JP2015193558A - Anti-inflammatory agent containing stilbene analogue compound as active ingredient - Google Patents

Anti-inflammatory agent containing stilbene analogue compound as active ingredient Download PDF

Info

Publication number
JP2015193558A
JP2015193558A JP2014072007A JP2014072007A JP2015193558A JP 2015193558 A JP2015193558 A JP 2015193558A JP 2014072007 A JP2014072007 A JP 2014072007A JP 2014072007 A JP2014072007 A JP 2014072007A JP 2015193558 A JP2015193558 A JP 2015193558A
Authority
JP
Japan
Prior art keywords
compound
inflammatory agent
formula
propolis
active ingredient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014072007A
Other languages
Japanese (ja)
Other versions
JP6175399B2 (en
Inventor
茂則 熊澤
Shigenori Kumazawa
茂則 熊澤
孝博 細谷
Takahiro Hosoya
孝博 細谷
吉積 一真
Kazuma Yoshizumi
一真 吉積
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fancl Corp
University of Shizuoka
Original Assignee
Fancl Corp
University of Shizuoka
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fancl Corp, University of Shizuoka filed Critical Fancl Corp
Priority to JP2014072007A priority Critical patent/JP6175399B2/en
Publication of JP2015193558A publication Critical patent/JP2015193558A/en
Application granted granted Critical
Publication of JP6175399B2 publication Critical patent/JP6175399B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a compound useful as an anti-inflammatory agent and to provide an anti-inflammatory agent using the same.SOLUTION: The invention provides an anti-inflammatory agent containing as an active ingredient a stilbene compound which can be obtained from propolis from Senegal.

Description

本発明は、スチルベン類縁化合物を有効成分とする抗炎症剤に関する。   The present invention relates to an anti-inflammatory agent comprising a stilbene analog as an active ingredient.

スチルベン(stilbene)とは、エチレンエチレン構造をはさんで2つのベンゼン環が結合した芳香族化合物である。色素や染料としてアゾ染料が著名である。また天然に存在するスチルベン化合物として、フタバガキ科植物のヴァテリア・インディカに含まれるスチルベン4量体やレスベラトロールが知られている(特許文献1)   Stilbene is an aromatic compound in which two benzene rings are bonded with an ethylene-ethylene structure in between. Azo dyes are prominent as pigments and dyes. Further, as a naturally occurring stilbene compound, a stilbene tetramer and resveratrol contained in the genus Vateria indica are known (Patent Document 1).

本発明者らは、天然物由来の化合物の生理機能を研究する過程で、セネガル産のプロポリスに天然では、従来知られていないスチルベン化合物を見出し、この利用を検討している。   In the course of studying physiological functions of compounds derived from natural products, the present inventors have found a stilbene compound that has not been known in nature in the propolis of Senegal and is considering its use.

特開2002−173490号公報JP 2002-173490 A

本発明の課題は、抗炎症剤として有用な化合物及びこれを用いた抗炎症剤を提供することである。   An object of the present invention is to provide a compound useful as an anti-inflammatory agent and an anti-inflammatory agent using the same.

本発明者らは、セネガル産のプロポリスから強い抗炎症作用を有するスチルベン類縁化合物を単離し、これを抗炎症剤として利用できることを見出し、本発明を完成するに至った。   The present inventors have isolated a stilbene-related compound having a strong anti-inflammatory action from propolis produced in Senegal, found that it can be used as an anti-inflammatory agent, and have completed the present invention.

すなわち、本発明は以下の構成である。
(1)セネガル産プロポリスから得ることができるスチルベン化合物を有効成分とする抗炎症剤。
(2)スチルベン化合物が、式1〜3であらわされるいずれかの物質である(1)記載の抗炎症剤。
式1
式2
式3
That is, the present invention has the following configuration.
(1) An anti-inflammatory agent comprising a stilbene compound obtainable from Senegalian propolis as an active ingredient.
(2) The anti-inflammatory agent according to (1), wherein the stilbene compound is any substance represented by formulas 1 to 3.
Formula 1
Formula 2
Formula 3

本発明により、抗炎症剤として有効な化合物が提供される。   The present invention provides a compound effective as an anti-inflammatory agent.

ポプラ、バッカリス、セネガル産プロポリスのエタノール抽出物のHPLCパターンを示す。The HPLC pattern of the ethanol extract of poplar, baccaris, Senegal propolis is shown. セネガル産プロポリスの溶媒抽出物のHPLCパターンを示す。The HPLC pattern of the solvent extract of propolis from Senegal is shown. 分取クロマトで分離したフラクション6、10、11のHPLCパターンを示す。The HPLC patterns of fractions 6, 10, and 11 separated by preparative chromatography are shown. 実施例で得られる分画物を取得する工程の模式図である。It is a schematic diagram of the process of acquiring the fraction obtained in an Example. 実施例で得た分画物のDPPH試験による抗酸化効果を測定したグラフである。It is the graph which measured the antioxidant effect by the DPPH test of the fraction obtained in the Example. 実施例で得た分画物の抗炎症作用を示すグラフである。It is a graph which shows the anti-inflammatory effect of the fraction obtained in the Example. 抗炎症作用の試験における細胞死を確認した結果を示すグラフである。It is a graph which shows the result of having confirmed the cell death in the test of an anti-inflammatory action. RT−PCR法によるiNOS発現抑制作用を試験した結果を示すグラフである。It is a graph which shows the result of having tested the iNOS expression inhibitory effect by RT-PCR method. ニトロプルシドを用いたNOラジカル捕捉能を測定した結果を示すグラフである。It is a graph which shows the result of having measured NO radical scavenging ability using nitroprusside. NOラジカル捕捉能が陽性であった化合物の濃度依存性を試験したグラフである。It is the graph which tested the concentration dependence of the compound whose NO radical scavenging ability was positive.

本発明は、式1〜3で表される化合物を有効成分とする発明である。
本発明の化合物は、公知の物質であって、各種植物から単離することができ、本発明者が本明細書に開示するようにセネガル産のプロポリスから溶媒抽出及びクロマトグラフィーで単離することができる。
本発明の抗炎症剤は、ヒトおよびサルなどの霊長類、マウス、ラットおよびウサギなどの齧歯類、イヌおよびネコなどのペット小動物、ならびにウシ、ウマおよびブタなどの家畜に投与することができる。
This invention is invention which uses the compound represented by Formula 1-3 as an active ingredient.
The compound of the present invention is a known substance and can be isolated from various plants, and the present inventor can isolate it by solvent extraction and chromatography from propolis produced in Senegal as disclosed herein. Can do.
The anti-inflammatory agent of the present invention can be administered to primates such as humans and monkeys, rodents such as mice, rats and rabbits, small pet animals such as dogs and cats, and domestic animals such as cattle, horses and pigs. .

本発明の抗炎症剤は、式1〜3で表される化合物、またはその塩、溶媒和物、もしくは生理学的に機能性の誘導体と、1以上の製薬上許容される担体を含む。製薬上許容される担体とは、一般的に、本発明の有効成分とは反応しない、不活性の、無毒の、固体または液体の、増量剤、希釈剤またはカプセル化材料等をいい、例えば、水、エタノール、ポリオール(例えば、グリセロール、プロピレングリコール、液体ポリエチレングリコールなど)、適切なそれらの混合物、植物性油などの溶媒または分散媒体などが挙げられる。   The anti-inflammatory agent of the present invention comprises a compound represented by formulas 1 to 3, or a salt, solvate or physiologically functional derivative thereof, and one or more pharmaceutically acceptable carriers. A pharmaceutically acceptable carrier generally refers to an inert, non-toxic, solid or liquid, bulking agent, diluent or encapsulating material that does not react with the active ingredients of the present invention, for example, Water, ethanol, polyol (eg, glycerol, propylene glycol, liquid polyethylene glycol, etc.), suitable mixtures thereof, solvents or dispersion media such as vegetable oils, and the like.

本発明の抗炎症剤は、経口あるいは非経口により、例えば、皮膚に、皮下に、粘膜に、静脈内に、動脈内に、筋肉内に、腹腔内に、膣内に、肺に、脳内に、眼に、および鼻腔内に投与される。
経口投与製剤としては、錠剤、顆粒剤、細粒剤、散剤、カプセル剤、チュアブル剤、ペレット剤、シロップ剤、液剤、懸濁剤および吸入剤などが挙げられる。
非経口投与製剤としては、坐剤、保持型浣腸剤、点滴剤、点眼剤、点鼻剤、注射剤、口腔洗浄剤ならびに軟膏、クリーム剤、ゲル剤、制御放出パッチ剤および貼付剤などの皮膚外用剤などが挙げられる。
The anti-inflammatory agent of the present invention is orally or parenterally, for example, into the skin, subcutaneously, mucous membranes, intravenously, intraarterially, intramuscularly, intraperitoneally, intravaginally, pulmonary, intracerebral. Administered to the eye and intranasally.
Examples of the preparation for oral administration include tablets, granules, fine granules, powders, capsules, chewables, pellets, syrups, solutions, suspensions and inhalants.
For parenteral administration, suppositories, retention enemas, drops, eye drops, nasal drops, injections, mouth washes, and skins such as ointments, creams, gels, controlled-release patches and patches Examples include external preparations.

本発明の抗炎症剤は薬学分野において慣用の添加剤を含んでいてもよい。そのような添加剤には、例えば、賦形剤、結合剤、崩壊剤、滑沢剤、抗酸化剤、着色剤、矯味剤などがあり、必要に応じて使用できる。長時間作用できるように徐放化するためには、既知の遅延剤等でコーティングすることもできる。賦形剤としては、例えば、カルボキシメチルセルロースナトリウム、寒天、軽質無水ケイ酸、ゼラチン、結晶セルロース、ソルビトール、タルク、デキストリン、デンプン、乳糖、白糖、ブドウ糖、マンニトール、メタ珪酸アルミン酸マグネシウム、リン酸水素カルシウム等が使用できる。結合剤としては、例えば、アラビアゴム、アルギン酸ナトリウム、エタノール、エチルセルロース、カゼインナトリウム、カルボキシメチルセルロースナトリウム、寒天、精製水、ゼラチン、デンプン、トラガント、乳糖、ヒドロキシセルロース、ヒドロキシメチルセルロース、ヒドロキシプロピルセルロース、ポリビニルピロリドン等が挙げられる。崩壊剤としては、例えば、カルボキシメチルセルロース、カルボキシメチルセルロースナトリウム、カルボキシメチルセルロースカルシウム、結晶セルロース、デンプン、ヒドロキシプロピルスターチ等が挙げられる。滑沢剤としては、例えば、ステアリン酸、ステアリン酸カルシウム、ステアリン酸マグネシウム、タルク、硬化油、ショ糖脂肪酸エステル、ロウ類等が挙げられる。抗酸化剤としては、トコフェロール、没食子酸エステル、ジブチルヒドロキシトルエン(BHT)、ブチルヒドロキシアニソール(BHA)、アスコルビン酸等が挙げられる。必要に応じてその他の添加剤や薬剤、例えば制酸剤(炭酸水素ナトリウム、炭酸マグネシウム、沈降炭酸カルシウム、合成ヒドロタルサイト等)、胃粘膜保護剤(合成ケイ酸アルミニウム、スクラルファート、銅クロロフィリンナトリウム等)を加えてもよい。   The anti-inflammatory agent of the present invention may contain additives commonly used in the pharmaceutical field. Such additives include, for example, excipients, binders, disintegrants, lubricants, antioxidants, colorants, flavoring agents, and the like, and can be used as necessary. In order to achieve sustained release so that it can act for a long time, it can also be coated with a known retarder or the like. Examples of excipients include sodium carboxymethylcellulose, agar, light anhydrous silicic acid, gelatin, crystalline cellulose, sorbitol, talc, dextrin, starch, lactose, sucrose, glucose, mannitol, magnesium aluminate metasilicate, calcium hydrogen phosphate Etc. can be used. Examples of the binder include gum arabic, sodium alginate, ethanol, ethyl cellulose, sodium caseinate, sodium carboxymethyl cellulose, agar, purified water, gelatin, starch, tragacanth, lactose, hydroxycellulose, hydroxymethylcellulose, hydroxypropylcellulose, polyvinylpyrrolidone, etc. Is mentioned. Examples of the disintegrant include carboxymethyl cellulose, carboxymethyl cellulose sodium, carboxymethyl cellulose calcium, crystalline cellulose, starch, hydroxypropyl starch and the like. Examples of the lubricant include stearic acid, calcium stearate, magnesium stearate, talc, hydrogenated oil, sucrose fatty acid ester, waxes and the like. Examples of the antioxidant include tocopherol, gallic acid ester, dibutylhydroxytoluene (BHT), butylhydroxyanisole (BHA), ascorbic acid and the like. Other additives and drugs as required, such as antacids (sodium bicarbonate, magnesium carbonate, precipitated calcium carbonate, synthetic hydrotalcite, etc.), gastric mucosa protective agents (synthetic aluminum silicate, sucralfate, copper chlorophyllin sodium, etc.) ) May be added.

実施例1
セネガル産プロポリスからの各化合物の単離と同定
(1)HPLCパターン
セネガル共和国のファティック州フンジュンで、2012年5月に採取されたプロポリスの原塊のエタノール抽出物を下記条件で、HPLCにより分析し、これまでよく知られているポプラやバッカリス由来のプロポリスのクロマトパターンと比較した。図1(C)にセネガル産プロポリスのHPLC分析の結果を示した。なお(A)は公知のポプラ由来プロポリス、(B)はバッカリス由来のプロポリスである。

〈HPLC〉条件
Column : SHISEIDO CAPCELL PAK C18 UG120 (4.6mm i.d. × 250mm)
Gradient :(A) H2O (0.1% TFA), (B) MeCN (0.1% TFA)
(B) 20-100% (0-45min)
Detection:270 nm
Flow rate:1.0 mL/min
Example 1
Isolation and identification of each compound from propolis produced in Senegal (1) HPLC pattern An HPLC extract of the propolis bulk mass collected in May 2012 in Hunjung, Fatik, Republic of Senegal under the following conditions The results were compared with the chromatograms of propolis derived from poplar and baccaris, which are well known. FIG. 1C shows the result of HPLC analysis of propolis produced in Senegal. (A) is a known poplar-derived propolis, and (B) is a baccharis-derived propolis.

<HPLC> conditions
Column : SHISEIDO CAPCELL PAK C18 UG120 (4.6mm id × 250mm)
Gradient: (A) H 2 O (0.1% TFA), (B) MeCN (0.1% TFA)
(B) 20-100% (0-45min)
Detection: 270 nm
Flow rate: 1.0 mL / min

HPLC分析の結果より、セネガル産プロポリスは、これまでよく知られているポプラやバッカリス由来のプロポリスとは、全く異なるピークパターンを示すことを確認した。   From the results of HPLC analysis, it was confirmed that propolis produced in Senegal showed a completely different peak pattern from poplar and baccharis-derived propolis well known so far.

(2)セネガル産プロポリスのエタノール抽出と液液分配抽出
セネガル産プロポリスの原塊41.2gを細かく砕き、EtOH 500mLに浸し、1日間室温で撹拌抽出した。その後、吸引濾過を用いて不溶固形物質を除き、得られた抽出液を減圧濃縮した。抽出物の収量は29.0gであった。
このEtOH抽出物は、300mLの純水に混濁し、300mLヘキサンを加えた。分液ロートを用いて混和させた後上層を回収し、再び300mLのヘキサンを加えて同操作を行った。回収した上層をヘキサン抽出物とした。次に、酢酸エチルをヘキサンと同様の操作で分配し、上層を酢酸エチル抽出物、下層を水抽出物とした。それぞれの収量は、ヘキサン抽出物 (7.0g)、水抽出物 (0.8g)、酢酸エチル抽出物 (8.8g) であった。
それぞれの抽出物を、以下の条件でHPLC分析した結果を図2に示す。(A)はヘキサン層、(B)は水層、(C)酢酸エチル層のパターンを示す。

〈HPLC〉条件
Column : SHISEIDO CAPCELL PAK C18 UG120 (4.6mm i.d. × 250mm)
Gradient :(A) H2O (0.1% TFA), (B) MeCN (0.1% TFA)
(B) 20-100% (0-45min)
Detection :270nm
Flow rate :1.0mL/min
(2) Ethanol extraction and liquid-liquid partition extraction of Senegal propolis 41.2 g of Senegal propolis bulk was finely crushed, immersed in 500 mL of EtOH, and extracted by stirring at room temperature for 1 day. Thereafter, the insoluble solid material was removed using suction filtration, and the obtained extract was concentrated under reduced pressure. The extract yield was 29.0 g.
This EtOH extract was turbid in 300 mL pure water and 300 mL hexane was added. After mixing with a separatory funnel, the upper layer was recovered, and 300 mL of hexane was added again to perform the same operation. The collected upper layer was used as a hexane extract. Next, ethyl acetate was distributed in the same manner as hexane, and the upper layer was the ethyl acetate extract and the lower layer was the water extract. The respective yields were hexane extract (7.0 g), water extract (0.8 g), and ethyl acetate extract (8.8 g).
The results of HPLC analysis of each extract under the following conditions are shown in FIG. (A) shows the pattern of the hexane layer, (B) shows the pattern of the aqueous layer, and (C) the ethyl acetate layer.

<HPLC> conditions
Column : SHISEIDO CAPCELL PAK C18 UG120 (4.6mm id × 250mm)
Gradient: (A) H 2 O (0.1% TFA), (B) MeCN (0.1% TFA)
(B) 20-100% (0-45min)
Detection: 270nm
Flow rate: 1.0mL / min

(3) 酢酸エチル抽出物のシリカゲルカラムクロマトグラフィーによる粗分画
酢酸エチル抽出物8.8 gを適量のSilica gel 60にコーティングし、シリカゲルカラムクロマトグラフィー(Silica gel CC) により、以下の条件で粗分画を行い、11個のフラクション (Fr.1〜11) に分画した。

〈Slica gelカラムクロマト条件〉
Column tube Glass column (20mm i.d. × 320mm)
Stationary phase Silica gel 60N
Mobile phase (1) CHCl3 : MeOH = 10 : 0 (140mL)
(2) CHCl3 : MeOH = 9.9 : 0.1 (100mL)
(3) CHCl3 : MeOH = 9.8 : 0.2 (100mL)
(4) CHCl3 : MeOH = 9.5 : 0.5 (100mL)
(5) CHCl3 : MeOH = 9 : 1 (50mL)
(6) CHCl3 : MeOH = 5 : 5 (50mL)
(7) CHCl3 :MeOH = 0 : 10 (140mL)
(3) Rough fractionation of ethyl acetate extract by silica gel column chromatography 8.8 g of ethyl acetate extract was coated on an appropriate amount of Silica gel 60 and crude fractionation by silica gel column chromatography (Silica gel CC) under the following conditions. And fractionated into 11 fractions (Fr. 1-11).

<Slica gel column chromatography conditions>
Column tube Glass column (20mm id × 320mm)
Stationary phase Silica gel 60N
Mobile phase (1) CHCl 3 : MeOH = 10: 0 (140mL)
(2) CHCl 3 : MeOH = 9.9: 0.1 (100 mL)
(3) CHCl 3 : MeOH = 9.8: 0.2 (100 mL)
(4) CHCl 3 : MeOH = 9.5: 0.5 (100 mL)
(5) CHCl 3 : MeOH = 9: 1 (50 mL)
(6) CHCl 3 : MeOH = 5: 5 (50 mL)
(7) CHCl 3 : MeOH = 0: 10 (140mL)

(4) 分取用HPLCによる分画
Fr. 6, 10, 11を、下記の溶媒条件で分析用HPLCを用いて分析した結果を図3に示す。
次いで分取用逆相HPLCを用いてFr. 6を以下の条件でさらにFr. 6-1〜6に分画した。

〈Preparative HPLC 条件〉
Column : SHISEIDO CAPCELL PAK C18 UG120 (20mm i.d.× 250mm)
Solvent H2O : MeCN = 65 : 35 (0.1% TFA)
Flow rate : 10mL/min
Detection : 270nm
(4) Fractionation by preparative HPLC
The results of analyzing Fr. 6, 10, 11 using analytical HPLC under the following solvent conditions are shown in FIG.
Subsequently, Fr. 6 was further fractionated into Fr. 6-1 to 6 under the following conditions using preparative reverse-phase HPLC.

<Preparative HPLC conditions>
Column: SHISEIDO CAPCELL PAK C18 UG120 (20mm id × 250mm)
Solvent H 2 O: MeCN = 65: 35 (0.1% TFA)
Flow rate: 10mL / min
Detection: 270nm

分取用逆相HPLCを用いてFr. 10を以下の条件でさらにFr. 10-1〜9に分画した。

〈Preparative HPLC条件〉
Column : SHISEIDO CAPCELL PAK C18 UG120 (20mm i.d.× 250mm)
Solvent H2O : MeCN = 55: 45 (0.1% TFA)
Flow rate : 10mL/min
Detection : 270nm
Fr. 10 was further fractionated into Fr. 10-1 to 9 using the preparative reverse phase HPLC under the following conditions.

<Preparative HPLC conditions>
Column: SHISEIDO CAPCELL PAK C18 UG120 (20mm id × 250mm)
Solvent H 2 O: MeCN = 55: 45 (0.1% TFA)
Flow rate: 10mL / min
Detection: 270nm

分取用逆相HPLCを用いてFr. 11を以下の条件でさらにFr. 11-1〜6に分画した。

〈Preparative HPLC 条件〉
Column : SHISEIDO CAPCELL PAK C18 UG120 (20mm i.d.× 250mm)
Solvent H2O : MeCN = 70 : 30 (0.1% TFA)
Flow rate : 10mL/min
Detection : 270nm
Fr. 11 was further fractionated into Fr. 11-1 to 6 under the following conditions using preparative reverse phase HPLC.

<Preparative HPLC conditions>
Column: SHISEIDO CAPCELL PAK C18 UG120 (20mm id × 250mm)
Solvent H 2 O: MeCN = 70: 30 (0.1% TFA)
Flow rate: 10mL / min
Detection: 270nm

(5) 分取HPLCによる主構成成分の単離および精製
Fr. 11-2, 3, 4, 5及び10-2を下記条件で精製し、Compound 1, 2, 3, 4, 5をそれぞれ0.9, 11.3, 5.4, 3.9, 22.9 mg得た。

〈Preparative HPLC条件〉
Column : SHISEIDO CAPCELL PAK C18 UG120 (20mm i.d.× 250mm)
Solvent H2O : MeCN = 70 : 30 (0.1% TFA)
Flow rate : 10mL/min
Detection : 270nm
(5) Isolation and purification of main components by preparative HPLC
Fr. 11-2, 3, 4, 5, and 10-2 were purified under the following conditions to obtain 0.9, 11.3, 5.4, 3.9, and 22.9 mg of Compound 1, 2, 3, 4, and 5, respectively.

<Preparative HPLC conditions>
Column: SHISEIDO CAPCELL PAK C18 UG120 (20mm id × 250mm)
Solvent H 2 O: MeCN = 70: 30 (0.1% TFA)
Flow rate: 10mL / min
Detection: 270nm

Fr. 6-1, 2を下記条件で精製し、Compound 6及び7を74.4及び19.6mg得た。

〈Preparative HPLC 条件〉
Column : SHISEIDO CAPCELL PAK C18 UG120 (20mm i.d.× 250mm)
Solvent H2O : MeCN =65 : 35 (0.1% TFA)
Flow rate : 10mL/min
Detection : 270nm

Fr. 6-3 を下記条件で精製し、Compound 8を58.0 mg得た。
Fr. 6-1 and 2 were purified under the following conditions to obtain 74.4 and 19.6 mg of Compound 6 and 7.

<Preparative HPLC conditions>
Column: SHISEIDO CAPCELL PAK C18 UG120 (20mm id × 250mm)
Solvent H 2 O: MeCN = 65: 35 (0.1% TFA)
Flow rate: 10mL / min
Detection: 270nm

Fr. 6-3 was purified under the following conditions to obtain 58.0 mg of Compound 8.

〈Preparative HPLC条件〉
Column : SHISEIDO CAPCELL PAK C18 UG120 (20mm i.d.× 250mm)
Solvent H2O : MeCN =62 : 38 (0.1% TFA)
Flow rate : 10mL/min
Detection : 270nm
<Preparative HPLC conditions>
Column: SHISEIDO CAPCELL PAK C18 UG120 (20mm id × 250mm)
Solvent H 2 O: MeCN = 62: 38 (0.1% TFA)
Flow rate: 10mL / min
Detection: 270nm

Fr. 6-4 を下記条件で精製し、Compound 9を24.1 mg得た。
〈Preparative HPLC 条件〉
Column : SHISEIDO CAPCELL PAK C18 UG120 (20mm i.d.× 250mm)
Solvent H2O : MeCN = 60 : 40 (0.1% TFA)
Flow rate : 10mL/min
Detection : 270nm
Fr. 6-4 was purified under the following conditions to obtain 24.1 mg of Compound 9.
<Preparative HPLC conditions>
Column: SHISEIDO CAPCELL PAK C18 UG120 (20mm id × 250mm)
Solvent H 2 O: MeCN = 60: 40 (0.1% TFA)
Flow rate: 10mL / min
Detection: 270nm

Fr. 6-5 を下記条件で精製し、Compound 10を9.2 mg得た
〈Preparative HPLC 条件〉
Column : SHISEIDO CAPCELL PAK C18 UG120 (20mm i.d.× 250mm)
Solvent H2O : MeCN =50 : 50 (0.1% TFA)
Flow rate : 10mL/min
Detection : 270nm
Fr. 6-5 was purified under the following conditions to obtain 9.2 mg of Compound 10 <Preparative HPLC conditions>
Column: SHISEIDO CAPCELL PAK C18 UG120 (20mm id × 250mm)
Solvent H 2 O: MeCN = 50: 50 (0.1% TFA)
Flow rate: 10mL / min
Detection: 270nm

以上の分画を模式的に図4に示した。   The above fractionation is schematically shown in FIG.

(6)単離した化合物の構造解析
単離したCompound 1-10の構造を決定するため、各種機器分析を行った。Acetone-d6を溶媒として、1H-NMR、13C-NMR、HSQCおよびHMBC等のNMR測定を行った。またCompound 2, 3, 6, 7, 9に関しては、INADEQUATEもしくは、1,1-ADEQUATEのNMR測定を行った。また、各化合物のHRESIMS分析を行ったため、その条件を下に示す。

Compound 2-4, 7-10は下記条件で、MS分析を行った。
〈HRESIMS〉
Scan mode full MS scan
Ion source ESI (Positive, Negative)
Spray voltage 3.5kV (Positive), 2.0kV (Negative)
Capillary temperature 350℃

Compound 1は下記条件で、MS分析を行った。
〈HRESIMS〉
Scan mode full MS scan
Ion source ESI (Positive, Negative)
Spray voltage 2.7kV (Positive), 2.0kV (Negative)
Capillary temperature 250℃

Compound 5は下記条件で、MS分析を行った。
〈HRESIMS〉
Scan mode full MS scan
Ion source ESI (Positive, Negative)
Spray voltage 2.0kV (Positive), 2.0kV (Negative)
Capillary temperature 250℃

Compound 6は下記条件で、MS分析を行った。
〈HRESIMS〉
Scan mode full MS scan
Ion source ESI (Positive, Negative)
Spray voltage 4.0kV (Positive), 3.0kV (Negative)
Capillary temperature 400℃
(6) Structural analysis of isolated compound Various instrumental analyzes were performed to determine the structure of isolated Compound 1-10. Using Acetone-d 6 as a solvent, NMR measurements such as 1 H-NMR, 13 C-NMR, HSQC, and HMBC were performed. For Compound 2, 3, 6, 7, and 9, NMR measurement of INADEQUATE or 1,1-ADEQUATE was performed. Moreover, since the HRESIMS analysis of each compound was conducted, the conditions are shown below.

Compounds 2-4 and 7-10 were subjected to MS analysis under the following conditions.
<HRESIMS>
Scan mode full MS scan
Ion source ESI (Positive, Negative)
Spray voltage 3.5kV (Positive), 2.0kV (Negative)
Capillary temperature 350 ℃

Compound 1 was subjected to MS analysis under the following conditions.
<HRESIMS>
Scan mode full MS scan
Ion source ESI (Positive, Negative)
Spray voltage 2.7kV (Positive), 2.0kV (Negative)
Capillary temperature 250 ℃

Compound 5 was subjected to MS analysis under the following conditions.
<HRESIMS>
Scan mode full MS scan
Ion source ESI (Positive, Negative)
Spray voltage 2.0kV (Positive), 2.0kV (Negative)
Capillary temperature 250 ℃

Compound 6 was subjected to MS analysis under the following conditions.
<HRESIMS>
Scan mode full MS scan
Ion source ESI (Positive, Negative)
Spray voltage 4.0kV (Positive), 3.0kV (Negative)
Capillary temperature 400 ℃

以下上記分析等によってスチルベン類縁化合物として決定されたCompound 4(式1)、Compound 8(式2)、 Compound10(式3)の化合物の構造式の決定について説明する。
Compound 4の構造解析
Compound 4の理化学的性質は、Molecular formula C16H18O5、HR-ESI-MS (m/z) found: 289.10740 (M-H)-、calcd.: 289.10760 (M-H)-であった。
HRESIMS分析の結果より、Negativeモードでm/z 289.10740に (M-H)- の分子イオンピークが観測されたことより、分子式をC16H18O5と推定した。
Acetone-d6 中における1H-NMRスペクトルにおいて、δ 6.38, δ 6.54, δ 6.71は芳香族のプロトン、δ 3.72及び δ 3.79はメトキシ基のプロトンと推定された。
13C-NMRスペクトルにおいて、16本のシグナルが観測された。
HSQCスペクトルによりプロトンとカーボンの相関が明らかになった。さらに、HMBCスペクトル、NOESYスペクトルより、プロトンとカーボンのHMBC相関及びプロトン間のNOEが見られた。同様にして構造解析を行い、本化合物は、2つのベンゼン環を持つ化合物であり、それらは2つのメチレンによって結合されていると推測した。
以上のことより、本化合物は、骨格をdihydrostilbeneに持つ、化合物であることを導き出すことができた。
以上のことより、本化合物の構造を式1のとおり決定した。
Hereinafter, determination of the structural formulas of the compounds of Compound 4 (Formula 1), Compound 8 (Formula 2), and Compound 10 (Formula 3) determined as stilbene-related compounds by the above analysis and the like will be described.
Structural analysis of Compound 4
The physicochemical properties of Compound 4 were Molecular formula C 16 H 18 O 5 , HR-ESI-MS (m / z) found: 289.10740 (MH) , calcd .: 289.10760 (MH) .
From the result of HRESIMS analysis, a molecular ion peak of (MH) was observed at m / z 289.10740 in the negative mode, and the molecular formula was estimated as C 16 H 18 O 5 .
In 1 H-NMR spectrum in Acetone-d 6 , δ 6.38, δ 6.54, and δ 6.71 were estimated to be aromatic protons, and δ 3.72 and δ 3.79 were estimated to be methoxy group protons.
In the 13 C-NMR spectrum, 16 signals were observed.
HSQC spectrum revealed the correlation between proton and carbon. Furthermore, from HMBC spectrum and NOESY spectrum, HMBC correlation between proton and carbon and NOE between protons were observed. Structural analysis was conducted in the same manner, and it was assumed that this compound was a compound having two benzene rings, and they were bound by two methylenes.
From the above, it was possible to derive that this compound is a compound having a skeleton in dihydrostilbene.
From the above, the structure of this compound was determined as shown in Formula 1.

式1 Formula 1

本化合物は、4-[2-(3-hydroxy-4,5-dimethoxyphenyl)ethyl]-1,2-benzenediolであると同定した。   The compound was identified as 4- [2- (3-hydroxy-4,5-dimethoxyphenyl) ethyl] -1,2-benzenediol.

Compound 8の構造解析
Compound 8の理化学的性質はMolecular formula C17H20O5 、HR-ESI-MS (m/z) found: 305.13770 (M+H)+、calcd.: 305.13890 (M+H)+であった。
HRESIMS分析の結果より、Positiveモードでm/z 305.13770に (M+H)+ の分子イオンピークが観測されたことより、分子式をC17H20O5と推定した。
Acetone-d6 中における1H-NMRスペクトルにおいて、δ 6.41, δ 6.43, δ 6.66, δ 6.76, δ 6.83は芳香族のプロトン、δ 3.75及び δ 3.80はメトキシ基のプロトンと推定された。
13C-NMRスペクトルにおいて、17本のシグナルが観測された。
HSQCスペクトルによりプロトンとカーボンの相関が明らかになった。さらに、HMBCスペクトル、NOESYスペクトルより、プロトンとカーボンのHMBC相関及びプロトン間のNOEが見られた。これらのシグナルから、本化合物は、Compound4と似た構造を持つ化合物であることが考えられた。
同様にして構造解析を行い、dihydrostilbene骨格の化合物であることが推定され、以上のことより、本化合物の構造を式2のように導き出すことができた。
Structural analysis of Compound 8
The physicochemical properties of Compound 8 were Molecular formula C 17 H 20 O 5, HR-ESI-MS (m / z) found: 305.13770 (M + H) + , calcd .: 305.13890 (M + H) + .
From the result of HRESIMS analysis, a molecular ion peak of (M + H) + was observed at m / z 305.13770 in the positive mode, and thus the molecular formula was estimated as C 17 H 20 O 5 .
In the 1 H-NMR spectrum in Acetone-d 6 , δ 6.41, δ 6.43, δ 6.66, δ 6.76, and δ 6.83 were estimated to be aromatic protons, and δ 3.75 and δ 3.80 were estimated to be methoxy group protons.
In the 13 C-NMR spectrum, 17 signals were observed.
HSQC spectrum revealed the correlation between proton and carbon. Furthermore, from HMBC spectrum and NOESY spectrum, HMBC correlation between proton and carbon and NOE between protons were observed. From these signals, this compound was considered to be a compound having a structure similar to Compound 4.
Structural analysis was conducted in the same manner, and it was estimated that the compound was a dihydrostilbene skeleton compound. From the above, the structure of this compound could be derived as shown in Formula 2.

式2 Formula 2

本化合物を5-[2-(3-hydroxy-4-methoxyphenyl)ethyl]-2,3-dimethoxy-phenol (慣用名: Combretastatin B-2)であると同定した。   This compound was identified as 5- [2- (3-hydroxy-4-methoxyphenyl) ethyl] -2,3-dimethoxy-phenol (common name: Combretastatin B-2).

Compound 10の構造解析
Compound 10の理化学的性質は、Molecular formula C18H20O5、HR-ESI-MS (m/z) found: 317.13756 (M+H)+-、calcd.: 317.13890 (M+H)+であった。HRESIMS分析の結果より、Positiveモードでm/z 317.13756に (M+H)+ の分子イオンピークが観測されたことより、分子式をC18H20O5と推定した。
Acetone-d6 中における1H-NMRスペクトルにおいて、δ 6.62, δ 6.78, δ 6.87, δ 6.88は芳香族のプロトン、δ 6.43とδ 6.49はカップリング定数 (J = 12.2Hz) より、二重結合のcis位のプロトン、δ 3.67, δ 3.71, δ 3.83はメトキシ基のプロトンと推定された。
13C-NMRスペクトルにおいて、18本分のシグナルが観測された。
HSQCスペクトルによりプロトンとカーボンの相関が明らかになった。さらに、HMBCスペクトル、NOESYスペクトルより、プロトンとカーボンのHMBC相関及びプロトン間のNOEが見られた。これらのシグナルから、本化合物は、これまでの化合物と似た構造を持つ化合物であることが考えられた。
同様にして構造解析を行い、2つのベンゼン環を持つと推定され、それらはcis位の二重結合によってつながることから、本化合物は、cis-stilbene骨格の化合物であることが推定された。以上のことより、本化合物の構造を式3のように導き出すことができた。
Structural analysis of Compound 10
The physicochemical properties of Compound 10 are Molecular formula C 18 H 20 O 5, HR-ESI-MS (m / z) found: 317.13756 (M + H) +- , calcd .: 317.13890 (M + H) + It was. From the result of HRESIMS analysis, a molecular ion peak of (M + H) + was observed at m / z 317.13756 in the positive mode, and the molecular formula was estimated as C 18 H 20 O 5 .
In 1 H-NMR spectrum in Acetone-d 6 , δ 6.62, δ 6.78, δ 6.87, δ 6.88 are aromatic protons, δ 6.43 and δ 6.49 are double bonds based on the coupling constant (J = 12.2Hz). The protons at the cis position of δ 3.67, δ 3.71, and δ 3.83 were presumed to be protons of the methoxy group.
In the 13 C-NMR spectrum, 18 signals were observed.
HSQC spectrum revealed the correlation between proton and carbon. Furthermore, from HMBC spectrum and NOESY spectrum, HMBC correlation between proton and carbon and NOE between protons were observed. From these signals, the present compound was considered to be a compound having a structure similar to that of the conventional compound.
Structural analysis was conducted in the same manner, and it was presumed to have two benzene rings, which were connected by a double bond at the cis position. Therefore, this compound was presumed to be a cis-stilbene skeleton compound. From the above, the structure of this compound could be derived as shown in Formula 3.

式3 Formula 3

本化合物は5,6-dimethoxy-2,3,7-phenanthrenetriolであると同定した   The compound was identified as 5,6-dimethoxy-2,3,7-phenanthrenetriol

実施例2.各化合物の抗酸化活性試験
セネガル産プロポリスから単離したCompound 1-10に関して、DPPHを用いて抗酸化活性試験を行った。
(1)DPPHラジカル捕捉活性試験
試料をEtOHに溶解し、この溶液20μLに0.1mM DPPH/EtOH溶液を150μL加えて撹拌した。遮光状態で、1時間後に517nmにおける吸光度を測定した。試料は、最終濃度を50-1000μMの範囲で調製した。そして、測定結果から、下記の計算式に従い、ラジカル捕捉活性率を求め、EC50を算出した。また、ポジティブコントロールとして、Troloxを用いた。

計算方法
DPPHラジカル捕捉活性率(%) = {(Ac−As) / Ac} ×100
Ac:コントロールの吸光度
As:試料の吸光度
EC50は、直線性 (R2=0.99以上) のある3点をプロットし、そこから50%のラジカル捕捉活性を示す時の濃度を求めた。
Example 2 Antioxidant activity test of each compound Compound 1-10 isolated from Senegalian propolis was tested for antioxidant activity using DPPH.
(1) DPPH radical scavenging activity test A sample was dissolved in EtOH, and 150 μL of 0.1 mM DPPH / EtOH solution was added to 20 μL of this solution and stirred. Absorbance at 517 nm was measured after 1 hour in the dark. Samples were prepared with final concentrations ranging from 50-1000 μM. Then, from the measurement results, the radical scavenging activity rate was determined according to the following formula, and EC50 was calculated. In addition, Trolox was used as a positive control.

Method of calculation
DPPH radical scavenging activity rate (%) = {(Ac-As) / Ac} × 100
Ac: Control absorbance
As: Sample absorbance
For EC50, three points with linearity (R2 = 0.99 or more) were plotted, and the concentration at which 50% radical scavenging activity was shown was determined.

(2)結果
250μMでのDPPHラジカル捕捉率を図5に、またラジカル補足のEC50値を表1にそれぞれ示す。また、ポジティブコントロールであるTroloxのEC50は、147.0μM (36.8μg/mL) であった。
本発明のCompound 1、 Compound 2、 Compound3、Compound 5、Compound 6、Compound 7、Compound 9の化合物はいずれも抗酸化作用を有していた。
(2) Results
FIG. 5 shows the DPPH radical scavenging rate at 250 μM, and Table 1 shows EC50 values for radical scavenging. The EC50 of Trolox as a positive control was 147.0 μM (36.8 μg / mL).
All of the compounds of Compound 1, Compound 2, Compound 3, Compound 5, Compound 6, Compound 7, and Compound 9 of the present invention had an antioxidant action.

実施例3.抗炎症活性試験
(1)試験方法
J774.1細胞を、10% FBS (ウシ胎児血清) と1% penicillin/streptomycinを添加したRPMI-1640培地で培養した。細胞数が1.0×106cells/mLとなるように、RPMI培地 (+FBS)で調製し、96穴プレートに100μL/wellずつ播種した。細胞を5% CO2, 37℃インキュベーター内で24時間培養後、濃度の異なる各試料にlipopolysaccharide (LPS) 10μg/mLを添加した培地100μLを添加し、培養した。また、試料は、DMSOに溶解したものを、培地に対して0.1%以下で添加した。
NO産生は、細胞を24時間培養後、グリースアッセイによって評価した。各ウェルの培養液の上清100μLを、別の96穴プレートに移した後、グリース試薬 (1% スルファニルアミド、0.1% N-L-ナフチルエチレンジアミン、2.5% H3PO4) 100 μLを添加し、550nmの吸光度をマイクロプレートリーダーで測定した。それらを、コントロール(0.1% DMSO添加の時) に対する相対値として、NO産生率 (%) を算出した。ポジティブコントロールとして、quercetinを用いた。
(2)J774.1細胞を用いた細胞生存率の測定
また同時に、WST-8を用いて細胞生存率の測定を行った。テトラゾリウム塩WST-8は、高感度水溶性ホルマザンを生成する発色基質であり、細胞内脱水素酵素によって還元され発色する。この時の吸光度を測定することにより、生きている細胞数を測定する。本試験では、グリースアッセイのために上清を回収した後の残渣 (細胞) に対し、WST-8を5μL/wellずつ添加し、30分間、37℃でインキュベートした。その後、吸光度プレートリーダーで450nmの時の吸光度を測定した。それらを、コントロール (0.1% DMSO添加の時) に対する相対値として、細胞生存率 (%) を算出した。
Example 3 Anti-inflammatory activity test (1) Test method
J774.1 cells were cultured in RPMI-1640 medium supplemented with 10% FBS (fetal bovine serum) and 1% penicillin / streptomycin. The cells were prepared in RPMI medium (+ FBS) so that the number of cells was 1.0 × 10 6 cells / mL, and seeded at 100 μL / well in a 96-well plate. After culturing the cells in a 5% CO 2 , 37 ° C. incubator for 24 hours, 100 μL of a medium supplemented with 10 μg / mL of lipopolysaccharide (LPS) was added to each sample having different concentrations, and the cells were cultured. The sample dissolved in DMSO was added at 0.1% or less with respect to the medium.
NO production was assessed by grease assay after culturing the cells for 24 hours. Transfer 100 μL of the culture supernatant from each well to another 96-well plate, add 100 μL of grease reagent (1% sulfanilamide, 0.1% NL-naphthylethylenediamine, 2.5% H3PO4), and absorb the absorbance at 550 nm. Measured with a microplate reader. The NO production rate (%) was calculated as a value relative to the control (when 0.1% DMSO was added). Quercetin was used as a positive control.
(2) Measurement of cell viability using J774.1 cells At the same time, cell viability was measured using WST-8. The tetrazolium salt WST-8 is a chromogenic substrate that produces highly sensitive water-soluble formazan, and is colored by being reduced by intracellular dehydrogenase. The number of living cells is measured by measuring the absorbance at this time. In this test, 5 μL / well of WST-8 was added to the residue (cells) after collecting the supernatant for the grease assay and incubated at 37 ° C. for 30 minutes. Thereafter, the absorbance at 450 nm was measured with an absorbance plate reader. The cell viability (%) was calculated as a value relative to the control (when 0.1% DMSO was added).

(3)結果
表2にIC50値、図6には0.5, 5, 50μg/mLの濃度でのNO産生率を示す。また図7には細胞生存率を示す。ポジティブコントロールとして、quercetinを用い、このIC50は18.9μMであった。本発明のCompound 1、 Compound 2、 Compound3、Compound 5、Compound 6、Compound 7、Compound 9の化合物はいずれも強い抗炎症作用を有していた。また高濃度でも細胞生存率が高いことが明らかとなった。
(3) Results Table 2 shows IC50 values, and FIG. 6 shows NO production rates at concentrations of 0.5, 5, and 50 μg / mL. FIG. 7 shows cell viability. Quercetin was used as a positive control, and this IC50 was 18.9 μM. Compound 1, Compound 2, Compound 3, Compound 5, Compound 6, Compound 7, Compound 7, and Compound 9 of the present invention all had a strong anti-inflammatory action. It was also revealed that the cell viability was high even at high concentrations.

実施例4 リアルタイムRT−PCRを用いたiNOS遺伝子発現量の測定
(1)試験方法
マウス由来J774.1細胞(理化学研究所バイオソースセンターより入手)を、10% FBS (ウシ胎児血清) と1% penicillin/streptomycinを添加したRPMI-1640培地で培養した。細胞数が1.0×106cells/mLとなるように、RPMI培地 (+FBS) で希釈し、24穴プレートに1 mL/wellずつ播種した。細胞を5% CO2、37℃インキュベーター内で24時間培養後、濃度の異なる各試料にLPS 1μg/mlを添加した培地1 mLを添加し、培養した。試料は、DMSOに溶解したものを0.1%以下で用いた。
総RNAは、細胞を24時間培養後、RNA抽出キット(NucleoSpin:商品名 RNA II) を用いて抽出した。その後、逆転写反応キット (PrimeScript商品名 RT reagent Kit) を用いて、cDNAを合成した。逆転写反応は、37℃、15分間 (逆転写反応)、 85℃、5秒間 (逆転写酵素失活) で行った。
次に、リアルタイムPCRキット (SYBR:商品名 Premix Ex Tag II) を用いて、iNOSの発現量を測定した。リファレンス遺伝子として、glyceraldehyde-3-phosphate dehydrogenase (GAPDH) の発現量を測定し、補正した。用いたプローブの塩基配列を下記に示す。またPCR反応は下記のプロトコルで行った。
Example 4 Measurement of iNOS gene expression level using real-time RT-PCR (1) Test method Mouse-derived J774.1 cells (obtained from RIKEN Biosource Center) were treated with 10% FBS (fetal bovine serum) and 1% The cells were cultured in RPMI-1640 medium supplemented with penicillin / streptomycin. The cells were diluted with RPMI medium (+ FBS) so that the number of cells became 1.0 × 10 6 cells / mL, and seeded at 1 mL / well in a 24-well plate. The cells were cultured in a 5% CO 2 , 37 ° C. incubator for 24 hours, and 1 mL of medium supplemented with LPS 1 μg / ml was added to each sample having different concentrations, followed by culture. A sample dissolved in DMSO was used at 0.1% or less.
Total RNA was extracted using an RNA extraction kit (NucleoSpin: trade name RNA II) after culturing the cells for 24 hours. Then, cDNA was synthesize | combined using the reverse transcription reaction kit (PrimeScript brand name RT reagent Kit). The reverse transcription reaction was performed at 37 ° C. for 15 minutes (reverse transcription reaction) and at 85 ° C. for 5 seconds (reverse transcriptase inactivation).
Next, the expression level of iNOS was measured using a real-time PCR kit (SYBR: trade name Premix Ex Tag II). As a reference gene, the expression level of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was measured and corrected. The base sequence of the probe used is shown below. The PCR reaction was performed according to the following protocol.

Hold (初期変性)
1サイクル
95℃、30秒間
2Step PCR
40サイクル
95℃、5秒間、60℃、30秒間
Dissociation
iNOS (F) CCGATTTAGAGTCTTGGTGAAAGTG (配列1)
(R) CTGACCCGTGAAGCCATGA(配列2)
GAPDH (F) CGTGTTCCTACCCCCAATGT(配列3)
(R) ATGTCATCATACTTGGCAGGTTTCT(配列4)
Hold (initial modification)
1 Cycle
95 ° C, 30 seconds
2Step PCR
40 cycles
95 ° C, 5 seconds, 60 ° C, 30 seconds
Dissociation
iNOS (F) CCGATTTAGAGTCTTGGTGAAAGTG (sequence 1)
(R) CTGACCCGTGAAGCCATGA (sequence 2)
GAPDH (F) CGTGTTCCTACCCCCAATGT (sequence 3)
(R) ATGTCATCATACTTGGCAGGTTTCT (sequence 4)

(2)結果
図8にリアルタイムRT-PCRによるiNOSの発現率の結果を示す。NO産生を強く抑制した8種類の化合物(Compound 1、2、5、6、7、8、9、10)のiNOSの発現を、リアルタイムRT-PCRを用いて確認したところ、8種類全ての化合物がiNOSの発現を抑制していた。
(2) Results FIG. 8 shows the result of the expression rate of iNOS by real-time RT-PCR. When iNOS expression of 8 compounds (Compound 1, 2, 5, 6, 7, 8, 9, 10) that strongly suppressed NO production was confirmed using real-time RT-PCR, all 8 compounds were confirmed. However, iNOS expression was suppressed.

実施例5.ニトロプルシド (SNP) を用いたNOラジカル捕捉能の測定
(1)試験方法
SNPを溶液に溶かすことで発生するNOラジカルを、グリース試薬で検出した。SNPをリン酸緩衝液 (PBS) pH7.4に溶かし、10mM SNP-PBSを作成した。DMSOに溶かした濃度の異なる試料を添加し、撹拌しながら、180分間、25℃、水浴内でインキュベートした。その後、30分のインターバルを置いたのち、試料0.1mLに対して、0.1mLのグリース試薬で発色させ、550nmで吸光度を測定した。また、ポジティブコントロールとして、quercetinを用いた。
Example 5 FIG. Measurement of NO radical scavenging ability using nitroprusside (SNP) (1) Test method
NO radicals generated by dissolving SNP in the solution were detected with a grease reagent. SNP was dissolved in phosphate buffer (PBS) pH 7.4 to prepare 10 mM SNP-PBS. Samples of different concentrations dissolved in DMSO were added and incubated in a water bath at 25 ° C. for 180 minutes with agitation. Thereafter, after an interval of 30 minutes, 0.1 mL of the sample was colored with 0.1 mL of the grease reagent, and the absorbance was measured at 550 nm. In addition, quercetin was used as a positive control.

(2)結果
表3及び図9、図10に、10 mM SNP-PBSを用いたNOラジカル捕捉率の結果を示す。表3はIC50値、図9は200μMの濃度での活性、図10は、活性が見られた化合物に関する濃度依存的な活性の変化を示す。
また、ポジティブコントロールとしてquercetinを用いた。そのNO産生捕捉活性率は200μMの濃度で48.6±1.7%であった。そして、200μMの濃度で、Compound 2-6にquercetinと同等の活性がみられた。同じ骨格を持つCompound 3と7 、Compound 4と8を比較すると、catechol構造を持つCompound 3あるいは4の方がNOラジカルを強く捕捉していた。このことから、iNOS発現の結果とは逆となり、catechol構造の存在により活性が高まることが示唆された。dihydrophenanthrene骨格の化合物であるCompound 2, 5, 6, 9に関して、Compound 5, 6はcatechol構造を持たないのにも関わらず高い活性がみられ、Compound 9は活性がみられなかった。Compound 2-10の中で、Compound 2-6のような極性の高い化合物において、NOラジカルの捕捉活性がみられた。
(2) Results Table 3 and FIGS. 9 and 10 show the results of NO radical scavenging rate using 10 mM SNP-PBS. Table 3 shows the IC50 value, FIG. 9 shows the activity at a concentration of 200 μM, and FIG. 10 shows the concentration-dependent change in activity for the compound in which the activity was observed.
In addition, quercetin was used as a positive control. The NO production scavenging activity rate was 48.6 ± 1.7% at a concentration of 200 μM. Compound 2-6 showed activity equivalent to quercetin at a concentration of 200 μM. Comparing Compound 3 and 7 and Compound 4 and 8 with the same skeleton, Compound 3 or 4 with a catechol structure captured more NO radicals. From this, it was suggested that the activity was increased by the presence of the catechol structure, contrary to the result of iNOS expression. Regarding Compound 2, 5, 6, and 9 which are dihydrophenanthrene skeleton compounds, Compound 5 and 6 showed high activity despite having no catechol structure, and Compound 9 showed no activity. Among compounds 2-10, NO radical scavenging activity was observed in highly polar compounds such as compound 2-6.

以上の試験結果から、本発明のCompound 1、 Compound 2、 Compound3、Compound 5、Compound 6、Compound 7、Compound 9の化合物はいずれも抗炎症剤として有用であることが明らかとなった。   From the above test results, it was revealed that the compounds of Compound 1, Compound 2, Compound 3, Compound 5, Compound 5, Compound 6, Compound 7, and Compound 9 of the present invention are all useful as anti-inflammatory agents.

Claims (2)

セネガル産プロポリスから得ることができるスチルベン類縁化合物を有効成分とする抗炎症剤。   An anti-inflammatory agent comprising, as an active ingredient, a stilbene-related compound that can be obtained from Senegal propolis. スチルベン類縁化合物が、式1〜3であらわされるいずれかの物質である(1)記載の抗炎症剤。
式1
式2
式3
The anti-inflammatory agent according to (1), wherein the stilbene analog is any substance represented by formulas 1 to 3.
Formula 1
Formula 2
Formula 3
JP2014072007A 2014-03-31 2014-03-31 Anti-inflammatory agent containing stilbene related compounds as active ingredients Active JP6175399B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014072007A JP6175399B2 (en) 2014-03-31 2014-03-31 Anti-inflammatory agent containing stilbene related compounds as active ingredients

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014072007A JP6175399B2 (en) 2014-03-31 2014-03-31 Anti-inflammatory agent containing stilbene related compounds as active ingredients

Publications (2)

Publication Number Publication Date
JP2015193558A true JP2015193558A (en) 2015-11-05
JP6175399B2 JP6175399B2 (en) 2017-08-02

Family

ID=54432965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014072007A Active JP6175399B2 (en) 2014-03-31 2014-03-31 Anti-inflammatory agent containing stilbene related compounds as active ingredients

Country Status (1)

Country Link
JP (1) JP6175399B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63233939A (en) * 1987-01-06 1988-09-29 アリゾナ ボード オブ リーゼンツ Combretastatins
US20030092774A1 (en) * 2001-10-17 2003-05-15 Parkinson Thomas M. Methods for treating neoplastic, angiogenic, vascular, fibroblastic, and/or immunosuppressive iregularities of the eye and/or joint via administration of combretastatin based medicaments, and iontophoretic devices for delivering combretastatin based medicaments
WO2006074192A2 (en) * 2005-01-03 2006-07-13 Bionaut Pharmaceuticals, Inc. Treatment of inflammatory disorders

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63233939A (en) * 1987-01-06 1988-09-29 アリゾナ ボード オブ リーゼンツ Combretastatins
US20030092774A1 (en) * 2001-10-17 2003-05-15 Parkinson Thomas M. Methods for treating neoplastic, angiogenic, vascular, fibroblastic, and/or immunosuppressive iregularities of the eye and/or joint via administration of combretastatin based medicaments, and iontophoretic devices for delivering combretastatin based medicaments
WO2006074192A2 (en) * 2005-01-03 2006-07-13 Bionaut Pharmaceuticals, Inc. Treatment of inflammatory disorders

Also Published As

Publication number Publication date
JP6175399B2 (en) 2017-08-02

Similar Documents

Publication Publication Date Title
JP5667561B2 (en) Neurite outgrowth agent, memory improving agent, anti-Alzheimer agent containing 4&#39;-demethylnobiletin or 4&#39;-demethyltangeretin as an active ingredient, and method for producing the same
KR20150037950A (en) 4-methyl-2,3,5,9,9b-pentaaza-cyclopenta[a]naphthalenes
EP1231916A2 (en) Use of indirubine derivatives for making medicines
JP7123417B2 (en) Anxiolytic deuterium compound and its medicinal use
CA2730302C (en) Use of indole derivatives as nurr-1 activators for treating parkinson&#39;s disease
de Oliveira et al. Antimycobacterial brominated metabolites from two species of marine sponges
US6906100B2 (en) Compounds and compositions derived from olives and methods of the use thereof
JP6175399B2 (en) Anti-inflammatory agent containing stilbene related compounds as active ingredients
JP2015193557A (en) Anti-inflammatory agent containing phenanthrene analogue compound as active ingredient
KR20140108796A (en) Drug composition containing extract of Juncus Effusus L. for anti-oxidative and anti-tumor activity
JP2008231101A (en) Anti-diabetic agent
JP4993969B2 (en) Anti-tumor promoter activator
KR101114629B1 (en) Antileishmanial compound and antileishmanial drug
KR102233120B1 (en) Novel paeonol-tryptamine compounds and their biological applications
JP2012036150A (en) Antitumor agent, caspase inhibitor, extract of basidiomycete of thelephora, and production method therefor
FR2851919A1 (en) Use of new and known lignans and neolignans as cathepsin inhibitors, for treatment of cancers, hepatic protectors, preservation of human and animal organs, Alzheimer&#39;s, and cosmetic anti-aging preparations
Nguyen et al. Novel cyclopeptide and unique flavone from Desmos rostrata. Total synthesis of desmorostratone
JP2009051793A (en) Therapeutic agent for bone disease
KR101201866B1 (en) A Pharmaceutical Composition Comprising the Compound Gomisin-A for Treating or Preventing Cancer
JP2016041680A (en) Sirtuin expression enhancer
TW201018462A (en) Novel mixture and compounds from mycelia of antrodia camphorata having hepatoprotection, anti-inflammatory and anti-tumor activities
FR2593817A1 (en) 5,6,7,8-Tetrahydroimidazo[1,2-a]pyridine derivatives, their preparation and their application in therapeutics
JP4157767B2 (en) Hangesho extract having preventive and therapeutic effects on degenerative cranial nervous system diseases
KR20130039916A (en) Anticancer composition containing the benzohydroxymethoxychalcone
KR100639835B1 (en) oryzafuran, anti-oxident compound from Oryza sativa L. and a method of seperation thereof

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20170112

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20170221

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20170221

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170303

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20170303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170221

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20170323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170411

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170710

R150 Certificate of patent or registration of utility model

Ref document number: 6175399

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250