JP2015190039A - Method for producing porous anodic oxidation film and the porous anodic oxidation film - Google Patents

Method for producing porous anodic oxidation film and the porous anodic oxidation film Download PDF

Info

Publication number
JP2015190039A
JP2015190039A JP2014070132A JP2014070132A JP2015190039A JP 2015190039 A JP2015190039 A JP 2015190039A JP 2014070132 A JP2014070132 A JP 2014070132A JP 2014070132 A JP2014070132 A JP 2014070132A JP 2015190039 A JP2015190039 A JP 2015190039A
Authority
JP
Japan
Prior art keywords
film
anodic oxidation
solution
producing
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014070132A
Other languages
Japanese (ja)
Other versions
JP6395249B2 (en
Inventor
松竹 呉
Song-Zhu Chu
松竹 呉
仁 八代
Hitoshi Yashiro
仁 八代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iwate University
Original Assignee
Iwate University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iwate University filed Critical Iwate University
Priority to JP2014070132A priority Critical patent/JP6395249B2/en
Publication of JP2015190039A publication Critical patent/JP2015190039A/en
Application granted granted Critical
Publication of JP6395249B2 publication Critical patent/JP6395249B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a porous anodic oxidation film which is dense, crystalline and suitably usable as an electrode (particularly, the electrode of an Li secondary battery), and a porous anodic oxidation film.SOLUTION: Provided is a method for producing a porous anodic oxidation film characterized in that a Ti substrate is anodically oxidized under the voltage below 100 V using a nitric acid based electrolytic solution, and also provided is a method for producing a multi-layer porous anodic oxidation film characterized in that a second anode oxidation step with an ammonium nitrate solution is performed after the first anode oxidation step with a sulfuric acid solution or an ammonium sulfate solution.

Description

本発明は、多孔質陽極酸化皮膜の製造方法及び多孔質陽極酸化皮膜に関する。   The present invention relates to a method for producing a porous anodized film and a porous anodized film.

電気エネルギーの貯蔵・放出が繰り返し可能であるという点から、2次電池は用途に応じた様々な大きさ・形状で、種々の電子デバイスに利用されてきた。近年の著しい携帯電子機器の発展や電気エネルギーの有効利用の必要性などから、リチウムイオン2次電池の大容量化とハイパワー化が求められている。   Secondary batteries have been used in various electronic devices in various sizes and shapes according to the use because electrical energy can be stored and released repeatedly. Due to the remarkable development of portable electronic devices in recent years and the necessity of effective use of electric energy, it is required to increase the capacity and power of lithium ion secondary batteries.

現状で最も高いエネルギー密度を有するリチウムイオン2次電池は、他の2次電池と比較して次の特徴を有している。
(1)エネルギー密度が高い(電池そのものの小型化・軽量化が可能)
(2)動作電圧が高い(少ない本数で大きな出力が得られ、機器の小型化・軽量化が可能)
(3)メモリ効果がない(継ぎ足し充電が可能)
(4)安全性が高い(過充電に強い、熱的安定性が高い)
(5)寿命が長い
これらの特徴より、リチウムイオン2次電池は注目を浴びている。このため、リチウムイオン2次電池の更なる高性能化により市場のニーズが満たされる可能性は非常に高く、現在まで世界各国の企業や大学レベルでその開発研究が進められてきた。
The lithium ion secondary battery having the highest energy density at present has the following characteristics as compared with other secondary batteries.
(1) High energy density (the battery itself can be made smaller and lighter)
(2) High operating voltage (Large output can be obtained with a small number of units, enabling downsizing and weight reduction of equipment)
(3) No memory effect (additional charging is possible)
(4) High safety (strong overcharge, high thermal stability)
(5) Lithium ion secondary batteries are attracting attention because of their long life. For this reason, it is highly possible that the needs of the market will be satisfied by further improving the performance of the lithium ion secondary battery, and so far, development research has been carried out at companies and universities in the world.

そこで要求されている電池の高性能化は、従来型材料技術では実現困難であるため、蓄電技術における革新が期待されているところである。特に近年のナノサイエンス、ナノテクノロジーの進展を背景として、電気化学的活物質の精密なナノ構造制御に基づく大容量・高出力型電極材料の開発に関心が持たれている。 一例として、アノード酸化によりナノポーラスチタニア(TiO)皮膜を形成し、光触媒材料、太陽電池やLi電池などの電極材料として応用する研究が行われている。
このように、アノード酸化によりナノポーラスチタニア(TiO)皮膜を形成し、光触媒材料、太陽電池やLi電池などの電極材料として応用する研究が行われている(特許文献1−4、非特許文献1)。
Therefore, the required high-performance battery is difficult to achieve with conventional material technology, and therefore, innovation in power storage technology is expected. In particular, against the background of recent advances in nanoscience and nanotechnology, there is an interest in developing large-capacity, high-power electrode materials based on precise nanostructure control of electrochemically active materials. As an example, research has been conducted in which a nanoporous titania (TiO 2 ) film is formed by anodic oxidation and applied as an electrode material such as a photocatalytic material, a solar battery, or a Li battery.
As described above, research has been conducted in which a nanoporous titania (TiO 2 ) film is formed by anodic oxidation and applied as an electrode material such as a photocatalytic material, a solar battery, or a Li battery (Patent Documents 1-4 and Non-Patent Document 1). ).

特許第5197766号公報Japanese Patent No. 5197766 特開2010−108904号公報JP 2010-108904 A 特開2006−89842号公報JP 2006-89842 A 特開2005−272885号公報JP 2005-272885 A

S. Z. Chu*(呉 松竹), S. Inoue, K. Wada, S. Hishida, K. Kurashima, “Self-OrganizedNanoporous Anodic Titania Films and Ordered Quantum Titania Nanodots/Nanorodson Glass”, Advanced Functional Materials, 15 (8): 1343-1349, 2005.SZ Chu *, S. Inoue, K. Wada, S. Hishida, K. Kurashima, “Self-Organized Nanoporous Anodic Titania Films and Ordered Quantum Titania Nanodots / Nanorodson Glass”, Advanced Functional Materials, 15 (8): 1343-1349, 2005.

従来の技術において、ナノポーラスまたはナノチューブ状のTiO皮膜の作成には、主に腐食性の強いフッ化物イオンを含む有機系電解液が用いられているため、環境に悪影響を与えるほか、半導体であるTiO皮膜の導電性(10−11−10−12Ω−1−1)が低いという解題がある。一方、窒化チタン(TiN)は、優れた導電性(2.5×10Ω−1−1)を有するため、各種電極において導電助剤としてよく利用されているが、その合成は900℃程度の高温焼結が必要のため、製造コストが高い。
また、緻密な膜は得られていない。すなわち、表面は粉状であり、触媒としては用いることはできても電池の電極として使用できる緻密な膜は得られていない。
In the prior art, an organic electrolyte containing a highly corrosive fluoride ion is mainly used to produce a nanoporous or nanotube-like TiO 2 film, which is a semiconductor in addition to adversely affecting the environment. There is a problem that the conductivity (10 −11 −10 −12 Ω −1 m −1 ) of the TiO 2 film is low. On the other hand, titanium nitride (TiN) has excellent conductivity (2.5 × 10 6 Ω −1 m −1 ), and is therefore often used as a conductive aid in various electrodes. Since high temperature sintering is required, the manufacturing cost is high.
Also, a dense film has not been obtained. That is, the surface is powdery, and even though it can be used as a catalyst, a dense film that can be used as a battery electrode has not been obtained.

さらに、結晶質の膜も得られていない。
そこで本発明では、新規のリチウムイオン2次電池の電極材料を目指し、チタニアアノード酸化皮膜の導電性を改善するために、硝酸系電解液を用いてTi板のアノード酸化を行い、窒素を皮膜内に導入させることによりTiO−TiN複合皮膜を創製することを目的とした。
緻密で結晶質であり電極(特にリチウムイオン2次電池の電極)として好適に用いることができる多孔質陽極酸化皮膜の製造方法及び多孔質陽極酸化皮膜を提供することを目的とする。
Furthermore, a crystalline film is not obtained.
Therefore, in the present invention, in order to improve the conductivity of the titania anodic oxide film, aiming at a new electrode material for a lithium ion secondary battery, the anodic oxidation of the Ti plate is performed using a nitric acid-based electrolyte, and nitrogen is contained in the film. The purpose was to create a TiO 2 —TiN composite film.
An object of the present invention is to provide a method for producing a porous anodic oxide film that is dense and crystalline and can be suitably used as an electrode (particularly, an electrode of a lithium ion secondary battery) and a porous anodic oxide film.

請求項1に係る発明は、硝酸系電解液を用い、100V未満の電圧下でTi基体を陽極酸化することを特徴とする多孔質陽極酸化皮膜の製造方法である。   The invention according to claim 1 is a method for producing a porous anodic oxide film, characterized by anodizing a Ti substrate using a nitric acid-based electrolyte under a voltage of less than 100V.

請求項2に係る発明は、前記電解液のpHは11以下であることを特徴とする請求項1記載の多孔質陽極酸化皮膜の製造方法である。   The invention according to claim 2 is the method for producing a porous anodized film according to claim 1, wherein the pH of the electrolytic solution is 11 or less.

請求項3に係る発明は、前記電圧は5−35Vであることを特徴とする請求項1又は2記載の多孔質陽極酸化皮膜の製造方法である。   The invention according to claim 3 is the method for producing a porous anodized film according to claim 1 or 2, wherein the voltage is 5-35V.

請求項4に係る発明は、前記陽極酸化時の電流密度は3.0−5.0mAcm−2であることを特徴とする請求項1ないし3のいずれか1項記載の多孔質陽極酸化皮膜の製造方法である。 The invention according to claim 4 is the porous anodized film according to any one of claims 1 to 3, wherein the current density during the anodization is 3.0 to 5.0 mAcm -2 . It is a manufacturing method.

請求項5に係る発明は、前記硝酸系電解液は硝酸アンモニウム溶液であることを特徴とする請求項1ないし4のいずれか1項記載の多孔質陽極酸化皮膜の製造方法である。   The invention according to claim 5 is the method for producing a porous anodic oxide film according to any one of claims 1 to 4, wherein the nitric acid-based electrolytic solution is an ammonium nitrate solution.

請求項6に係る発明は、硫酸系電解液を用い、70V以上の電圧下でTi基体を陽極酸化することを特徴とする多孔質陽極酸化皮膜の製造方法である。   The invention according to claim 6 is a method for producing a porous anodic oxide film, characterized by anodizing a Ti substrate under a voltage of 70 V or more using a sulfuric acid electrolyte.

請求項7に係る発明は、前記電圧は、100V以上であることを特徴とする請求項6記載の多孔質陽極酸化皮膜の製造方法。
請求項8に係る発明は、前記電解液のpHは11以下であることを特徴とする請求項6記載の多孔質陽極酸化皮膜の製造方法である。
The invention according to claim 7 is the method for producing a porous anodized film according to claim 6, wherein the voltage is 100 V or more.
The invention according to claim 8 is the method for producing a porous anodized film according to claim 6, wherein the pH of the electrolytic solution is 11 or less.

請求項9に係る発明は、前記硫酸系電解液は硫酸溶液または硫酸アンモニウム溶液であることを特徴とする請求項6ないし8のいずれか1項記載の多孔質陽極酸化皮膜の製造方法である。   The invention according to claim 9 is the method for producing a porous anodic oxide film according to any one of claims 6 to 8, wherein the sulfuric acid electrolyte is a sulfuric acid solution or an ammonium sulfate solution.

請求項10に係る発明は、硫酸溶液または硫酸アンモニウム溶液による第1の陽極酸化工程の後に、硝酸溶液又は硝酸アンモニウム溶液による第2の陽極酸化工程を行うことを特徴とする多層多孔質陽極酸化皮膜の製造方法である。   The invention according to claim 10 is the production of a multilayer porous anodic oxide film characterized by performing a second anodizing step with a nitric acid solution or an ammonium nitrate solution after a first anodizing step with a sulfuric acid solution or an ammonium sulfate solution. Is the method.

請求項11に係る発明は、前記第1の陽極酸化工程において硫酸溶液を用い、前記第2の陽極酸化工程では硝酸アンモニウムを用いることを特徴とする請求項10記載の多層多孔質陽極酸化皮膜の製造方法である。   The invention according to claim 11 is characterized in that a sulfuric acid solution is used in the first anodic oxidation step and ammonium nitrate is used in the second anodic oxidation step. Is the method.

請求項12に係る発明は、前記第1の陽極酸化工程において硫酸アンモニウム溶液を用い、前記第2の陽極酸化工程では硝酸アンモニウムを用いることを特徴とする請求項10記載の多層多孔質陽極酸化皮膜の製造方法である。   The invention according to claim 12 is characterized in that an ammonium sulfate solution is used in the first anodizing step and ammonium nitrate is used in the second anodizing step. Is the method.

請求項13に係る発明は、Ti基体上に、平均細孔径が約10−30nm、細孔間距離80nm以上で形成されている多孔質陽極酸化皮膜である。   The invention according to claim 13 is a porous anodized film formed on a Ti substrate with an average pore diameter of about 10-30 nm and a distance between pores of 80 nm or more.

請求項14に係る発明は、前記陽極酸化皮膜はTiO−TiNの複合酸化膜であることを特徴とする請求項13記載の陽極酸化皮膜である。 The invention according to claim 14 is the anodized film according to claim 13, wherein the anodized film is a composite oxide film of TiO 2 —TiN.

請求項15に係る発明は、Ti基体上に、平均細孔径φ50−150nm、細孔間距離250nm以上で形成されている多孔質陽極酸化皮膜である。
前記膜厚は450−500nmであることが好ましい。
The invention according to claim 15 is a porous anodized film formed on a Ti substrate with an average pore diameter of φ50 to 150 nm and a distance between pores of 250 nm or more.
The film thickness is preferably 450-500 nm.

請求項16に係る発明は、Ti基体上に、平均細孔径が約10−30nm、細孔間距離80nm以上の膜と、平均細孔径50−150nm、細孔間距離250nm以上の膜とが形成されていることを特徴とする多孔質陽極酸化皮膜である。   In the invention according to claim 16, a film having an average pore diameter of about 10-30 nm and a distance between pores of 80 nm or more and a film having an average pore diameter of 50-150 nm and a distance between pores of 250 nm or more are formed on a Ti substrate. It is a porous anodic oxide film characterized by being made.

請求項17に係る発明は、前記皮膜は結晶質であることを特徴とする請求項13ないし16のいずれか1項記載の多孔質陽極酸化皮膜である。   The invention according to claim 17 is the porous anodized film according to any one of claims 13 to 16, wherein the film is crystalline.

請求項18に係る発明は、請求項13ないし17のいずれか1項記載の多孔質陽極酸化皮膜を有することを特徴とする電極である。   The invention according to claim 18 is an electrode comprising the porous anodic oxide film according to any one of claims 13 to 17.

請求項19に係る発明は、前記電極はリチウムイオン2次電池用の電極である請求項18記載の電極である。   The invention according to claim 19 is the electrode according to claim 18, wherein the electrode is an electrode for a lithium ion secondary battery.

請求項20に係る発明は、請求項17又は18記載の電極を有する電池である。   An invention according to claim 20 is a battery having the electrode according to claim 17 or 18.

a.従来技術は、硝酸イオンを含む電解液を用いていた。本発明は、アンモニアイオンを含む酸性溶液を電解液とする。また、pHの調整を行っている。
b.従来技術は、粒子状酸化チタンまたはスポンジ状の皮膜である。本発明は、ナノサイズのシリンダー状の細孔セルの集合体からなる多孔質構造を持つ陽極酸化皮膜である。細孔のサイズは、直径5nm−500nmであり、電解液および陽極酸化条件により制御できる。
c.従来技術は、10V以上、100V以下、30秒以上、60分間以内に酸化チタン粒子を形成する技術である。本発明は、陽極酸化電圧は、5Vから600V(直流電源の最高電圧)まで、10秒以上処理すれば、酸化チタンと窒化チタンの複合皮膜を作製できる。また、10V以上であれば、ナノ細孔を有する多孔質複合皮膜が得られる。さらに、多孔質皮膜の厚さは陽極酸化処理時間または電流密度・電圧に比例するので、膜厚の限界はない。
a. The prior art used an electrolytic solution containing nitrate ions. In the present invention, an acidic solution containing ammonia ions is used as an electrolytic solution. Moreover, pH is adjusted.
b. The prior art is a particulate titanium oxide or sponge-like film. The present invention is an anodized film having a porous structure composed of an assembly of nano-sized cylindrical pore cells. The size of the pore is 5 nm to 500 nm in diameter, and can be controlled by the electrolytic solution and the anodic oxidation conditions.
c. The prior art is a technique for forming titanium oxide particles within 10 V or more, 100 V or less, 30 seconds or more, and 60 minutes. In the present invention, a composite coating of titanium oxide and titanium nitride can be produced by treating the anodic oxidation voltage from 5 V to 600 V (the maximum voltage of the DC power supply) for 10 seconds or longer. Moreover, if it is 10V or more, the porous composite membrane | film | coat which has a nanopore will be obtained. Furthermore, since the thickness of the porous film is proportional to the anodizing time or current density / voltage, there is no limit on the film thickness.

d.従来技術は、陽極酸化後に200℃から750℃の温度域で1分以上24時間以下の熱処理によって結晶化させることが必要であった。本発明は、電圧が5V以上(好ましくは15V以上、さらに好ましくは20V以上)であれば、(アナターゼ型)酸化チタンからなる結晶性陽極酸化皮膜が得られるため、加熱処理が不要である。なお、上限は35Vとしてもよい。
e.従来技術は、pH12以上15以下である。本発明は、電解液のpHは0から11までに広い範囲で処理可能である。
f.硝酸イオンとアンモニアイオンを共存する場合、二段階陽極酸化により、硝酸イオンだけを含む場合よりも、密着性と均一性の良い複合酸化皮膜を形成することができる。
g.1段階目は、硫酸、シュウ酸、リン酸、各有機酸とそれらの混合液中での陽極酸化により、薄い多孔質酸化チタン皮膜を作り、その皮膜が次の陽極酸化の際に、電場フィルダーとして、細孔の開始点を誘導できる。
d. In the prior art, it was necessary to perform crystallization by heat treatment for 1 minute to 24 hours in a temperature range of 200 ° C. to 750 ° C. after anodization. In the present invention, when the voltage is 5 V or higher (preferably 15 V or higher, more preferably 20 V or higher), a crystalline anodized film made of (anatase type) titanium oxide can be obtained, and thus heat treatment is unnecessary. The upper limit may be 35V.
e. The prior art has a pH of 12 to 15. In the present invention, the pH of the electrolytic solution can be processed in a wide range from 0 to 11.
f. When nitrate ions and ammonia ions coexist, a composite oxide film with better adhesion and uniformity can be formed by two-step anodic oxidation than when only nitrate ions are included.
g. In the first step, a thin porous titanium oxide film is formed by anodization in sulfuric acid, oxalic acid, phosphoric acid, organic acids and their mixtures, and the field filter is used during the next anodization. The starting point of the pore can be derived.

また、本発明においては、以下の効果も奏する。
・ナノ細孔を有する多孔質酸化チタン皮膜を作製する。
・基板との密着性のよい、厚い多孔質チタン酸化物皮膜を作製することができる。
・高導電性の窒化チタンを半導体のチタン酸化物に導入することによりチタン酸化物皮膜の導電性を改善する。
・陽極酸化法により、チタン酸化物皮膜を生成するとともに、窒化チタンも形成させて皮膜全体に分散し、酸化チタンと窒化チタンの複合多孔質皮膜を形成、製造できる。
・陽極酸化の条件により、直接結晶性酸化チタン皮膜を形成できる。(加熱処理は不要)
・湿式法かつ低温で窒化処理が可能になる。電解液の組成と濃度、液温、操作条件などにより、窒化チタンの含有量(または窒化率)を制御できる。(過去にアンモニア塩浴中で700〜900℃の高温処理が一般的である。)
なお、窒化チタンの含有量は、一般的に電解液の濃度(硝酸アンモニウム)が高いほど、高くなり、また、結晶性については、印加電圧が高いほど、結晶性が高くなる。また、多孔質皮膜の細孔サイズ(直径)は、電解液の温度と電圧、電流密度に比例するためこれらは用途に応じで適宜制御すればよい。
The present invention also has the following effects.
-A porous titanium oxide film having nanopores is prepared.
-A thick porous titanium oxide film having good adhesion to the substrate can be produced.
-Improve the conductivity of the titanium oxide film by introducing highly conductive titanium nitride into the titanium oxide of the semiconductor.
A titanium oxide film can be formed by anodic oxidation, and titanium nitride can also be formed and dispersed throughout the film to form and produce a composite porous film of titanium oxide and titanium nitride.
-A crystalline titanium oxide film can be formed directly depending on the conditions of anodization. (No heat treatment required)
-Nitriding can be performed at a low temperature by a wet method. The content (or nitridation rate) of titanium nitride can be controlled by the composition and concentration of the electrolytic solution, the solution temperature, operating conditions, and the like. (In the past, high temperature treatment at 700 to 900 ° C. in an ammonia salt bath is common.)
In general, the content of titanium nitride increases as the concentration of the electrolytic solution (ammonium nitrate) increases, and the crystallinity increases as the applied voltage increases. Further, since the pore size (diameter) of the porous film is proportional to the temperature, voltage, and current density of the electrolytic solution, these may be appropriately controlled depending on the application.

典型的な多孔質陽極酸化皮膜の構造Typical porous anodized film structure 実験装置の模式図Schematic diagram of experimental equipment 二極式ポーチセルの作製方法を示す図Diagram showing how to make a bipolar pouch cell 0.05M硝酸アンモニウム溶液を用い各定電圧で1h,5℃のアノード酸化後の試験片を示す図である。It is a figure which shows the test piece after anodic oxidation of 1 h and 5 degreeC by each constant voltage using 0.05M ammonium nitrate solution. 0.05M硝酸アンモニウム溶液を用い各定電圧で1h,5℃のアノード酸化後に生成した皮膜の表面FE−SEM画像(a),(b)15V, (c),(d)20V, (e),(f)25VSurface FE-SEM images (a), (b) 15 V, (c), (d) 20 V, (e) of the film formed after anodic oxidation at 5 ° C. for 1 h at each constant voltage using 0.05 M ammonium nitrate solution, (F) 25V 0.05M硝酸アンモニウム溶液を用い各定電圧で1h,5℃のアノード酸化後に生成した皮膜のXPSスペクトル(a),(b)15V, (c),(d)20V, (e),(f)25VXPS spectra (a), (b) 15 V, (c), (d) 20 V, (e), (f) of the film formed after anodic oxidation at 5 ° C. for 1 h at each constant voltage using 0.05 M ammonium nitrate solution 25V 0.05M硝酸アンモニウム溶液を用い各温度で定電流密度3.0mAcm-2, 1hのアノード酸化後に生成した皮膜の表面FE−SEM画像(a),(b)1℃, (c),(d)5℃Surface FE-SEM images (a), (b) 1 ° C., (c), (d) of the film formed after anodic oxidation at a constant current density of 3.0 mAcm −2 , 1 h using 0.05M ammonium nitrate solution at each temperature 5 ℃ 0.05M硝酸アンモニウム溶液を用い10℃,定電流密度3.0mAcm−2, 1hのアノード酸化後に生成した皮膜の表面FE−SEM画像Surface FE-SEM image of film formed after anodic oxidation at 10 ° C., constant current density 3.0 mAcm −2 , 1 h using 0.05 M ammonium nitrate solution 0.05M硝酸アンモニウム溶液を用い各温度で定電流密度5.0mAcm-2, 1 hのアノード酸化後に生成した皮膜の表面・断面FE−SEM画像(a),(b)1℃, (c),(d)5℃, (e),(f),(c)の皮膜断面Surface and cross-section FE-SEM images (a), (b) 1 ° C., (c) of the film formed after anodic oxidation at a constant current density of 5.0 mAcm −2 , 1 h at each temperature using 0.05M ammonium nitrate solution (D) 5 ° C, (e), (f), (c) film cross section 0.05M硝酸アンモニウム溶液を用い5.0mAcm-2, 1h,5℃のアノード酸化後に生成した皮膜のXPSスペクトルXPS spectrum of film formed after anodic oxidation at 5.0 mAcm -2 , 1h, 5 ° C using 0.05M ammonium nitrate solution 0.05M硝酸アンモニウム溶液を用い5.0mAcm−2, 1h,5℃のアノード酸化後に生成した皮膜断面(a) ,(b)TEM画像 (c),(d)電子線回折斑点図Sections of the film formed after anodic oxidation at 5.0 mA cm −2 , 1 h, 5 ° C. using 0.05 M ammonium nitrate solution (a), (b) TEM image (c), (d) Electron diffraction diffraction spot diagram 0.05M硝酸アンモニウム溶液を用い5.0mAcm-2, 1h,5℃のアノード酸化後に生成した皮膜のEDSスペクトル(a) 全体 (b) 酸化皮膜 (c) 基板EDS spectrum of film formed after anodic oxidation at 5.0 mAcm -2 , 1h, 5 ° C using 0.05M ammonium nitrate solution (a) Overall (b) Oxide film (c) Substrate 10vol%硫酸溶液を用い各電圧,室温で20minのアノード酸化後に生成した皮膜の表面FE−SEM画像(a),(b)40V, (c),(d)50V, (e),(f)60VSurface FE-SEM images (a), (b) 40 V, (c), (d) 50 V, (e), (f) of the film formed after anodic oxidation for 20 min at each voltage and room temperature using 10 vol% sulfuric acid solution 60V 10vol%硫酸溶液を用い各電圧,室温で20minのアノード酸化後に生成した皮膜の表面FE−SEM画像(a),(b)70V, (c),(d)80VSurface FE-SEM images (a), (b) 70V, (c), (d) 80V of the film formed after anodic oxidation for 20 minutes at room temperature and each voltage using 10 vol% sulfuric acid solution 10vol%硫酸溶液を用い各電圧,室温で20minのアノード酸化後に生成した皮膜の表面FE−SEM画像(a),(b)90V, (c),(d)100VSurface FE-SEM images (a), (b) 90 V, (c), (d) 100 V of the film formed after anodic oxidation for 20 min at each voltage and room temperature using 10 vol% sulfuric acid solution 10vol%硫酸溶液を用い各電圧 室温で20minのアノード酸化後の試験片Specimen after anodization for 20 min at 10 m% sulfuric acid solution at each voltage at room temperature 10vol%硫酸溶液を用い各電圧,室温で20minのアノード酸化後に生成した皮膜のXPSスペクトルXPS spectrum of a film formed after anodization of 20 min at a voltage and room temperature using 10 vol% sulfuric acid solution 0.5M硫酸アンモニウム溶液を用い各電圧,室温で1hのアノード酸化後に生成した皮膜の表面FE−SEM画像(a),(b)15V, (c),(d)20V, (e),(f)25VSurface FE-SEM images (a), (b) 15 V, (c), (c), (d) 20 V, (e), (f) of the film formed after anodic oxidation for 1 h at each voltage and room temperature using 0.5 M ammonium sulfate solution ) 25V 硫酸アンモニウム溶液を用い100 V, 室温で1 hのアノード酸化後に生成した皮膜の表面FE−SEM画像(a),(b)0.5M, (c),(d)2MSurface FE-SEM images (a), (b) 0.5M, (c), (d) 2M of the film formed after anodic oxidation at 100 V, room temperature for 1 h using an ammonium sulfate solution 2M硫酸アンモニウム溶液を用い100V,室温で1hのアノード酸化後に生成した皮膜のXPSスペクトルXPS spectrum of film formed after anodic oxidation at 100V and room temperature for 1h using 2M ammonium sulfate solution 2M硫酸アンモニウム溶液を用い100V,室温で1hのアノード酸化後に生成した皮膜断面(a),(b)TEM画像 (c),(d)電子線回折斑点図Cross-sections of films (a), (b) TEM images (c), (d) Electron diffraction diffraction spots generated after anodic oxidation at 100 V and room temperature for 1 h using a 2M ammonium sulfate solution 2 M硫酸アンモニウム溶液を用い100V, 室温で1hのアノード酸化後に生成した皮膜断面のEDSスペクトル(a)全体 (b)酸化皮膜 (c)基板EDS spectrum of the cross section of the film formed after anodic oxidation at 100 V and room temperature for 1 h using 2 M ammonium sulfate solution (b) Oxide film (c) Substrate 10vol%アンモニア水を用い各電圧,5℃で1hのアノード酸化後に生成した皮膜の表面FE−SEM画像(a),(b)15V, (c),(d)20V, (e),(f)25VSurface FE-SEM images (a), (b) 15 V, (c), (d) 20 V, (e), (f) of the film formed after anodic oxidation for 1 h at 5 ° C. with 10 vol% ammonia water ) 25V 10vol%アンモニア水を用い各電圧,5℃で1hのアノード酸化後に生成した皮膜のXPSスペクトルXPS spectrum of the film formed after anodic oxidation for 1 h at 5 ° C with 10 vol% ammonia water 電流密度−時間曲線 (a)一段階目 (b)二段階目Current density-time curve (a) First stage (b) Second stage 一段階目に硫酸溶液,二段階目に硝酸アンモニウム溶液を用いたアノード酸化後に生成した皮膜の外観図External view of the film formed after anodic oxidation using sulfuric acid solution in the first stage and ammonium nitrate solution in the second stage 二段階アノード酸化後に生成した皮膜の表面FE−SEM画像一段階目:10vol%硫酸溶液, 20min, 室温(a),(b)20V, (c),(d)50V, (e),(f)100V 二段階目:0.05M硝酸アンモニウム溶液, 25V, 1h, 5℃Surface FE-SEM image of the film formed after two-step anodic oxidation First step: 10 vol% sulfuric acid solution, 20 min, room temperature (a), (b) 20 V, (c), (d) 50 V, (e), (f ) 100V 2nd stage: 0.05M ammonium nitrate solution, 25V, 1h, 5 ° C 一段階目に硫酸100V,20min, 二段階目に硝酸アンモニウム25V, 1hのアノード酸化後に生成した皮膜断面Cross section of the film formed after anodic oxidation of sulfuric acid 100V, 20min in the first stage, ammonium nitrate 25V, 1h in the second stage 一段階目に硫酸100V,20min,二段階目に硝酸アンモニウム25V, 1hアノード酸化後に生成した皮膜のEDSスペクトル。(a)全体 (b)一段階目に生成した皮膜An EDS spectrum of a film formed after anodization of sulfuric acid 100 V for 20 min in the first stage, ammonium nitrate 25 V in the second stage, and 1 h. (A) Overall (b) Film formed in the first stage 一段階目に硫酸100V,20min, 二段階目に硝酸アンモニウム25V, 1hのアノード酸化後に生成した皮膜のEDSスペクトル(a)二段階目に生成した皮膜 (b)基板EDS spectrum of the film formed after anodic oxidation of sulfuric acid 100V, 20min in the first stage, ammonium nitrate 25V, 1h in the second stage (a) Film formed in the second stage (b) Substrate 一段階目に硫酸100V,20min, 二段階目に硝酸アンモニウム25V,1hのアノード酸化後に生成した皮膜のXPSスペクトルXPS spectrum of the film formed after anodic oxidation of sulfuric acid 100V, 20min in the first stage, ammonium nitrate 25V, 1h in the second stage 一段階目に硫酸アンモニウム100V,1h, 二段階目に硝酸アンモニウム25V,1hのアノード酸化後に生成した皮膜(a),(b)表面, (c)断面Film (a), (b) surface, (c) Cross section formed after anodic oxidation of ammonium sulfate 100V, 1h in the first stage, ammonium nitrate 25V, 1h in the second stage 二段階アノード酸化により生成した皮膜のXRDパターン(a)一段階目:硫酸溶液、二段階目:硝酸アンモニウム溶液(b)一段階目:硫酸アンモニウム溶液、二段階目:硝酸アンモニウム溶液XRD pattern of film formed by two-step anodic oxidation (a) First stage: sulfuric acid solution, second stage: ammonium nitrate solution (b) First stage: ammonium sulfate solution, second stage: ammonium nitrate solution 一段階目に硫酸溶液、二段階目に硝酸アンモニウム溶液を用いた二段階アノード酸化により生成したTiO−TiN複合皮膜(450nm)の電池特性(a)充放電曲線 (b)サイクル特性Battery characteristics of TiO 2 -TiN composite film (450 nm) produced by two-stage anodic oxidation using sulfuric acid solution in the first stage and ammonium nitrate solution in the second stage (a) charge / discharge curve (b) cycle characteristics 一段階目に硫酸アンモニウム、二段階目に硝酸アンモニウムを用いた二段階アノード酸化により生成したTiO−TiN複合皮膜(500nm)の電池特性(a)充放電曲線 (b)サイクル特性Battery characteristics of TiO 2 -TiN composite film (500 nm) produced by two-stage anodic oxidation using ammonium sulfate in the first stage and ammonium nitrate in the second stage (a) charge / discharge curve (b) cycle characteristics 硫酸溶液を用いたアノード酸化により生成したTiO皮膜の電池特性(a)充放電曲線 (b)サイクル特性Battery characteristics of TiO 2 film produced by anodic oxidation using sulfuric acid solution (a) Charging / discharging curve (b) Cycle characteristics

以下に本発明を実施するための形態を説明する。
1−2 アノード酸化
1−2−1 第一種バルブメタルのアノード酸化
金属には遷移金属、非遷移金属という分類があるが、一方では金属の誘電特性から見ると、バルブメタルという分類がある。バルブとは弁作用のある金属という意味で、正確にはその金属表面に生成する酸化皮膜が、電流を一方向にのみ流し、反対方向には非常に流しにくいというような特性のものをいう。つまり整流作用を持つ酸化皮膜のことである。
The form for implementing this invention is demonstrated below.
1-2 Anodic oxidation 1-2-1 Anodic oxidation of first type valve metal There are two types of metal, transition metal and non-transition metal. On the other hand, from the viewpoint of metal dielectric properties, there is a classification of valve metal. The term “valve” means a metal having a valve action. To be precise, the oxide film formed on the surface of the metal has such a characteristic that current flows only in one direction and is difficult to flow in the opposite direction. In other words, it is an oxide film with a rectifying action.

長い間アルミニウムは、バルブメタルの代表とされていたが、そのほかにニオブ、タンタル、チタン、ジルコニウム、ハフニウム、希土類元素などがバルブメタルに分類されていた(第一種)。時には亜鉛、銅、コバルト、ニッケル、クロム、マンガン、モリブデン、タングステンなどもバルブメタルに分類されることがある(第二種)。しかし、金属の表面に生成する酸化皮膜が整流作用をするには、その酸化皮膜を化成する電解液の種類に強く依存する。液性が酸性化、アルカリ性か、または水溶液か非水溶液か、あるいは溶融塩であるかで、その特性は著しく異なる。   Aluminum has long been a representative of valve metals, but niobium, tantalum, titanium, zirconium, hafnium, rare earth elements, etc. were also classified as valve metals (first type). Sometimes zinc, copper, cobalt, nickel, chromium, manganese, molybdenum, tungsten, etc. are also classified as valve metals (second type). However, in order for the oxide film formed on the surface of the metal to have a rectifying action, it strongly depends on the type of electrolytic solution that forms the oxide film. Depending on whether the liquid is acidified, alkaline, aqueous or non-aqueous, or molten salt, its properties differ significantly.

アノード酸化できる金属は、酸化の初期に、電気的には絶縁性のバリヤー皮膜を形成するような酸化物である。すなわち酸化物の電子伝導性が非常に低く、高い電場のもとで、わずかなイオン電導性を示すような酸化物を形成する場合に限り酸化皮膜は成長する。   The metal that can be anodized is an oxide that forms an electrically insulating barrier film at the beginning of oxidation. That is, the oxide film grows only when an oxide that has a very low electronic conductivity and exhibits a slight ionic conductivity under a high electric field.

ここで取り扱うアノード酸化皮膜には、構造的に見てバリヤー皮膜とポーラス皮膜とがある。バリヤー皮膜とは酸化物皮膜が緻密で孔がなく、電流は高い電場のもとで、絶縁性の酸化物皮膜中を流れて厚く成長する。ポーラス皮膜は、最初にできたバリヤー皮膜が高い電場の動きと、電解液の溶解作用を受けて局部的に孔を形成し、多孔質となったものである。したがってこのタイプの皮膜は、バリヤー型の部分とポーラス型の部分の二重構造をとる(図1)。
1−2−2 チタンのアノード酸化
チタンアノード酸化皮膜の成長過程においては、チタンイオンと酸素の両方の移動が皮膜の形成に寄与しているものと考えられている。しかし、皮膜を通ってチタンイオンの移動が起こり、酸化物/溶液界面で皮膜が成長するか、酸素の移動によって金属/酸化物界面で皮膜が成長するか、あるいは電解条件によって同時に進行するかという機構について、十分に説明できる理論は確立されていない。
The anodic oxide film handled here includes a barrier film and a porous film in terms of structure. A barrier film is a dense oxide film with no pores, and the current flows through the insulating oxide film under a high electric field and grows thick. In the porous film, the first barrier film is made porous by locally forming pores under the action of a high electric field and the dissolving action of the electrolytic solution. Therefore, this type of film has a double structure of a barrier type part and a porous type part (FIG. 1).
1-2-2 Anodic oxidation of titanium In the growth process of a titanium anodic oxide film, it is considered that the movement of both titanium ions and oxygen contributes to the formation of the film. However, whether titanium ions move through the film and the film grows at the oxide / solution interface, whether the film grows at the metal / oxide interface due to oxygen movement, or proceeds simultaneously depending on the electrolysis conditions There is no established theory that can fully explain the mechanism.

チタンアノード酸化の電解液の種類や、電解条件によって皮膜の組成に変化はあるが、アナタ−ゼ型とルチル型の混在した二酸化チタン(TiO)がその主成分である。また、皮膜の成長過程においては、無定形皮膜とアナタ−ゼおよびルチルの微結晶の生成が並行して起こっているため、皮膜はこれらの混合物から成り立っている。 Although the composition of the film varies depending on the type of electrolytic solution for titanium anodic oxidation and electrolysis conditions, titanium dioxide (TiO 2 ) in which anatase type and rutile type are mixed is the main component. Further, in the film growth process, the amorphous film and the formation of anatase and rutile microcrystals occur in parallel, and therefore the film is composed of a mixture thereof.

電解液としては、溶融塩、非水溶液、水溶液を用いた開発が行われてきたが、最近の実生産においては、酸あるいはアルカリ水溶液が使用されるのが一般的である。   As an electrolytic solution, development using a molten salt, a non-aqueous solution, and an aqueous solution has been performed, but in recent actual production, an acid or alkaline aqueous solution is generally used.

電解は通常は直流電解で行うが、交流電解でもアノード酸化することが出来る。チタンのアノード酸化皮膜は、皮膜が厚くなるにつれ抵抗が増加するので、一定速度で電圧を上昇させる方法、あるいは定電流密度により所定の電圧に到達後定電圧電解に切り替える方法で行われている。チタンのアノード酸化においては、電解液の種類により電解挙動と皮膜生成率が異なる。皮膜の厚さは同一の電解浴を用いる限りにおいては、電流密度や昇圧速度、電解時間などにほとんど関係なく、最高電圧によって決定される。   Electrolysis is usually performed by direct current electrolysis, but anodization can also be performed by alternating current electrolysis. Since the resistance of titanium anodized film increases as the film becomes thicker, the voltage is increased at a constant rate, or is switched to constant voltage electrolysis after reaching a predetermined voltage by a constant current density. In the anodic oxidation of titanium, the electrolytic behavior and the film formation rate differ depending on the type of electrolytic solution. As long as the same electrolytic bath is used, the thickness of the film is determined by the maximum voltage regardless of the current density, the pressure increase rate, the electrolysis time, and the like.

1−3 ナノ構造を利用したリチウムイオン2次電池
物質のサイズがナノオーダーまで小さくなると、バルク金属とは異なる物性が現れる。リチウムイオン2次電池用電極材料についても同様である。例えば、アナタ−ゼ型TiO2へのリチウムイオン脱挿入は可能だが、ルチル型TiOでもサイズが15nmまで小さくなると、リチウムイオンの脱挿入が可能となり、かつ放電容量は365mAhgにまで達する。さらに、アナタ−ゼ型TiOについても、バルクの理論容量は約167mAhgだが、6nmのナノ粒子では、放電容量が360mAhgに増加する。このように、従来の活物質でもナノサイズまで小さくなると放電容量が著しく増加する。これは、表面積の増加による効果である。表面積の増加による性能向上は、出力特性にも現れる。これは、ナノ細孔内へのリチウムイオンと電解液の移動が容易に出来たことによるものである。このようにナノポーラス電極では表面積が大きいため、表面化学液反応性に起因するリチウム貯蔵などナノ物質特有のエネルギー物性にも興味が持たれる。表面を利用すれば化学量論組成以上のリチウムを貯蔵する可能性もある。このナノ結晶特有のエネルギー貯蔵物性を用いれば、大容量・高出力な革新的なリチウムイオン2次電池電極材料の実現が期待できる。
1-3 Lithium Ion Secondary Battery Utilizing Nanostructure When the size of a material is reduced to the nano order, physical properties different from those of bulk metals appear. The same applies to electrode materials for lithium ion secondary batteries. For example, lithium ion desorption / insertion into anatase TiO 2 is possible, but even with rutile TiO 2 , when the size is reduced to 15 nm, lithium ion desorption can be performed, and the discharge capacity reaches 365 mAhg . In addition, the theoretical capacity of anatase type TiO 2 is about 167 mAhg −, but the discharge capacity increases to 360 mAhg with 6 nm nanoparticles. As described above, even in the case of the conventional active material, the discharge capacity is remarkably increased as the nano-size is reduced. This is an effect due to an increase in surface area. The performance improvement due to the increased surface area also appears in the output characteristics. This is because the lithium ions and the electrolyte solution can be easily transferred into the nanopores. As described above, since the nanoporous electrode has a large surface area, it is also interested in energy properties peculiar to nanomaterials such as lithium storage caused by surface chemical liquid reactivity. If the surface is used, there is a possibility that lithium exceeding the stoichiometric composition may be stored. By using the energy storage properties peculiar to nanocrystals, it is expected to realize an innovative lithium ion secondary battery electrode material having a large capacity and high output.

1−4 目的
現在、リチウムイオン2次電池の大容量化・ハイパワー化のため電極にナノポーラスTiOを用いる研究が行われている。従来のナノポーラスTiO電極の作製方法として、フッ化物イオンを含む電解液を用いたアノード酸化が一般的である。前述したように、電極をナノポーラス構造にすることにより表面積が増大し、リチウムの脱挿入特性の向上が期待される。
1-4 Purpose Currently, research is being conducted on the use of nanoporous TiO 2 as an electrode in order to increase the capacity and power of lithium ion secondary batteries. As a conventional method for producing a nanoporous TiO 2 electrode, anodic oxidation using an electrolytic solution containing fluoride ions is generally used. As described above, the surface area is increased by making the electrode have a nanoporous structure, and the lithium insertion / extraction characteristics are expected to be improved.

しかし、TiOのみで形成されるナノポーラス皮膜は導電性が低く、加えて電解液に含まれるフッ化物イオンは環境に悪影響を及ぼすことが課題である。
そこで、導電性を改善するために、アノード酸化の際に電解液から皮膜内に窒素を取り入れ、TiOとTiNの複合皮膜(導電率TiO:10−11〜10−12Ω−1m−1、TiN:2.5×10Ω−1−1)を生成させようと考えた。本研究では、リチウムイオン2次電池の電極材料を目指し、硝酸アンモニウム溶液を用いてTi板へアノード酸化を施すことによりTiO−TiN複合皮膜を創製することを目的する。
However, the nanoporous film formed only of TiO 2 has a low conductivity, and in addition, fluoride ions contained in the electrolytic solution have a problem of adversely affecting the environment.
Therefore, in order to improve conductivity, nitrogen is introduced into the film from the electrolyte during anodic oxidation, and a composite film of TiO 2 and TiN (conductivity TiO 2 : 10 −11 to 10 −12 Ω−1 m −1). , TiN: 2.5 × 10 6 Ω −1 m −1 ). In this research, aiming at the electrode material of the lithium ion secondary battery, the purpose is to create a TiO 2 -TiN composite film by anodizing the Ti plate using an ammonium nitrate solution.

2−1 試験片
純Ti板 (20×40×0.1mm 99.5%)を出発材料として用いた。
2−2 脱脂処理
2−1に示した試験片をアセトン、エタノール中で各10分間の超音波洗浄後、蒸留水で洗浄した。その後Arガスで乾燥した。
2-1 Test piece pure Ti plate (20 × 40 × 0.1 mm 99.5%) was used as a starting material.
2-2 Degreasing treatment The test piece shown in 2-1 was washed with distilled water after ultrasonic washing in acetone and ethanol for 10 minutes each. Thereafter, it was dried with Ar gas.

2−3 アノード酸化
2−3−1 電圧・電流密度・温度による影響
実験装置の模式図を図2に示す。アノード酸化はアノードに2−2に示した試験片、対極にグラファイト(30×100×8.0mm)、電解液として0.05M硝酸アンモニウム溶液を用いた。溶液は、硝酸アンモニウム4.04gにイオン交換水を加え1.0Lに調整し作製した。アノード酸化により発生する熱を効率的に取り除くために、氷浴で冷却して低温を保ち、撹拌をしながら行った。アノード酸化条件は、電圧の影響を調べるために15−25V、電流密度の影響を調べるために3.0×10−3−5.0×10−3Acm−2、温度の影響を調べるために1−10℃、それぞれ1h行った。
2−3−2 電解液による影響
硝酸イオン(NO )の腐食性が、基板と酸化皮膜の密着性に影響を及ぼしているのではないかと考え、NO を含まない溶液を用いて検証を行った。アノード酸化に使用した溶液およびアノード酸化条件を表1に示した。

Figure 2015190039
2-3 Anodic oxidation 2-3-1 Influence by voltage, current density, and temperature A schematic diagram of the experimental apparatus is shown in FIG. For the anodic oxidation, the test piece shown in 2-2 was used for the anode, graphite (30 × 100 × 8.0 mm) was used for the counter electrode, and 0.05M ammonium nitrate solution was used as the electrolyte. The solution was prepared by adding ion exchange water to 4.04 g of ammonium nitrate to 1.0 L. In order to efficiently remove the heat generated by the anodic oxidation, it was cooled in an ice bath, kept at a low temperature, and stirred. The anodic oxidation conditions are 15-25V for examining the influence of voltage, 3.0 × 10 −3 −5.0 × 10 −3 Acm −2 for examining the influence of current density, and for examining the influence of temperature. It was performed for 1 h at 1-10 ° C., respectively.
2-3-2 influence of electrolyte nitrate ion (NO 3 -) corrosive is believed that it would be affecting the adhesion of the substrate and the oxide film, NO 3 - by using the solution containing no Verification was performed. The solutions used for anodic oxidation and the anodic oxidation conditions are shown in Table 1.
Figure 2015190039

2−3−3 二段階アノード酸化
一段階目は密着性改善のために緻密膜を形成させ表面にふたをすること、二段階目は酸化皮膜内に窒化物を生成させることを目的とし、二段階アノード酸化を行った。一段階目に硫酸系の溶液、二段階目に硝酸アンモニウム溶液を用いてアノード酸化を行った。アノード酸化には図2に示した装置を用い、一段階目に10vol%硫酸(100V,20min,室温)または、2M硫酸アンモニウム(100V,1h,5℃)、二段階目に0.05M硝酸アンモニウム(25V,1h,5℃)を用い、二段階のアノード酸化を行った。溶液の調整は2−3−1または2−3−2に示した方法と同様である。
2-3-3 Two-step anodic oxidation The first step is to form a dense film and cover the surface to improve adhesion, and the second step is to generate nitride in the oxide film. Staged anodic oxidation was performed. Anodization was performed using a sulfuric acid-based solution in the first stage and an ammonium nitrate solution in the second stage. 2 was used for anodic oxidation, 10 vol% sulfuric acid (100 V, 20 min, room temperature) or 2 M ammonium sulfate (100 V, 1 h, 5 ° C.) in the first stage, and 0.05 M ammonium nitrate (25 V in the second stage). , 1 h, 5 ° C.), and two-step anodic oxidation was performed. The adjustment of the solution is the same as the method shown in 2-3-1 or 2-3-2.

2−4 アノード酸化皮膜の特性評価
各条件で得たアノード酸化皮膜に対する特性評価の方法を以降に示す。
酸化皮膜をオスミウムで10s蒸着を行った後、FE−SEM(JEOEL−JSM7001)を用いて、酸化皮膜表面・断面形態の観察およびEDSによる化学組成の分析を行った。XPS(PHI−5600)(CuKα線)を用いて、皮膜表面・内部の化学組成の分析を行った。皮膜内部の分析の際はArスパッタを行った。XRD(RINT2000)(40kV/30mA)を用いて結晶構造の分析を行った。酸化皮膜をFIBで加工をした後、TEM (JEOEL−JSM2100)を用いて、皮膜の微細構造の観察と結晶構造の分析を電子線回折により行った。
2−5 アノード酸化皮膜のリチウムイオン2次電池電極としての特性評価
2−5−1 電極の作製
2−3−3で作製した二つの試料を10×40×0.1mm(電極面積:1.0×1.0cm)に切り取り、電気炉で400℃・2hの加熱処理を行ったものを電極とした。
2-4 Characteristic Evaluation of Anodic Oxide Film A method for evaluating characteristics of the anodic oxide film obtained under each condition is shown below.
After the oxide film was vapor-deposited for 10 s with osmium, the oxide film surface / cross-sectional form was observed and the chemical composition was analyzed by EDS using FE-SEM (JEEL-JSM7001). Using XPS (PHI-5600) (CuKα ray), the chemical composition of the coating surface and inside was analyzed. Ar sputtering was performed for analysis of the inside of the film. The crystal structure was analyzed using XRD (RINT2000) (40 kV / 30 mA). After processing the oxide film with FIB, observation of the fine structure of the film and analysis of the crystal structure were performed by electron diffraction using TEM (JEOEL-JSM2100).
2-5 Characteristic Evaluation of Anodic Oxide Film as Lithium Ion Secondary Battery Electrode 2-5-1 Preparation of Electrode The two samples prepared in 2-3-3 were 10 × 40 × 0.1 mm (electrode area: 1. 0 × 1.0 cm) and heat-treated at 400 ° C. for 2 hours in an electric furnace was used as an electrode.

2−5−2 電池の作製
図3の様式でポーチセルを作製した。手順(1)は空気中で行い、2−5−1に示した試料の中央部分にシーラントを熱圧着したものを作用極とした。3cmのニッケル線の中央部も同様の操作をし、金属リチウムに接続するリード線とした。またセパレータを作用極が包まれる大きさの袋状にし、手順(1)に示すようにそれぞれのパーツを配置した後、A辺とB辺を熱圧着した。手順(1)で作製したポーチとリード線をAr置換したグローブボックス内に入れ手順(2)の工程を行った。金属リチウム(本城金属製)を5.0×3.0cmに切り取り、それにニッケル線を挟み半分に折りたたみ圧着したものを対極として用い、セパレータを挟んで作用極と対置させた。次いで、電解液として1.0mLの1M LiPF/EC+EMC+DMC(1:1:1vol.)をセル内部に注ぎ、C辺を熱圧着し二極式ポーチセルとした。
2-5-2 Production of Battery A pouch cell was produced in the manner shown in FIG. The procedure (1) was performed in air, and a working electrode was obtained by thermocompression bonding a sealant to the central portion of the sample shown in 2-5-1. The same operation was performed on the central part of the 3 cm nickel wire to obtain a lead wire connected to metallic lithium. In addition, the separator was formed into a bag size in which the working electrode was wrapped, and after placing each part as shown in the procedure (1), the A side and the B side were thermocompression bonded. The pouch and the lead wire produced in the procedure (1) were placed in an Ar-substituted glove box, and the procedure of the procedure (2) was performed. Metal lithium (Honjo Metal Co., Ltd.) was cut to 5.0 × 3.0 cm, and a nickel wire was sandwiched and folded in half and used as a counter electrode. The separator was sandwiched between the working electrode and the working electrode. Next, 1.0 mL of 1M LiPF 6 / EC + EMC + DMC (1: 1: 1 vol.) Was poured into the cell as an electrolyte, and the C side was thermocompression bonded to form a bipolar pouch cell.

2−5−3 定電流放電試験
2−5−2で作製した二極式ポーチセルを用いて、電流密度50mAcm−2、電圧範囲1.0−3.0V、測定温度30℃の条件で50サイクルの定電流放電試験を行った。測定には北斗電工製のHJ1010mSM8A充放電装置を使用した。
2-5-3 Constant Current Discharge Test Using the bipolar pouch cell prepared in 2-5-2, 50 cycles under the conditions of a current density of 50 mAcm −2 , a voltage range of 1.0 to 3.0 V, and a measurement temperature of 30 ° C. The constant current discharge test was conducted. For the measurement, HJ1010mSM8A charge / discharge device manufactured by Hokuto Denko was used.

2−6 試薬
実験に用いた試薬は、以下の通りである。
硝酸アンモニウム 和光純薬工業株式会社 和光一級
硫酸アンモニウム 和光純薬工業株式会社 試薬特級
硫酸 和光純薬工業株式会社 試薬特級
アンモニア水 関東化学株式会社 鹿一級
2-6 Reagents The reagents used in the experiment are as follows.
Ammonium nitrate Wako Pure Chemical Industries, Ltd. Wako first grade ammonium sulfate Wako Pure Chemical Industries, Ltd. Special reagent grade sulfuric acid Wako Pure Chemical Industries, Ltd. Special reagent grade ammonia water Kanto Chemical Co., Ltd. Deer first grade

3−1 硝酸アンモニウム溶液を用いたアノード酸化
3−1−1 電圧の影響
電圧による影響を検証した結果を以降に示す。
図4に、0.05 M硝酸アンモニウム溶液を用い各定電圧で1h,5℃のアノード酸化後の試験片を示す。
図5のSEM画像から確認できるように、それぞれの電圧で不均一な皮膜が形成し、電圧の上昇に伴いより不均一な皮膜が形成した。皮膜内部(図5(f))には、ナノチューブのような層が形成していることから、硝酸アンモニウム溶液を用いたアノード酸化によりナノポーラス皮膜が生成する可能性があることがわかった。
3-1 Anodic oxidation using ammonium nitrate solution 3-1-1 Influence of voltage The results of verifying the influence of voltage are shown below.
FIG. 4 shows a test piece after anodic oxidation at 0.05 ° C. for 1 h at 5 ° C. using a 0.05 M ammonium nitrate solution.
As can be confirmed from the SEM image of FIG. 5, a non-uniform film was formed at each voltage, and a more non-uniform film was formed as the voltage increased. Since a nanotube-like layer is formed inside the film (FIG. 5 (f)), it has been found that a nanoporous film may be formed by anodic oxidation using an ammonium nitrate solution.

図5に示した皮膜の化学組成の分析をXPSにより行った結果を図6に示す。まずチタン領域のスペクトルを見ると、Ti4+のピークが現れたためTiOの生成が確認出来た。スパッタ後のスペクトルを見ると、Ti3+の部分がブロードしたため、皮膜内部にはTiNが生成したことが確認出来た。さらに窒素領域のスペクトルから、皮膜表面は硝酸イオン(NO )とアンモニウムイオン(NH4+)の吸着のみだが、皮膜内部には窒化物のピークが現れたため、TiNの生成が示唆される。これらの結果から、硝酸アンモニウム溶液によってアノード酸化を行うことによりTiOとTiNの複合皮膜の生成が示唆される。 FIG. 6 shows the result of XPS analysis of the chemical composition of the film shown in FIG. First, looking at the spectrum of the titanium region, the generation of TiO 2 was confirmed because the peak of Ti 4+ appeared. Looking at the spectrum after sputtering, the Ti 3+ portion broadened , so it was confirmed that TiN was generated inside the coating. Furthermore, from the spectrum of the nitrogen region, the film surface is only adsorbed with nitrate ions (NO 3 ) and ammonium ions (NH 4+ ), but a nitride peak appears inside the film, suggesting the formation of TiN. These results suggest the formation of a composite film of TiO 2 and TiN by anodizing with an ammonium nitrate solution.

3−1−2 電流密度・温度の影響
電流密度3.0mAcm−2の定電流で1hのアノード酸化を行った際の、温度による影響を検証した結果を図7、図8に示す。SEM画像から、1℃と5℃の場合ではポーラスが形成していないことが確認出来た。この一因として、電圧が十分に上昇しなかったことが考えられる。一方10℃の場合は、皮膜表面は不均一であるが部分的にポーラスが形成した。
3-1-2 Effect of Current Density / Temperature FIG. 7 and FIG. 8 show the results of verifying the influence of temperature when anodizing for 1 h at a constant current of 3.0 mAcm −2 . From the SEM image, it was confirmed that no porous material was formed at 1 ° C. and 5 ° C. One possible reason is that the voltage did not rise sufficiently. On the other hand, in the case of 10 ° C., the surface of the film was not uniform, but porous was partially formed.

次に、電流密度を5.0mAcm−2に上げ温度による影響を検証した結果を図9に示す。1℃の場合は、3.0mAcm−2で5℃の場合に形成した皮膜と類似した表面となった。この一因として、アノード酸化の際に流れた電圧がほとんど同じであったためと考えられる。5℃の場合に、皮膜表面が均一で且つポーラス構造を有する皮膜の形成に成功した。この皮膜の膜厚は約6.5μmである。しかし、断面は層状で、皮膜が非常にはがれやすかったため基板との密着性は悪いと言える。 Next, FIG. 9 shows the result of verifying the influence of temperature by increasing the current density to 5.0 mAcm −2 . In the case of 1 degreeC, it became a surface similar to the film | membrane formed in the case of 5 degreeC at 3.0 mAcm- 2 . One reason for this is thought to be that the voltages that flowed during anodic oxidation were almost the same. When the temperature was 5 ° C., the film surface was uniform and the film having a porous structure was successfully formed. The film thickness is about 6.5 μm. However, it can be said that the cross section is lamellar and the film is very easy to peel off, so that the adhesion to the substrate is poor.

電流密度5.0mAcm−2,1h,5℃の条件でアノード酸化を行った試料の化学組成をXPSにより分析した結果を図10に示す。まずチタン領域のスペクトルを見ると、Ti4+のピークが現れたためTiOの生成が確認出来た。スパッタ後のスペクトルを見ると、Ti3+とTi2+の部分がブロードとなったため、皮膜内部にはTiNとTiOが生成していることが確認出来た。さらに窒素領域のスペクトルから、皮膜表面はNO とNH4+の吸着のみだが、皮膜内部には窒化物が生成していることがわかった。
前述の試料をTEMにより観察した結果を図11に示す。図12には、そのEDSスペクトル図を示す。電子線回折により結晶構造の違いを確認したところ異なる結果となっため、上層がアノード酸化により形成した酸化皮膜、下層がTi板であることがわかった。
FIG. 10 shows the result of XPS analysis of the chemical composition of the sample subjected to anodization under conditions of current density of 5.0 mAcm −2 , 1 h, and 5 ° C. First, looking at the spectrum of the titanium region, the generation of TiO 2 was confirmed because the peak of Ti 4+ appeared. Looking at the spectrum after sputtering, the portions of Ti 3+ and Ti 2+ were broad, and it was confirmed that TiN and TiO were generated inside the coating. Further, from the spectrum of the nitrogen region, it was found that the film surface was only adsorbed with NO 3 and NH 4+ , but nitride was formed inside the film.
The result of observing the above-mentioned sample with TEM is shown in FIG. FIG. 12 shows the EDS spectrum diagram. When the difference in crystal structure was confirmed by electron beam diffraction, the results were different, and it was found that the upper layer was an oxide film formed by anodic oxidation and the lower layer was a Ti plate.

3−2 硝酸イオンを含まない溶液を用いたアノード酸化
3−2−1 硫酸を用いた系
10vol%硫酸溶液を用いて電圧による影響を検証した結果を図13,14,15に示す。図16には試験片を示す。
SEM画像からわかるように、20−60Vでは不均一な皮膜、70−90Vではナノポーラスは形成してないが均一な皮膜、100Vで細孔径φ50−150nmのナノポーラスが形成し且つ均一な皮膜の生成に成功した。この一因として、低い電圧では十分な電流が流れなかったため不均一な表面となったと考えられる。
3-2 Anodic oxidation using a solution not containing nitrate ions 3-2-1 System using sulfuric acid The results of verifying the influence of voltage using a 10 vol% sulfuric acid solution are shown in FIGS. FIG. 16 shows a test piece.
As can be seen from the SEM image, a non-uniform film is formed at 20-60V, a nanoporous film is not formed at 70-90V, and a nanoporous film with a pore diameter of 50-150 nm is formed at 100V and a uniform film is formed. Successful. One reason for this is thought to be a non-uniform surface because a sufficient current did not flow at a low voltage.

100Vの際に生成した皮膜の化学組成をXPSにより分析した結果を図17に示す。チタン領域のスペクトルを見ると、Ti4+のピークが現れたためTiOの生成が確認出来た。スパッタ後のスペクトルを見ると、Ti2+の部分にピークが現れたため皮膜内部にはTiOが生成していることがわかった。 FIG. 17 shows the result of XPS analysis of the chemical composition of the film produced at 100V. Looking at the spectrum of the titanium region, a Ti 4+ peak appeared, confirming the formation of TiO 2 . When the spectrum after sputtering was observed, it was found that a peak appeared in the Ti 2+ part, so that TiO was generated inside the film.

3−2−2 硫酸アンモニウムを用いた系
0.5M硫酸アンモニウム溶液を用いて電圧による影響を検証した結果を図18に示す。15−25Vで比較を行った結果、いずれも表面が不均一な皮膜が生成した。これらの皮膜が、硫酸溶液を用いた場合に生成した皮膜と類似していたため、次に100Vでアノード酸化を行った際の溶液の濃度による影響を検証した結果を図19に示す。0.5Mと2Mの溶液で比較を行った結果、2Mの際に細孔径φ50〜200nmのナノポーラスが形成し且つ均一な皮膜の生成に成功した。
3-2-2 System Using Ammonium Sulfate FIG. 18 shows the results of verifying the influence of voltage using a 0.5 M ammonium sulfate solution. As a result of comparison at 15 to 25 V, a film with a non-uniform surface was formed in all cases. Since these films were similar to the films formed when the sulfuric acid solution was used, the results of verifying the influence of the concentration of the solution when the anodic oxidation was performed at 100 V are shown in FIG. As a result of comparison between the 0.5M and 2M solutions, nanoporouss with a pore diameter of 50 to 200 nm were formed at 2M, and a uniform film was successfully produced.

2Mで生成した皮膜の化学組成をXPSにより分析した結果を図20に示す。まずチタン領域のスペクトルを見ると、Ti4+のピークが現れたためTiOの生成が確認出来た。スパッタ後のスペクトルを見ると、Ti3+とTi2+の部分がブロードとなったため、皮膜内部にはTiNとTiOが生成していることが確認出来た。さらに窒素領域のスペクトルから、皮膜表面はNH4−の吸着のみだが、皮膜内部には窒化物が生成していることがわかった。この結果から、NO を含まない溶液を用いた場合でも、TiOとTiNの複合皮膜は生成することがわかった。しかし、窒化物のピークの強度を比較すると硝酸アンモニウム溶液を用いたほうが強いため、TiNを生成させる際にNO も関与しているとわかった。 FIG. 20 shows the result of XPS analysis of the chemical composition of the film formed at 2M. First, looking at the spectrum of the titanium region, the generation of TiO 2 was confirmed because the peak of Ti 4+ appeared. Looking at the spectrum after sputtering, the portions of Ti 3+ and Ti 2+ were broad, and it was confirmed that TiN and TiO 2 were generated inside the coating. Further, from the spectrum of the nitrogen region, it was found that the surface of the film was only adsorbed with NH 4− , but nitride was formed inside the film. From this result, it was found that a composite film of TiO 2 and TiN was formed even when a solution not containing NO 3 was used. However, when comparing the peak intensities of the nitride, it was found that the ammonium nitrate solution was stronger, so that NO 3 was also involved in the formation of TiN.

前述の試料をTEMで観察した結果を図21に示す。また、EDSスペクトルを図22に示す。電子線回折により結晶構造の違いを確認したところ異なる結果となったため、上層がアノード酸化により形成した酸化皮膜、下層がTi板であると言える。
3−2−3 アンモニア水を用いた系
10vol%アンモニア水を用いて電圧による影響を検証した結果を図23に示す。15−25Vで比較を行った結果、いずれも不均一な皮膜が生成しポーラスは形成しなかった。
The result of observing the above-mentioned sample with TEM is shown in FIG. An EDS spectrum is shown in FIG. When the difference in crystal structure was confirmed by electron diffraction, the results were different. Therefore, it can be said that the upper layer is an oxide film formed by anodic oxidation and the lower layer is a Ti plate.
3-2-3 System Using Ammonia Water FIG. 23 shows the results of verifying the influence of voltage using 10 vol% ammonia water. As a result of comparison at 15 to 25 V, a non-uniform film was formed and no porous film was formed.

生成した皮膜の化学組成をXPSにより分析した結果を図24に示す。まずチタン領域のスペクトルを見ると、Ti4+のピークが現れたためTiOの生成が確認出来た。さらに窒素領域のスペクトルから、皮膜表面にはNH4+とNO の吸着が確認された。 The result of analyzing the chemical composition of the produced film by XPS is shown in FIG. First, looking at the spectrum of the titanium region, the generation of TiO 2 was confirmed because the peak of Ti 4+ appeared. Further, from the spectrum of the nitrogen region, adsorption of NH 4+ and NO 3 was confirmed on the film surface.

3−3 二段階アノード酸化
3−3−1 一段階目:硫酸, 二段階目:硝酸アンモニウム
一段階目は密着性改善のために緻密膜を形成させ表面にふたをすること、二段階目は酸化皮膜内に窒化物を生成させることを目的とし、二段階アノード酸化を行った。
3-3 Two-stage anodic oxidation 3-3-1 First stage: Sulfuric acid, Second stage: Ammonium nitrate The first stage is to form a dense film and improve the adhesion, and the second stage is oxidation. Two-step anodic oxidation was performed for the purpose of forming nitrides in the film.

まず、一段階目に10vol%硫酸溶液を用い20V(図13),50V(図14),100V(図15)それぞれ室温で20min、二段階目に0.05M硝酸アンモニウム溶液を用い5℃で1hのアノード酸化を行った際の電流密度−時間曲線を図25に示す。始めの電流密度が安定しない部分でバリヤー層が、電流密度が安定している時にポーラス層の形成が起こっているとわかる。
なお、図26には、試験片の外観図を示す。図27のSEM画像からわかるように一段階目に表面が不均一であった(a),(c)は、二段階目のアノード酸化後にはさらに不均一な皮膜となった。一方で、一段階目に非常に均一な皮膜が生成した(e)は二段階目のアノード酸化後でも均一に保たれていた。硝酸アンモニウム溶液を用いたアノード酸化により形成した皮膜と比較すると、皮膜が基板からはがれにくくなっていたため、基板と酸化皮膜の密着性が改善されたと言える。
First, 20V (FIG. 13), 50V (FIG. 14), and 100V (FIG. 15) are each used for 20 min at room temperature using a 10 vol% sulfuric acid solution in the first stage, and 0.05 h ammonium nitrate solution is used for 1 h at 5 ° C. in the second stage. FIG. 25 shows a current density-time curve when the anodic oxidation is performed. It can be seen that the porous layer is formed when the current density is stable in the barrier layer where the initial current density is unstable.
In addition, in FIG. 26, the external view of a test piece is shown. As can be seen from the SEM image of FIG. 27, the surfaces (a) and (c) where the surface was non-uniform at the first stage were further non-uniform after the second-stage anodic oxidation. On the other hand, the very uniform film formed in the first stage (e) was kept uniform even after the second stage anodization. Compared with the film formed by anodic oxidation using an ammonium nitrate solution, it was difficult for the film to peel off from the substrate, so it can be said that the adhesion between the substrate and the oxide film was improved.

二段階アノード酸化により均一な皮膜が生成した試料の断面形態の観察と、電子線回折により結晶構造を分析した結果を図28に示す。SEM画像から膜厚は約450nmであることがわかった。さらに、結晶構造の違いから上層の一段階目にすp生成した層と下層の二段階目に生成した層の二層構造の皮膜が生成していることがわかった。   FIG. 28 shows the results of the observation of the cross-sectional form of the sample in which a uniform film was formed by two-step anodic oxidation and the analysis of the crystal structure by electron beam diffraction. From the SEM image, it was found that the film thickness was about 450 nm. Furthermore, it was found from the difference in crystal structure that a film having a two-layer structure of a p-formed layer formed in the first step of the upper layer and a layer formed in the second step of the lower layer was formed.

なお、図29、30はEDSスペクトル図である。   29 and 30 are EDS spectrum diagrams.

試料の化学組成をXPSにより分析した結果を図31に示す。まずチタン領域のスペクトルを見ると、Ti4+のピークが現れたためTiOの生成が確認出来た。スパッタ後のスペクトルを見ると、Ti3+とTi2+の部分がブロードとなったため、皮膜内部にはTiNとTiOが生成していることが確認出来た。さらに窒素領域のスペクトルから、皮膜表面はNO とNH4+の吸着のみだが、皮膜内部には窒化物が生成していることがわかった。 The result of analyzing the chemical composition of the sample by XPS is shown in FIG. First, looking at the spectrum of the titanium region, the generation of TiO 2 was confirmed because the peak of Ti 4+ appeared. Looking at the spectrum after sputtering, the portions of Ti 3+ and Ti 2+ were broad, and it was confirmed that TiN and TiO were generated inside the coating. Further, from the spectrum of the nitrogen region, it was found that the film surface was only adsorbed with NO 3 and NH 4+ , but nitride was formed inside the film.

3−3−2 一段階目:硫酸アンモニウム, 二段階目:硝酸アンモニウム
一段階目に2M硫酸アンモニウム溶液を用い100V,5℃,1h(図19)、二段階目に0.05M硝酸アンモニウム溶液を用い25V,5℃,1hのアノード酸化を行った結果を図32に示す。皮膜表面は均一であり、先ほどと同様に基板と酸化皮膜の密着性が改善されたと言える。断面のSEM画像から、膜厚約500nmの二層構造の皮膜が生成したことがわかった。
3-3-2 First stage: ammonium sulfate, second stage: ammonium nitrate 100M, 5 ° C, 1h (FIG. 19) using 2M ammonium sulfate solution in the first stage, and 25V, 5 using 0.05M ammonium nitrate solution in the second stage The results of anodic oxidation at 1 ° C. for 1 h are shown in FIG. The surface of the film is uniform, and it can be said that the adhesion between the substrate and the oxide film was improved as before. From the SEM image of the cross section, it was found that a film having a two-layer structure having a film thickness of about 500 nm was formed.

3−4 アノード酸化皮膜のリチウムイオン2次電池の電極としての特性評価
二段階アノード酸化により作製した試料を400℃、2hの加熱処理を施した後、電池としての特性評価を行った結果を以降に示す。
まず使用した試料の加熱処理前後のXRDパターンを図33に示す。純TiのXRDパターンと比較して、アノード酸化を行うことでアナタ−ゼ型のTiOが生成したことがわかる。加熱処理前後には大きなピークの変化は見られなかった。
3-4 Characteristic evaluation of anodized film as an electrode of a lithium ion secondary battery The sample prepared by two-step anodic oxidation was subjected to a heat treatment at 400 ° C. for 2 hours, and then the results of the characteristic evaluation as a battery are described below. Shown in
First, XRD patterns before and after the heat treatment of the used sample are shown in FIG. Compared with the XRD pattern of pure Ti, it can be seen that anatase-type TiO 2 was produced by anodic oxidation. There was no significant peak change before and after the heat treatment.

一段階目に硫酸溶液、二段階目に硝酸アンモニウム溶液を用いて二段階アノード酸化を行った試料の充放電曲線とサイクル特性を図34に示す。最大放電容量17.3mAhcm−2(3.8mAhnm−3)、50サイクル後の放電容量15.4mA hcm−2(3.4mAhnm−3)となり50サイクル後の容量維持率は89.2%となった。ナノ構造を有するTiO皮膜の電池特性に関する既往の研究として、膜厚1μm(ナノチューブ)の皮膜で放電容量0.150mAhcm−2(15.0mAhμm−3)、膜厚9μm(ナノポーラス)の皮膜で放電容量0.240mAhcm−2(2.7mAhμm−3)の結果が報告されている。既往の研究結果と比較すると、膜厚が薄いにも関わらず放電容量が大きくなったため、放電容量は改善されたと言える。一因として、皮膜内にTiNが含まれていることにより導電性が改善され、TiOが効率的に利用されたためと考えられる。 FIG. 34 shows charge / discharge curves and cycle characteristics of a sample subjected to two-step anodic oxidation using a sulfuric acid solution in the first step and an ammonium nitrate solution in the second step. Maximum discharge capacity 17.3mAhcm -2 (3.8mAhnm -3), the discharge capacity 15.4mA hcm -2 (3.4mAhnm -3) capacity retention after next 50 cycles after 50 cycles a 89.2% It was. As a past study on the battery characteristics of a TiO 2 film having a nanostructure, a discharge of 0.150 mAhcm −2 (15.0 mAhμm −3 ) and a film of 9 μm (nanoporous) are discharged with a film having a thickness of 1 μm (nanotube) Results with a capacity of 0.240 mAhcm −2 (2.7 mAh μm −3 ) have been reported. Compared with previous research results, the discharge capacity was improved despite the small film thickness, so the discharge capacity was improved. One reason for this is thought to be that the conductivity was improved by the inclusion of TiN in the film, and TiO 2 was efficiently used.

次に一段階目に硫酸アンモニウム溶液、二段階目に硝酸アンモニウム溶液を用いて二段階アノード酸化を行った試料の充放電曲線とサイクル特性を図34に示す。最大放電容量60.0mAhcm−2(12.0mAhnm−3)、50サイクル後の放電容量51.7mAhcm−2(10.3mAhnm−3)となり、50サイクル後の容量維持率は86.6%となった。上述の試料と比較して、放電容量がさらに改善された。この一因として、一段階目にもNH4+を含む溶液を用いたことにより、皮膜内のTiN生成量が増加したためと考えられる。
なお、硫酸溶液を用いたアノード酸化により生成したTiO皮膜の電池特性((a) 充放電曲線 (b) サイクル特性)を図36に示す。
様々な条件でアノード酸化を行い、ナノポーラスTiO−TiN複合皮膜の創製を試み、リチウムイオン2次電池としての特性評価を行った。そこで得られた結果は以下の通りである。
Next, FIG. 34 shows charge / discharge curves and cycle characteristics of a sample subjected to two-stage anodic oxidation using an ammonium sulfate solution in the first stage and an ammonium nitrate solution in the second stage. The maximum discharge capacity was 60.0 mAhcm −2 (12.0 mAhnm −3 ), the discharge capacity after 50 cycles was 51.7 mAhcm −2 (10.3 mAhnm −3 ), and the capacity retention rate after 50 cycles was 86.6%. It was. Compared with the above sample, the discharge capacity was further improved. One reason for this is thought to be that the amount of TiN produced in the film increased due to the use of a solution containing NH 4+ in the first stage.
Incidentally, showing battery characteristics of the TiO 2 film produced by anodic oxidation with sulfuric acid solution ((a) charge-discharge curve (b) cycle characteristics) in FIG. 36.
Anodic oxidation was performed under various conditions to try to create a nanoporous TiO 2 —TiN composite film, and the characteristics of the lithium ion secondary battery were evaluated. The results obtained there are as follows.

(1) 硝酸アンモニウム溶液を用いて電圧・電流密度・温度による影響を検証した結果、5−35(好ましくは20−25V)または3.0−5.0mAcm−2でアノード酸化することにより細孔径約φ25nm、細孔間距離約80nmのナノポーラス皮膜が形成した。
(2) XPSの分析結果から、硝酸アンモニウム溶液を用いたアノード酸化により生成した皮膜内にTiOのほかにTiNの生成を確認できたためTiO−TiN複合皮膜が生成した。
(3) 硫酸溶液または硫酸アンモニウム溶液を用いてアノード酸化を行った結果、100 Vの際に細孔径φ50−150nm、細孔間距離約250nm、膜厚450−500 nmのナノポーラス皮膜が形成した。
(4) 一段階目に硫酸溶液または硫酸アンモニウム溶液、二段階目に硝酸アンモニウム溶液を用いて二段階アノード酸化を行った結果、密着性の良いナノポーラスTiO−TiN複合皮膜が形成した。
(5) 二段階アノード酸化により作製した試料を用いて電池としての特性評価を行った結果、最大放電容量60.0mAhcm−2(12.0mAhnm−3),容量維持率86.6%の結果が得られた。
(1) As a result of verifying the influence of voltage, current density, and temperature using an ammonium nitrate solution, the pore diameter was reduced by anodizing at 5-35 (preferably 20-25 V) or 3.0-5.0 mAcm −2. A nanoporous film having a diameter of 25 nm and a distance between pores of about 80 nm was formed.
(2) From the XPS analysis results, it was confirmed that TiN was produced in addition to TiO 2 in the film produced by anodic oxidation using an ammonium nitrate solution, so that a TiO 2 —TiN composite film was produced.
(3) As a result of anodic oxidation using a sulfuric acid solution or an ammonium sulfate solution, a nanoporous film having a pore diameter of 50 to 150 nm, a distance between pores of about 250 nm, and a film thickness of 450 to 500 nm was formed at 100 V.
(4) As a result of two-step anodic oxidation using a sulfuric acid solution or an ammonium sulfate solution in the first stage and an ammonium nitrate solution in the second stage, a nanoporous TiO 2 —TiN composite film having good adhesion was formed.
(5) As a result of evaluating the characteristics of the battery using a sample prepared by two-step anodic oxidation, the result is that the maximum discharge capacity is 60.0 mAhcm −2 (12.0 mAhnm −3 ) and the capacity maintenance ratio is 86.6%. Obtained.

以上のことから、バインダーフリーのリチウムイオン2次電池電極としてナノポーラスTiO−TiN複合皮膜の応用が期待できる。 From the above, application of the nanoporous TiO 2 —TiN composite film as a binder-free lithium ion secondary battery electrode can be expected.

Claims (20)

硝酸系電解液を用い、100V未満の電圧下でTi基体を陽極酸化することを特徴とする多孔質陽極酸化皮膜の製造方法。 A method for producing a porous anodic oxide film, comprising using a nitric acid-based electrolyte and anodizing a Ti substrate under a voltage of less than 100V. 前記電解液のpHは11以下であることを特徴とする請求項1記載の多孔質陽極酸化皮膜の製造方法。 The method for producing a porous anodic oxide film according to claim 1, wherein the pH of the electrolytic solution is 11 or less. 前記電圧は5−35Vであることを特徴とする請求項1又は2記載の多孔質陽極酸化皮膜の製造方法。 The method for producing a porous anodized film according to claim 1 or 2, wherein the voltage is 5-35V. 前記陽極酸化時の電流密度は3.0−5.0mAcm−2であることを特徴とする請求項1ないし3のいずれか1項記載の多孔質陽極酸化皮膜の製造方法。 The method for producing a porous anodized film according to any one of claims 1 to 3, wherein a current density during the anodization is 3.0 to 5.0 mAcm -2 . 前記硝酸系電解液は硝酸アンモニウム溶液であることを特徴とする請求項1ないし4のいずれか1項記載の多孔質陽極酸化皮膜の製造方法。 The method for producing a porous anodic oxide film according to any one of claims 1 to 4, wherein the nitric acid-based electrolytic solution is an ammonium nitrate solution. 硫酸系電解液を用い、70V以上の電圧下でTi基体を陽極酸化することを特徴とする多孔質陽極酸化皮膜の製造方法。 A method for producing a porous anodic oxide film, characterized by anodizing a Ti substrate under a voltage of 70 V or more using a sulfuric acid electrolyte. 前記電圧は、100V以上であることを特徴とする請求項6記載の多孔質陽極酸化皮膜の製造方法。 The method for producing a porous anodic oxide film according to claim 6, wherein the voltage is 100 V or more. 前記電解液のpHは11以下であることを特徴とする請求項6又は7記載の多孔質陽極酸化皮膜の製造方法。 The method for producing a porous anodic oxide film according to claim 6 or 7, wherein the pH of the electrolytic solution is 11 or less. 前記硫酸系電解液は硫酸溶液または硫酸アンモニウム溶液であることを特徴とする請求項6ないし8のいずれか1項記載の多孔質陽極酸化皮膜の製造方法。 9. The method for producing a porous anodic oxide film according to claim 6, wherein the sulfuric acid electrolyte is a sulfuric acid solution or an ammonium sulfate solution. 硫酸溶液または硫酸アンモニウム溶液による第1の陽極酸化工程の後に、硝酸溶液又は硝酸アンモニウム溶液による第2の陽極酸化工程を行うことを特徴とする多層多孔質陽極酸化皮膜の製造方法。 A method for producing a multilayer porous anodized film, comprising performing a second anodizing step with a nitric acid solution or an ammonium nitrate solution after a first anodizing step with a sulfuric acid solution or an ammonium sulfate solution. 前記第1の陽極酸化工程において硫酸溶液を用い、前記第2の陽極酸化工程では硝酸アンモニウムを用いることを特徴とする請求項10記載の多層多孔質陽極酸化皮膜の製造方法。 The method for producing a multilayer porous anodized film according to claim 10, wherein a sulfuric acid solution is used in the first anodizing step, and ammonium nitrate is used in the second anodizing step. 前記第1の陽極酸化工程において硫酸アンモニウム溶液を用い、前記第2の陽極酸化工程では硝酸アンモニウムを用いることを特徴とする請求項10記載の多層多孔質陽極酸化皮膜の製造方法。 The method for producing a multilayer porous anodized film according to claim 10, wherein an ammonium sulfate solution is used in the first anodizing step, and ammonium nitrate is used in the second anodizing step. Ti基体上に、平均細孔径が約10−30nm、細孔間距離80nm以上で形成されている多孔質陽極酸化皮膜。 A porous anodized film formed on a Ti substrate with an average pore diameter of about 10-30 nm and a distance between pores of 80 nm or more. 前記陽極酸化皮膜はTiO−TiNの複合酸化膜であることを特徴とする請求項13記載の陽極酸化皮膜。 The anodized film according to claim 13, wherein the anodized film is a composite oxide film of TiO 2 —TiN. Ti基体上に、平均細孔径φ50−150nm、細孔間距離250nm以上で形成されている多孔質陽極酸化皮膜。 A porous anodized film formed on a Ti substrate with an average pore diameter of 50 to 150 nm and a distance between pores of 250 nm or more. Ti基体上に、平均細孔径が約10−30nm、細孔間距離80nm以上の膜と、平均細孔径50−150nm、細孔間距離250nm以上の膜とが形成されていることを特徴とする多孔質陽極酸化皮膜。 A film having an average pore diameter of about 10-30 nm and a distance between pores of 80 nm or more and a film having an average pore diameter of 50-150 nm and a distance between pores of 250 nm or more are formed on a Ti substrate. Porous anodized film. 前記皮膜は結晶質であることを特徴とする請求項13ないし16のいずれか1項記載の多孔質陽極酸化皮膜。 The porous anodic oxide film according to any one of claims 13 to 16, wherein the film is crystalline. 請求項13ないし17のいずれか1項記載の多孔質陽極酸化皮膜を有することを特徴とする電極。 An electrode comprising the porous anodized film according to any one of claims 13 to 17. 前記電極はリチウムイオン2次電池用の電極である請求項18記載の電極。 The electrode according to claim 18, wherein the electrode is an electrode for a lithium ion secondary battery. 請求項18又は19記載の電極を有する電池。 A battery comprising the electrode according to claim 18 or 19.
JP2014070132A 2014-03-28 2014-03-28 Method for producing multilayer porous anodic oxide coating, porous anodic oxide coating, electrode and battery using the same Expired - Fee Related JP6395249B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014070132A JP6395249B2 (en) 2014-03-28 2014-03-28 Method for producing multilayer porous anodic oxide coating, porous anodic oxide coating, electrode and battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014070132A JP6395249B2 (en) 2014-03-28 2014-03-28 Method for producing multilayer porous anodic oxide coating, porous anodic oxide coating, electrode and battery using the same

Publications (2)

Publication Number Publication Date
JP2015190039A true JP2015190039A (en) 2015-11-02
JP6395249B2 JP6395249B2 (en) 2018-09-26

Family

ID=54424801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014070132A Expired - Fee Related JP6395249B2 (en) 2014-03-28 2014-03-28 Method for producing multilayer porous anodic oxide coating, porous anodic oxide coating, electrode and battery using the same

Country Status (1)

Country Link
JP (1) JP6395249B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017222892A (en) * 2016-06-13 2017-12-21 新日鐵住金株式会社 Titanium material and manufacturing method of titanium material
JP6440916B1 (en) * 2018-06-18 2018-12-19 新日鐵住金株式会社 Titanium material
CN113699535A (en) * 2021-08-25 2021-11-26 江苏城乡建设职业学院 Preparation method of spongy titanium dioxide porous layer
JP7489089B2 (en) 2020-03-06 2024-05-23 国立大学法人 名古屋工業大学 Battery negative electrode material and its manufacturing method

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10130886A (en) * 1996-10-23 1998-05-19 Nippon Steel Corp Production of color-developing titanium excellent in corrosion resistance and that color developing titanium
JPH11315398A (en) * 1998-02-20 1999-11-16 Daiwa House Ind Co Ltd Formation of titanium anodically oxidized film for photocatalyst
JP2002180291A (en) * 2000-12-19 2002-06-26 Toho Titanium Co Ltd Method for forming titanium oxide coating, and titanium electrolytic capacitor
US20030010407A1 (en) * 2000-12-19 2003-01-16 Yoshiyuki Arai Method for forming titanium oxide film and titanium electrolytic capacitor
JP2006093037A (en) * 2004-09-27 2006-04-06 Nippon Oil Corp Lithium secondary battery
JP2008184652A (en) * 2007-01-30 2008-08-14 Fujifilm Corp Titanium oxide structure and method of manufacturing the same
JP2009507752A (en) * 2005-09-09 2009-02-26 ユニバーシティ・オブ・ネバダ・リノ Production of nanotube-like titania substrates with oxygen vacancies and their use in photoelectrolysis of water
JP2009197284A (en) * 2008-02-22 2009-09-03 Daiso Co Ltd Electrode and its production method
US20130161614A1 (en) * 2010-07-30 2013-06-27 Ashutosh Tiwari Nanostructured films and related methods
US20140011020A1 (en) * 2010-12-14 2014-01-09 Tobias Mertens Promoting the adhesion of a surface of a titanium material

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10130886A (en) * 1996-10-23 1998-05-19 Nippon Steel Corp Production of color-developing titanium excellent in corrosion resistance and that color developing titanium
JPH11315398A (en) * 1998-02-20 1999-11-16 Daiwa House Ind Co Ltd Formation of titanium anodically oxidized film for photocatalyst
JP2002180291A (en) * 2000-12-19 2002-06-26 Toho Titanium Co Ltd Method for forming titanium oxide coating, and titanium electrolytic capacitor
US20030010407A1 (en) * 2000-12-19 2003-01-16 Yoshiyuki Arai Method for forming titanium oxide film and titanium electrolytic capacitor
JP2006093037A (en) * 2004-09-27 2006-04-06 Nippon Oil Corp Lithium secondary battery
JP2009507752A (en) * 2005-09-09 2009-02-26 ユニバーシティ・オブ・ネバダ・リノ Production of nanotube-like titania substrates with oxygen vacancies and their use in photoelectrolysis of water
JP2008184652A (en) * 2007-01-30 2008-08-14 Fujifilm Corp Titanium oxide structure and method of manufacturing the same
JP2009197284A (en) * 2008-02-22 2009-09-03 Daiso Co Ltd Electrode and its production method
US20130161614A1 (en) * 2010-07-30 2013-06-27 Ashutosh Tiwari Nanostructured films and related methods
US20140011020A1 (en) * 2010-12-14 2014-01-09 Tobias Mertens Promoting the adhesion of a surface of a titanium material

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
S. Z. CHU, ET AL.: ""Self-OrganizedNanoporous Anodic Titania Films and Ordered Quantum Titania Nanodots/Nanorodson Glass", ADVANCED FUNCTIONAL MATERIALS, vol. 15, no. 8, JPN7017004182, August 2005 (2005-08-01), pages 1343 - 1349, ISSN: 0003785970 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017222892A (en) * 2016-06-13 2017-12-21 新日鐵住金株式会社 Titanium material and manufacturing method of titanium material
JP6440916B1 (en) * 2018-06-18 2018-12-19 新日鐵住金株式会社 Titanium material
WO2019244206A1 (en) * 2018-06-18 2019-12-26 日本製鉄株式会社 Titanium material
KR20210003895A (en) * 2018-06-18 2021-01-12 닛폰세이테츠 가부시키가이샤 Titanium
CN112292484A (en) * 2018-06-18 2021-01-29 日本制铁株式会社 Titanium material
KR102409091B1 (en) 2018-06-18 2022-06-16 닛폰세이테츠 가부시키가이샤 titanium material
JP7489089B2 (en) 2020-03-06 2024-05-23 国立大学法人 名古屋工業大学 Battery negative electrode material and its manufacturing method
CN113699535A (en) * 2021-08-25 2021-11-26 江苏城乡建设职业学院 Preparation method of spongy titanium dioxide porous layer

Also Published As

Publication number Publication date
JP6395249B2 (en) 2018-09-26

Similar Documents

Publication Publication Date Title
Guo et al. Artificial solid electrolyte interphase for suppressing surface reactions and cathode dissolution in aqueous zinc ion batteries
Eom et al. Black titanium oxide nanoarray electrodes for high rate Li-ion microbatteries
Si et al. On chip, all solid-state and flexible micro-supercapacitors with high performance based on MnO x/Au multilayers
Singh et al. Unique hydrogenated Ni/NiO core/shell 1D nano-heterostructures with superior electrochemical performance as supercapacitors
JP5714724B2 (en) Nanoporous electrode for supercapacitor and method for producing the same
Saadat et al. Coaxial Fe 3 O 4/CuO hybrid nanowires as ultra fast charge/discharge lithium-ion battery anodes
JP6019533B2 (en) Nanoporous metal core / ceramics layered composite, its manufacturing method, supercapacitor device and lithium ion battery
Zhong et al. Electrochemically conductive treatment of TiO2 nanotube arrays in AlCl3 aqueous solution for supercapacitors
Guan et al. Controllable synthesis of MoO3-deposited TiO2 nanotubes with enhanced lithium-ion intercalation performance
Rashad et al. Magnesium/lithium-ion hybrid battery with high reversibility by employing NaV3O8· 1.69 H2O nanobelts as a positive electrode
Liu et al. A new strategy for developing superior electrode materials for advanced batteries: using a positive cycling trend to compensate the negative one to achieve ultralong cycling stability
US11165067B2 (en) Porous current collector and electrode for an electrochemical battery
Hua et al. Electrodeposition of high-density lithium vanadate nanowires for lithium-ion battery
Chen et al. Improved Li-storage performance with PEDOT-decorated MnO 2 nanoboxes
Kim et al. Electrochemical characterization of vertical arrays of tin nanowires grown on silicon substrates as anode materials for lithium rechargeable microbatteries
JP6395249B2 (en) Method for producing multilayer porous anodic oxide coating, porous anodic oxide coating, electrode and battery using the same
Kim et al. Additive-free synthesis of Li 4 Ti 5 O 12 nanowire arrays on freestanding ultrathin graphite as a hybrid anode for flexible lithium ion batteries
Guan et al. Effects of amorphous and crystalline MoO 3 coatings on the Li-ion insertion behavior of a TiO 2 nanotube anode for lithium ion batteries
Chu et al. Tobacco mosaic virus-templated hierarchical Ni/NiO with high electrochemical charge storage performances
Wen et al. Hollow TiN nanotrees derived from a surface-induced Kirkendall effect and their application in high-power supercapacitors
JP6748557B2 (en) All solid state battery
Oltean et al. On the electrophoretic and sol–gel deposition of active materials on aluminium rod current collectors for three-dimensional Li-ion micro-batteries
Wu et al. Activating ZnV2O4 by an electrochemical oxidation strategy for enhanced energy storage in zinc-ion batteries
JP2010040480A (en) Material of electrode, electrode, lithium-ion battery, electric double-layered capacitor, manufacturing method for material of electrode
Yang et al. Aqueous sol–gel synthesized anatase TiO 2 nanoplates with high-rate capabilities for lithium-ion and sodium-ion batteries

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180725

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180824

R150 Certificate of patent or registration of utility model

Ref document number: 6395249

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees