JP2015188412A - detection method of lactic acid bacteria - Google Patents

detection method of lactic acid bacteria Download PDF

Info

Publication number
JP2015188412A
JP2015188412A JP2014069593A JP2014069593A JP2015188412A JP 2015188412 A JP2015188412 A JP 2015188412A JP 2014069593 A JP2014069593 A JP 2014069593A JP 2014069593 A JP2014069593 A JP 2014069593A JP 2015188412 A JP2015188412 A JP 2015188412A
Authority
JP
Japan
Prior art keywords
lactic acid
acid bacteria
beverage
detecting
drink
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014069593A
Other languages
Japanese (ja)
Inventor
俊男 熊王
Toshio Kumao
俊男 熊王
浅野 一朗
Ichiro Asano
一朗 浅野
賢一 中室
Kenichi Nakamuro
賢一 中室
藤井 繁佳
Shigeyoshi Fujii
繁佳 藤井
直人 井村
Naoto Imura
直人 井村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ajinomoto AGF Inc
Original Assignee
Ajinomoto General Foods Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ajinomoto General Foods Inc filed Critical Ajinomoto General Foods Inc
Priority to JP2014069593A priority Critical patent/JP2015188412A/en
Publication of JP2015188412A publication Critical patent/JP2015188412A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Non-Alcoholic Beverages (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for detecting with high sensitivity a very small amount of lactic acid bacteria contaminating in a drink after sterilization treatment.SOLUTION: A method for detecting lactic acid bacteria contaminating in a drink comprises keeping the subject drink after sterilization treatment at 25-35°C for 18 hours or more, and subsequently detecting lactic acid bacteria proliferated in the drink. In the detection method, detection of lactic acid bacteria is preferred to perform by detecting ATP, or to perform using turbidity of the drink as an indicator.

Description

本発明は、滅菌処理後の飲料中の乳酸菌を検出する方法に関する。   The present invention relates to a method for detecting lactic acid bacteria in a beverage after sterilization.

一般的に、飲料は、容器に密閉充填された状態で市場に流通している。飲料中に生きた微生物が混入していると、流通過程において腐敗等の品質劣化を生ずるおそれがある。そこで通常は、容器に密閉充填された飲料に対して滅菌処理が施されるか、又は滅菌処理がなされた後に容器に滅菌充填された状態で流通される。また乳製品などチルド流通を必要とする飲料は、「乳及び乳製品の成分規格等に関する省令」による乳製品の成分規格により、必ずしも無菌である必要がないが、賞味期限が短く腐敗を早めるような特定の微生物が混入していることは好ましくない。そこで、製品の品質管理上の点からは、各製品に混入している微生物の数およびその種類を確認することが重要であるとされている。   Generally, beverages are distributed on the market in a state of being filled in containers. If living microorganisms are mixed in the beverage, there is a risk of quality deterioration such as spoilage in the distribution process. Therefore, usually, a beverage that is hermetically filled in a container is sterilized, or after being sterilized, the beverage is sterilized and filled. In addition, beverages that require chilled distribution such as dairy products do not necessarily have to be aseptic according to the dairy ingredient standards according to the “Ministerial Ordinance on Milk and Dairy Ingredient Standards”, etc. It is not preferable that such specific microorganisms are mixed. Therefore, from the viewpoint of product quality control, it is important to confirm the number and type of microorganisms mixed in each product.

液体試料中の生存微生物の検出方法としては、一般的には例えば、当該液体試料を寒天平板培地等にまいて形成されたコロニーの数を計測するいわゆる培養法、試料中に含まれる微生物由来のアデノシン3リン酸(ATP)を蛍光色素により反応させその強度をルミノメーターにより検出するいわゆるATP法、液体試料そのもの、もしくはバッファー等で希釈した試料の吸光度を測定することで濁度を調べる比濁法等が挙げられる。   As a method for detecting viable microorganisms in a liquid sample, generally, for example, a so-called culture method for measuring the number of colonies formed by spreading the liquid sample on an agar plate medium or the like, derived from microorganisms contained in the sample The so-called ATP method in which adenosine triphosphate (ATP) is reacted with a fluorescent dye and the intensity is detected by a luminometer, the turbidimetric method in which the turbidity is measured by measuring the absorbance of a liquid sample itself or a sample diluted with a buffer, etc. Etc.

「食品衛生検査指針 微生物偏2004」、厚生労働省監修、社団法人日本食品衛生協会発行、2004年“Food Hygiene Inspection Guidelines Microorganism Bias 2004”, supervised by the Ministry of Health, Labor and Welfare, published by Japan Food Sanitation Association, 2004

滅菌処理後に無菌充填された飲料中は基本的には無菌であるが、工程の不備により極微量の微生物が混入した場合、公定法に定められている検査方法を用いても検出することは非常に困難である。また、チルド流通を必要とする飲料は、無菌ではないものの特定の微生物が極微量に混入した場合についても検出することが非常に困難である。
本発明は、飲料中に極微量に混入している微生物、特に乳酸菌を高感度に検出するための方法を提供することを目的とする。
Beverages that are aseptically filled after sterilization are basically aseptic. However, if a trace amount of microorganisms is mixed due to inadequate processes, it is extremely difficult to detect even if the inspection method defined by the official method is used. It is difficult to. In addition, although beverages that require chilled distribution are not aseptic, it is very difficult to detect even when a specific amount of a specific microorganism is mixed.
An object of this invention is to provide the method for detecting the microbe mixed in the trace amount in the drink especially the lactic acid bacteria with high sensitivity.

本発明者らは、上記課題を解決すべく鋭意研究した結果、被検対象の飲料を25〜35℃で18時間以上保温することにより、当該飲料中の滅菌処理後に生残している乳酸菌を充分に増殖させられることを見出し、本発明を完成させた。   As a result of earnest research to solve the above-mentioned problems, the present inventors have kept the beverage to be examined at 25 to 35 ° C. for 18 hours or more, thereby sufficiently maintaining the lactic acid bacteria remaining after sterilization in the beverage. The present invention has been completed.

[1] 本発明に係る乳酸菌の検出方法は、飲料中に混入している乳酸菌を検出する方法であって、被検対象である滅菌処理後の飲料を25〜35℃で18時間以上保温した後、当該飲料中で増殖した乳酸菌を検出することを特徴とする。
[2] 前記[1]の乳酸菌の検出方法は、乳酸菌の検出を、乳酸菌由来のATPを検出することにより行うことが好ましい。
[3] 前記[1]の乳酸菌の検出方法においては、乳酸菌の検出を、飲料の濁度を指標として行うことが好ましい。
[4] 前記[1]〜[3]のいずれかの乳酸菌の検出方法においては、前記飲料が、乳製品であることが好ましい。
[5] 前記[1]の乳酸菌の検出方法においては、前記飲料が、乳製品であり、乳酸菌の検出を、前記飲料のpHを5以下に低下させた後、沈殿物を除去して得られた上清の濁度を指標として行うことが好ましい。
[6] 前記[5]の乳酸菌の検出方法においては、前記飲料が、チルド流通されるものであることが好ましい。
[1] The method for detecting lactic acid bacteria according to the present invention is a method for detecting lactic acid bacteria mixed in a beverage, and the sterilized beverage to be tested is kept warm at 25 to 35 ° C. for 18 hours or more. Thereafter, lactic acid bacteria grown in the beverage are detected.
[2] In the method for detecting a lactic acid bacterium according to [1], the lactic acid bacterium is preferably detected by detecting ATP derived from the lactic acid bacterium.
[3] In the method for detecting lactic acid bacteria according to [1], the lactic acid bacteria are preferably detected using the turbidity of the beverage as an index.
[4] In the method for detecting lactic acid bacteria according to any one of [1] to [3], the beverage is preferably a dairy product.
[5] In the method for detecting lactic acid bacteria of [1], the beverage is a dairy product, and the detection of lactic acid bacteria is obtained by reducing the pH of the beverage to 5 or less and then removing the precipitate. The turbidity of the supernatant is preferably used as an index.
[6] In the method for detecting a lactic acid bacterium of [5], the beverage is preferably circulated in a chilled manner.

本発明に係る乳酸菌の検出方法により、滅菌処理後の飲料中に含まれている極微量の乳酸菌を高感度に検出することができる。   By the method for detecting lactic acid bacteria according to the present invention, a very small amount of lactic acid bacteria contained in a sterilized beverage can be detected with high sensitivity.

本発明に係る乳酸菌の検出方法は、飲料中に混入している乳酸菌を検出する方法であって、被検対象である滅菌処理後の飲料を特定の温度条件で一定期間保温した後、当該飲料中で増殖した乳酸菌を検出することを特徴とする。滅菌処理後の飲料を25〜35℃で18時間以上保温することにより、当該飲料中の生残乳酸菌を、通常の検出方法によって検出可能な程度(例えば、1×10CFU/mL以上)にまで増殖させることができる。 The method for detecting lactic acid bacteria according to the present invention is a method for detecting lactic acid bacteria mixed in a beverage, wherein the beverage after sterilization treatment, which is a test subject, is kept warm for a certain period of time under a specific temperature condition, and then the beverage It is characterized by detecting lactic acid bacteria grown in it. By incubating the sterilized beverage at 25 to 35 ° C. for 18 hours or longer, the remaining lactic acid bacteria in the beverage can be detected by a normal detection method (for example, 1 × 10 4 CFU / mL or more). Can be grown.

被検対象の飲料は、滅菌処理後の飲料であれば特に限定されるものではないが、本発明の効果をより発揮し得ることから、容器に密閉充填された滅菌処理済のものが好ましい。当該飲料からサンプリングした試料を乳酸菌が培養可能な培地等で培養する方法ではなく、当該飲料をそのまま保温することにより、流通過程で問題となり得る乳酸菌コンタミをより効率よく調べることができる。中でも、チルド飲料が特に好ましい。チルド飲料は、冷蔵状態で流通されるため、仮に滅菌処理後に生菌が残存していた場合であっても、流通過程で(消費者の手元に届く前に)コンタミを発見することは非常に困難である。本発明に係る乳酸菌の検出方法により、滅菌処理後のチルド飲料中に極微量に残存している乳酸菌も感度よく検出することができる。   The beverage to be tested is not particularly limited as long as it is a beverage after sterilization, but a beverage that has been sterilized and sealed in a container is preferable because the effects of the present invention can be further exerted. Rather than a method of culturing a sample sampled from the beverage in a medium or the like in which lactic acid bacteria can be cultivated, by keeping the beverage as it is, lactic acid bacteria contamination that may be a problem in the distribution process can be examined more efficiently. Among them, a chilled beverage is particularly preferable. Because chilled beverages are distributed in a refrigerated state, it is very difficult to detect contamination in the distribution process (before reaching the consumer) even if viable bacteria remain after sterilization. Have difficulty. By the method for detecting lactic acid bacteria according to the present invention, lactic acid bacteria remaining in a trace amount in a chilled beverage after sterilization can be detected with high sensitivity.

被検対象の飲料としては、特に、乳酸菌のコンタミが疑われる飲料であることが好ましく、カフェオレ、ミルクティー、抹茶オレ、ヨーグルト飲料(ヨーグルトを構成している乳酸菌以外のコンタミ)等の乳成分を原料とする飲料がより好ましい。   The beverage to be tested is particularly preferably a beverage suspected of contamination with lactic acid bacteria, and milk components such as cafe au lait, milk tea, green tea ole, and yogurt drink (contamination other than lactic acid bacteria constituting yogurt). More preferred is a beverage made of

本発明において、被検対象の飲料を保温する温度は、25〜35℃の範囲内であればよく、28〜32℃の範囲内が好ましく、30℃がより好ましい。なお、保温温度は、当該温度範囲内であればよく、保温期間中に必ずしも一定温度を維持する必要はない。   In this invention, the temperature which keeps the drink of test object should just be in the range of 25-35 degreeC, the inside of the range of 28-32 degreeC is preferable, and 30 degreeC is more preferable. Note that the heat retention temperature may be within the temperature range, and it is not always necessary to maintain a constant temperature during the heat retention period.

本発明において、被検対象の飲料の保温時間は、18時間以上であればよいが、20時間以上であることが好ましく、22時間以上であることがより好ましい。培養時間が長くなれば、より確実に、被検飲料中の生残乳酸菌を検出限界以上に増殖させることができる上に、乳酸菌以外の生残微生物も検出可能な程度に増殖させることが期待できる。   In this invention, although the heat retention time of the drink of test object should just be 18 hours or more, it is preferable that it is 20 hours or more, and it is more preferable that it is 22 hours or more. If the culture time becomes longer, the surviving lactic acid bacteria in the test beverage can be more reliably grown beyond the detection limit, and the surviving microorganisms other than the lactic acid bacteria can be expected to grow to a detectable level. .

本発明において、一定期間保温した後の飲料中の生きている乳酸菌は、生菌を検出する際に用いられる方法の中から、適宜選択して行うことができる。例えば、当該飲料中の生乳酸菌は、直接生細菌数を計数してもよく、ATP法、比濁法等により検出することができる。各方法は、常法により、又は必要に応じて改良して行うことができる。   In the present invention, the living lactic acid bacteria in the beverage after being kept warm for a certain period can be appropriately selected from the methods used for detecting viable bacteria. For example, live lactic acid bacteria in the beverage may be directly counted for live bacteria, and can be detected by ATP method, turbidimetric method, or the like. Each method can be carried out by a conventional method or modified as necessary.

生乳酸菌を直接計数する場合、DNAや乳酸菌に特有のタンパク質や脂質、糖類等を染色することにより、乳酸菌とその形状が類似したその他の物質(例えば、デブリス、乳酸菌以外の微生物等)を区別しておくこともできる。また、計数前に予めトリパンブルー染色等を行うことにより、生菌と死菌を区別しておいてもよい。   When directly counting live lactic acid bacteria, DNA, lactic acid bacteria-specific proteins, lipids, saccharides, etc. are stained to distinguish lactic acid bacteria from other substances similar in shape (for example, debris, microorganisms other than lactic acid bacteria). It can also be left. Further, live bacteria and dead bacteria may be distinguished by performing trypan blue staining or the like in advance before counting.

ATP法は、生物由来のATPを、ルシフェラーゼ等の酵素と反応させて発光させることにより定量的に検出する方法である。生乳酸菌をATP法により検出する場合、使用する酵素や反応条件等は、常法により行うことができる。また、市販のATP測定キットを使用してもよい。被検対象となる飲料と同種の飲料に、予め濃度既知の乳酸菌を接種したものについて、同様にATP法により発光量を測定し、検量線を作成しておくことにより、被検飲料中の乳酸菌量を定量することもできる。   The ATP method is a method for quantitatively detecting biological ATP by reacting with an enzyme such as luciferase to emit light. When detecting live lactic acid bacteria by ATP method, the enzyme used, reaction conditions, etc. can be performed by a conventional method. A commercially available ATP measurement kit may also be used. For a beverage of the same type as the beverage to be tested, a lactic acid bacterium in the test beverage is prepared by measuring the amount of luminescence by the ATP method and preparing a calibration curve in the same manner, inoculating a lactic acid bacterium of known concentration in advance. The amount can also be quantified.

比濁法で生乳酸菌を検出する場合、濁度を測定する波長は、550〜650nmの範囲内であることが好ましく、600nmがより好ましい。被検対象の飲料が乳成分を含むもの等、タンパク質分を多く含み、滅菌直後であっても濁度が高い場合には、濁度の測定前に予めpHを酸性に、例えばpH5以下に調整し、タンパク質を変性させて沈殿させ、その上清の濁度を測定することにより、微生物の増殖による濁度の変化を測定しやすくなる。被検対象となる飲料と同種の飲料に、予め濃度既知の乳酸菌を接種したものについて、同様に濁度を測定し、検量線を作成しておくことにより、被検飲料中の乳酸菌量を定量することもできる。   When detecting live lactic acid bacteria by the turbidimetric method, the wavelength for measuring turbidity is preferably in the range of 550 to 650 nm, and more preferably 600 nm. If the beverage to be tested contains a large amount of protein, such as one containing milk components, and the turbidity is high even immediately after sterilization, the pH is adjusted to acid before the turbidity measurement, for example, adjusted to pH 5 or lower. Then, the protein is denatured and precipitated, and the turbidity of the supernatant is measured, whereby the change in turbidity due to the growth of microorganisms can be easily measured. Quantify the amount of lactic acid bacteria in the test beverage by measuring the turbidity in the same manner as the beverage of the same type as the beverage to be tested, inoculated with lactic acid bacteria of known concentration in advance, and preparing a calibration curve. You can also

次に、実施例を示して本発明をさらに詳細に説明するが、本実施例は本発明の実施態様を具体的に説明したものであって、本発明の範囲を限定することを意図しない。   EXAMPLES Next, the present invention will be described in more detail with reference to examples. However, the examples are specific descriptions of embodiments of the present invention, and are not intended to limit the scope of the present invention.

[実施例1]
滅菌処理後のカフェオレに各種微生物を接種させたものを被検飲料として、一定期間保温後に微生物を検出した。被検微生物としては、乳酸菌3株[ラクトバチルス・ラクチス(Lactococcus lactis) AGF491株、エンテロコッカス・ガリナラム(Enterococcus gallinarum) AGF492株、ロイコノストック・シトレウム(Leuconostoc citreum) AGF338株]、その他の微生物3株[ラルストニア・スピーシーズ(Ralstonia sp.) AGF349株、エキギュオバクテリウム・インディクム(Exiguobacterium indicum) AGF443株、エシェリヒア・コリ(Escherichia coli) AGF498株]を用いた。
被検試料としては、コーヒー固形分、牛乳、及び砂糖を混合しUHT殺菌(超高温瞬間殺菌)後、ポリエチレンカップに充填したカフェオレを用いた。当該被検試料に、1CFU/mL以下の濃度になるように、各種微生物を植菌した後、30℃で培養した。培養開始から18時間後、20時間後、及び22時間後に、当該被検試料からサンプリングし、血球計算板を用いて当該試料中の微生物の生存数(CFU/mL)を計数した。測定結果を表1に示す。
[Example 1]
Sterilized café au lait was inoculated with various microorganisms as a test beverage, and the microorganisms were detected after incubation for a certain period of time. The test microorganisms include three strains of lactic acid bacteria [Lactococcus lactis AGF491 strain, Enterococcus gallinarum AGF492 strain, Leuconostoc cite3 strain GF3 strain, Ralstonia sp. AGF349 strain, Exigobacterium indicum AGF443 strain, Escherichia coli AGF498 strain] was used.
As a test sample, coffee au lait mixed with coffee solids, milk, and sugar, sterilized with UHT (ultra-high temperature flash sterilization), and filled into a polyethylene cup was used. Various microorganisms were inoculated to the test sample to a concentration of 1 CFU / mL or less, and then cultured at 30 ° C. After 18 hours, 20 hours, and 22 hours from the start of the culture, the sample was sampled, and the number of surviving microorganisms (CFU / mL) in the sample was counted using a hemocytometer. The measurement results are shown in Table 1.

Figure 2015188412
Figure 2015188412

乳酸菌系である3菌種は、30℃18時間以上の保温で、10CFU/mL以上の増菌が確認された。一方、非乳酸菌系である3菌種では、30℃20時間までは明らかな菌の増殖を確認することができなかった。この結果は、カフェオレなどの乳製品に少量の乳酸菌がコンタミした場合、30℃18時間の保温により、大幅な菌の増殖をさせることが可能であることを示すものである。 Three bacterial species, which are lactic acid bacteria, were confirmed to be enriched by 10 4 CFU / mL or more at a temperature of 30 ° C. for 18 hours or more. On the other hand, in the three bacterial species that are non-lactic acid bacteria, it was not possible to confirm the obvious bacterial growth until 30 ° C. for 20 hours. This result shows that, when a small amount of lactic acid bacteria are contaminated in dairy products such as cafe au lait, it is possible to cause significant bacterial growth by keeping the temperature at 30 ° C. for 18 hours.

[参考例1]
ラクトバチルス・ラクチスAGF491株を植菌したカフェオレ、ミルクティー、及び抹茶オレについて、保温後の飲料の濁度を測定することにより、乳酸菌数を測定した。
実施例1と同様にして調製したカフェオレと、紅茶固形分、牛乳及び砂糖を混合した後にUHT殺菌し、その後ポリエチレンカップに充填したミルクティーと、抹茶、牛乳及び砂糖を混合した後にUHT殺菌し、その後ポリエチレンカップに充填した抹茶オレと、について、ラクトバチルス・ラクチスAGF491株を植菌したものを、被検飲料として用いた。
[Reference Example 1]
The number of lactic acid bacteria was measured by measuring the turbidity of the beverage after incubation for cafe au lait, milk tea, and matcha ole, inoculated with Lactobacillus lactis AGF491 strain.
Café au lait prepared in the same manner as in Example 1 was mixed with black tea solids, milk and sugar and then sterilized with UHT. After that, milk tea filled with a polyethylene cup was mixed with matcha tea, milk and sugar and then sterilized with UHT. Then, about the matcha green tea filled in a polyethylene cup, the one inoculated with Lactobacillus lactis AGF491 strain was used as a test beverage.

分光光度計を用いて濁度(Ab=600nm)を測定するためには、乳製品中の透過度を上げる必要がある。そこで、まず、植菌後の被検飲料に酢酸を添加してpH4.7に低下させ、沈殿物を生じさせた。その後、粒子径θが7μmであるフィルター(製品名:5A、ADVANTEC社製)を使用した濾過処理を行い、沈殿物と濾液を分離した。得られた濾液について、分光光度計で600nmの吸光度を測定した。吸光度測定時のブランクは、菌をコンタミさせていない各製品に対して同様に処理を行ったサンプルを用いた。   In order to measure turbidity (Ab = 600 nm) using a spectrophotometer, it is necessary to increase the transmittance in dairy products. Therefore, first, acetic acid was added to the test beverage after inoculation to lower the pH to 4.7, thereby forming a precipitate. Thereafter, filtration using a filter (product name: 5A, manufactured by ADVANTEC) having a particle diameter θ of 7 μm was performed, and the precipitate and the filtrate were separated. About the obtained filtrate, the light absorbency of 600 nm was measured with the spectrophotometer. As a blank at the time of measuring the absorbance, a sample obtained by treating each product not contaminated with bacteria in the same manner was used.

Figure 2015188412
Figure 2015188412

測定結果を表2に示す。この結果、各飲料ともに、コンタミさせた菌数及び吸光度の関係は高い相関が得られた。このことから、比濁法により、培養法よりも短時間で菌数を測定することが可能であることが示唆された。   The measurement results are shown in Table 2. As a result, for each beverage, a high correlation was obtained between the number of contaminated bacteria and the absorbance. This suggested that the turbidimetric method can measure the number of bacteria in a shorter time than the culture method.

[実施例2]
参考例1と同様にして調製したカフェオレ、ミルクティー、及び抹茶オレに対して、ラクトバチルス・ラクチスAGF491株を1CFU/mL以下の濃度になるように植菌した後、30℃で18時間保温した。その後、市販のATP濃度測定キット(製品名:ルシフェールAT−100、キッコーマンバイオケミファ社製)を用いて、ATP濃度の発光量単位であるRLU値を測定した。得られた結果は、各製品がもつバックグラウンド値(BG、 製品中に含まれる消去しきれないATPによって得られるRLU値)を差し引いた値を求めた。
[Example 2]
Lactobacillus lactis AGF491 strain was inoculated to a concentration of 1 CFU / mL or less to cafe au lait, milk tea, and matcha ole prepared in the same manner as in Reference Example 1, and then incubated at 30 ° C. for 18 hours. did. Then, the RLU value which is a luminescence amount unit of ATP concentration was measured using a commercially available ATP concentration measurement kit (product name: Lucifer AT-100, manufactured by Kikkoman Biochemifa). The obtained result was obtained by subtracting the background value (BG, RLU value obtained by ATP that cannot be erased) contained in each product.

Figure 2015188412
Figure 2015188412

測定結果を表3に示す。供試した全ての飲料において、30℃18時間以上の保温により、RLU値の明らかな上昇が確認された。この結果より、本発明に係る乳酸菌の検出方法により、従来の培養法よりも短時間で菌数を測定することが可能であることがわかった。   Table 3 shows the measurement results. In all of the beverages tested, a clear increase in RLU value was confirmed by incubation at 30 ° C. for 18 hours or longer. From this result, it was found that the number of bacteria can be measured in a shorter time than the conventional culture method by the method for detecting lactic acid bacteria according to the present invention.

Claims (6)

飲料中に混入している乳酸菌を検出する方法であって、
被検対象である滅菌処理後の飲料を25〜35℃で18時間以上保温した後、当該飲料中で増殖した乳酸菌を検出することを特徴とする、乳酸菌の検出方法。
A method for detecting lactic acid bacteria mixed in a beverage,
A method for detecting lactic acid bacteria, comprising: incubating a sterilized beverage to be tested at 25 to 35 ° C. for 18 hours or more, and then detecting lactic acid bacteria grown in the beverage.
乳酸菌の検出を、ATPを検出することにより行う、請求項1に記載の乳酸菌の検出方法。   The method for detecting lactic acid bacteria according to claim 1, wherein the lactic acid bacteria are detected by detecting ATP. 乳酸菌の検出を、飲料の濁度を指標として行う、請求項1に記載の乳酸菌の検出方法。   The method for detecting lactic acid bacteria according to claim 1, wherein lactic acid bacteria are detected using the turbidity of the beverage as an index. 前記飲料が、乳製品である、請求項1〜3のいずれか一項に記載の乳酸菌の検出方法。   The method for detecting lactic acid bacteria according to any one of claims 1 to 3, wherein the beverage is a dairy product. 前記飲料が、乳製品であり、
乳酸菌の検出を、前記飲料のpHを5以下に低下させた後、沈殿物を除去して得られた上清の濁度を指標として行う、請求項1に記載の乳酸菌の検出方法。
The beverage is a dairy product;
The method for detecting lactic acid bacteria according to claim 1, wherein the lactic acid bacteria are detected using the turbidity of the supernatant obtained by removing the precipitate after reducing the pH of the beverage to 5 or less.
前記飲料が、チルド流通されるものである、請求項1〜5のいずれか一項に記載の乳酸菌の検出方法。   The method for detecting lactic acid bacteria according to any one of claims 1 to 5, wherein the beverage is distributed in a chilled manner.
JP2014069593A 2014-03-28 2014-03-28 detection method of lactic acid bacteria Pending JP2015188412A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014069593A JP2015188412A (en) 2014-03-28 2014-03-28 detection method of lactic acid bacteria

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014069593A JP2015188412A (en) 2014-03-28 2014-03-28 detection method of lactic acid bacteria

Publications (1)

Publication Number Publication Date
JP2015188412A true JP2015188412A (en) 2015-11-02

Family

ID=54423485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014069593A Pending JP2015188412A (en) 2014-03-28 2014-03-28 detection method of lactic acid bacteria

Country Status (1)

Country Link
JP (1) JP2015188412A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0775596A (en) * 1993-09-07 1995-03-20 Asahi Breweries Ltd Simple method for judging admixed microorganism in short period
JPH09121896A (en) * 1995-11-07 1997-05-13 Asahi Breweries Ltd Early judgment of lactic acid bacteria growing in beer and kit for the judgment
JP2009517657A (en) * 2005-11-25 2009-04-30 アミリス ベスローテン フエンノートシャップ Method for detecting ATP in sample using luminescence and computer program therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0775596A (en) * 1993-09-07 1995-03-20 Asahi Breweries Ltd Simple method for judging admixed microorganism in short period
JPH09121896A (en) * 1995-11-07 1997-05-13 Asahi Breweries Ltd Early judgment of lactic acid bacteria growing in beer and kit for the judgment
JP2009517657A (en) * 2005-11-25 2009-04-30 アミリス ベスローテン フエンノートシャップ Method for detecting ATP in sample using luminescence and computer program therefor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"ルシフェールAT100取扱説明書", ONLINE, JPN6017043105, 1 October 2012 (2012-10-01) *

Similar Documents

Publication Publication Date Title
Boor et al. A 100-year review: microbiology and safety of milk handling
Virpari et al. Study on isolation, molecular detection of virulence gene and antibiotic sensitivity pattern of Escherichia coli isolated from milk and milk products.
CN105296591B (en) A kind of culture medium and detection method for detecting difficult cultivation type lactic acid bacteria in food
JPH072119B2 (en) Test set for measuring antibiotics in milk and method for measuring antibiotics in milk
Alper et al. Bacterial contamination in fresh white cheeses sold in bazaars Canakkale, Turkey.
VURAL et al. The examination of the microbiologic quality in Orgu cheese (braided cheese) samples
Agu et al. Assessment of bacteria present in yoghurt sold on Awka Metropolis
CN101717813B (en) Method for detecting total number of bacterial colonies in activated lactobacillus drink
CN105349614B (en) Lactobacillus plantarum special media and its application
Yadav et al. Comparative evaluation of pathogenic bacterial incidence in raw and pasteurized milk
Aglawe et al. Microbial examination of milk sample from Nagpur region with reference to coliform
Dortey et al. Effect of storage methods and duration of storage on the bacteriological quality of processed liquid milk post-opening
CN102590196A (en) Test method for rapidly screening antibacterial residue in animal food samples
Erkan et al. Microbiological investigation of honey collected from Şırnak province of Turkey
Lelise et al. Isolation and screening of antibacterial producing lactic acid bacteria from traditionally fermented drinks (“Ergo” and “Tej”) in Gondar town, Northwest Ethiopia
JP2015188412A (en) detection method of lactic acid bacteria
RU2701343C1 (en) Nutrient medium for detection of lactic acid bacteria (versions)
Akter et al. Raw Milk In Noakhali, Bangladesh: Quality Assessment and Antibiotic Resistance of Identified Microorganisms.
Singh et al. Occurrence of shiga toxin producing E. coli in milk and milk products collected in and around Jabalpur
Kim et al. Changes in the microbial composition of microbrewed beer during the process in the actual manufacturing line
Makut et al. Antibiotic susceptibility pattern of bacteria isolated from Zobo drinks sold in Keffi, Nigeria
Malik et al. Stability of Lactic Acid Bacteria In Pasteurized Cow’s And Goat’s Milk
Cranz et al. Carbon dioxide as a novel indicator for bacterial growth in milk
Keskin et al. Investigation of the incidence of Pseudomonas aeruginosa in foods and the effect of salt and pH on P. aeruginosa
Sundaramoorthy et al. Antibacterial activity of lactobacillus species isolated from dairy products against antibiotics

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161213

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20170626

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171121

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180724