kg ezetimibe (Cosmo Bio Inc.) The ezetimibe group of the positive control to which was administered, the black sarcoma mushroom hexane extraction part (before separation), the hexane layer, the intermediate layer, and the 80% acetonitrile layer produced by the above method were each administered at 500 mg / kg (setting of 6 animals in each group).

2.試験方法
通常食、高コレステロール食、及び水は3日間自由摂取させ、被験物質はコーン油に溶解させ、試験開始の2日目から1日1回、2日間(初日は投与なし)、胃ゾンデを用いて強制経口投与した(2ml/kg)。ノーマル群及びコントロール群はコーン油を投与した。飼育は個別飼育(1匹/ケージ)とし、3日間の摂餌量を記録した。また、被験物質投与開始の2日目に床敷(パルソフト;オリエンタル酵母工業株式会社)を交換した。血液は、被験物質の最終投与から2時間絶食させた後(水は自由摂取)、ジエチルエーテル麻酔下、腹部大動脈からヘパリン処理した真空採血管(テルモ株式会社)を用いて回収した。回収した血液は、直ちに3,000rpm、15分、4℃の条件下で遠心分離し、得られた血漿を分析するまで−80℃に保存した。血漿中コレステロール量は、コレステロールEテストワコー(和光純薬工業株式会社)、中性脂肪はトリグリセライドEテストワコー(和光純薬工業株式会社)を用いて測定した。
2. Test method Regular diet, high-cholesterol diet, and water are allowed to freely take for 3 days, the test substance is dissolved in corn oil, once a day for 2 days (no administration on the first day) from the second day of the test, stomach tube Forcibly orally (2 ml / kg). The normal group and the control group were administered corn oil. The breeding was individual breeding (1 animal / cage), and food intake for 3 days was recorded. In addition, the floor (Palsoft; Oriental Yeast Co., Ltd.) was replaced on the second day after the start of test substance administration. The blood was fasted for 2 hours after the final administration of the test substance (water was freely ingested) and then collected using a vacuum blood collection tube (Terumo Corporation) heparinized from the abdominal aorta under diethyl ether anesthesia. The collected blood was immediately centrifuged at 3,000 rpm for 15 minutes at 4 ° C., and the obtained plasma was stored at −80 ° C. until analysis. The amount of cholesterol in plasma was measured using Cholesterol E Test Wako (Wako Pure Chemical Industries, Ltd.), and the neutral fat was measured using Triglyceride E Test Wako (Wako Pure Chemical Industries, Ltd.).

3.試験結果
結果は全て平均値±S.Eで表記した。統計解析はエクセル統計2010を使用し、ノーマル群を除いた高コレステロール食摂取の5群で行った。各測定データは一次元配置分散分析及びDunnettの多重検定を行った。有意水準はいずれの場合も両側5%未満とした。
血中総コレステロールの測定結果を図2、血中トリグリセライドの測定結果を図3に示す。試験の結果、高コレステロール食を摂取させた5群間の摂餌量に差はなく、また体重に変動がなかった。このことから、高コレステロール血症の誘導は群間差なく行われたものと評価した。
血中コレステロールは、陽性対照のエゼチミブ投与群(Eze)、分離前群及び80%アセトニトリル層群(ACN層)においてコントロール群の血漿中コレステロールと比較して有意差が認められ、コレステロール低下作用が明らかとなった。ヘキサン層(HEX層)、中間層は有意なコレステロール低下が認められなかった。
また、中性脂肪を測定した結果、コレステロールの測定結果と同様に、分離前群及び80%アセトニトリル群において有意差が認められた。
したがって、クロサルノコシカケから単離した化学式(I)の化合物を含む層(ACN層)は血漿中のコレステロールの低下作用と中性脂肪の低下作用を有していることが明らかとなった。
以上の試験結果から、NPC1L1の阻害作用を有する新規ステロール系化合物化学式(I)の化合物は、食餌性高コレステロール血症及び高脂血症の改善剤として有用であることが明らかとなった。
3. Test results All results are mean ± S. Indicated by E. Statistical analysis was performed on 5 groups with high cholesterol diet intake, excluding the normal group, using Excel Statistics 2010. Each measurement data was subjected to a one-dimensional analysis of variance and Dunnett's multiple test. The significance level was less than 5% on both sides in all cases.
The measurement result of blood total cholesterol is shown in FIG. 2, and the measurement result of blood triglyceride is shown in FIG. As a result of the test, there was no difference in food intake among the five groups fed with a high cholesterol diet, and there was no change in body weight. From this, it was evaluated that induction of hypercholesterolemia was performed without any difference between groups.
Blood cholesterol was significantly different from the plasma cholesterol of the control group in the positive control ezetimibe administration group (Eze), the pre-separation group and the 80% acetonitrile layer group (ACN layer), and the cholesterol lowering effect was clear It became. No significant cholesterol lowering was observed in the hexane layer (HEX layer) and the intermediate layer.
Moreover, as a result of measuring neutral fat, a significant difference was observed between the pre-separation group and the 80% acetonitrile group, similar to the cholesterol measurement result.
Therefore, it was revealed that the layer (ACN layer) containing the compound of the formula (I) isolated from black Sarcophagus has a cholesterol lowering action and a triglyceride lowering action in plasma.
From the above test results, it was revealed that the novel sterol compound compound (I) having an inhibitory action on NPC1L1 is useful as an agent for improving dietary hypercholesterolemia and hyperlipidemia.

(試験3:Caco−2細胞を用いたコレステロールの細胞内取り込み阻害試験)
ヒト大腸がん由来細胞株Caco−2細胞を用いて試験を行った。
1.レンチウイルス溶液及びCaco2/mock、Caco2/rNPC1L1安定発現細胞の作製
レンチウイルス用ベクターpCDH-CMV-MCS-EF1-Puro(System Biosciences)のSwaI、SgfIサイトを利用して、同制限酵素サイトを付加したrNPC1L1全長をPCR法にて増幅し、サブクローニングした(以下、pCDH-rNPC1L1とする)。pCDH-rNPC1L1、エンベロープベクターのpMD2.G(Addgene)、パッキングベクターのpsPAX2(Addgene)の3種のベクターをリポフェクション用試薬LTX(invitrogen)を用いて293T(ATCC)細胞にトランスフェクションし、96時間後に培地を回収した。2500rpm、10分の遠心を2回行い、得られた上清を0.45μmのフィルター(ミリポア)を通し、レンチウイルス溶液を作製した。
ヒト大腸癌由来Caco2細胞(ATCC)にレンチウイルス溶液を添加して感染させ、更に限界希釈法を用いて最終濃度5μg/mlのpuromycin(Sigma Aldrich)にてセレクションを行いCaco2/rNPC1L1安定発現細胞の単一クローンを作製した。また、同様の方法よりインサートDNAを含まないpCDH-CMV-MCS-EF1-Puroベクターを用いて単一クローンを作製し、Caco2/mockとした。
(Test 3: Inhibition test of cholesterol uptake using Caco-2 cells)
The test was performed using human colon cancer-derived cell line Caco-2 cells.
1. Preparation of Lentiviral Solution and Caco2 / mock, Caco2 / rNPC1L1 Stable Expression Cells Using the SwaI and SgfI sites of the lentiviral vector pCDH-CMV-MCS-EF1-Puro (System Biosciences), the same restriction enzyme sites were added. The full length of rNPC1L1 was amplified by PCR and subcloned (hereinafter referred to as pCDH-rNPC1L1). Three vectors, pCDH-rNPC1L1, envelope vector pMD2.G (Addgene) and packing vector psPAX2 (Addgene) were transfected into 293T (ATCC) cells using lipofection reagent LTX (invitrogen), and 96 hours later The medium was collected. Centrifugation was performed twice at 2500 rpm for 10 minutes, and the obtained supernatant was passed through a 0.45 μm filter (Millipore) to prepare a lentivirus solution.
Infection of human colon cancer-derived Caco2 cells (ATCC) with the addition of lentivirus solution, and further selection using puromycin (Sigma Aldrich) with a final concentration of 5 μg / ml using limiting dilution method, stable expression of Caco2 / rNPC1L1 cells A single clone was made. In addition, a single clone was prepared using the pCDH-CMV-MCS-EF1-Puro vector containing no insert DNA by the same method, and designated as Caco2 / mock.

2−1.[3H]ラベルコレステロールを用いた評価試験
Caco2/mock及びCaco2/rNPC1L1安定発現細胞のそれぞれを12well plate(Falcon)に5×105 cells/wellとなるよう播種し、2日置きに培地DMEM+10%FBSを交換して、オーバーコンフルエントの状態を14日間維持し、小腸様細胞に分化させた。DMEMにて細胞を洗浄後、最終濃度2mMタウロコール酸ナトリウム(Wako)、50μMフォスファチジルコリン(Sigma Aldrich)、1μMコレステロール(Sigma Aldrich)、1μCi/ml[3H]コレステロール(PerkinElmer)、各濃度のEzetimibeあるいは化学式(I)の化合物を含有したDMEMミセル溶液を1ml/well添加し、37℃、1時間、処理した。1ml/well PBS+にて細胞を2回洗浄後、0.1%ドデシル硫酸リチウム(WAKO)、0.2N水酸化ナトリウム(Nacalai tesque)含有蒸留水を1ml/well添加し、室温48時間処理後、BCA assayにて蛋白質濃度を測定した。また、その細胞溶解液100μlを、2mlのクリアゾルII(Nacalai tesque)に加え、液体シンチレーションカウンター(ALOKA)にて総[3H]コレステロールの放射活性を測定し、蛋白質当りの量に換算して取り込み量とした。
2-1. Evaluation test using [ 3 H] labeled cholesterol
Each of the Caco2 / mock and Caco2 / rNPC1L1 stably expressing cells is seeded on a 12-well plate (Falcon) at 5 × 10 5 cells / well, and the medium DMEM + 10% FBS is changed every 2 days. The state was maintained for 14 days and differentiated into small intestine-like cells. After washing the cells with DMEM, final concentrations of 2 mM sodium taurocholate (Wako), 50 μM phosphatidylcholine (Sigma Aldrich), 1 μM cholesterol (Sigma Aldrich), 1 μCi / ml [ 3 H] cholesterol (PerkinElmer), 1 ml / well of DMEM micelle solution containing Ezetimibe or the compound of formula (I) was added and treated at 37 ° C. for 1 hour. After washing the cells twice with 1 ml / well PBS +, add 1 ml / well of 0.1% lithium dodecyl sulfate (WAKO) and 0.2N sodium hydroxide (Nacalai tesque) in distilled water and treat for 48 hours at room temperature. The protein concentration was measured. In addition, add 100 μl of the cell lysate to 2 ml of Clearsol II (Nacalai tesque), measure the radioactivity of total [ 3 H] cholesterol using a liquid scintillation counter (ALOKA), and convert it into an amount per protein. The amount.

2−2.結果
Caco2/mock及びCaco2/rNPC1L1細胞それぞれに対し、溶媒を添加したContorol群、最終濃度3、10、30μM添加したEzetimibe群、最終濃度1、3、10、30μM添加した化合物I群の総[3H]コレステロールの測定結果を下記図4に示す。
Ezetimibe及び化学式(I)の化合物添加群は、mock及びrNPC1L1細胞のそれぞれのコントロールと比較し、いずれも取り込まれた[3H]コレステロール量が有意に減少し、コレステロール取り込みを顕著に抑制した。
2-2. result
For each of the Caco2 / mock and Caco2 / rNPC1L1 cells, the total of the Contorol group to which the solvent was added, the Ezetimibe group to which the final concentrations of 3, 10, and 30 μM were added, and the compound I group to which the final concentrations of 1, 3, 10, and 30 μM were added [ 3 H The measurement results of cholesterol are shown in FIG. 4 below.
Ezetimibe and the compound addition group of chemical formula (I) both significantly reduced the amount of [ 3 H] cholesterol incorporated and markedly suppressed cholesterol uptake compared to the respective controls of mock and rNPC1L1 cells.

3−1.[3H]ラベルコレステロールエステルを用いた評価試験
Caco2/mock及びCaco2/rNPC1L1安定発現細胞を12well plate(Falcon)に5×105 cells/wellとなるよう播種し、2日置きに培地DMEM+10%FBSを交換して、オーバーコンフルエントの状態を14日間維持し、小腸様細胞に分化させた。DMEMにて細胞を洗浄後、最終濃度5mMタウロコール酸ナトリウム(Wako)、500μMオレイン酸(Sigma Aldrich)、10μMコレステロール(Sigma Aldrich)、1μCi/ml[3H]コレステロール(PerkinElmer)、各濃度の被験物質を含有したDMEMミセル溶液を1ml/well添加し、37℃、1時間、処理した。DMEMにて洗浄後、無血清用カクテルITS(Thermo Fisher Scientific)含有DMEMに交換し、更に37℃、8時間、インキュベートし、エステル化を誘導した。PBS+で細胞を洗浄後、ヘキサン:イソプロパノール(3:2)(Nacalai tesque)混合液を用いて細胞から脂質を抽出し、クロロホルム:メタノール(2:1)(Nacalai tesque)に置換後、全量をTLC(Roche)にスポットし、ヘキサン:ジエチルエーテル:酢酸(60:40:1)(Nacalai tesque)を用いて展開した。展開したTLCはヨウ素(Nacalai tesque)を用いて発色させ、分離した[3H]コレステロール、[3H]コレステロールエステルをかきとり、クリアゾルII(Nacalai tesque)に浸し、液体シンチレーションカウンター(ALOKA)を用いて放射活性を測定した。
また、脂質抽出後の細胞は、0.1%ドデシル硫酸リチウム(WAKO)、0.2N水酸化ナトリウム(Nacalai tesque)含有蒸留水を添加し、室温48時間処理後、BCA assayにて蛋白質濃度を測定した。細胞中に取り込まれ、エステル化されたコレステロールを蛋白質当りの量に換算して取り込み量とした。
3-1. Evaluation test using [ 3 H] labeled cholesterol ester
Caco2 / mock and Caco2 / rNPC1L1 stably expressing cells are seeded on a 12-well plate (Falcon) at 5 × 10 5 cells / well, and the medium DMEM + 10% FBS is changed every 2 days to ensure overconfluence. Maintained for 14 days and differentiated into small intestine-like cells. After washing cells with DMEM, final concentrations of 5 mM sodium taurocholate (Wako), 500 μM oleic acid (Sigma Aldrich), 10 μM cholesterol (Sigma Aldrich), 1 μCi / ml [ 3 H] cholesterol (PerkinElmer), test substances at each concentration 1 ml / well of DMEM micelle solution containing was added and treated at 37 ° C. for 1 hour. After washing with DMEM, the sample was replaced with serum-free cocktail ITS (Thermo Fisher Scientific) -containing DMEM, and further incubated at 37 ° C. for 8 hours to induce esterification. After washing the cells with PBS +, lipids were extracted from the cells using a mixture of hexane: isopropanol (3: 2) (Nacalai tesque) and replaced with chloroform: methanol (2: 1) (Nacalai tesque). Spotted on (Roche) and developed using hexane: diethyl ether: acetic acid (60: 40: 1) (Nacalai tesque). The developed TLC is colored with iodine (Nacalai tesque), scraped the separated [ 3 H] cholesterol and [ 3 H] cholesterol ester, soaked in Clearsol II (Nacalai tesque), and using a liquid scintillation counter (ALOKA) Radioactivity was measured.
In addition, 0.1% lithium dodecyl sulfate (WAKO) and 0.2N sodium hydroxide (Nacalai tesque) -containing distilled water were added to the cells after lipid extraction, and after treatment for 48 hours at room temperature, the protein concentration was measured by BCA assay. Cholesterol taken up into cells and esterified was converted to the amount per protein and taken as the amount taken up.

3−2.結果
Caco2/mock及びCaco2/rNPC1L1細胞それぞれに対し、溶媒を添加したContorol群、最終濃度3、10、30μM添加したEzetimibe群、最終濃度1、3、10、30μM添加した化合物I群の [3H]コレステロールエステル量の測定結果を下記図5に示す。
Ezetimibe及び化学式(I)の化合物添加群は、mock及びrNPC1L1細胞のそれぞれのコントロールと比較し、いずれもコレステロールを細胞内に取り込んだ後に生成される [3H]コレステロールエステル量を濃度依存的に抑制し、細胞内へのコレステロール取り込み量を顕著に減少させた。
以上の2試験から、化学式(I)の化合物は、コレステロールの吸収部位である腸管壁の細胞であるCaco2へのコレステロールの取り込みを阻害していることが明らかとなった。
3-2. result
[ 3 H] of the Contorol group to which the solvent was added, the Ezetimibe group to which the final concentrations of 3, 10, and 30 μM were added, and the compound I group to which the final concentrations of 1, 3, 10, and 30 μM were added, respectively for the Caco2 / mock and Caco2 / rNPC1L1 cells. The measurement result of the amount of cholesterol ester is shown in FIG.
Ezetimibe and the compound addition group of chemical formula (I) suppressed the amount of [ 3 H] cholesterol ester produced after uptake of cholesterol into cells in a concentration-dependent manner, as compared with the respective controls of mock and rNPC1L1 cells. In addition, the amount of cholesterol uptake into cells was significantly reduced.
From the above two tests, it has been clarified that the compound of the formula (I) inhibits the uptake of cholesterol into Caco2, which is a cell of the intestinal tract wall which is the absorption site of cholesterol.

Claims (7)

次の化学式(I)で表される化合物。
A compound represented by the following chemical formula (I):
請求項1記載の化合物を含有するコレステロール吸収阻害剤。   A cholesterol absorption inhibitor comprising the compound according to claim 1. 請求項1記載の化合物を含有する高コレステロール血症改善剤。   A hypercholesterolemia-improving agent comprising the compound according to claim 1. 請求項1記載の化合物を含有する高脂血症改善剤。   The hyperlipidemia improving agent containing the compound of Claim 1. 請求項1記載の化合物を含有する医薬組成物。   A pharmaceutical composition comprising the compound according to claim 1. 請求項1記載の化合物を含有する化粧品。   A cosmetic comprising the compound according to claim 1. 請求項1記載の化合物を添加した飲食品。   The food-drinks which added the compound of Claim 1.
JP2014142190A 2014-03-20 2014-07-10 Novel sterol compound and cholesterol absorption inhibitor containing the same Active JP6430736B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014142190A JP6430736B2 (en) 2014-03-20 2014-07-10 Novel sterol compound and cholesterol absorption inhibitor containing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014058212 2014-03-20
JP2014058212 2014-03-20
JP2014142190A JP6430736B2 (en) 2014-03-20 2014-07-10 Novel sterol compound and cholesterol absorption inhibitor containing the same

Publications (2)

Publication Number Publication Date
JP2015193581A true JP2015193581A (en) 2015-11-05
JP6430736B2 JP6430736B2 (en) 2018-11-28

Family

ID=54432986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014142190A Active JP6430736B2 (en) 2014-03-20 2014-07-10 Novel sterol compound and cholesterol absorption inhibitor containing the same

Country Status (1)

Country Link
JP (1) JP6430736B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08259590A (en) * 1995-03-23 1996-10-08 Meiji Seika Kaisha Ltd Therapeutic agent for hyperlipemia
JP2006241106A (en) * 2005-03-04 2006-09-14 Geol Kagaku Kk Antiinflammatory agent containing triterpene compound
JP2009530398A (en) * 2006-03-22 2009-08-27 プレジデント アンド フェロウズ オブ ハーバード カレッジ Methods and compositions for treating hypercholesterolemia and atherosclerosis
JP2013241392A (en) * 2012-04-23 2013-12-05 Fancl Corp Absorption inhibitor for cholesterol
JP2015098465A (en) * 2013-10-16 2015-05-28 株式会社ファンケル Cholesterol absorption inhibitor
CN104873521A (en) * 2014-02-27 2015-09-02 天津药物研究院 11 beta-hydroxysteroid dehydrogenase inhibitor and its pharmaceutical composition and use

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08259590A (en) * 1995-03-23 1996-10-08 Meiji Seika Kaisha Ltd Therapeutic agent for hyperlipemia
JP2006241106A (en) * 2005-03-04 2006-09-14 Geol Kagaku Kk Antiinflammatory agent containing triterpene compound
JP2009530398A (en) * 2006-03-22 2009-08-27 プレジデント アンド フェロウズ オブ ハーバード カレッジ Methods and compositions for treating hypercholesterolemia and atherosclerosis
JP2013241392A (en) * 2012-04-23 2013-12-05 Fancl Corp Absorption inhibitor for cholesterol
JP2015098465A (en) * 2013-10-16 2015-05-28 株式会社ファンケル Cholesterol absorption inhibitor
CN104873521A (en) * 2014-02-27 2015-09-02 天津药物研究院 11 beta-hydroxysteroid dehydrogenase inhibitor and its pharmaceutical composition and use

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
GRIENKE, ULRIKE ET AL.: "Pharmacophore-based discovery of FXR-agonists. Part II: Identification of bioactive triterpenes from", BIORGANIC AND MEDICINAL CHEMISTRY, vol. 19, no. 22, JPN6018040984, 2011, pages 6779 - 6791, XP028328577, ISSN: 0003902256, DOI: 10.1016/j.bmc.2011.09.039 *
YING, YOU-MIN ET AL.: "Lanostane triterpenes from Ceriporia lacerate HS-ZJUT-C13A, a fungal endophyte of Huperzia serrata", HELVETICA CHIMICA ACTA, vol. 96, no. 11, JPN6018040982, 2013, pages 2092 - 2097, XP071270928, ISSN: 0003902254, DOI: 10.1002/hlca.201300002 *
YOSHIKAWA, KAZUKO ET AL.: "Five lanostane triterpenoids and three saponins from the fruit body of laetiporus versisporus", CHEMICAL AND PHARMACEUTICAL BULLETIN, vol. 48, no. 10, JPN6018040983, 2000, pages 1418 - 1421, ISSN: 0003902255 *

Also Published As

Publication number Publication date
JP6430736B2 (en) 2018-11-28

Similar Documents

Publication Publication Date Title
Shin et al. 3-Methylethergalangin isolated from Alpinia officinarum inhibits pancreatic lipase
Jeong et al. Hempseed oil induces reactive oxygen species-and C/EBP homologous protein-mediated apoptosis in MH7A human rheumatoid arthritis fibroblast-like synovial cells
US20030153538A1 (en) Antitumor agent
Park et al. Relationships between chemical structures and functions of triterpene glycosides isolated from sea cucumbers
Nguyen et al. Anti-inflammatory terpenylated coumarins from the leaves of Zanthoxylum schinifolium with α-glucosidase inhibitory activity
EA026683B1 (en) CHOLESTEROL METABOLITE, 5-CHOLESTEN-3β-25-DIOL, DISULFATE (25HCDS) FOR THERAPY OF METABOLIC DISORDERS, HYPERLIPIDEMIA, DIABETES, FATTY LIVER DISEASES AND ATHEROSCLEROSIS
Liu et al. Components characterization of total tetraploid jiaogulan (Gynostemma pentaphyllum) saponin and its cholesterol-lowering properties
Lee et al. Onion peel extract increases hepatic low-density lipoprotein receptor and ATP-binding cassette transporter A1 messenger RNA expressions in Sprague-Dawley rats fed a high-fat diet
Rønning et al. Ellagic acid and urolithin A modulate the immune response in LPS-stimulated U937 monocytic cells and THP-1 differentiated macrophages
Ku et al. Hypolipidemic effect of a blue-green alga (Nostoc commune) is attributed to its nonlipid fraction by decreasing intestinal cholesterol absorption in C57BL/6J Mice
Xu et al. Discovery of potent 17β-hydroxywithanolides for castration-resistant prostate cancer by high-throughput screening of a natural products library for androgen-induced gene expression inhibitors
JP2024001049A (en) Method for inhibiting mcm complex formation and method for screening for anti-cancer compounds
Deng et al. Advances in research on the preparation and biological activity of maslinic acid
US6977270B2 (en) Tocotrienolquinone cyclization product with an anti-hypercholesterol effect
Danesi et al. Phytosterol supplementation reduces metabolic activity and slows cell growth in cultured rat cardiomyocytes
Nga et al. Ethanol extract of male Carica papaya flowers demonstrated non‐toxic against MCF‐7, HEP‐G2, HELA, NCI‐H460 cancer cell lines
Nhiem et al. A potential inhibitor of rat aortic vascular smooth muscle cell proliferation from the pollen of Typha angustata
JP6430736B2 (en) Novel sterol compound and cholesterol absorption inhibitor containing the same
Kang et al. Anti-atherosclerosis effect of pine nut oil in high-cholesterol and high-fat diet fed rats and its mechanism studies in human umbilical vein endothelial cells
Yang et al. Alantolactone suppresses APOC3 expression and alters lipid homeostasis in L02 liver cells
JP6320861B2 (en) Cholesterol absorption inhibitor
Chiba et al. Fomiroid A, a novel compound from the mushroom Fomitopsis nigra, inhibits NPC1L1-mediated cholesterol uptake via a mode of action distinct from that of ezetimibe
WO2005063233A1 (en) Composition for preventing and treating hepatoma
JP6054199B2 (en) Cholesterol absorption inhibitor
Nam et al. The Anti-hyperlipidemic Effect and Constituents of the 19${\alpha} $-Hydroxyursane-type Triterpenoid fraction Obtained from the Leaves of Rusus crataegifolius

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180403

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180516

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180516

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180803

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180803

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20180810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181023

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181101

R150 Certificate of patent or registration of utility model

Ref document number: 6430736

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250