JP2015187973A - Negative electrode active material for lithium ion secondary battery, lithium ion secondary battery negative electrode using the same and lithium ion secondary battery - Google Patents

Negative electrode active material for lithium ion secondary battery, lithium ion secondary battery negative electrode using the same and lithium ion secondary battery Download PDF

Info

Publication number
JP2015187973A
JP2015187973A JP2015027523A JP2015027523A JP2015187973A JP 2015187973 A JP2015187973 A JP 2015187973A JP 2015027523 A JP2015027523 A JP 2015027523A JP 2015027523 A JP2015027523 A JP 2015027523A JP 2015187973 A JP2015187973 A JP 2015187973A
Authority
JP
Japan
Prior art keywords
negative electrode
lithium ion
ion secondary
secondary battery
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015027523A
Other languages
Japanese (ja)
Inventor
公一 服部
Koichi Hattori
公一 服部
和徳 小関
Kazunori Koseki
和徳 小関
大輔 谷口
Daisuke Taniguchi
大輔 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel and Sumikin Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Chemical Co Ltd filed Critical Nippon Steel and Sumikin Chemical Co Ltd
Priority to JP2015027523A priority Critical patent/JP2015187973A/en
Priority to KR1020150034345A priority patent/KR20150107656A/en
Priority to CN201510109858.6A priority patent/CN104916842A/en
Publication of JP2015187973A publication Critical patent/JP2015187973A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a negative electrode active material for lithium ion secondary battery having a high capacity per unit volume (weight), provided with practical characteristics capable of dealing even with the automotive applications for HEV, PHEV, and the like, of the discharge capacity, initial efficiency, input characteristics, capacity retention rate, and the like, and to provide a lithium ion secondary battery negative electrode using the same and a lithium ion secondary battery.SOLUTION: A negative electrode active material for lithium ion secondary battery is formed of a carbon material having a true specific gravity of 2.00-2.16 g/cm, where the D, D, Dand D-Dare in the range of 2-5 μm, 8-12 μm, 16-26 μm and 5-10 μm, respectively, in the particle size distribution of particles in volume reference, the tap density is 0.4 g/cc or more, and the BET specific surface area by nitrogen gas adsorption distribution method is 5.1-9.0 m/g. A lithium ion secondary battery negative electrode using the same, and a lithium ion secondary battery are also provided.

Description

この発明は、リチウムイオン二次電池用負極活物質及びそれを用いたリチウムイオン二次電池負極並びにリチウムイオン二次電池に関する。   The present invention relates to a negative electrode active material for a lithium ion secondary battery, a lithium ion secondary battery negative electrode and a lithium ion secondary battery using the same.

リチウムイオン二次電池は、作動電位が高いこと、電池容量が大きいこと、及びサイクル寿命が長い等の優れた特徴を活かし、かつ環境汚染が少ないことから、従来主流であったニッケル・カドミウム電池やニッケル水素電池に代わって広範囲で用いられている。   Lithium ion secondary batteries take advantage of superior features such as high operating potential, large battery capacity, and long cycle life, and low environmental pollution, so the conventional nickel-cadmium batteries and It is widely used in place of nickel metal hydride batteries.

また、エネルギー問題や環境問題に対応するために、電気自動車やニッケル水素電池駆動のモーターとガソリンエンジンとを組み合わせたハイブリッド電気自動車(HEV:Hybrid Electric Assistant)、及びハンディビデオカメラ等の移動電子機器の電源として多く利用されており、今後もその需要は益々高くなると予想されている。   In addition, in order to respond to energy and environmental problems, electric vehicles, hybrid electric vehicles (HEVs) that combine a nickel-hydrogen battery-driven motor and a gasoline engine, and mobile electronic devices such as handy video cameras, etc. It is widely used as a power source, and its demand is expected to increase further in the future.

リチウムイオン二次電池の負極を構成する負極活物質として、安全性および寿命の面から炭素材料が一般的に用いられている。炭素材料のなかでも黒鉛材料は、少なくとも2000℃程度以上、通常は2600〜3000℃程度の高温で得られる、高エネルギー密度を持つ優れた材料であるが、高入出力特性やサイクル特性に課題を有している。このため、例えば電力貯蔵用や電気自動車等の高入出力用途や低温下での入出力特性用途には、黒鉛材料は適しておらず、それ以外の構造をもった炭素材料の利用が研究されている。   As a negative electrode active material constituting a negative electrode of a lithium ion secondary battery, a carbon material is generally used in terms of safety and life. Among carbon materials, the graphite material is an excellent material having a high energy density, which is obtained at a high temperature of at least about 2000 ° C., usually about 2600 to 3000 ° C. However, there are problems with high input / output characteristics and cycle characteristics. Have. For this reason, for example, graphite materials are not suitable for high input / output applications such as power storage and electric vehicles, and input / output characteristics applications at low temperatures, and the use of carbon materials with other structures has been studied. ing.

近年においては、HEVの更なる高性能化の観点から、リチウムイオン二次電池に対してさらなる高性能化が求められており、その性能の向上が急務となっている。具体的には、HEVのエネルギー源である電流を十分に供給できるように、リチウムイオン二次電池の放電容量が重要な特性として上げられる。加えて、充電電流量に比較して放電電流量が十分に高くなるように、放電容量に対する充電容量の割合、すなわち初期効率が高いことが要求される。さらに、短時間での充電を可能とすべく、リチウムイオン二次電池は高電流密度まで高い充電容量を維持することが好ましく、容量維持率が高いことも要求されている。すなわち、この様な出力特性、放電容量、初期効率、容量維持率の特性をバランス良く高めることが要求される。   In recent years, from the viewpoint of further improving the performance of HEV, further improvement in performance has been demanded for lithium ion secondary batteries, and improvement of the performance has become an urgent task. Specifically, the discharge capacity of the lithium ion secondary battery is raised as an important characteristic so that a current that is an energy source of HEV can be sufficiently supplied. In addition, the ratio of the charge capacity to the discharge capacity, that is, the initial efficiency is required to be high so that the discharge current amount is sufficiently higher than the charge current amount. Furthermore, in order to enable charging in a short time, the lithium ion secondary battery preferably maintains a high charge capacity up to a high current density, and is also required to have a high capacity maintenance rate. In other words, it is required to improve such output characteristics, discharge capacity, initial efficiency, and capacity retention ratio in a well-balanced manner.

この様なリチウムイオン二次電池を提供するため、負極活物質としてコークスや黒鉛等の炭素材料が多く検討されているが、上述した放電容量を増大させることはできるものの、初期効率は十分でない。また、実電池電圧が不十分であって近年の高出力特性を満足することができず、容量維持率の要件も満足することができない。   In order to provide such a lithium ion secondary battery, many carbon materials such as coke and graphite have been studied as a negative electrode active material. However, although the discharge capacity described above can be increased, the initial efficiency is not sufficient. In addition, the actual battery voltage is insufficient, the high output characteristics in recent years cannot be satisfied, and the requirements for the capacity maintenance ratio cannot be satisfied.

そこで、上記の黒鉛材料に代わって、石炭系及び/又は石油系(以下、「石炭系等」という。)の生コークス、又は、石炭系等のか焼コークスを単独で、あるいは混合して焼成することを特徴とするリチウムイオン二次電池用負極活物質が提案されている。   Therefore, in place of the above graphite material, coal-based and / or petroleum-based (hereinafter referred to as “coal-based”) raw coke or coal-based calcined coke is singly or mixed and fired. There has been proposed a negative electrode active material for lithium ion secondary batteries.

例えば、特許文献1には、2000℃以下の温度で焼成し、活物質表面を改質することで黒鉛に比べて広い結晶層間と微細孔容積を持つ活物質により、高入出力特性を発現することが示されている。また、特許文献2には、結晶層間を広げるために焼成時に触媒を用いることが提案されており、黒鉛製造時よりも低い焼成温度で処理することにより、黒鉛に比べて広い結晶層間を持つ活物質を製造できることが示されている。   For example, Patent Document 1 discloses that high input / output characteristics are exhibited by an active material having a larger crystal layer and a fine pore volume than graphite by firing at a temperature of 2000 ° C. or less and modifying the active material surface. It has been shown. Patent Document 2 proposes that a catalyst be used during firing in order to widen the crystal layers. By treating at a firing temperature lower than that during graphite production, an active material having a wider crystal layer than graphite is proposed. It has been shown that the material can be produced.

このように長所が挙げられている石炭系等生コークス及び石炭系等か焼コークスであるが、焼成温度が黒鉛材料に比べて低いために炭素の結晶性が低く、電極にした際の単位体積(重量)あたりの容量は低くなってしまうという問題がある。すなわち、一般的な黒鉛材料を用いた電極は容量が360mAh/g、体積密度が1.4〜1.8g/cmであるのに対し、上記材料を用いた電極では容量が240〜340mAh/g、体積密度が1.0〜1.2g/cmであるため、電極としての容量が低くなることになる。そのため石炭系等生コークス及び石炭系等か焼コークスにおいては活物質の容量増加と電極時の体積密度の増加という課題が内在している。 Coal-based raw coke and coal-based calcined coke that have the advantages mentioned above, but because the firing temperature is lower than that of graphite material, the carbon crystallinity is low and the unit volume when used as an electrode There is a problem that the capacity per (weight) becomes low. That is, an electrode using a general graphite material has a capacity of 360 mAh / g and a volume density of 1.4 to 1.8 g / cm 3 , whereas an electrode using the above material has a capacity of 240 to 340 mAh / g. g and the volume density are 1.0 to 1.2 g / cm 3 , so that the capacity as an electrode is lowered. Therefore, problems such as increase in the capacity of the active material and increase in volume density at the electrode are inherent in coal-based raw coke and coal-based calcined coke.

例えば、特許文献3にはリチウムイオン二次電池の高エネルギー密度化に対応すべく、破壊強度と比表面積が異なる2種類の黒鉛材料、すなわち中位径(D50)が13μm以上15μm以下の鱗片状人造黒鉛を擬似的に球形化処理した疑似球状黒鉛粒子と、中位径(D50)が12μm以上19μm以下のメソフェーズ小球体の球晶黒鉛化物を混合した後、小さなプレス圧でも高密度に充填され、かつ、適度な空隙が確保された負極活物質層を得ることが示されている。 For example, Patent Document 3 discloses that two types of graphite materials having different fracture strengths and specific surface areas, that is, a scale having a median diameter (D 50 ) of 13 μm or more and 15 μm or less in order to cope with higher energy density of a lithium ion secondary battery. After mixing the artificial spherical graphite pseudo-spheroidized graphite particles and the mesophase small spherulite graphitized product having a median diameter (D 50 ) of 12 μm or more and 19 μm or less, high density even with a small press pressure It has been shown that a negative electrode active material layer that is filled and has an appropriate gap is obtained.

また、特許文献4には高い電極密度であって、しかも電解液の浸透性に優れ、充放電による容量損失が少なく、かつサイクル性能の良いリチウムイオン二次電池用の負極活物質として、平均粒子径(D50)とD90/D10の関係が異なる3種類の黒鉛粉末を使用した例が示されている。 Patent Document 4 discloses an average particle as a negative electrode active material for a lithium ion secondary battery having high electrode density, excellent electrolyte permeability, low capacity loss due to charge / discharge, and good cycle performance. An example is shown in which three types of graphite powders having different relationships between the diameter (D 50 ) and D 90 / D 10 are used.

特開2009−224322号公報JP 2009-224322 A 特開2011−9185号公報JP 2011-9185 A 特開2009−164013号公報JP 2009-164013 A 特開2007−324067号公報JP 2007-324067 A

本発明は、リチウムイオン二次電池の放電容量、初期効率、入力特性、容量維持率等のHEV用、PHEV用などの車載用途にも対応し得る実用特性を備えた、単位体積(重量)あたりの容量が高いリチウムイオン二次電池を得ることができる負極活物質を提供することを目的とする。また、本発明は、そのリチウムイオン二次電池用負極活物質を用いたリチウムイオン二次電池負極及びリチウムイオン二次電池を提供することも目的とする。   The present invention per unit volume (weight) with practical characteristics that can be used for in-vehicle applications such as HEV and PHEV, such as discharge capacity, initial efficiency, input characteristics, capacity maintenance rate, etc. of lithium ion secondary batteries It aims at providing the negative electrode active material which can obtain a lithium ion secondary battery with high capacity | capacitance. Another object of the present invention is to provide a negative electrode for a lithium ion secondary battery and a lithium ion secondary battery using the negative electrode active material for a lithium ion secondary battery.

本発明者らは、上記課題を達成すべく鋭意検討した結果、特定の原料に基づく活物質の粒度分布を一定範囲に制御しつつ、活物質の表面積を所定の値にすることで上記課題を解決し得ることを見出し、本発明を完成するに至った。   As a result of intensive studies to achieve the above problems, the present inventors have controlled the particle size distribution of the active material based on a specific raw material within a certain range, while setting the surface area of the active material to a predetermined value. The inventors have found that this can be solved, and have completed the present invention.

すなわち、本発明は、真比重が2.00〜2.16g/cmの炭素材料から形成されて、体積基準での粒子の粒度分布におけるD10が2〜5μm、D50が8〜12μm、D90が16〜26μm、及びD50−D10が5〜10μmの範囲にあり、タップ密度が0.4g/cc以上であり、窒素ガス吸着流通法によるBET比表面積(以下、BET比表面積と記述する)が5.1〜9.0m2/gであることを特徴とするリチウムイオン二次電池用負極活物質である。 That is, the present invention is formed from a carbon material having a true specific gravity of 2.00 to 2.16 g / cm 3 , and D 10 in a particle size distribution of particles on a volume basis is 2 to 5 μm, D 50 is 8 to 12 μm, D 90 is in the range of 16 to 26 μm, D 50 -D 10 is in the range of 5 to 10 μm, the tap density is 0.4 g / cc or more, and the BET specific surface area (hereinafter referred to as BET specific surface area by the nitrogen gas adsorption flow method). Is a negative electrode active material for a lithium ion secondary battery, characterized in that it is 5.1 to 9.0 m 2 / g.

このような活物質としては、好ましくは、石炭系及び/又は石油系(石炭系等)生コークスや石炭系等か焼コークスを単独あるいは混合して焼成して得られたものを用いるのが良い。   As such an active material, it is preferable to use a coal-based and / or petroleum-based (coal-based) raw coke or a coal-based calcined coke obtained by firing alone or in combination. .

また、本発明は、上記リチウムイオン二次電池用負極活物質とバインダーとを混合して形成される合材層を集電体上に有した負極であって、該負極の断面を観察したときの活物質形状において、観察される活物質粒子数の80%以上は、楕円相当長短比(楕円相当短軸長さ/楕円相当長軸長さ)が0.05〜0.70であり、かつ、前記合材層の体積密度が1.10〜1.25g/cmであることを特徴とするリチウムイオン二次電池負極である。 The present invention also provides a negative electrode having a mixture layer formed on the current collector formed by mixing the negative electrode active material for a lithium ion secondary battery and a binder, and the cross section of the negative electrode is observed. In the active material shape, 80% or more of the number of observed active material particles has an ellipse equivalent length / short ratio (ellipse equivalent short axis length / ellipse equivalent long axis length) of 0.05 to 0.70, and A volume density of the composite material layer is 1.10 to 1.25 g / cm 3 , wherein the negative electrode is a lithium ion secondary battery negative electrode.

更に、本発明は、上記リチウムイオン二次電池負極と正極とがセパレータを介して対向してなることを特徴とするリチウムイオン二次電池である。   Furthermore, the present invention is a lithium ion secondary battery, wherein the lithium ion secondary battery negative electrode and the positive electrode are opposed to each other with a separator interposed therebetween.

本発明によれば、例えばHEV用、PHEV用などの車載用途に要求される放電容量、初期効率、入力特性、容量維持率を満たしつつ、電極(負極)にした時の体積密度を高めて、性能バランスに優れたリチウムイオン二次電池を得ることができる負極活物質を提供することが出来る。   According to the present invention, for example, while satisfying the discharge capacity, initial efficiency, input characteristics, capacity maintenance rate required for in-vehicle applications such as HEV and PHEV, the volume density when the electrode (negative electrode) is increased, A negative electrode active material capable of obtaining a lithium ion secondary battery excellent in performance balance can be provided.

以下、本発明の実施の形態について、詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

本発明のリチウムイオン二次電池用負極活物質は、真比重が2.00〜2.16g/cm3の範囲にある。このような真比重を与えるリチウムイオン二次電池用負極活物質は、石炭系及び/又は石油系(石炭系等)の生コークス、又は、石炭系等のか焼コークスを単独で、あるいは混合して焼成して得ることが出来る(本明細書中において「石炭系等」と言う場合は「石炭系及び/又は石油系」、すなわち、石炭系、石油系のいずれか一方であってもよく、両者の混合系であってもよいことを指す。)。上記真比重が2.00g/cm3に満たないと、リチウムイオン二次電池に適用した場合、充放電の際に副反応が発生し、容量や効率の低下につながる。また、上記真比重が2.16g/cmを超えると、電池に適用した場合、入出力特性や容量維持率の特性が低下することとなる。なお、石炭系等生コークスとは、石油系及び/又は石炭系重質油を例えばディレードコーカー等のコークス化設備を用い、最高到達温度が400℃〜700℃程度の温度で24時間程度、熱分解・重縮合反応を実施して得たものを意味し、石炭系等か焼コークスとは、石炭系等生コークスに対してか焼処理を施したものを意味し、最高到達温度が800℃〜1500℃程度でか焼した石油系及び/又は石炭系のコークスを意味する。 The negative active material for a lithium ion secondary battery of the present invention has a true specific gravity in the range of 2.00 to 2.16 g / cm 3 . The negative electrode active material for a lithium ion secondary battery that provides such true specific gravity can be obtained by mixing or mixing coal-based and / or petroleum-based (coal-based) raw coke, or coal-based calcined coke, alone or in combination. It can be obtained by calcination (in the present specification, “coal-based etc.” may be “coal-based and / or petroleum-based”, that is, either coal-based or petroleum-based, both It may be a mixed system of If the true specific gravity is less than 2.00 g / cm 3 , when applied to a lithium ion secondary battery, a side reaction occurs during charge and discharge, leading to a decrease in capacity and efficiency. On the other hand, when the true specific gravity exceeds 2.16 g / cm 3 , when applied to a battery, the input / output characteristics and capacity retention characteristics are degraded. Coal-based raw coke is petroleum-based and / or coal-based heavy oil, for example, using a coking facility such as a delayed coker, and the highest temperature is about 400 ° C. to 700 ° C. for about 24 hours. It means the one obtained by carrying out the decomposition and polycondensation reaction, and the coal-based calcined coke means the one obtained by calcining the coal-based raw coke and the maximum temperature reached 800 ° C. It means petroleum-based and / or coal-based coke calcined at about ˜1500 ° C.

真比重が上記範囲を与えるリチウムイオン二次電池用負極活物質を得る方法について詳述すれば、最初に、石炭系等重質油を例えばディレードコーカー等のコークス化設備を用い、最高到達温度が400℃〜700℃程度の温度で24時間程度、熱分解・重縮合反応を進めることによって石炭系等生コークスを得る。その後、得られた石炭系等生コークスの塊を必要に応じて所定の大きさに粉砕する。粉砕には、工業的に用いられる粉砕機を使用することができる。具体的にはアトマイザー、レイモンドミル、インペラーミル、ボールミル、カッターミル、ジェットミル、ハイブリダイザー、オリエントミル等を挙げることができるが、特にこれらに限定されるものではない。また粉砕の工程においてこれらの装置を1種類又は2種類以上使用してもよく、1種類の装置で複数回粉砕して用いてもよい。   The method for obtaining a negative electrode active material for a lithium ion secondary battery in which the true specific gravity falls within the above range will be described in detail. First, a coal-based heavy oil is used, for example, using a coking facility such as a delayed coker, and the highest temperature reached. Coal-based raw coke is obtained by advancing the thermal decomposition and polycondensation reaction at a temperature of about 400 ° C. to 700 ° C. for about 24 hours. Thereafter, the obtained coal-based raw coke mass is pulverized to a predetermined size as necessary. An industrially used pulverizer can be used for the pulverization. Specific examples include atomizers, Raymond mills, impeller mills, ball mills, cutter mills, jet mills, hybridizers, orient mills, but are not particularly limited thereto. In the pulverization step, one type or two or more types of these devices may be used, or a single type of device may be used by pulverizing a plurality of times.

ここで使用される石炭系等重質油は、石油系重質油であっても石炭系重質油であっても構わないが、石炭系重質油の方が芳香属性に富んでおり、S、V、Fe等の不純物が少なく、揮発分も少ないため、石炭系重質油を使用する方が好ましい。   The heavy coal oil used here may be a heavy petroleum oil or a heavy coal oil, but the heavy heavy oil is richer in aromatic properties, Since there are few impurities, such as S, V, and Fe, and there is also little volatile matter, it is more preferable to use heavy coal oil.

また、石炭系等か焼コークスを製造するには、上記のようにして得た石炭系等生コークスを低酸素雰囲気下で最高到達温度800℃〜1500℃でか焼するようにする。か焼する際の処理温度は、好ましくは1000℃〜1500℃、より好ましくは1200℃〜1500℃の範囲である。か焼コークスを製造する際の石炭系等生コークスのか焼には、大量処理が可能なリードハンマー炉、シャトル炉、トンネル炉、ロータリーキルン、ローラーハースキルンあるいはマイクロウェーブ等の設備を用いることができるが、特にこれらに限定されるものではない。また、これらのか焼設備は、連続式又はバッチ式のどちらでもよい。次いで、得られた石炭系等か焼コークスの塊を、生コークスの場合と同様に、工業的に用いられるアトマイザー等の粉砕機を用いて所定の大きさに粉砕する。また、粉砕したコークス粉は分級により微粉をカットしたり、粗粉を篩などで除去したりすることによって所定の粒度に整粒することができる。   In order to produce coal-based calcined coke, the coal-based raw coke obtained as described above is calcined at a maximum attained temperature of 800 ° C. to 1500 ° C. in a low oxygen atmosphere. The treatment temperature for calcination is preferably in the range of 1000 ° C to 1500 ° C, more preferably 1200 ° C to 1500 ° C. For calcination of raw coke such as coal when producing calcined coke, equipment such as reed hammer furnace, shuttle furnace, tunnel furnace, rotary kiln, roller hearth kiln or microwave capable of mass processing can be used. However, it is not particularly limited to these. Further, these calcination facilities may be either continuous type or batch type. Next, the obtained coal-based calcined coke lump is pulverized to a predetermined size using a pulverizer such as an atomizer used industrially, as in the case of raw coke. The pulverized coke powder can be sized to a predetermined particle size by cutting fine powder by classification or removing coarse powder with a sieve or the like.

上記で得られた生コークス、及びか焼コークスは、好ましくは、更に焼成処理を行うのがよい。焼成温度は、最高到達温度で800℃以上1500℃以下とすることがよい。焼成温度が上限を超えると、コークス材料の結晶成長が過剰に促進され、真比重を2.16g/cm以下とすることが困難となる。真比重が2.16g/cmを超えると、焼成時にコークスの結晶構造が黒鉛のように配向していき、結晶層間距離が狭くなってしまい、上記のように入出力特性や容量維持率などの構造起因の特性が低下してしまうことになる。また、焼成温度が下限を下回ると、結晶構造が未発達となり、真比重が2.00g/cm3以下となるだけでなく、原料由来の官能基(OH基やCOOH基など)がコークス表面に残存し、上記したように電池として充放電した際に副反応が発生することになり、容量や効率の低下につながる。また、焼成処理の最高到達温度での保持時間は特に制限されないが、30分以上が好ましい。更に、焼成雰囲気については、アルゴンあるいは窒素等の不活性ガス雰囲気であるのがよい。 The raw coke and calcined coke obtained above are preferably further subjected to a firing treatment. The firing temperature is preferably 800 ° C. or higher and 1500 ° C. or lower at the highest temperature reached. When the firing temperature exceeds the upper limit, the crystal growth of the coke material is excessively promoted, and it becomes difficult to make the true specific gravity 2.16 g / cm 3 or less. When the true specific gravity exceeds 2.16 g / cm 3 , the crystal structure of the coke is oriented like graphite at the time of firing, and the distance between the crystal layers becomes narrow. As described above, the input / output characteristics, the capacity retention ratio, etc. Therefore, the characteristic due to the structure will be deteriorated. Moreover, when the firing temperature is below the lower limit, the crystal structure becomes undeveloped and the true specific gravity is not more than 2.00 g / cm 3 , and raw material-derived functional groups (OH groups, COOH groups, etc.) are present on the coke surface. As described above, a side reaction occurs when the battery is charged and discharged as described above, leading to a decrease in capacity and efficiency. Further, the holding time at the highest temperature of the baking treatment is not particularly limited, but is preferably 30 minutes or more. Further, the firing atmosphere is preferably an inert gas atmosphere such as argon or nitrogen.

また、焼成処理は、石炭系等生コークス、又は、か焼コークスを単独で、あるいは混合して焼成してもよく、その過程において、複数回の焼成に分けて行うようにしてもよい。また、本発明における活物質の諸条件を満たす範囲であれば、必要に応じて造粒などの形状制御工程を含めたり、活物質の表面を有機、無機成分で改質したり、コートする工程を含めてもよく、更には、金属成分を表面に均一又は分散して形成するようにしてもよい。   In addition, the calcining treatment may be performed by burning coal-based raw coke or calcined coke alone or in combination, and in the process, the firing may be divided into multiple firings. In addition, as long as the various conditions of the active material in the present invention are satisfied, a step of shape control such as granulation may be included as necessary, or the surface of the active material may be modified with an organic or inorganic component or coated. Further, the metal component may be formed uniformly or dispersed on the surface.

また、負極活物質の真比重の測定については、液相置換法(別名ピクノメータ法)により測定する。具体的にはピクノメータに粉体(活物質)を入れ、蒸留水などの溶媒液を加え、真空脱気などの方法によりサンプル表面の空気と溶媒液を置換し、正確なサンプル重量と体積を求めることで真比重値を算出する。   The true specific gravity of the negative electrode active material is measured by a liquid phase replacement method (also called a pycnometer method). Specifically, powder (active material) is put into a pycnometer, a solvent liquid such as distilled water is added, and air and solvent liquid on the sample surface are replaced by a method such as vacuum deaeration to obtain an accurate sample weight and volume. Thus, the true specific gravity value is calculated.

本発明のリチウムイオン二次電池用負極活物質は、その負極活物質の粒度分布におけるD10が2〜5μm、D50が8〜12μm、D90が16〜26μmであり、かつD50−D10が5〜10μmの範囲にあることが必要である。好ましくは、D10が2〜4μm、D50が8〜12μm、D90が18〜24μmであり、かつD50−D10が6〜10μmの範囲である。このことは、原料として石炭系等生コークス、石炭系等か焼コークスのいずれか一方を単独で、或いは混合して焼成して得られたものの粉砕後の粒子が、上記のような粒度分布を有することを意味する。また、このときの負極活物質のBET比表面積は5.1〜9.0m/gとなるようにする。上記のような粒度分布の負極活物質は、場合によっては焼成処理した石炭系等生コークスや石炭系等か焼コークスを、単独で又は混合してオリエントミルなどにより粗粉砕を行い、次いで、ハンマーミルやジェットミルなどによって微粉砕して、必要に応じて微粉は風力分級などによって除去することによって得ることができる。これらの粉砕方法や分級方法については特に制限されるものではなく、一般的な方法を用いることができる。 The negative electrode active material for a lithium ion secondary battery of the present invention has D 10 in the particle size distribution of the negative electrode active material of 2 to 5 μm, D 50 of 8 to 12 μm, D 90 of 16 to 26 μm, and D 50 -D. It is necessary that 10 is in the range of 5 to 10 μm. Preferably, D 10 is 2 to 4 μm, D 50 is 8 to 12 μm, D 90 is 18 to 24 μm, and D 50 -D 10 is in the range of 6 to 10 μm. This is because the pulverized particles of raw coke such as coal-based coke and coal-based calcined coke alone or mixed and calcined have the particle size distribution as described above. It means having. In addition, the BET specific surface area of the negative electrode active material at this time is set to 5.1 to 9.0 m 2 / g. The negative electrode active material having the particle size distribution as described above may be subjected to coarse pulverization with an orient mill or the like, either alone or mixed with a calcined coal-based raw coke or coal-based calcined coke, and then a hammer. It can be obtained by finely pulverizing with a mill or jet mill and removing fine powder by air classification as required. These pulverization methods and classification methods are not particularly limited, and general methods can be used.

上述した負極活物質の粒度分布について、D10が2μmに満たないと比表面積が過度に増加して、得られた二次電池の初期効率が低下する。D90が26μmを超えると粗大な粉の存在により電極作製時に均一で滑らかな表面性状の電極が得ることが難しくなる。D50−D10が5μm未満であると粒子の粒度分布がシャープとなり、粒径が小さい微粉の割合が大きくなり電極作製時に粒子が最密充填構造を形成することが難しくなり、結果、電極密度が低下することになる。またD50−D10が10μmを超えると、結果的にD90が26μmを越えるような粗大な粒子が存在する可能性が高くなる。26μmを越えるような粗大粒子は電極表面の平滑性を低下させ集電体との密着性の低下やセパレータ側の損傷や粗大粒子の粉落ちなど悪い影響を及ぼすことが懸念される。またD10が5μmより大きくなるとD10が2μm以下の微粉の割合が小さくなり粒子が最密充填構造を形成するのが難しくなる。このような理由から、本発明においては上述した粒度分布が必要となる。なお、D50−D10は活物質粒子の粒度分布における分布形状の広がりを表す。従来の中心値であるD50では粒度分布の広がりを規定しておらず、本発明で示した分布の広がりを有することで充填性に優れた電極を作製することができることを見出した。また、上記粒度分布を有する負極活物質の原料であるコークス粉は、前述の石炭系等生コークス粉、石炭系等か焼コークス粉のいずれか一方を単独で用い得られたものであっても、或いはその両方を混合して用い得られたものであってもよい。 Regarding the particle size distribution of the negative electrode active material described above, if D 10 is less than 2 μm, the specific surface area is excessively increased, and the initial efficiency of the obtained secondary battery is lowered. D 90 of it is difficult to obtain an electrode of uniform and smooth surface texture to the electrode during the production due to the presence of coarse powder exceeds 26 .mu.m. If D 50 -D 10 is less than 5 μm, the particle size distribution of the particles becomes sharp, the proportion of fine powder having a small particle size becomes large, and it becomes difficult for the particles to form a close-packed structure at the time of electrode preparation. Will drop. When D 50 -D 10 exceeds 10 μm, there is a high possibility that coarse particles having D 90 exceeding 26 μm will be present. There is a concern that coarse particles exceeding 26 μm may adversely affect the smoothness of the electrode surface, resulting in poor adhesion to the current collector, damage on the separator side, and coarse particles falling off. Further, when D 10 is larger than 5 μm, the proportion of fine powder having D 10 of 2 μm or less becomes small, and it becomes difficult for the particles to form a close-packed structure. For these reasons, the particle size distribution described above is required in the present invention. D 50 -D 10 represents the spread of the distribution shape in the particle size distribution of the active material particles. Not define the extent of the D 50 particle size distribution which is a conventional center value has been found that it is possible to produce a superior electrode filling properties by having a spread of the distribution shown in the present invention. Further, the coke powder that is the raw material of the negative electrode active material having the above particle size distribution may be obtained by using any one of the above-mentioned coal-based raw coke powder, coal-based calcined coke powder, and the like. Alternatively, or a mixture of both may be used.

ここで、負極活物質(炭素材料)の粒度分布測定について、本発明では、LMS―30(セイシン企業社製)の装置を用いて、分散媒は水+活性剤を用いて測定をおこなった。粒子の存在比率の基準としては、レーザー回折・散乱法を用いて体積分布を測定し、体積基準による累積分布を用いて粒度分布評価をおこなった。すなわち、負極活物質の粒度分布はレーザー回折・散乱法により測定し、その粒度分布における累積10体積%粒子径をD10とした。同様に、累積50体積%粒子径をD50とし、累積90体積%粒子径をD90として、また、D50とD10との差をD50−D10とした。 Here, regarding the particle size distribution measurement of the negative electrode active material (carbon material), in the present invention, measurement was performed using an apparatus of LMS-30 (manufactured by Seishin Enterprise Co., Ltd.) and the dispersion medium using water + active agent. As the standard of the abundance ratio of the particles, the volume distribution was measured using a laser diffraction / scattering method, and the particle size distribution was evaluated using a cumulative distribution based on the volume. That is, the particle size distribution of the negative electrode active material measured by a laser diffraction scattering method, cumulative 10% by volume particle diameter in the particle size distribution was D 10. Similarly, a cumulative 50% by volume particle diameter and D 50, a cumulative 90% by volume particle diameter as D 90, also the difference between D 50 and D 10 was D 50 -D 10.

本発明における負極活物質は、粉砕して粒度分布を制御する過程において扁平状、燐片状の形状となる。負極活物質の形状としては、作製した電極断面を観察すると観察される活物質粒子数の80%以上は、楕円相当長短比(楕円相当短軸長さ/楕円相当長軸長さ)が0.05〜0.70となる。楕円相当長短比が0.70超のとき、負極活物質はより球状の形状となり、同じ粒度分布においても細密充填のしかたやタップ密度が変化し、電極密度や電池性能が変化する。また、楕円相当長短比が0.05未満のとき、負極活物質はより針状の形状となり、同じく充填のしかたやタップ密度が変化するだけでなく、負極活物質の表面積が大きくなりすぎて、副反応など電池性能を下げる現象が起きる。そのため、本発明では、バインダーと混合して形成される合材層を集電体上に有した電極(負極)の断面から観察したときの負極活物質形状において、観察される負極活物質粒子数の80%以上が、楕円相当長短比(楕円相当短軸長さ/楕円相当長軸長さ)で0.05〜0.70となるような負極活物質を用いる。   In the process of pulverizing and controlling the particle size distribution, the negative electrode active material in the present invention becomes flat and flake shaped. As the shape of the negative electrode active material, 80% or more of the number of active material particles observed when the cross section of the produced electrode is observed has an ellipse equivalent length / short ratio (ellipse equivalent short axis length / ellipse equivalent long axis length) of 0. 05 to 0.70. When the ellipse equivalent length / short ratio is more than 0.70, the negative electrode active material has a more spherical shape, and even in the same particle size distribution, fine packing and tap density change, and electrode density and battery performance change. Further, when the elliptical equivalent length ratio is less than 0.05, the negative electrode active material has a more needle-like shape, not only the filling method and tap density change, but also the surface area of the negative electrode active material becomes too large, Phenomena such as side reactions that lower battery performance occur. Therefore, in the present invention, the number of negative electrode active material particles observed in the shape of the negative electrode active material when observed from the cross section of the electrode (negative electrode) having a mixture layer formed by mixing with a binder on the current collector The negative electrode active material is used such that 80% or more of the ratio is 0.05 to 0.70 in terms of the ellipse-equivalent length-to-short ratio (ellipse-equivalent minor axis length / elliptical equivalent major axis length).

上記の電極断面の観察手法としては、合材層の厚みが50μm以上の電極を作製し、機械研磨法、ミクロトーム法、CP(Cross−section Polisher)法、集束イオンビーム(FIB)法などの方法により電極断面を作製し、SEM等の方法にて最小粒子径サイズ1μm以上の粒子サイズをすべて観察する。観察した粒子について、楕円相当長短比(楕円相当短軸長さ/楕円相当長軸長さ)を計測する。観察断面において粒子の分布のバラつきなどがあるため20視野以上の観察が好ましい。粒子サイズの測定については画像解析ソフト(WinRooF:三谷商事株式会社製)などを用いて解析してもいい。   As a method for observing the electrode cross section, an electrode having a composite layer thickness of 50 μm or more is manufactured, and a method such as a mechanical polishing method, a microtome method, a CP (Cross-section Polisher) method, or a focused ion beam (FIB) method is used. A cross section of the electrode is prepared by observing all particle sizes having a minimum particle size of 1 μm or more by a method such as SEM. For the observed particles, the ellipse equivalent length / short ratio (ellipse equivalent short axis length / ellipse equivalent long axis length) is measured. Since there are variations in the distribution of particles in the observation cross section, observation of 20 fields or more is preferable. The particle size may be measured by using image analysis software (WinRooF: manufactured by Mitani Corporation).

本発明のリチウムイオン二次電池用負極活物質は、電極作製時の初期密度を上げるためにそのタップ密度が0.4g/cc以上であり、0.4〜0.8g/ccの範囲とすることが好ましい。タップ密度が0.4g/ccに満たないと電極作製時の負極活物質同士の接触が不十分となり導通パスの減少となるため電池性能が低下する、また、密度を上げるためにプレス圧力を増加させると変形量が大きくなるため負極活物質が割れたりして、表面積の増加、電極の密着性の低下による更なる導通パスの低減などにつながり、電池性能低下につながる。そのためプレス前の充填密度をあげるためにタップ密度を指標として少なくとも0.4g/ccにしておく必要がある。また、0.8g/cc超にするためには、例えばD10が1μm未満の微粉の割合を増やしたり、D90付近の粗大粒子の割合を増やしたりする必要があり、その結果負極活物質の表面積が大きくなったり、粗大粒子の影響で電極の均一性や性能が乱れたりして、電池性能の低下につながるためタップ密度を0.8g/cc超にする必要はない。 The negative electrode active material for a lithium ion secondary battery of the present invention has a tap density of 0.4 g / cc or more in order to increase the initial density at the time of electrode preparation, and is in the range of 0.4 to 0.8 g / cc. It is preferable. If the tap density is less than 0.4 g / cc, contact between the negative electrode active materials at the time of electrode preparation becomes insufficient and the conduction path is reduced, so that the battery performance is lowered, and the press pressure is increased to increase the density. If this is done, the amount of deformation becomes large and the negative electrode active material breaks, leading to an increase in surface area and further reduction of the conduction path due to a decrease in electrode adhesion, leading to a decrease in battery performance. Therefore, in order to increase the packing density before pressing, it is necessary to set the tap density as an index to at least 0.4 g / cc. In addition, in order to achieve more than 0.8 g / cc, for example, it is necessary to increase the proportion of fine powder with D 10 less than 1 μm, or increase the proportion of coarse particles in the vicinity of D 90 . It is not necessary to make the tap density more than 0.8 g / cc because the surface area increases or the uniformity and performance of the electrode are disturbed by the influence of coarse particles, leading to a decrease in battery performance.

本発明において、負極活物質のタップ密度については、タップデンサーKYT−400(セイシン企業社製)の装置を用いて、シリンダー体積100cc、タッピング距離38mm、タップ回数300回での測定値を用いた。   In the present invention, for the tap density of the negative electrode active material, the measured value at a cylinder volume of 100 cc, a tapping distance of 38 mm, and the number of taps of 300 times was used using a tap denser KYT-400 (manufactured by Seishin Enterprise).

本発明のリチウムイオン二次電池用負極活物質は、BET比表面積が5.1〜9.0m/gである。このBET比表面積は炭素材料の結晶状態起因による粉砕時の形状、および粉砕後の粒度分布によって決まる。BET比表面積が5.1m/gより小さいとリチウムイオンの充放電速度が遅くなるため望ましくなく、9.0m/gより大きいとタップ密度が上がらず電極密度が上がらないため好ましくない。BET比表面積は、リチウムイオンが炭素構造に出入りする際の表面反応の速度に影響するため、適切な値に制御することが重要となる。 The negative electrode active material for a lithium ion secondary battery of the present invention has a BET specific surface area of 5.1 to 9.0 m 2 / g. This BET specific surface area is determined by the shape at the time of pulverization due to the crystal state of the carbon material and the particle size distribution after pulverization. If the BET specific surface area is less than 5.1 m 2 / g, the charge / discharge rate of lithium ions is slow, which is undesirable. If it is greater than 9.0 m 2 / g, the tap density does not increase and the electrode density does not increase, which is not preferable. Since the BET specific surface area affects the speed of surface reaction when lithium ions enter and exit the carbon structure, it is important to control the BET specific surface area to an appropriate value.

本発明において、BET比表面積は窒素ガス吸着流通法で求めたものであり、BELSORP−miniII(日本ベル社製)の装置を用いた。   In the present invention, the BET specific surface area was determined by a nitrogen gas adsorption flow method, and an apparatus of BELSORP-mini II (manufactured by Nippon Bell Co., Ltd.) was used.

本発明は、上記リチウムイオン二次電池用負極活物質を用いたリチウムイオン二次電池負極でもあり、負極は、集電体上(一般的に銅箔)に上記リチウムイオン二次電池用負極活物質とバインダーとを混合して形成される合材層とからなる。   The present invention is also a lithium ion secondary battery negative electrode using the negative electrode active material for lithium ion secondary battery, and the negative electrode is disposed on the current collector (generally copper foil). It consists of a composite layer formed by mixing a substance and a binder.

バインダーには、一般には、ポリフッ化ビニリデン(PVDF)等のフッ素系樹脂粉末あるいはポリイミド(PI)系樹脂、スチレンブタジエンゴム(SBR)、カルボキシメチルセルロース(CMC)等の水溶性粘結剤が用いられる。   Generally, a water-soluble binder such as a fluorine resin powder such as polyvinylidene fluoride (PVDF) or a polyimide (PI) resin, styrene butadiene rubber (SBR), or carboxymethyl cellulose (CMC) is used for the binder.

集電体上への合材層の形成は、上述の負極活物質とバインダーとを、溶媒を用いてスラリーを作製し、集電体上(一般的に銅箔)に塗布、乾燥し、その後、任意の条件でプレスすることにより行なうことができる。用いられる溶媒は、特に限定されるものではないが、N−メチルピロリドン(NMP)、ジメチルホルムアミドあるいは、水、アルコール等が用いられる。   The composite material layer is formed on the current collector by preparing a slurry of the negative electrode active material and the binder described above using a solvent, and applying and drying on the current collector (generally copper foil), and then It can be performed by pressing under any condition. The solvent used is not particularly limited, and N-methylpyrrolidone (NMP), dimethylformamide, water, alcohol, or the like is used.

より具体的には、例えば、負極活物質とバインダーとを重量比で93〜97:7〜3の比(負極活物質:バインダー)で混錬し、このスラリーを所定厚みの銅箔上に塗布し、60〜120℃の乾燥条件で溶媒を乾燥し、その後、線圧100〜600kg/cmでプレスすることによって負極電極とすることが出来るが、この際の製造条件を上記範囲とすることで、体積密度が1.10〜1.25g/cmの範囲の電極が得られる。ここで、プレス時の線圧を上げ過ぎると電極の体積密度は高くなるが、活物質が変形、破壊してしまい、電極内での接触が悪くなり、容量や効率の低下につながるため上記の体積密度になるプレス条件を設定することが望ましい。 More specifically, for example, the negative electrode active material and the binder are kneaded at a weight ratio of 93 to 97: 7 to 3 (negative electrode active material: binder), and this slurry is applied onto a copper foil having a predetermined thickness. Then, the solvent can be dried under a drying condition of 60 to 120 ° C., and then pressed at a linear pressure of 100 to 600 kg / cm to obtain a negative electrode. By making the manufacturing conditions at this time within the above range, An electrode having a volume density in the range of 1.10 to 1.25 g / cm 3 is obtained. Here, if the linear pressure at the time of pressing is increased too much, the volume density of the electrode is increased, but the active material is deformed and destroyed, resulting in poor contact within the electrode, leading to a decrease in capacity and efficiency. It is desirable to set the press conditions for the volume density.

このようにして製造された負極を用いて本発明のリチウムイオン二次電池とすることができる。本発明のリチウムイオン二次電池は、上記した負極と正極間にセパレータが存するように配置されている。負極と正極とはセパレータを介して対向しており、相対する正極としては、リチウム含有遷移金属酸化物LiM(1)xO2(式中、xは0≦x≦1の範囲の数値であり、式中M(1)は遷移金属を表し、Co、Ni、Mn、Ti、Cr、V、Fe、Zn、Al、Sn、Inの少なくとも1種類からなる)、あるいはLiM(1)yM(2)2−yO4(式中、yは0≦y≦1の範囲の数値であり、式中、M(1)、M(2)は遷移金属を表し、Co、Ni、Mn、Ti、Cr、V、Fe、Zn、Al、Sn、Inの少なくとも1種類からなる、遷移金属カルコゲン化合物(Ti、S2、NbSe、等)、バナジウム酸化物(V25、V613、V24、V36、等)およびリチウム化合物、一般式MxMo6Ch6−y(式中、xは0≦x≦4、yは0≦y≦1の範囲の数値であり、式中Mは遷移金属をはじめとする金属、Chはカルコゲン金属を表す)で表されるフュブレル相化合物、あるいは活性炭、活性炭素繊維等の正極活物質を例示することができる。 The lithium ion secondary battery of the present invention can be obtained using the negative electrode thus produced. The lithium ion secondary battery of this invention is arrange | positioned so that a separator may exist between an above-described negative electrode and a positive electrode. The negative electrode and the positive electrode are opposed to each other via a separator, and as a positive electrode facing each other, a lithium-containing transition metal oxide LiM (1) xO 2 (wherein x is a numerical value in the range of 0 ≦ x ≦ 1, In the formula, M (1) represents a transition metal and is composed of at least one of Co, Ni, Mn, Ti, Cr, V, Fe, Zn, Al, Sn, and In), or LiM (1) yM (2) 2- yO 4 (wherein y is a numerical value in the range of 0 ≦ y ≦ 1, where M (1) and M (2) represent transition metals, Co, Ni, Mn, Ti, Cr, Transition metal chalcogen compounds (Ti, S 2 , NbSe, etc.), vanadium oxides (V 2 O 5 , V 6 O 13 , V 2 O) comprising at least one of V, Fe, Zn, Al, Sn, and In 4 , V 3 O 6 , etc.) and lithium compounds, the general formula MxMo 6 Ch 6 -y, where x is 0 ≦ x ≦ 4, y is a numerical value in the range of 0 ≦ y ≦ 1, wherein M represents a metal including a transition metal and Ch represents a chalcogen metal) or activated carbon, A positive electrode active material such as activated carbon fiber can be exemplified.

また、上記正極と負極との間を満たす電解質としては、従来公知のものをいずれも使用することができ、例えばLiClO4、LiBF4、LiPF6、LiAsF6、LiB(C65)、LiCl、LiBr、Li3SO3、Li(CF3SO22N、Li(CF3SO23C,Li)CF3CH2OSO22N、Li(CF3CF2CH2OSO22N、Li(HCF2CF2CH2OSO22N、Li((CF32CHOSO22N、LiB[C63(CF32]等の1種または2種以上の混合物を挙げることができる。 Further, Examples of the electrolyte filling the space between the positive electrode and the negative electrode, and any known ones can be used, for example LiClO 4, LiBF 4, LiPF 6 , LiAsF 6, LiB (C 6 H 5), LiCl LiBr, Li 3 SO 3 , Li (CF 3 SO 2 ) 2 N, Li (CF 3 ) 3 SO 2 ) 3 C, Li) CF 3 CH 2 OSO 2 ) 2 N, Li (CF 3 CF 2 CH 2 1 type such as OSO 2 ) 2 N, Li (HCF 2 CF 2 CH 2 OSO 2 ) 2 N, Li ((CF 3 ) 2 CHOSO 2 ) 2 N, LiB [C 6 H 3 (CF 3 ) 2 ] 4 Or the mixture of 2 or more types can be mentioned.

また、非水系電解質としては、例えば、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、クロロエチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、1,1−ジメトキシエタン、1,2−ジメトキシエタン、1,2−ジエトキシエタン、γ―ブチロラクタン、テトラヒドロフラン、2−メチルテトラヒドロフラン、1,3−ジオキソラン、4−メチルー1,3−ジオキソラン、アニソール、ジエチルエーテル、スルホラン、メチルスルホラン、アセトニトリル、クロロニトリル、プロピオニトリル、ホウ酸トリメチル、ケイ酸テトラメチル、ニトロメタン、ジメチルホルムアミド、N−メチルピロリドン、酢酸エチル、トリメチルオルトホルメート、ニトロベンゼン、塩化ベンゾイル、臭化ベンゾイル、テトラヒドロチオフェン、ジメチルスルホキシド、3−メチルー2−オキサゾリドン、エチレングリコール、サルファイト、ジメチルサルファイト等の単独溶媒もしくは2種類以上の混合溶媒を使用できる。   Examples of the non-aqueous electrolyte include propylene carbonate, ethylene carbonate, butylene carbonate, chloroethylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, 1,1-dimethoxyethane, 1,2-dimethoxyethane, 1,2 -Diethoxyethane, γ-butyrolactan, tetrahydrofuran, 2-methyltetrahydrofuran, 1,3-dioxolane, 4-methyl-1,3-dioxolane, anisole, diethyl ether, sulfolane, methylsulfolane, acetonitrile, chloronitrile, propionitrile, Trimethyl borate, tetramethyl silicate, nitromethane, dimethylformamide, N-methylpyrrolidone, ethyl acetate, trimethyl orthoformate, nitrobenzene Benzoyl chloride, benzoyl bromide, tetrahydrothiophene, dimethyl sulfoxide, 3-methyl-2-oxazolidone, ethylene glycol, sulfite, a single solvent or a mixture of two or more solvents such as dimethyl sulfite may be used.

以下、本発明を実施例に基づいて具体的に説明する。ただし、これらの実施例によって、本発明の内容が制限されるものではない。なお、真比重、粒度分布、タップ密度、及びBET比表面積の測定は、上述した方法で行った。   Hereinafter, the present invention will be specifically described based on examples. However, the content of this invention is not restrict | limited by these Examples. The true specific gravity, particle size distribution, tap density, and BET specific surface area were measured by the methods described above.

(実施例1)
石炭系重質油よりキノリン不溶分を除去した精製ピッチを用い、ディレードコーキング法によって500℃の温度で24時間熱処理して製造した塊状コークス(生コークス)を得て、オリエントミルおよびジェットミルにて微粉砕し、平均粒径(D50)が10.5μmの生コークス片(微粉砕生コークス)を得た。
(Example 1)
Using a refined pitch from which heavy quinoline insolubles have been removed from coal-based heavy oil, bulk coke produced by heat treatment at a temperature of 500 ° C. for 24 hours by a delayed coking method (raw coke) is obtained using an orientation mill and a jet mill. Fine pulverization gave raw coke pieces (fine pulverized raw coke) having an average particle size (D 50 ) of 10.5 μm.

上述のようにして得た生コークス片を、ロータリーキルンによって低酸素雰囲気下で入口付近温度700℃から出口付近温度1500℃(最高到達温度)の温度で1時間以上か焼してか焼コークスを得た。このか焼コークスを上記と同じジェットミルにて単位時間あたりの処理量、処理時のガス流速を適切に調整して微粉砕を実施し、その後風力分級により3μm以下の微粉の大部分を除去することで、真比重が2.15g/cmであり、D10が3.7μm、D50が10.2μm、D90が19.7μm、及びD50−D10が6.5μmのリチウムイオン二次電池用負極活物質を得た。この負極活物質のタップ密度は0.52g/cm3であり、また、窒素ガス吸着流通法によるBET比表面積は6.7m/gであった。 The raw coke pieces obtained as described above are calcined with a rotary kiln in a low oxygen atmosphere at an inlet temperature of 700 ° C. to an outlet temperature of 1500 ° C. (maximum temperature reached) for 1 hour or longer to obtain calcined coke. It was. The calcined coke is finely pulverized by appropriately adjusting the processing amount per unit time and the gas flow rate at the time of processing in the same jet mill as above, and then most of the fine powder of 3 μm or less is removed by air classification. Thus, the true specific gravity is 2.15 g / cm 3 , D 10 is 3.7 μm, D 50 is 10.2 μm, D 90 is 19.7 μm, and D 50 -D 10 is 6.5 μm. A negative electrode active material for a secondary battery was obtained. The tap density of this negative electrode active material was 0.52 g / cm 3 , and the BET specific surface area determined by the nitrogen gas adsorption flow method was 6.7 m 2 / g.

次いで、このリチウムイオン二次電池用負極活物質に対して、バインダーとしてスチレン−ブタジエンゴム(SBR、JSR株式会社製)とカルボキシメチルセルロース(CMC、日本製紙株式会社製)をスラリー固形分の5質量%となるように加え、混錬してスラリーを作製した。得られたスラリーを厚さ15μmの銅箔の表面に均一になるように塗布して60〜120℃の温度で乾燥し、その後300kg/cmの線圧でプレスすることによりシート状の負極電極を得た。この電極の体積密度は1.15g/cmであった。このシートから直径15mmφの円形に切り出すことにより試験用の負極電極を作製した。この試験用の負極電極単極での電極特性を評価するために、対極には約15.5mmφに切り出した金属リチウムを用いた。なお、作製した電極をCP法により切断し、その断面をFE−SEMで観察したところ(倍率1500倍)、視野角75μm×30μmの範囲内で観察される活物質粒子のうち、楕円相当長短比0.05〜0.70の範囲である活物質粒子は88%であることが確認された。なお、観察視野については、ばらつきを低減させるために20視野の平均値を用いた。 Next, styrene-butadiene rubber (SBR, manufactured by JSR Corporation) and carboxymethyl cellulose (CMC, manufactured by Nippon Paper Industries Co., Ltd.) as a binder are 5% by mass with respect to the negative electrode active material for the lithium ion secondary battery. And kneaded to prepare a slurry. The obtained slurry was applied uniformly on the surface of a 15 μm thick copper foil, dried at a temperature of 60 to 120 ° C., and then pressed at a linear pressure of 300 kg / cm to form a sheet-like negative electrode. Obtained. The volume density of this electrode was 1.15 g / cm 3 . A negative electrode for a test was prepared by cutting out from this sheet into a circle having a diameter of 15 mmφ. In order to evaluate the electrode characteristics of the single negative electrode for this test, metallic lithium cut into about 15.5 mmφ was used as the counter electrode. In addition, when the produced electrode was cut | disconnected by CP method and the cross section was observed by FE-SEM (magnification 1500 times), among the active material particles observed within the range of a viewing angle of 75 micrometers x 30 micrometers, the ellipse equivalence length ratio It was confirmed that the active material particles in the range of 0.05 to 0.70 was 88%. In addition, about the observation visual field, in order to reduce dispersion | variation, the average value of 20 visual fields was used.

また、電解液としてエチレンカーボネートとジエチルカーボネートとの混合溶媒(体積比1:1混合)にLiPF6を1mol/lの濃度で溶解したものを用い、セパレータとしてプロピレンの多孔質膜を用いて、上記の試験用負極電極を用いてコインセルを作製し、リチウムイオン二次電池を作製した。作製した電池の容量は1mA/cmであった。25℃の恒温下、端子電圧の充電下限電圧を0V、放電の上限電圧を1.5Vとした電圧範囲で1mA/cmの定電流放電と20mA/cmの定電流放電を実施した際の比より、充電維持率を算出した。結果を表1に示す。 In addition, a solution of LiPF 6 dissolved at a concentration of 1 mol / l in a mixed solvent of ethylene carbonate and diethyl carbonate (1: 1 volume ratio) as an electrolytic solution, and a porous membrane of propylene as a separator, A coin cell was prepared using the test negative electrode, and a lithium ion secondary battery was produced. The capacity of the produced battery was 1 mA / cm 2 . When a constant current discharge of 1 mA / cm 2 and a constant current discharge of 20 mA / cm 2 were performed in a voltage range where the lower limit charge voltage of the terminal voltage was 0 V and the upper limit voltage of the discharge was 1.5 V at a constant temperature of 25 ° C. The charge maintenance rate was calculated from the ratio. The results are shown in Table 1.

また、上記のリチウムイオン二次電池を用いて、負極活物質の重量当たりの電流密度30mA/gの定電流で1.5Vから0Vまで充電し、その後90分間定電圧充電して初回放電容量を測定し、30分間休止した後に電流密度30mA/gの定電流で0Vから1.5Vまで放電を行い、初回充電容量を測定し、次式にて表される初回充電容量に対する初回放電容量の割合より、初期効率を算出した。結果を表1に示す。
初期効率(%) = 100 × 初回放電容量 / 初回充電容量
なお、表1の判定は負極活物質の体積あたりの容量、急速充電性、及び、初期効率を評価したものであって、体積密度が1.10〜1.25g/cmであり、かつ初期効率が80%を超え、さらに充電維持率が40%を超える場合は〇、そうでない場合は×とした。
In addition, using the above lithium ion secondary battery, the battery was charged from 1.5 V to 0 V at a constant current of 30 mA / g current density per weight of the negative electrode active material, and then charged at a constant voltage for 90 minutes to obtain the initial discharge capacity. After measuring and resting for 30 minutes, discharging from 0 V to 1.5 V at a constant current of 30 mA / g current density, measuring the initial charge capacity, the ratio of the initial discharge capacity to the initial charge capacity represented by the following formula From this, the initial efficiency was calculated. The results are shown in Table 1.
Initial efficiency (%) = 100 × initial discharge capacity / initial charge capacity Note that the determination in Table 1 is an evaluation of the capacity per unit volume of the negative electrode active material, rapid chargeability, and initial efficiency. When the initial efficiency was more than 1.10 to 1.25 g / cm 3 and the initial efficiency exceeded 80% and the charge retention rate exceeded 40%, it was marked as ◯, and otherwise it was marked as x.

(実施例2〜3、比較例1〜3)
か焼コークスを得た後のジェットミル粉砕時の条件を変更した以外は、それぞれ実施例1と同様の操作を行い、表1に示すような粒度分布が異なるリチウムイオン二次電池用負極活物質を得た。得られた負極活物質の特性を表1に示す。また、実施例1と同様にして作製した電極の断面を観察したところ、楕円相当長短比0.05〜0.70の範囲である活物質粒子はいずれのサンプルも85〜89%であることが確認された。それらを用いて、実施例1と同様に負極電極及びリチウムイオン二次電池を得て、それぞれ充電維持率及び初期効率を調べた。結果を表1に示す。
(Examples 2-3, Comparative Examples 1-3)
A negative electrode active material for a lithium ion secondary battery having a different particle size distribution as shown in Table 1, except that the conditions at the time of jet mill pulverization after obtaining calcined coke were changed. Got. The characteristics of the obtained negative electrode active material are shown in Table 1. Moreover, when the cross section of the electrode produced similarly to Example 1 was observed, as for the active material particle which is the range of ellipse equivalent length ratio 0.05-0.70, all samples are 85-89%. confirmed. Using them, the negative electrode and the lithium ion secondary battery were obtained in the same manner as in Example 1, and the charge retention rate and the initial efficiency were examined, respectively. The results are shown in Table 1.

(実施例4)
生コークス片を、ロータリーキルンによって低酸素雰囲気下で入口付近温度700℃から出口付近温度1000℃(最高到達温度)の温度で1時間以上か焼してか焼コークスを得た以外は、実施例1と同様の操作を行い、リチウムイオン二次電池を得た。得られた負極活物質の特性を表1に示す。また、実施例1と同様にして作製した電極の断面を観察したところ、楕円相当長短比0.05〜0.70の範囲である活物質粒子は90%であることが確認された。また、実施例1と同様にして充電維持率及び初期効率を調べた。結果を表1に示す。
Example 4
Example 1 except that the raw coke pieces were calcined by rotary kiln in a low oxygen atmosphere at an inlet temperature of 700 ° C. to an outlet temperature of 1000 ° C. (maximum temperature reached) for 1 hour or more to obtain calcined coke. The same operation was performed to obtain a lithium ion secondary battery. The characteristics of the obtained negative electrode active material are shown in Table 1. Moreover, when the cross section of the electrode produced in the same manner as in Example 1 was observed, it was confirmed that 90% of the active material particles were in the range of the ellipse-equivalent length-to-short ratio of 0.05 to 0.70. Further, the charge maintenance ratio and the initial efficiency were examined in the same manner as in Example 1. The results are shown in Table 1.

(比較例4)
生コークス片を、ロータリーキルンによって低酸素雰囲気下で入口付近温度700℃から出口付近温度1800℃(最高到達温度)の温度で1時間以上熱処理してか焼コークスを得た以外は、実施例1と同様の操作を行い、リチウムイオン二次電池を得た。得られた負極活物質の特性を表1に示す。また、実施例1と同様にして作製した電極の断面を観察したところ、楕円相当長短比0.05〜0.70の範囲である活物質粒子は87%であることが確認された。また、実施例1と同様にして充電維持率及び初期効率を調べた。結果を表1に示す。
(Comparative Example 4)
Except that the raw coke pieces were heat-treated for 1 hour or more at a temperature near the inlet temperature of 700 ° C. to a temperature near the outlet temperature of 1800 ° C. (maximum temperature reached) in a low oxygen atmosphere using a rotary kiln to obtain calcined coke. The same operation was performed to obtain a lithium ion secondary battery. The characteristics of the obtained negative electrode active material are shown in Table 1. Moreover, when the cross section of the electrode produced similarly to Example 1 was observed, it was confirmed that the active material particle which is in the range of ellipse equivalent length ratio 0.05-0.70 is 87%. Further, the charge maintenance ratio and the initial efficiency were examined in the same manner as in Example 1. The results are shown in Table 1.

(実施例5)
石炭系重質油よりキノリン不溶分を除去した精製ピッチを用い、ディレードコーキング法によって500℃の温度で24時間熱処理して製造した石炭系塊状コークス(生コークス)を得て、得られた石炭系塊状コークス(生コークス)をロータリーキルンによって低酸素雰囲気下で入口付近温度800℃から出口付近温度1500℃(最高到達温度)の温度で1時間以上か焼して石炭系塊状か焼コークスを得た。
(Example 5)
Using a refined pitch from which quinoline insolubles have been removed from coal-based heavy oil, a coal-based massive coke produced by heat-treating at a temperature of 500 ° C. for 24 hours by a delayed coking method is obtained. Lump coke (raw coke) was calcined for 1 hour or more at a temperature near the inlet temperature of 800 ° C. to a temperature near the outlet temperature of 1500 ° C. (maximum temperature reached) in a low-oxygen atmosphere using a rotary kiln to obtain coal-based massive calcined coke.

上述のようにして得た石炭系塊状か焼コークスを、ジェットミルにて単位時間あたりの処理量、処理時のガス流速を適切に調整して微粉砕を実施し、その後風力分級により3μm以下の微粉の大部分を除去して石炭系か焼コークスを得た。得られた石炭系か焼コークスを、ローラーハースキルンによって窒素ガス雰囲気下で最高到達温度1500℃で1時間以上焼成することで、真比重が2.15g/cmであり、D10が3.0μm、D50が10.2μm、D90が20.0μm、及びD50−D10が7.2μmのリチウムイオン二次電池用負極活物質を得た。この負極活物質のタップ密度は0.55g/cmであり、また、窒素ガス吸着流通法によるBET比表面積は6.6m/gであった。 The coal-based massive calcined coke obtained as described above is finely pulverized by appropriately adjusting the throughput per unit time and the gas flow rate at the time of treatment with a jet mill, and then by air classification to 3 μm or less. Most of the fine powder was removed to obtain coal-based calcined coke. The obtained coal-based calcined coke is calcined with a roller hearth kiln in a nitrogen gas atmosphere at a maximum temperature of 1500 ° C. for 1 hour or longer, so that the true specific gravity is 2.15 g / cm 3 and D 10 is 3. A negative electrode active material for a lithium ion secondary battery having 0 μm, D 50 of 10.2 μm, D 90 of 20.0 μm, and D 50 -D 10 of 7.2 μm was obtained. The tap density of this negative electrode active material was 0.55 g / cm 3 , and the BET specific surface area determined by the nitrogen gas adsorption flow method was 6.6 m 2 / g.

また、実施例1と同様にして作製した電極の断面を観察したところ、楕円相当長短比0.05〜0.70の範囲である活物質粒子は89%であることが確認された。また、実施例1と同様にして充電維持率及び初期効率を調べた。結果を表1に示す。   Moreover, when the cross section of the electrode produced similarly to Example 1 was observed, it was confirmed that the active material particle which is in the range of ellipse equivalent length ratio 0.05-0.70 is 89%. Further, the charge maintenance ratio and the initial efficiency were examined in the same manner as in Example 1. The results are shown in Table 1.

(実施例6〜7)
石炭系塊状か焼コークスを得た後のジェットミル粉砕時の条件を変更した以外は、それぞれ実施例5と同様の操作を行い、表1に示すような粒度分布が異なるリチウムイオン二次電池用負極活物質を得た。得られた負極活物質の特性を表1に示す。また、実施例1と同様にして作製した電極の断面を観察したところ、楕円相当長短比0.05〜0.70の範囲である活物質粒子はいずれのサンプルも82〜90%であることが確認された。それらを用いて実施例1と同様にして負極電極及びリチウムイオン二次電池を得て、充電維持率及び初期効率を調べた。結果を表1に示す。
(Examples 6 to 7)
Except for changing the conditions at the time of jet mill pulverization after obtaining coal-based massive calcined coke, the same operation as in Example 5 was performed, and the lithium ion secondary battery having a different particle size distribution as shown in Table 1 was used. A negative electrode active material was obtained. The characteristics of the obtained negative electrode active material are shown in Table 1. Moreover, when the cross section of the electrode produced similarly to Example 1 was observed, as for the active material particle which is the range of ellipse equivalent length ratio 0.05-0.70, all samples are 82-90%. confirmed. Using these, a negative electrode and a lithium ion secondary battery were obtained in the same manner as in Example 1, and the charge retention rate and initial efficiency were examined. The results are shown in Table 1.

(実施例8)
石炭系か焼コークスを、ローラーハースキルンによって窒素ガス雰囲気下で最高到達温度1000℃で1時間以上焼成した以外は、実施例5と同様の操作を行い、リチウムイオン二次電池を得た。得られた負極活物質の特性を表1に示す。また、実施例1と同様にして作製した電極の断面を観察したところ、楕円相当長短比0.05〜0.70の範囲である活物質粒子は88%であることが確認された。また、実施例1と同様にして充電維持率及び初期効率を調べた。結果を表1に示す。
(Example 8)
A lithium ion secondary battery was obtained by performing the same operation as in Example 5 except that the calcined coke was baked with a roller hearth kiln at a maximum temperature of 1000 ° C. for 1 hour or longer in a nitrogen gas atmosphere. The characteristics of the obtained negative electrode active material are shown in Table 1. Moreover, when the cross section of the electrode produced similarly to Example 1 was observed, it was confirmed that the active material particle which is the range of ellipse equivalent length ratio 0.05-0.70 is 88%. Further, the charge maintenance ratio and the initial efficiency were examined in the same manner as in Example 1. The results are shown in Table 1.

Figure 2015187973
Figure 2015187973

表1から明らかなように、本発明の要件を満たしたリチウムイオン二次電池用負極活物質を用いたリチウムイオン二次電池は、高い充電維持率を示し、急速充電特性を有したまま、体積密度も1.10g/cmを超え、また表面積増加により懸念される初期効率も高い値を保持できていることが分かる。 As is apparent from Table 1, the lithium ion secondary battery using the negative electrode active material for lithium ion secondary battery that satisfies the requirements of the present invention exhibits a high charge retention rate and has a rapid charge characteristic while remaining in volume. It can be seen that the density exceeds 1.10 g / cm 3, and the initial efficiency which is a concern due to the increase in surface area can be maintained at a high value.

また、負極活物質の真比重が大きくなると、急速充電特性が損なわれてくることも分かる。これは焼成温度が高くなることなどにより炭素の結晶化が進み、黒鉛のように層間距離が狭くなってくることが原因のひとつであると思われる。   It can also be seen that the rapid charge characteristics are impaired when the true specific gravity of the negative electrode active material is increased. This is considered to be one of the reasons that the crystallization of carbon progresses due to the high firing temperature and the interlayer distance becomes narrow like graphite.

以上、本発明を上記具体例に基づいて詳細に説明したが、本発明は上記具体例に限定されるものではなく、本発明の範疇を逸脱しない限りにおいてあらゆる変形や変更が可能である。   While the present invention has been described in detail based on the above specific examples, the present invention is not limited to the above specific examples, and various modifications and changes can be made without departing from the scope of the present invention.

Claims (4)

真比重が2.00〜2.16g/cmの炭素材料から形成されて、体積基準での粒子の粒度分布におけるD10が2〜5μm、D50が8〜12μm、D90が16〜26μm、及びD50−D10が5〜10μmの範囲にあり、タップ密度が0.4g/cc以上であり、窒素ガス吸着流通法によるBET比表面積が5.1〜9.0m2/gであることを特徴とするリチウムイオン二次電池用負極活物質。 It is formed from a carbon material having a true specific gravity of 2.00 to 2.16 g / cm 3 , and D 10 in a particle size distribution on a volume basis is 2 to 5 μm, D 50 is 8 to 12 μm, and D 90 is 16 to 26 μm. And D 50 -D 10 are in the range of 5 to 10 μm, the tap density is 0.4 g / cc or more, and the BET specific surface area by the nitrogen gas adsorption flow method is 5.1 to 9.0 m 2 / g. A negative electrode active material for a lithium ion secondary battery. 活物質が、石炭系及び/又は石油系の生コークス、又は、石炭系及び/又は石油系のか焼コークスのいずれか一方を単独で、或いは両方を混合して焼成して得られたものである請求項1に記載のリチウムイオン二次電池用負極活物質。   The active material is obtained by calcining either a coal-based and / or petroleum-based raw coke or a coal-based and / or petroleum-based calcined coke alone or a mixture of both. The negative electrode active material for lithium ion secondary batteries according to claim 1. 請求項1又は2に記載のリチウムイオン二次電池用負極活物質とバインダーとを混合して形成される合材層を集電体上に有した負極であって、該負極の断面を観察したときの活物質の形状において、観察される活物質粒子数の80%以上は、楕円相当長短比(楕円相当短軸長さ/楕円相当長軸長さ)が0.05〜0.70であり、かつ、前記合材層の体積密度が1.10〜1.25g/cmであることを特徴とするリチウムイオン二次電池負極。 A negative electrode having a mixture layer formed on the current collector by mixing the negative electrode active material for a lithium ion secondary battery according to claim 1 or 2 and a binder, and a cross section of the negative electrode was observed. In the shape of the active material, 80% or more of the number of observed active material particles has an ellipse equivalent length / short ratio (ellipse equivalent short axis length / ellipse equivalent long axis length) of 0.05 to 0.70. And the volume density of the said composite material layer is 1.10-1.25 g / cm < 3 >, The lithium ion secondary battery negative electrode characterized by the above-mentioned. 請求項3に記載のリチウムイオン二次電池負極と正極とがセパレータを介して対向してなることを特徴とするリチウムイオン二次電池。   A lithium ion secondary battery according to claim 3, wherein the lithium ion secondary battery negative electrode and the positive electrode are opposed to each other with a separator interposed therebetween.
JP2015027523A 2014-03-13 2015-02-16 Negative electrode active material for lithium ion secondary battery, lithium ion secondary battery negative electrode using the same and lithium ion secondary battery Pending JP2015187973A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015027523A JP2015187973A (en) 2014-03-13 2015-02-16 Negative electrode active material for lithium ion secondary battery, lithium ion secondary battery negative electrode using the same and lithium ion secondary battery
KR1020150034345A KR20150107656A (en) 2014-03-13 2015-03-12 Negative electrode active material for lithium ion secondary battery, negative electrode for lithium ion secondary battery using the same, and lithium ion secondary battery
CN201510109858.6A CN104916842A (en) 2014-03-13 2015-03-13 Negative electrode active material for lithium ion secondary battery, negative electrode for lithium ion secondary battery using the same, and lithium ion secondary battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014050666 2014-03-13
JP2014050666 2014-03-13
JP2015027523A JP2015187973A (en) 2014-03-13 2015-02-16 Negative electrode active material for lithium ion secondary battery, lithium ion secondary battery negative electrode using the same and lithium ion secondary battery

Publications (1)

Publication Number Publication Date
JP2015187973A true JP2015187973A (en) 2015-10-29

Family

ID=54430103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015027523A Pending JP2015187973A (en) 2014-03-13 2015-02-16 Negative electrode active material for lithium ion secondary battery, lithium ion secondary battery negative electrode using the same and lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP2015187973A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018006271A (en) * 2016-07-07 2018-01-11 新日鉄住金化学株式会社 Carbon material for lithium ion secondary battery negative electrode, intermediate thereof, method for manufacturing the same, and negative electrode or battery arranged by use thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018006271A (en) * 2016-07-07 2018-01-11 新日鉄住金化学株式会社 Carbon material for lithium ion secondary battery negative electrode, intermediate thereof, method for manufacturing the same, and negative electrode or battery arranged by use thereof
JP7009049B2 (en) 2016-07-07 2022-02-10 日鉄ケミカル&マテリアル株式会社 Lithium-ion secondary battery Carbon material for negative electrode, its intermediate, its manufacturing method, and negative electrode or battery using it

Similar Documents

Publication Publication Date Title
US9263734B2 (en) Multilayer-structured carbon material for nonaqueous electrolytic solution secondary battery negative electrode, negative electrode for nonaqueous secondary battery, lithium ion secondary battery, and process for producing multilayer-structured carbon material for nonaqueous electrolytic solution secondary battery negative electrode
KR101441712B1 (en) Composite graphite particles for non-aqueous secondary batteries, negative electrode material containing the same, negative electrodes, and non-aqueous secondary batteries
KR101380259B1 (en) Method for producing electrode material for lithium ion batteries
KR102179257B1 (en) Negative electrode material for lithium ion secondary battery, negative electrode, and lithium ion secondary battery
WO2007066673A1 (en) Graphite material, carbon material for battery electrode and battery
KR101380730B1 (en) Method for producing electrode material for lithium ion batteries
JP2006236752A (en) Negative electrode material for lithium secondary battery, lithium secondary battery, and automobile
JP2018006270A (en) Graphite carbon material for lithium ion secondary battery negative electrode, method for manufacturing the same, and negative electrode or battery arranged by use thereof
CN112542587A (en) Graphite material, secondary battery, and electronic device
WO2014038698A1 (en) Active substance for use in negative electrode of lithium ion secondary battery, and negative electrode of lithium ion secondary battery and lithium ion secondary battery using same
JP2015187972A (en) Negative electrode active material for lithium ion secondary battery, lithium ion secondary battery negative electrode using the same and lithium ion secondary battery
WO2009104681A1 (en) Lithium secondary battery anode substance and method for manufacturing
JP2011159634A (en) Negative electrode material for lithium secondary battery, lithium secondary battery, and automobile
KR20150107674A (en) Negative electrode active material for lithium ion secondary battery, negative electrode for lithium ion secondary battery using the same, and lithium ion secondary battery
JP2004273444A (en) Lithium secondary battery, active substance for negative electrode thereof and negative electrode thereof
JP2013229343A (en) Composite graphite particle for nonaqueous secondary battery, negative electrode material containing the same, negative electrode and nonaqueous secondary battery
KR20180031761A (en) Negative electrode material for lithium ion secondary battery, manufacturing method thereof, and lithium ion secondary battery
WO2016136803A1 (en) Active material for negative electrode of lithium-ion secondary battery, secondary battery negative electrode using same, and secondary battery
JP2015187973A (en) Negative electrode active material for lithium ion secondary battery, lithium ion secondary battery negative electrode using the same and lithium ion secondary battery
JP2018055999A (en) Low-crystallinity carbon material for negative electrode active material of lithium ion secondary battery, method for manufacturing the same, lithium ion secondary battery negative electrode arranged by use thereof, and lithium ion secondary battery
JP7226521B2 (en) Positive electrode active material for lithium ion secondary battery, method for producing positive electrode active material for lithium ion secondary battery, lithium ion secondary battery
TW201822394A (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2013179101A (en) Composite graphite particle for nonaqueous secondary battery, negative electrode material containing the same, negative electrode and nonaqueous secondary battery
CN111033831B (en) Positive electrode active material for nonaqueous electrolyte secondary battery, method for producing same, and nonaqueous electrolyte secondary battery using same
CN114391190A (en) Spheroidized carbonaceous negative electrode active material, method for producing same, and negative electrode and lithium secondary battery comprising same