JP2015187595A - analyzer - Google Patents

analyzer Download PDF

Info

Publication number
JP2015187595A
JP2015187595A JP2014222582A JP2014222582A JP2015187595A JP 2015187595 A JP2015187595 A JP 2015187595A JP 2014222582 A JP2014222582 A JP 2014222582A JP 2014222582 A JP2014222582 A JP 2014222582A JP 2015187595 A JP2015187595 A JP 2015187595A
Authority
JP
Japan
Prior art keywords
solution
reaction
sample
flow path
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014222582A
Other languages
Japanese (ja)
Other versions
JP6390351B2 (en
Inventor
達哉 片岡
Tatsuya Kataoka
達哉 片岡
信寛 並河
Nobuhiro Namikawa
信寛 並河
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2014222582A priority Critical patent/JP6390351B2/en
Priority to CN201510112037.8A priority patent/CN104914064A/en
Publication of JP2015187595A publication Critical patent/JP2015187595A/en
Application granted granted Critical
Publication of JP6390351B2 publication Critical patent/JP6390351B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the life of an analyzer performing a step of collecting heated alkaline solution into a glass container, by preventing melting of the glass container due to the alkaline solution.SOLUTION: It becomes possible to prevent melting of glass due to alkaline solution, thereby improving the life of a glass container 11a, by heating and reacting an alkaline solution containing a sample in a reaction chamber 2 and collecting the reacted solution into the glass container 11a communicating with the reaction chamber 2 at a fluid passage P4 to analyze the sample while providing a cooling device 13 on the fluid passage P4 and cooling the solution in the passage P4 by the cooling device 13.

Description

本発明は分析装置に関し、より詳しくは、分析動作のサイクル中に加熱されたアルカリ溶液をガラス製容器に採取する工程を含む分析装置に関する。   The present invention relates to an analyzer, and more particularly to an analyzer including a step of collecting an alkaline solution heated during a cycle of an analysis operation into a glass container.

例えば全窒素・全りん計(TN/TP分析計)などのある種の分析装置においては、その分析動作のサイクル中に、試料を含むアルカリ溶液を加熱反応させ、その溶液をガラス製容器に採取する工程を含むものがある。   For example, in some types of analyzers such as a total nitrogen / total phosphorus meter (TN / TP analyzer), an alkaline solution containing the sample is heated and reacted during the cycle of the analysis operation, and the solution is collected in a glass container. There is a thing including the process to do.

すなわち、排水等に含まれる全窒素および全りんの量を計測するために、紫外吸光光度法に基づく全窒素・全りん計による全窒素測定を行う際には、一般に、分析対象である試料に水酸化ナトリウム水溶液とペルオキソ二硫酸カリウム水溶液を添加し、これらを反応槽内に収容して紫外線を照射しつつ加熱することによって、紫外線酸化分解反応を生起させており、これにより、試料中に含まれる全ての窒素化合物が硝酸イオンとなる。この反応後の溶液を反応槽からシリンジポンプで吸引し、塩酸によるpH調整を行った上で吸光度測定セルに送出して、硝酸イオンの吸収ピークである波長220nmの紫外光を照射し、その吸光度から試料中の全窒素の量を測定している(例えば特許文献1参照)。   In other words, in order to measure the total nitrogen and total phosphorus contained in wastewater, etc., when measuring total nitrogen with a total nitrogen / total phosphorus meter based on the ultraviolet absorptiometry, the sample to be analyzed is generally used. A sodium hydroxide aqueous solution and a potassium peroxodisulfate aqueous solution were added, and these were placed in a reaction vessel and heated while being irradiated with ultraviolet rays, thereby causing an ultraviolet oxidative decomposition reaction. All the nitrogen compounds to be converted into nitrate ions. The solution after the reaction is sucked from the reaction tank with a syringe pump, adjusted to pH with hydrochloric acid, sent to an absorbance measurement cell, irradiated with ultraviolet light having a wavelength of 220 nm, which is an absorption peak of nitrate ions, and the absorbance. From this, the amount of total nitrogen in the sample is measured (see, for example, Patent Document 1).

以上の分析サイクルにおいて、反応槽内の試料を含むアルカリ溶液は、通常80℃程度に加熱されるとともに、その溶液を吸引するシリンジポンプのバレルにはガラス製のものが多用されている。   In the above analysis cycle, the alkaline solution containing the sample in the reaction tank is usually heated to about 80 ° C., and a syringe pump barrel for sucking the solution is often made of glass.

特開2007−086041号公報JP 2007-060441 A

ところで、全窒素・全りん計による全窒素測定を行う際には、反応槽内で80℃程度に加熱された試料を含むアルカリ溶液が、シリンジポンプのガラス製バレル内に採取されることになるが、そのためにガラス製バレルが溶出し、比較的長期に渡って使用するとガラスの溶出が進行し、液漏れや失透などが進んで本来の装置寿命以下で交換が必要になる虞があった。   By the way, when total nitrogen is measured with a total nitrogen / total phosphorus meter, an alkaline solution containing a sample heated to about 80 ° C. in a reaction vessel is collected in a glass barrel of a syringe pump. However, when the glass barrel is eluted for this reason and the glass barrel is used for a relatively long period of time, the elution of the glass progresses and liquid leakage or devitrification progresses, and there is a possibility that it may be necessary to replace it below the original device life. .

本発明は、このようなアルカリ溶液によるガラスの溶出を抑制し、ひいてはその装置寿命を向上させることのできる分析装置の提供をその課題としている。   An object of the present invention is to provide an analyzer capable of suppressing the elution of glass by such an alkaline solution and thus improving the lifetime of the apparatus.

上記の課題を解決するため、本発明の分析装置は、試料を含むアルカリ溶液を反応槽内で加熱して反応させ、その反応後の溶液を、上記反応槽と液流路で連通するガラス製容器に採取して試料の分析に供する分析装置において、上記液流路上に、当該液流路を流れる溶液を冷却する冷却装置が設けられていることによって特徴づけられる。   In order to solve the above-mentioned problems, the analyzer of the present invention is made of a glass-made solution in which an alkaline solution containing a sample is heated and reacted in a reaction vessel, and the solution after the reaction is communicated with the reaction vessel through a liquid channel. An analyzer that is collected in a container and used for analysis of a sample is characterized in that a cooling device that cools the solution flowing in the liquid channel is provided on the liquid channel.

ここで、本発明は全窒素・全りん計に適用することができ、その場合の具体的構成としては、上記反応槽は、全窒素測定時に試料と水酸化ナトリウム水溶液およびペルオキソ二硫酸カリウム水溶液を収容した状態で加熱しつつ紫外線を照射することにより、紫外線酸化分解法に基づく反応を生起させるための反応槽であり、上記ガラス製容器は、試料と水酸化ナトリウム水溶液およびペルオキソ二硫酸カリウム水溶液をそれぞれ計量して上記反応槽に注入し、かつ、その反応槽内での反応後の溶液を吸引して吸光度測定セルへと送出するためのシリンジポンプのガラス製バレルであって、このガラス製バレルと上記反応槽とを連結する配管上に上記冷却装置が設けられている構成を採用することができる。   Here, the present invention can be applied to a total nitrogen / total phosphorus meter. As a specific configuration in such a case, the reaction vessel includes a sample, an aqueous solution of sodium hydroxide and an aqueous solution of potassium peroxodisulfate at the time of measuring total nitrogen. It is a reaction vessel for causing a reaction based on the ultraviolet oxidative decomposition method by irradiating ultraviolet rays while heating in a housed state, and the glass container contains a sample, an aqueous solution of sodium hydroxide and an aqueous solution of potassium peroxodisulfate. A glass barrel of a syringe pump for weighing and injecting into the reaction vessel and sucking the solution after the reaction in the reaction vessel and delivering it to the absorbance measurement cell. It is possible to adopt a configuration in which the cooling device is provided on a pipe connecting the reaction tank and the reaction tank.

本発明は、アルカリ溶液によるガラスの溶出の程度が、当該アルカリ溶液の温度に依存するため、反応槽で加熱された溶液をガラス容器に採取する際に、その溶液を流路中で冷却することで、課題を解決しようとするものである。   In the present invention, since the degree of elution of glass by the alkaline solution depends on the temperature of the alkaline solution, when the solution heated in the reaction vessel is collected in a glass container, the solution is cooled in the flow path. So, we are going to solve the problem.

ここで、図3に水酸化ナトリウム水溶液1mol/lにガラス(ホウケイ酸ガラス)を1時間浸漬させた場合の浸食深さと温度との関係を表すグラフを例示する。グラフに示されているように、アルカリ溶液はその温度が高いほどガラスを多く溶出させる。したがって、反応槽内で加熱されたアルカリ溶液をガラス製容器に採取する前に、これらを繋ぐ液流路上に冷却装置を設けてアルカリ溶液の温度を低下させることで、ガラス製容器の溶出を抑制することができる。   Here, the graph showing the relationship between the erosion depth and temperature when glass (borosilicate glass) is immersed in 1 mol / l of sodium hydroxide aqueous solution for 1 hour is illustrated in FIG. As shown in the graph, the alkaline solution elutes more glass as its temperature increases. Therefore, before collecting the alkaline solution heated in the reaction vessel in a glass container, a cooling device is provided on the liquid flow path connecting them to reduce the temperature of the alkaline solution, thereby suppressing elution of the glass container. can do.

全窒素・全りん計に本発明を適用する場合には、紫外線酸化分解反応を生起させる反応槽と、その反応槽から溶液を吸引して吸光度測定セルに送出するためのシリンジポンプとの間を繋ぐ液流路となる配管上に冷却装置を配置することで、シリンジポンプのガラス製バレルの溶出を抑制することができる。
また、反応層とガラス製容器との間の液流路には、少なくとも試料を導入する流路、アルカリ溶液を導入する流路、反応層と接続する流路、反応後の溶液の測定を行う流路を含む各流路を切換可能に接続するセラミック製バルブが設けられ、このセラミック製バルブが冷却装置を兼用する構成としてもよい。
When the present invention is applied to a total nitrogen / total phosphorus meter, a space between a reaction tank that causes an ultraviolet oxidative decomposition reaction and a syringe pump that sucks a solution from the reaction tank and sends it to an absorbance measurement cell. By disposing the cooling device on the pipe that becomes the liquid flow path to be connected, elution of the syringe barrel made of glass can be suppressed.
In addition, at least a flow path for introducing a sample, a flow path for introducing an alkaline solution, a flow path connected to the reaction layer, and a solution after the reaction are measured in the liquid flow path between the reaction layer and the glass container. A ceramic valve that connects each flow path including the flow paths in a switchable manner may be provided, and the ceramic valve may also serve as a cooling device.

本発明によれば、反応槽で加熱されたアルカリ溶液をガラス製容器に採取するための液流路上に冷却装置を設けて、アルカリ溶液がガラス製容器に流入する前にその温度を低下させるので、アルカリ溶液によるガラスの溶出を抑制することができるとともに、装置寿命を延ばすことができる。   According to the present invention, the cooling device is provided on the liquid flow path for collecting the alkaline solution heated in the reaction vessel into the glass container, and the temperature is lowered before the alkaline solution flows into the glass container. In addition, the elution of the glass by the alkaline solution can be suppressed, and the life of the apparatus can be extended.

しかも、本発明は、液流路上に適当な冷却装置を設けるだけでよいことから、既存の分析計に対しても簡単に改良することができる。   In addition, since the present invention only requires an appropriate cooling device on the liquid flow path, it can be easily improved over existing analyzers.

本発明の実施形態を示す概略構成図。The schematic block diagram which shows embodiment of this invention. 本発明の他の実施の形態を示す要部構成を説明する模式図。The schematic diagram explaining the principal part structure which shows other embodiment of this invention. アルカリ溶液へのガラス浸漬時の浸食深さと温度との関係を表すグラフ。The graph showing the relationship between the erosion depth at the time of glass immersion in an alkaline solution, and temperature. 本発明の他の一実施形態を示す概略構成図。The schematic block diagram which shows other one Embodiment of this invention. 図4におけるセラミックバルブの概略断面図。The schematic sectional drawing of the ceramic valve in FIG. セラミックバルブを図4の装置に用いた際の放熱作用の実験データを示すグラフ。The graph which shows the experimental data of the thermal radiation effect at the time of using a ceramic valve for the apparatus of FIG.

以下、図面を参照しつつ本発明の実施の形態について説明する。図1は本発明を全窒素・全りん計100に適用した実施の形態の概略構成図である。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a schematic configuration diagram of an embodiment in which the present invention is applied to a total nitrogen / total phosphorus meter 100.

オンライン試料は、分析対象となる工場排水等の試料であって、設定された間隔で自動的に採取され、オンライン試料導入管P1を通じて分析計内に取り込まれる。また、これとは別に任意の手法により採取したオフライン試料は、オフライン試料導入管P2を通じて分析計内に取り込まれる。   The online sample is a sample such as factory effluent to be analyzed, and is automatically collected at set intervals and taken into the analyzer through the online sample introduction pipe P1. In addition, an off-line sample collected by an arbitrary technique is taken into the analyzer through the off-line sample introduction tube P2.

これらの各導入管P1、P2は、いずれもPTFE(ポリテトラフルオロエチレン)製の第一8ポートバルブ1の各個別の分配ポート(1)、(2)に接続されており、この第一8ポートバルブ1の他の分配ポート(3)〜(8)には、紫外線酸化分解法に基づく反応を生起させるための反応槽2、紫外吸光光度法に基づく吸光度を測定するための測定セル3などが接続されている。なお、反応槽2を経た溶液は、排出ポンプ4により廃液として処理される。   Each of these introduction pipes P1 and P2 is connected to each individual distribution port (1) and (2) of a first 8-port valve 1 made of PTFE (polytetrafluoroethylene). The other distribution ports (3) to (8) of the port valve 1 include a reaction tank 2 for causing a reaction based on the ultraviolet oxidative decomposition method, a measurement cell 3 for measuring the absorbance based on the ultraviolet absorptiometry, and the like. Is connected. In addition, the solution which passed through the reaction tank 2 is processed as a waste liquid by the discharge pump 4.

第一8ポートバルブ1の共通ポート(0)は、配管P3によってPTFE製の第二8ポートバルブ5の分配ポート<1>に接続されている。この第二8ポートバルブ5の他の分配ポート<2>〜<7>には、全窒素測定時に用いられる試薬である水酸化ナトリウム水溶液6、ペルオキソ二硫酸カリウム水溶液7や、pH調整のための塩酸8などが接続されている。なお、この第二8ポートバルブ5および前記した第一8ポートバルブ1の分配ポートには、全りん測定のための試薬群や標準試料、さらにはドレイン切換バルブ9や試料切換バルブ10等が接続されているが、これらは本発明の特徴には直接関係せず、また公知であるため、ここでは詳細な説明を省略する。   The common port (0) of the first 8-port valve 1 is connected to the distribution port <1> of the second 8-port valve 5 made of PTFE by a pipe P3. The other distribution ports <2> to <7> of the second 8-port valve 5 include a sodium hydroxide aqueous solution 6 and a potassium peroxodisulfate aqueous solution 7 which are reagents used for measuring total nitrogen, and pH adjustment. Hydrochloric acid 8 or the like is connected. The second 8-port valve 5 and the distribution port of the first 8-port valve 1 are connected to a reagent group for measuring total phosphorus, a standard sample, and a drain switching valve 9, a sample switching valve 10, and the like. However, since these are not directly related to the characteristics of the present invention and are well known, detailed description thereof is omitted here.

第二8ポートバルブ5の共通ポート<0>にはシリンジポンプ11が接続されており、このシリンジポンプ11は、ガラス製のバレル11aを有し、また、内部を攪拌ポンプ12によって攪拌することができるようになっている。   A syringe pump 11 is connected to the common port <0> of the second 8-port valve 5, and this syringe pump 11 has a glass barrel 11 a, and the inside can be stirred by the stirring pump 12. It can be done.

さて、この実施の形態の特徴は、反応槽2と第一8ポートバルブ1を連通させる配管P4上に冷却装置13が設けられている点である。この冷却装置13は、ファンを用いた空冷式のもの、あるいは水槽を用いた水冷式のものなど、特に限定されるものではなく、配管P4の外部からその内部を流れる70〜80℃程度の溶液を所定温度以下、例えば55℃以下に冷却できるものであればよい。   A feature of this embodiment is that a cooling device 13 is provided on a pipe P4 that communicates the reaction tank 2 with the first 8-port valve 1. The cooling device 13 is not particularly limited, such as an air-cooled type using a fan or a water-cooled type using a water tank, and a solution of about 70 to 80 ° C. flowing inside the pipe P4 from the outside. Can be cooled to a predetermined temperature or lower, for example, 55 ° C. or lower.

以上の実施の形態において、全窒素測定の動作を述べると、まず、第一8ポートバルブ1および第二8ポートバルブ5を駆動し、オンライン試料導入管P1もしくはオフライン試料導入管P2のいずれか一方をシリンジポンプ11に連通させ、その状態でシリンジポンプ11を駆動し、規定量の試料をガラス製バレル11a内に採取する。次に、第二8ポートバルブ5およびシリンジポンプ11を適宜に駆動することにより、ガラス製バレル11a内に水酸化ナトリウム水溶液6とペルオキソ二硫酸カリウム水溶液7をそれぞれ定められた量だけ採取し、攪拌ポンプ12で攪拌する。その後、第一8ポートバルブ1および第二8ポートバルブ5を駆動してシリンジポンプ11と反応槽2を連通させ、シリンジポンプ11の駆動によってガラス製バレル11a内の溶液を反応槽2内に送出する。   In the above embodiment, the operation of total nitrogen measurement will be described. First, the first 8-port valve 1 and the second 8-port valve 5 are driven, and either the online sample introduction pipe P1 or the offline sample introduction pipe P2 is operated. Is communicated with the syringe pump 11, and the syringe pump 11 is driven in this state, and a specified amount of sample is collected in the glass barrel 11 a. Next, by appropriately driving the second 8-port valve 5 and the syringe pump 11, a predetermined amount of each of the aqueous sodium hydroxide solution 6 and the aqueous potassium peroxodisulfate solution 7 is collected in the glass barrel 11a and stirred. Stir with pump 12. Thereafter, the first 8 port valve 1 and the second 8 port valve 5 are driven to connect the syringe pump 11 and the reaction tank 2, and the solution in the glass barrel 11 a is sent into the reaction tank 2 by driving the syringe pump 11. To do.

反応槽2では、以上のように生成されて送り込まれた試料、すなわち、水酸化ナトリウム水溶液6およびペルオキソ二硫酸カリウム水溶液7からなるアルカリ溶液を、規定の温度(例えば80℃)に加熱しつつ紫外線を照射することにより、紫外線酸化分解反応を生起させ、試料中に含まれている全ての窒素化合物を硝酸イオンとする。   In the reaction tank 2, the sample produced and sent as described above, that is, an alkaline solution composed of the aqueous sodium hydroxide solution 6 and the aqueous potassium peroxodisulfate solution 7 is heated to a prescribed temperature (for example, 80 ° C.) while being heated to ultraviolet light. Is irradiated with UV to cause an ultraviolet oxidative decomposition reaction, and all nitrogen compounds contained in the sample are converted to nitrate ions.

その後、第一8ポートバルブ1および第二8ポートバルブ5を駆動し、反応槽2とシリンジポンプ11を連通させ、反応槽2内の溶液をガラス製バレル11a内に規定量採取した後、第二8ポートバルブ5を駆動して塩酸8をガラス製バレル11a内に採取してpH調整を行い、再び第一8ポートバルブ1および第二8ポートバルブ5を駆動し、シリンジポンプ11と吸光度測定用の測定セル3を連通させ、ガラス製バレル11a内の溶液を測定セル3内に送出し、波長220nmの光を照射して吸光度測定を行う。その測定結果から、溶液中の硝酸イオンの量、ひいては試料中に存在していた全窒素の量を求める。   Thereafter, the first 8-port valve 1 and the second 8-port valve 5 are driven, the reaction tank 2 and the syringe pump 11 are connected, and a predetermined amount of the solution in the reaction tank 2 is collected in the glass barrel 11a. The two-port valve 5 is driven to collect hydrochloric acid 8 in the glass barrel 11a, pH is adjusted, the first eight-port valve 1 and the second eight-port valve 5 are driven again, and the syringe pump 11 and the absorbance are measured. The measurement cell 3 is communicated, the solution in the glass barrel 11a is sent into the measurement cell 3, and the absorbance is measured by irradiating light with a wavelength of 220 nm. From the measurement results, the amount of nitrate ions in the solution, and hence the total amount of nitrogen present in the sample, is determined.

以上の動作において、反応槽2において加熱された溶液を、配管P4を通じてシリンジポンプ11のガラス製バレル11a内に採取する際、その溶液は強アルカリ性であって80℃程度に加熱されているため、そのままガラス製バレル11a内に採取すると、バレル11aのガラスを溶出させる原因となる。しかしながら本発明では、配管P4上に冷却装置13を設けることにより、配管P4内を流れる溶液は55℃以下に冷却されるので、ガラス製バレル11aに流入する際は、溶出の虞のほとんどない程度の温度(図3参照)となる。   In the above operation, when the solution heated in the reaction tank 2 is collected in the glass barrel 11a of the syringe pump 11 through the pipe P4, the solution is strongly alkaline and heated to about 80 ° C. If collected in the glass barrel 11a as it is, the glass in the barrel 11a is eluted. However, in the present invention, by providing the cooling device 13 on the pipe P4, the solution flowing in the pipe P4 is cooled to 55 ° C. or less, so that there is almost no possibility of elution when flowing into the glass barrel 11a. (See FIG. 3).

ここで、以上の実施の形態においては、本発明を全窒素・全りん計100に適用した例を示したが、本発明はこれに限定されることなく、55℃程度以上に加熱されたアルカリ溶液をガラス製の容器内に採取する工程を含む分析装置に広く適用することができる。   Here, in the above embodiment, the example in which the present invention is applied to the total nitrogen / total phosphorus meter 100 has been shown, but the present invention is not limited to this, and the alkali heated to about 55 ° C. or more. The present invention can be widely applied to analyzers including a step of collecting a solution in a glass container.

すなわち、図2(A)に模式的に示すように、反応槽101内で加熱されたアルカリ溶液を、配管などの液流路102を通じてガラス製容器103内に採取する工程を有する分析装置において、同図(B)に示すように、液流路102上に冷却装置104を設けて液流路102内を流れる溶液を冷却することにより、ガラス製容器103内に流入した溶液による当該ガラス製容器103の溶出を抑制し、ガラス製容器103の寿命を延ばすことが可能となる。   That is, as schematically shown in FIG. 2A, in an analyzer having a step of collecting an alkaline solution heated in a reaction vessel 101 into a glass container 103 through a liquid channel 102 such as a pipe. As shown in FIG. 5B, a cooling device 104 is provided on the liquid flow path 102 to cool the solution flowing in the liquid flow path 102, so that the glass container by the solution flowing into the glass container 103 is used. 103 elution can be suppressed and the life of the glass container 103 can be extended.

次に、上述した全窒素・全りん計の変形実施例について説明する。図4は本発明の他の一実施形態である全窒素・全りん計101の概略構成図である。図1に示した全窒素・全りん計100との違いは、反応槽2と第一8ポートバルブ1との間の配管P4上に設けていた冷却装置13をなくし、図1のPTFE製の第一8ポートバルブ1および第二8ポートバルブ5に代えてセラミック製の第一8ポートバルブ1aおよび第二8ポートバルブ5aに変更して、これらを冷却装置13として兼用させた点である。なお、これ以外の構成部分については先に述べた全窒素・全りん計100と同じであるので、同符号を付すことにより説明の一部を省略する。   Next, a modified embodiment of the above-described total nitrogen / total phosphorus meter will be described. FIG. 4 is a schematic configuration diagram of a total nitrogen / total phosphorus meter 101 according to another embodiment of the present invention. The difference from the total nitrogen / total phosphorus meter 100 shown in FIG. 1 is that the cooling device 13 provided on the pipe P4 between the reaction tank 2 and the first 8-port valve 1 is eliminated, and the PTFE made in FIG. Instead of the first 8 port valve 1 and the second 8 port valve 5, the first 8 port valve 1 a and the second 8 port valve 5 a made of ceramic are used, and these are also used as the cooling device 13. In addition, since it is the same as that of the total nitrogen / total phosphorus meter 100 described above about other components, a part of the description is omitted by attaching the same reference numerals.

ここで用いられるセラミック製バルブ1a、5aは、図5の概略断面図に示すように、セラミックブロックで構成されるステータ21とロータ22とからなる。ステータ21には共通ポート<0>に連通する孔23と、各々の分配ポート<1>〜<8>に連通する8個の孔24が形成されている。ロータ22には、回転移動することによって、分配ポート<1>〜<8>のいずれか1つと共通ポート<0>との間を選択的に接続する溝25が形成されている。
そして、試料液体等はバルブ内の孔23、溝25、孔24を通過する際に、これらの内面と接することになり、セラミックブロックに熱が奪われることになる。
As shown in the schematic cross-sectional view of FIG. 5, the ceramic valves 1 a and 5 a used here are composed of a stator 21 and a rotor 22 formed of ceramic blocks. The stator 21 has a hole 23 communicating with the common port <0> and eight holes 24 communicating with the respective distribution ports <1> to <8>. The rotor 22 is formed with a groove 25 for selectively connecting any one of the distribution ports <1> to <8> and the common port <0> by rotating.
Then, when the sample liquid or the like passes through the hole 23, the groove 25, and the hole 24 in the valve, the sample liquid comes into contact with the inner surfaces, and heat is taken away by the ceramic block.

セラミック(アルミナ)は、PTFEと同様に耐薬品性に優れた材料であるが、それだけでなく、PTFE(温度293K)とセラミック(アルミナ:温度300K)との熱伝導率を比較すると、前者が0.24、後者が36.0であり、PTFE製バルブに比べてセラミック製バルブは熱を奪いやすい性質があるので強い冷却作用を生じさせる。
実際に、反応槽2から吸引される70〜80℃程度の溶液である全窒素試料は、後述する実験データに示されるように、セラミック製バルブ1a、5aを通過した後、ガラス製バレル11a内に流入するが、そのときの流入温度は55℃以下になる。
Ceramic (alumina) is a material excellent in chemical resistance like PTFE, but not only that, but comparing the thermal conductivity of PTFE (temperature 293K) and ceramic (alumina: temperature 300K), the former is 0. .24, the latter is 36.0, and the ceramic valve is more likely to take heat than the PTFE valve.
Actually, the total nitrogen sample that is a solution of about 70 to 80 ° C. sucked from the reaction tank 2 passes through the ceramic valves 1a and 5a and then enters the glass barrel 11a as shown in the experimental data described later. The inflow temperature at that time becomes 55 ° C. or lower.

また、全窒素・全りん計においてシリンジポンプ11によって反応槽2から吸引される70〜80℃程度の溶液である全窒素試料の液量は約2ml程度にすぎず、全窒素試料が持つ全熱容量は十分に小さい。よって全窒素試料がセラミック製バルブ1a、5a内を通過したときにバルブ側の温度上昇が多少は生じるが特に問題にならない程度であり、実用時の実際の時間間隔で吸引動作を繰り返しても、熱の蓄積による問題が生じることはない。   Further, the total nitrogen sample, which is a solution of about 70 to 80 ° C. sucked from the reaction tank 2 by the syringe pump 11 in the total nitrogen / total phosphorus meter, is only about 2 ml, and the total heat capacity of the total nitrogen sample Is small enough. Therefore, when the total nitrogen sample passes through the ceramic valves 1a and 5a, the temperature rise on the valve side is somewhat caused but is not particularly problematic. Even if the suction operation is repeated at actual time intervals in practical use, There is no problem with the accumulation of heat.

(実験結果)
図6は図4に示した全窒素・全りん計101においてセラミック製バルブ1a、5aによる放熱作用の効果を示す実験データである。
横軸は温調開始からの経過時間であり、縦軸は温度である。図6の上側ラインは反応槽内温度(TM1の位置)を示し、下側ラインはシリンジポンプ流入試料温度(TM2の位置)を示す。
温調開始後29.4分が経過したときに温調を停止したことにより、それ以降の反応槽2内の温度(TM1)は、温調時の温度76℃からゆっくりと下降していく。なお温調停止後、数秒間の機械チェックが行われた後、直ちにシリンジポンプ11による全窒素試料(反応後の溶液)の吸引が始まる。
吸引開始により全窒素試料がセラミック製バルブ1aを通過し、続いてセラミック製バルブ5aを通過した後、シリンジポンプ11の位置に到達した時点(29.7分経過)でガラス製バレル11a内に流入するが、そのときからシリンジポンプ流入試料温度(TM2)は上昇する。
シリンジポンプ11が全窒素試料を吸引し続けるうちに、配管(P3、P4)のチューブやセラミック製バルブ1a、5aが温められて次第に冷却能力が低下するため、シリンジポンプ流入試料温度(TM2)は上昇することになる。その後、反応槽2からの最後の全窒素試料がセラミック製バルブ5aを通過した時点(29.8分経過)で、シリンジポンプ流入試料温度(TM2)は最大値となり、このときの温度(最大温度)が54℃(すなわち55℃以下)になっているので、セラミック製バルブ1a、5aによって十分な冷却性能が得られていることがわかる。したがって、セラミック製バルブ1a、5aが図1における冷却装置13としての機能を兼用できることが確認できた。
(Experimental result)
FIG. 6 is experimental data showing the effect of heat radiation by the ceramic valves 1a and 5a in the total nitrogen / total phosphorus meter 101 shown in FIG.
The horizontal axis is the elapsed time from the start of temperature control, and the vertical axis is the temperature. The upper line in FIG. 6 shows the temperature in the reaction tank (TM1 position), and the lower line shows the syringe pump inflow sample temperature (TM2 position).
By stopping the temperature adjustment when 29.4 minutes have elapsed after the start of the temperature adjustment, the temperature (TM1) in the reaction tank 2 thereafter slowly decreases from the temperature 76 ° C. during the temperature adjustment. In addition, after a temperature check is stopped, a mechanical check is performed for several seconds, and immediately, suction of all nitrogen samples (solution after reaction) by the syringe pump 11 starts.
When the suction starts, all the nitrogen sample passes through the ceramic valve 1a, then passes through the ceramic valve 5a, and then flows into the glass barrel 11a when it reaches the position of the syringe pump 11 (29.7 minutes have elapsed). However, the syringe pump inflow sample temperature (TM2) rises from that time.
While the syringe pump 11 continues to suck all the nitrogen sample, the cooling capacity is gradually lowered as the tubes of the pipes (P3, P4) and the ceramic valves 1a, 5a are gradually warmed. Will rise. Thereafter, when the last total nitrogen sample from the reaction tank 2 passes through the ceramic valve 5a (29.8 minutes have elapsed), the syringe pump inflow sample temperature (TM2) becomes the maximum value, and the temperature at this time (maximum temperature) ) Is 54 ° C. (that is, 55 ° C. or less), it can be seen that sufficient cooling performance is obtained by the ceramic valves 1a and 5a. Therefore, it was confirmed that the ceramic valves 1a and 5a can also function as the cooling device 13 in FIG.

なお、従来のPTFE製バルブを用いて、同じ条件による比較実験を行った結果、シリンジポンプ流入試料温度(TM2)の最大値は73℃であり、冷却性能はほとんど得られなかった。   In addition, as a result of conducting a comparative experiment under the same conditions using a conventional PTFE valve, the maximum value of the syringe pump inflow sample temperature (TM2) was 73 ° C., and almost no cooling performance was obtained.

以上説明したように、耐薬品性および熱伝導性に優れたセラミック(アルミナ)製バルブ1a、5aを採用したことにより、当該バルブ自体に冷却装置としての機能を兼用させることができたが、さらに冷却性能を高めるために、セラミック製バルブ1a、5aに空冷機構、水冷機構、放熱フィンを付設するようにしてもよい。   As described above, by adopting ceramic (alumina) valves 1a and 5a excellent in chemical resistance and thermal conductivity, the valve itself could be used as a cooling device. In order to improve the cooling performance, an air cooling mechanism, a water cooling mechanism, and a heat radiation fin may be attached to the ceramic valves 1a and 5a.

P1 オンライン試料導入管
P2 オフライン試料導入管
P3 配管
P4 配管(液流路)
1 第一8ポートバルブ
2 反応槽
3 測定セル
4 排出ポンプ
5 第二8ポートバルブ
6 水酸化ナトリウム水溶液
7 ペルオキソ二硫酸カリウム水溶液
8 塩酸
9 ドレイン切換バルブ
10 試料切換バルブ
11 シリンジポンプ
11a ガラス製バレル(ガラス製容器)
12 攪拌ポンプ
13 冷却装置
P1 Online sample introduction pipe P2 Offline sample introduction pipe P3 Piping P4 Piping (Liquid flow path)
DESCRIPTION OF SYMBOLS 1 1st 8 port valve 2 Reaction tank 3 Measurement cell 4 Discharge pump 5 2nd 8 port valve 6 Sodium hydroxide aqueous solution 7 Peroxodisulfate aqueous solution 8 Hydrochloric acid 9 Drain switching valve 10 Sample switching valve 11 Syringe pump 11a Glass barrel ( Glass container)
12 Stirring pump 13 Cooling device

Claims (3)

試料を含むアルカリ溶液を反応槽内で加熱して反応させ、その反応後の溶液を、上記反応槽と液流路で連通するガラス製容器に採取して試料の分析に供する分析装置において、
上記液流路上に、当該液流路を流れる溶液を冷却する冷却装置が設けられていることを特徴とする分析装置。
In an analyzer that heats and reacts an alkaline solution containing a sample in a reaction vessel, collects the solution after the reaction in a glass container that communicates with the reaction vessel through a liquid channel,
An analyzer characterized in that a cooling device for cooling the solution flowing in the liquid channel is provided on the liquid channel.
当該分析装置が全窒素・全りん計であって、
上記反応槽は、全窒素測定時に試料液と水酸化ナトリウム水溶液およびペルオキソ二硫酸カリウム水溶液を収容した状態で加熱しつつ紫外線を照射することにより、紫外線酸化分解法に基づく反応を生起させるための反応槽であり、
上記ガラス製容器は、試料液と水酸化ナトリウム水溶液およびペルオキソ二硫酸カリウム水溶液をそれぞれ計量して上記反応槽に注入し、かつ、その反応槽内での反応後の溶液を吸引して吸光度測定セルへと送出するためのシリンジポンプのガラス製バレルであって、このガラス製バレルと上記反応槽とを連結し、前記液流路となる配管上に上記冷却装置が設けられていることを特徴とする請求項1に記載の分析装置。
The analyzer is a total nitrogen / total phosphorus meter,
The reaction vessel is a reaction for generating a reaction based on the ultraviolet oxidative decomposition method by irradiating ultraviolet rays while heating the sample liquid, sodium hydroxide aqueous solution and potassium peroxodisulfate aqueous solution while measuring the total nitrogen. A tank,
The glass container is prepared by weighing a sample solution, an aqueous solution of sodium hydroxide and an aqueous solution of potassium peroxodisulfate, injecting the solution into the reaction vessel, and sucking the solution after the reaction in the reaction vessel to obtain an absorbance measurement cell. It is a glass barrel of a syringe pump for feeding into the tube, the glass barrel and the reaction tank are connected, and the cooling device is provided on a pipe serving as the liquid flow path. The analyzer according to claim 1.
前記反応層と前記ガラス製容器との間の液流路には、少なくとも試料を導入する流路、アルカリ溶液を導入する流路、反応層と接続する流路、反応後の溶液の測定を行う流路を含む各流路を切換可能に接続するセラミック製バルブが設けられ、前記セラミック製バルブが前記冷却装置を兼用する請求項1又は請求項2に記載の分析装置。 In the liquid flow path between the reaction layer and the glass container, at least a flow path for introducing a sample, a flow path for introducing an alkaline solution, a flow path connected to the reaction layer, and a solution after the reaction are measured. The analyzer according to claim 1 or 2, wherein a ceramic valve that connects each flow path including the flow paths is provided so that the ceramic valve can also be used as the cooling device.
JP2014222582A 2014-03-14 2014-10-31 Analysis equipment Active JP6390351B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014222582A JP6390351B2 (en) 2014-03-14 2014-10-31 Analysis equipment
CN201510112037.8A CN104914064A (en) 2014-03-14 2015-03-13 Analytical device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014051647 2014-03-14
JP2014051647 2014-03-14
JP2014222582A JP6390351B2 (en) 2014-03-14 2014-10-31 Analysis equipment

Publications (2)

Publication Number Publication Date
JP2015187595A true JP2015187595A (en) 2015-10-29
JP6390351B2 JP6390351B2 (en) 2018-09-19

Family

ID=54083318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014222582A Active JP6390351B2 (en) 2014-03-14 2014-10-31 Analysis equipment

Country Status (2)

Country Link
JP (1) JP6390351B2 (en)
CN (1) CN104914063A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190142836A (en) * 2018-06-19 2019-12-30 주식회사 위코테크 Apparatus for measuring total phosphorus and total nitrogen

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6881189B2 (en) * 2017-09-28 2021-06-02 株式会社島津製作所 Total phosphorus measuring device
JP7211421B2 (en) * 2018-07-27 2023-01-24 株式会社島津製作所 Analysis equipment

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6032820B2 (en) * 1977-06-03 1985-07-30 株式会社日立製作所 Method and device for controlling reducing agent concentration in chemical copper plating solution
JPH03242550A (en) * 1990-02-20 1991-10-29 Tokico Ltd Metal component analyzer
JPH0653971U (en) * 1992-12-30 1994-07-22 株式会社堀場製作所 Simultaneous measurement device for total nitrogen and total phosphorus
JPH0727706A (en) * 1993-07-14 1995-01-31 Shimadzu Corp Analyzer for nitrogen compound and phosphorus compound in water
JPH09145705A (en) * 1995-11-17 1997-06-06 Shimadzu Corp Total organic carbon meter
JPH10512961A (en) * 1995-10-09 1998-12-08 コリア オーシャン リサーチ アンド ディベロップメント インスティテュート Automatic water quality analyzer using a cylinder type syringe unit
JP2000266677A (en) * 1999-01-14 2000-09-29 Shimadzu Corp Analyzer for nitrogen compound, phosphorus compound and organic contaminant
JP2001083083A (en) * 1999-09-14 2001-03-30 Dkk Toa Corp Method and device for measuring total nitrogen
JP2002168849A (en) * 2000-12-05 2002-06-14 Mitsubishi Heavy Ind Ltd Device for automatically analyzing element in high-salts water
US20040241046A1 (en) * 2001-08-10 2004-12-02 Bates John Francis Method of, and apparatus for use in, the digestion of liquid samples
JP2006047323A (en) * 2000-05-26 2006-02-16 Shimadzu Corp Measurement/liquid feed mechanism for aqueous solution for analysis and water quality analyzer using it
JP2007086041A (en) * 2005-09-26 2007-04-05 Shimadzu Corp Water quality analyzer
JP2008058038A (en) * 2006-08-29 2008-03-13 Kyoritsu Rikagaku Kenkyusho:Kk Liquid sample treatment device for chemical analysis
JP2008082934A (en) * 2006-09-28 2008-04-10 Miura Co Ltd Measuring method of test component concentration in water to be measured
JP2009139332A (en) * 2007-12-10 2009-06-25 Shimadzu Corp Syringe, and total organic carbon meter using the same
JP2009141204A (en) * 2007-12-07 2009-06-25 Ngk Insulators Ltd Substrate holding body and its manufacturing method
JP2011005457A (en) * 2009-06-29 2011-01-13 Akira Uzawa Apparatus for decomposing organic matter
JP2012181152A (en) * 2011-03-02 2012-09-20 Tokyo Metropolitan Industrial Technology Research Institute Auxiliary heating instrument, heating device, measuring method of chemical oxygen consumption and heating method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11118782A (en) * 1997-10-09 1999-04-30 Dkk Corp Ammoniacal nitrogen measuring apparatus
CN101655501B (en) * 2009-09-30 2012-02-01 河北科技大学 Online automatic monitoring system of total nitrogen and total phosphorus in seawater and monitoring method thereof

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6032820B2 (en) * 1977-06-03 1985-07-30 株式会社日立製作所 Method and device for controlling reducing agent concentration in chemical copper plating solution
JPH03242550A (en) * 1990-02-20 1991-10-29 Tokico Ltd Metal component analyzer
JPH0653971U (en) * 1992-12-30 1994-07-22 株式会社堀場製作所 Simultaneous measurement device for total nitrogen and total phosphorus
JPH0727706A (en) * 1993-07-14 1995-01-31 Shimadzu Corp Analyzer for nitrogen compound and phosphorus compound in water
JPH10512961A (en) * 1995-10-09 1998-12-08 コリア オーシャン リサーチ アンド ディベロップメント インスティテュート Automatic water quality analyzer using a cylinder type syringe unit
JPH09145705A (en) * 1995-11-17 1997-06-06 Shimadzu Corp Total organic carbon meter
JP2000266677A (en) * 1999-01-14 2000-09-29 Shimadzu Corp Analyzer for nitrogen compound, phosphorus compound and organic contaminant
JP2001083083A (en) * 1999-09-14 2001-03-30 Dkk Toa Corp Method and device for measuring total nitrogen
JP2006047323A (en) * 2000-05-26 2006-02-16 Shimadzu Corp Measurement/liquid feed mechanism for aqueous solution for analysis and water quality analyzer using it
JP2002168849A (en) * 2000-12-05 2002-06-14 Mitsubishi Heavy Ind Ltd Device for automatically analyzing element in high-salts water
US20040241046A1 (en) * 2001-08-10 2004-12-02 Bates John Francis Method of, and apparatus for use in, the digestion of liquid samples
JP2007086041A (en) * 2005-09-26 2007-04-05 Shimadzu Corp Water quality analyzer
JP2008058038A (en) * 2006-08-29 2008-03-13 Kyoritsu Rikagaku Kenkyusho:Kk Liquid sample treatment device for chemical analysis
JP2008082934A (en) * 2006-09-28 2008-04-10 Miura Co Ltd Measuring method of test component concentration in water to be measured
JP2009141204A (en) * 2007-12-07 2009-06-25 Ngk Insulators Ltd Substrate holding body and its manufacturing method
JP2009139332A (en) * 2007-12-10 2009-06-25 Shimadzu Corp Syringe, and total organic carbon meter using the same
JP2011005457A (en) * 2009-06-29 2011-01-13 Akira Uzawa Apparatus for decomposing organic matter
JP2012181152A (en) * 2011-03-02 2012-09-20 Tokyo Metropolitan Industrial Technology Research Institute Auxiliary heating instrument, heating device, measuring method of chemical oxygen consumption and heating method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190142836A (en) * 2018-06-19 2019-12-30 주식회사 위코테크 Apparatus for measuring total phosphorus and total nitrogen
KR102077136B1 (en) * 2018-06-19 2020-02-13 주식회사 위코테크 Apparatus for measuring total phosphorus and total nitrogen

Also Published As

Publication number Publication date
CN104914063A (en) 2015-09-16
JP6390351B2 (en) 2018-09-19

Similar Documents

Publication Publication Date Title
JP5795983B2 (en) Substrate processing equipment
JP6390351B2 (en) Analysis equipment
TWI651534B (en) Chemical oxygen demand (COD) automatic measuring device
CN1755371A (en) Chemical analyzing apparatus
CN101520460A (en) Automatic analyzer
JP6394263B2 (en) Water quality analyzer
US20190041415A1 (en) Automatic analyzer
JP4185859B2 (en) Automatic analyzer
JP2008203009A (en) Autoanalyzer
CN104115009A (en) Total nitrogen measurement apparatus
CN112394031A (en) Measuring device for measuring total nitrogen binding in a measurement liquid
JP6126387B2 (en) Electrolyte analyzer with double tube structure sample suction nozzle
US9423803B2 (en) Methods, systems, and apparatus providing temperature-controlled process fluid
JPS6287860A (en) Monitor device for sample
JP2009162622A (en) Analyzing apparatus and managing method
JP2015017901A (en) Water quality measuring device
US20210296140A1 (en) Double tube structure flow cell apparatus
JP2012181102A (en) Electrolyte measuring instrument
CN106471376B (en) Automatic analysing apparatus
JPH0715476B2 (en) Automatic chemical analyzer
CN104914064A (en) Analytical device
KR101334772B1 (en) Cod testing apparatus reference electrode
JP2011191148A (en) Automatic analyzer
RU2746672C1 (en) Device for liquid chemical etching of semiconductor products
JP4678250B2 (en) Sample solution dissolution treatment apparatus and dissolution treatment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170301

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180724

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180806

R151 Written notification of patent or utility model registration

Ref document number: 6390351

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151