JP2015186794A - Optical control technique for liquid film penetration - Google Patents

Optical control technique for liquid film penetration Download PDF

Info

Publication number
JP2015186794A
JP2015186794A JP2014245617A JP2014245617A JP2015186794A JP 2015186794 A JP2015186794 A JP 2015186794A JP 2014245617 A JP2014245617 A JP 2014245617A JP 2014245617 A JP2014245617 A JP 2014245617A JP 2015186794 A JP2015186794 A JP 2015186794A
Authority
JP
Japan
Prior art keywords
water
light
liquid
pores
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014245617A
Other languages
Japanese (ja)
Other versions
JP6112566B2 (en
Inventor
藤原 正浩
Masahiro Fujiwara
正浩 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2014245617A priority Critical patent/JP6112566B2/en
Publication of JP2015186794A publication Critical patent/JP2015186794A/en
Application granted granted Critical
Publication of JP6112566B2 publication Critical patent/JP6112566B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a technology for optically controlling whether or not a liquid in one face of a porous film having fine pores of a nanometer size penetrates/permeates or not.SOLUTION: A liquid separation method characterized in that a liquid is passed as a vapor through pores by applying either a liquid or a solution, in which a nonvolatile substance is dissolved, onto a porous film material having reversible optical isomerization radicals in pores, and by optically irradiating said film material.

Description

本発明は、液体又は非揮発性物質の多孔性膜を用いた分離方法、水の浄化方法、電解質濃度が低減した水の製造方法、多孔性膜の細孔内の液体蒸気の通過を光制御する方法に関する。   The present invention relates to a separation method using a porous membrane of liquid or non-volatile substance, a purification method of water, a production method of water with reduced electrolyte concentration, and optical control of the passage of liquid vapor in the pores of the porous membrane On how to do.

微細な穴・細孔を持った膜状の物質・材料において、当該細孔中を液体が浸透することを制御する技術はよく知られており、半透膜、逆浸透膜等に応用されている。   In membrane-like substances / materials with fine holes / pores, the technology for controlling the permeation of liquid through the pores is well known and applied to semipermeable membranes, reverse osmosis membranes, etc. Yes.

膜状材料中の通路となる細孔内を物質が透過するかしないかを自在に制御するには、何らかの機能を付け加える必要がある。最近、細孔径が数ナノレベルでよく揃ったメソポーラス材料の細孔内外の物質のアクセスを、メソポーラス材料表面に修飾した有機基をゲート等として機能化させることで、精緻に制御することが報告されている。その際、細孔のゲートは、可逆的に作用できる技術も知られており、そのゲート開閉を引き起こす刺激は、光照射(特許文献1,2)、酸化還元(特許文献3)、温度変化(非特許文献1)等が知られている。しかしながら、これらの研究は、粉体材料中の細孔からの物質の放出や、細孔への物質の進入を制御するものである。   In order to freely control whether or not a substance permeates through the pores serving as passages in the membrane material, it is necessary to add some function. Recently, it has been reported that access to substances inside and outside the pores of mesoporous materials with well-equipped pore sizes of several nanometers can be precisely controlled by functionalizing organic groups modified on the mesoporous material surface as gates, etc. ing. At that time, a technique capable of reversibly acting on the gate of the pore is also known, and the stimuli that cause the gate opening and closing are light irradiation (Patent Documents 1 and 2), redox (Patent Document 3), temperature change (Patent Document 3). Non-patent document 1) and the like are known. However, these studies control the release of substances from the pores in the powder material and the entry of substances into the pores.

多孔性物質における物質の流通においても、細孔中の物質の流通速度を、細孔に修飾した有機基の形態変化により制御する技術が最近報告されている(特許文献4)。しかしながら、この技術は、シリカゲルを充填したカラム等に流れる液体の速度制御の技術であり、膜状材料の膜透過を制御するものではない。さらに、膜状材料の特定箇所では物質は透過するが別の箇所では透過しないという場所の制御、特定の時間のみ物質を透過して、それ以外の時間では透過させないという時間制御、透過する量を多くする少なくするという度合いの制御等もできない。多孔性薄膜材料に光異性化性のアゾベンゼン基を修飾し、細孔内からの物質の放出を光で制御する技術も知られているが(非特許文献2)、物質の膜に対する透過・浸透に関する技術ではない。   Recently, a technique for controlling the flow rate of a substance in the pores by changing the shape of the organic group modified in the pores has also been reported (Patent Document 4). However, this technique is a technique for controlling the speed of a liquid flowing in a column or the like packed with silica gel and does not control the membrane permeation of the membrane material. Furthermore, the control of the place where the substance permeates in a specific part of the membranous material but does not permeate in another part, the time control that the substance permeates only for a specific time and does not permeate other time, the amount of permeation It is not possible to control the degree of increase or decrease. A technique is also known in which a photo-isomerizable azobenzene group is modified in a porous thin film material and the release of the substance from the pores is controlled by light (Non-patent Document 2). It is not a technology.

流体の流通制御技術は、マイクロリアクタ関連分野では比較的進展している。例えば、光応答性有機基を導入した高分子ゲルの体積を光照射により増減させて、それにより流路の開きぐあいを変化させ流体の流通を制御するマイクロバルブが提案されている(特許文献5)。   Fluid flow control technology is relatively advanced in the field of microreactors. For example, a microvalve has been proposed in which the volume of a polymer gel into which a photoresponsive organic group has been introduced is increased or decreased by light irradiation, thereby changing the opening of the flow path and controlling the flow of fluid (Patent Document 5). ).

また、マイクロ流路に光照射により可逆的に溶媒との親和性、例えば親水性・疎水性が変化する有機基を導入することにより、マイクロ流路の流速や流路を制御するバルブ技術も提案されている(特許文献6)。この特許では、スピロピラン類、スピロオキサジン類、アゾベンゼン類、サリチリデンアニリン類等が光応答性有機基として例示されている。これらの技術は、上述の場所、時間、度合いの制御に資する可能性はあるが、膜状材料に応用された例はない。   Also proposed is a valve technology that controls the flow rate and flow path of the micro flow path by introducing organic groups that reversibly change the affinity with the solvent, for example, hydrophilicity / hydrophobicity, upon irradiation with light. (Patent Document 6). In this patent, spiropyrans, spirooxazines, azobenzenes, salicylideneanilines and the like are exemplified as photoresponsive organic groups. Although these techniques may contribute to the control of the place, time, and degree described above, there is no example applied to a film-like material.

一方、透過膜に関しては水の透過制御が古くから検討されており、特に近年は、水の浄化や淡水化と関連して活発に研究開発がなされている。その代表的技術である逆浸透膜は、数ナノメートル程度の超微細な細孔を水分子は比較的透過しやすいが、溶解している塩等のイオンは透過しづらいことで、水中からイオン等を分離している。逆浸透膜を用いた水の分離では、エネルギーを用いて浸透圧以上の高い圧力をかけて、水と溶解している有機物や無機物等の不純物を分離している。しかしながら、逆浸透膜では、膜を透過させない不純物が膜上に堆積するため、ろ過のような形態の水分離はできず、膜上に一定流速の水を流す必要がある。そして、不純物濃度が高くなった濃縮水が副生することとなる。また、分離を行う原理は、水分子と不純物との原子・分子サイズの差を用いているため、その差がさほど大きくない場合では、一度では十分に分離できなく、分離工程を多段化する必要もある。さらに、高い圧力をかけるためには、外部エネルギーを必要とし、化石燃料の消費を必須とすることも多い。   On the other hand, with respect to permeable membranes, water permeation control has been studied for a long time, and in recent years, research and development has been actively conducted in connection with water purification and desalination. The reverse osmosis membrane, which is a representative technology, is relatively easy to permeate water molecules through ultrafine pores of several nanometers, but ions such as dissolved salts are difficult to permeate. Etc. are separated. In separation of water using a reverse osmosis membrane, energy is applied to a pressure higher than the osmotic pressure to separate impurities such as water and dissolved organic substances and inorganic substances. However, in reverse osmosis membranes, impurities that do not permeate the membrane are deposited on the membrane, so water separation in the form of filtration cannot be performed, and it is necessary to flow water at a constant flow rate over the membrane. And the concentrated water by which the impurity concentration became high will be by-produced. The principle of separation uses the difference in atomic / molecular size between water molecules and impurities, so if the difference is not so large, it cannot be sufficiently separated at one time, and the separation process must be multistaged. There is also. Furthermore, in order to apply high pressure, external energy is required and consumption of fossil fuels is often essential.

以上の様に、特別な外部エネルギーを導入することなく、膜状材料中の物質の透過・浸透を、場所、時間、度合い等に関し自在に制御する技術、また物質の膜透過・浸透によって、混合物を分離するという技術はこれまで知られていなかった。   As described above, without introducing any special external energy, it is possible to freely control the permeation / permeation of substances in membrane materials with respect to location, time, degree, etc. So far, the technology of separating the slag has not been known.

特開2004-026636JP2004-026636 特開2006-256885JP2006-256885 特開2007-176762JP2007-176762 特開2009-112988JP2009-112988 特開2007-108087JP2007-108087 特開2005-62029JP2005-62029

Ye-Zi You, Kennedy K. Kalebaila, Stephanie L. Brock, David Oupicky, Chem. Mater., 20, 3354-3359 (2008)Ye-Zi You, Kennedy K. Kalebaila, Stephanie L. Brock, David Oupicky, Chem. Mater., 20, 3354-3359 (2008) Nanguo Liu, Zhu Chen, Darren R. Dunphy, Ying-Bing Jiang, Roger A. Assink, C. Jeffrey Brinker, Angew. Chem. Int. Ed., 42, 1731-1734 (2003)Nanguo Liu, Zhu Chen, Darren R. Dunphy, Ying-Bing Jiang, Roger A. Assink, C. Jeffrey Brinker, Angew. Chem. Int. Ed., 42, 1731-1734 (2003)

本発明は、ナノメートルサイズの微細な細孔を持つ多孔性膜の一方の面にある液体が膜中細孔を透過・浸透するかしないかを、光で制御する技術を提供することを主な目的とする。   The present invention mainly provides a technique for controlling whether or not a liquid on one surface of a porous membrane having fine pores of nanometer size permeates or permeates through pores in the membrane. With a purpose.

本発明者は、ナノメートルサイズの微細な貫通細孔を持つ多孔性膜に、アゾベンゼン基等の光異性化性有機基を修飾し、当該材料系に光異性化反応を起こす光を照射することで、細孔内で光異性化性有機基の分子運動を引き起こし、膜の一方の面にある液体を蒸気へと変えて膜中細孔を透過・浸透させ、液体の膜透過・浸透を光で制御できることを見出した。   The present inventor modifies a photo-isomerizable organic group such as an azobenzene group on a porous film having fine through-pores of nanometer size, and irradiates the material system with light that causes a photoisomerization reaction. This causes molecular motion of the photoisomerizable organic group in the pores, changes the liquid on one side of the membrane to vapor and permeates and permeates the pores in the membrane, and light the membrane permeating and penetrating the liquid. It was found that it can be controlled with.

すなわち本発明は、以下の分離方法、水の浄化方法、電解質濃度が低減した水の製造方法、及び光制御方法を提供するものである。   That is, the present invention provides the following separation method, water purification method, water production method with reduced electrolyte concentration, and light control method.

項1. 細孔内に可逆的光異性化基を有する多孔性膜材料上に液体又は液体に非揮発性物質を溶解した溶液を適用し、前記膜材料に光照射することで液体を蒸気として細孔内を通過させることを特徴とする、液体の分離方法。
項2. 前記液体が水である、項1に記載の分離方法。
項3. 細孔内に可逆的光異性化基を有する多孔性膜材料上に非揮発性の有機汚染物質又は無機汚染物質の水溶液を適用し、前記膜材料に光照射することで水を蒸気として細孔内を通過させて浄化された水を得ることを特徴とする、水の浄化方法。
項4. 無機汚染物質が重金属イオンを含む、項3に記載の水の浄化方法。
項5. 有機汚染物質が細菌、ウイルス、アミン類、ダイオキシン類、界面活性剤、芳香族又はヘテロ芳香族化合物、有機リン化合物、有機ハロゲン化合物、有機金属化合物を含む、項3に記載の水の浄化方法。
項6. 前記水溶液が塩化ナトリウムを含む水溶液であり、多孔性膜材料に光照射することで塩化ナトリウム濃度が低減された水を得ることを特徴とする、項3に記載の水の浄化方法。
項7. 細孔内に可逆的光異性化基を有する多孔性膜材料上に電解質水溶液を適用し、前記膜材料に光照射することで水を蒸気として細孔内を通過させることを特徴とする、電解質濃度が低減した水の製造方法。
項8. 前記電解質水溶液が海水、雨水、河川水、池の水などの環境水である、項7に記載の電解質濃度が低減した水の製造方法。
項9. 前記電解質水溶液が海水であり、電解質フリーの水を得ることを特徴とする、項7又は8に記載の電解質濃度が低減した水の製造方法。
項10. 細孔内に可逆的光異性化基を有する多孔性膜材料上に液体又は液体に非揮発性物質を溶解した溶液を適用し、光照射部分の細孔内において選択的に液体を蒸気として通過させることを特徴とする、液体の細孔内の通過を光制御する方法。
項11. 光の照射時間、照射場所及び光量からなる群から選ばれる少なくとも1種により液体の細孔内の通過量を制御する、項10に記載の光制御方法。
項12. 照射される光が蛍光灯、太陽光または紫外光である、項10又は11に記載の光制御方法
項13. 可逆的光異性化基がアゾベンゼン部分、スピロピラン部分及びスピロオキサジン部分からなる群から選ばれる少なくとも1種の部分(moiety)を有する項1〜12のいずれかに記載の方法。
Item 1. Apply a liquid or a solution in which a non-volatile substance is dissolved in a liquid onto a porous membrane material having a reversible photoisomerization group in the pores, and irradiate the membrane material with light to make the liquid vapor into the pores. A method for separating a liquid, characterized in that a liquid is passed.
Item 2. Item 2. The separation method according to Item 1, wherein the liquid is water.
Item 3. Applying an aqueous solution of non-volatile organic pollutants or inorganic pollutants onto a porous membrane material having a reversible photoisomerization group in the pores, and irradiating the membrane material with light to form pores as water vapor A method for purifying water, characterized by obtaining purified water by passing through the inside.
Item 4. Item 4. The method for purifying water according to Item 3, wherein the inorganic contaminant contains heavy metal ions.
Item 5. Item 4. The method for purifying water according to Item 3, wherein the organic pollutant includes bacteria, viruses, amines, dioxins, surfactants, aromatic or heteroaromatic compounds, organophosphorus compounds, organohalogen compounds, and organometallic compounds.
Item 6. Item 4. The method for purifying water according to Item 3, wherein the aqueous solution is an aqueous solution containing sodium chloride, and water having a reduced sodium chloride concentration is obtained by irradiating the porous membrane material with light.
Item 7. An electrolyte characterized in that an aqueous electrolyte solution is applied onto a porous membrane material having a reversible photoisomerization group in the pores, and the membrane material is irradiated with light so that water passes through the pores as vapor. A method for producing water with reduced concentration.
Item 8. Item 8. The method for producing water with reduced electrolyte concentration according to Item 7, wherein the aqueous electrolyte solution is environmental water such as seawater, rainwater, river water, or pond water.
Item 9. Item 9. The method for producing water with reduced electrolyte concentration according to Item 7 or 8, wherein the aqueous electrolyte solution is seawater to obtain electrolyte-free water.
Item 10. Apply a liquid or a solution in which a non-volatile substance is dissolved in a liquid on a porous membrane material having a reversible photoisomerization group in the pores, and selectively pass the liquid as a vapor in the pores of the light irradiation part. A method for optically controlling the passage of a liquid through pores.
Item 11. Item 11. The light control method according to Item 10, wherein the amount of liquid passing through the pores is controlled by at least one selected from the group consisting of light irradiation time, irradiation location, and light quantity.
Item 12. Item 13. The light control method according to Item 10 or 11, wherein the irradiated light is a fluorescent lamp, sunlight or ultraviolet light. Item 13. The method according to any one of Items 1 to 12, wherein the reversible photoisomerization group has at least one moiety selected from the group consisting of an azobenzene moiety, a spiropyran moiety and a spirooxazine moiety.

本発明では、光照射により光異性化反応、すなわち光等を吸収することにより分子構造を可逆的に変えることができる光異性化性有機基を数ナノから数百ナノメートルサイズの細孔を有する膜状材料の表面に修飾し、光異性化を起こす波長域の光を照射すること等で、当該膜材料中の貫通細孔の液体の透過・浸透を制御させることができる。   In the present invention, photoisomerization reaction by light irradiation, that is, a photoisomerizable organic group capable of reversibly changing the molecular structure by absorbing light or the like has pores of several nanometers to several hundred nanometers in size. By modifying the surface of the film-like material and irradiating light in a wavelength region that causes photoisomerization, it is possible to control the permeation / penetration of the liquid in the through pores in the film material.

本発明によれば、光を照射した膜材料中の貫通細孔では、液体は蒸気となり細孔内を通過することが可能となる。この液体の膜中細孔の通過は、光照射を行う際の光強度、時間、場所を限定して制御することができ、その効果により、様々な機能を持った高度な膜に関する技術への応用が特に有望である。   According to the present invention, in the through pores in the film material irradiated with light, the liquid becomes vapor and can pass through the pores. The passage of pores in the membrane of this liquid can be controlled by limiting the light intensity, time, and place when performing light irradiation, and the effect can lead to advanced membrane technology with various functions. Application is particularly promising.

液体の膜状材料の透過・浸透に対する光制御技術Light control technology for permeation and permeation of liquid membrane materials アゾベンゼン基修飾陽極酸化アルミナ膜の拡散反射紫外可視光スペクトルDiffuse reflection UV-Vis spectrum of azobenzene group modified anodized alumina film アゾベンゼン基修飾陽極酸化アルミナ膜を用いた液体透過光制御実験の方法Method for controlling transmitted light through azobenzene group-modified anodized alumina membrane ジメチルアミノアゾベンゼン基修飾陽極酸化アルミナ膜の拡散反射紫外可視光スペクトルDiffuse reflection UV-Vis spectrum of dimethylaminoazobenzene group modified anodized alumina film ディスパースレッド1誘導体修飾陽極酸化アルミナ膜の拡散反射紫外可視光スペクトルDiffuse reflection ultraviolet visible light spectrum of Disperse Red 1 derivative modified anodized alumina film

本発明において、細孔内の可逆的光異性化基に光を照射することで当該光異性化基に光異性化反応を起こし、それにより多孔性膜の一方の面にある液体(例えば揮発性液体)の膜透過・浸透性を高め、それにより液体が多孔性膜の他方の面まで透過・浸透する。そして、液体は蒸気(気体)として透過することが本発明の特徴である。液体は蒸気として浸透・透過するので、液体中に含まれる電解質などの無機物或いは非揮発性の有機物成分は多孔性膜の一方の面にとどまり、他方の面に移動することはない。このように液体が気体として光照射された細孔を通って他方の面に移動することができるため、液体の分離、或いは液体/液体に溶解している物質、特に非揮発性物質は細孔を気体として通過できないため、水と非揮発性物質を分離することができる。光照射した部分の温度は液体の沸点よりもはるかに低い温度でも液体は蒸気として細孔を通過する。本発明では、光の照射箇所や時間を任意に選択することで膜透過・浸透を制御することができる。これが本発明の特徴である。   In the present invention, by irradiating the reversible photoisomerization group in the pores with light, the photoisomerization group is caused to undergo a photoisomerization reaction, thereby causing a liquid (for example, volatile property) on one surface of the porous membrane. The liquid permeation / permeability of the liquid is increased, whereby the liquid permeates and permeates to the other surface of the porous membrane. It is a feature of the present invention that the liquid permeates as vapor (gas). Since the liquid permeates and permeates as a vapor, the inorganic or non-volatile organic component such as an electrolyte contained in the liquid stays on one side of the porous film and does not move to the other side. Thus, since the liquid can move to the other surface through the light-irradiated pores as a gas, liquid separation or substances dissolved in the liquid / liquid, particularly non-volatile substances, Since water cannot pass through as a gas, water and non-volatile substances can be separated. Even if the temperature of the irradiated portion is much lower than the boiling point of the liquid, the liquid passes through the pores as vapor. In the present invention, membrane permeation and permeation can be controlled by arbitrarily selecting a light irradiation location and time. This is a feature of the present invention.

本発明で用いる可逆的光異性化性基は、照射される光に応答して光異性化により可逆的かつ連続的に分子形態を変えて分子運動を起こし、当該有機基が存在する周りの環境の分子にも影響を及ぼすことができる。その際、必ずしも一方の異性化反応は光による必要はなく、例えば、一方の異性化は光により誘起され、戻りの異性化は熱により誘起されても良い。   The reversible photoisomerizable group used in the present invention undergoes molecular motion by reversibly and continuously changing the molecular form by photoisomerization in response to irradiated light, and the surrounding environment in which the organic group exists. Can also affect other molecules. In this case, one isomerization reaction does not necessarily need to be performed by light. For example, one isomerization may be induced by light, and the return isomerization may be induced by heat.

可逆的光異性化基としては、光照射により、可逆的に2またはそれ以上の異性体の間を可逆的に変化し、2つ以上の異性化反応を起こす光を同時に照射することで、異性化反応を連続的に起こすものであれば、特に限定されない。この官能基としては、アゾベンゼン、ジメチルアミノアゾベンゼンを含むアゾベンゼン類、スピロピラン類、スピロオキサジン類などが挙げられる。光異性化を行う部位は、多孔性膜材料の細孔内に、直接あるいは適当なスペーサー基を通じて結合される。スペーサー基は、アルキル基(-(CH2)n、n=1〜8の整数)、芳香族基、カルボニル基(-CO-)、アミド基(-CONHまたは-NHCO)、イミノ基(-NH-)、エーテル基(-O-)、チオエーテル基(-S-)、エステル基(-COO-または-OOC-)、シラノール基(-Si(O)m、m=1,2,3)などを挙げることができ、これらのスペーサー基を単独あるいは2種以上を組み合わせることでスペーサー基を構成することができる。   As a reversible photoisomerization group, by irradiating light which reversibly changes between two or more isomers reversibly by light irradiation and causes two or more isomerization reactions, There is no particular limitation as long as it causes a chemical reaction continuously. Examples of this functional group include azobenzene, azobenzenes including dimethylaminoazobenzene, spiropyrans, and spirooxazines. The site for photoisomerization is bound directly or through a suitable spacer group into the pores of the porous membrane material. The spacer group includes an alkyl group (-(CH2) n, n = 1 to 8), an aromatic group, a carbonyl group (-CO-), an amide group (-CONH or -NHCO), an imino group (-NH- ), Ether group (-O-), thioether group (-S-), ester group (-COO- or -OOC-), silanol group (-Si (O) m, m = 1,2,3) These spacer groups can be used alone or in combination of two or more to form a spacer group.

本明細書において、アゾベンゼン部分、スピロピラン部分及びスピロオキサジン部分のいずれかの部分を有する可逆的光異性化基は、下記の置換基を有していてもよい。   In the present specification, the reversible photoisomerization group having any one of an azobenzene moiety, a spiropyran moiety and a spirooxazine moiety may have the following substituents.

アゾベンゼン部分、スピロピラン部分、スピロオキサジン部分の置換基は、光により可逆的に異性化し、異性化反応を起こす光を同時に照射することで、異性化反応が連続的に起きるものならば特に限定されない。置換基としては直鎖状あるいは分枝状のC〜Cアルキル基(メチル、エチル、n-プロピル、イソプロピル、n-ブチル、イソブチル、sec-ブチル、tert-ブチル、ペンチルなど)、直鎖状あるいは分枝状のC〜Cアルコキシ基(メトキシ、エトキシ、n-プロポキシ、イソプロポキシ、n-ブトキシ、イソブトキシ、sec-ブトキシ、tert-ブトキシ、ペントキシなど)、アリールオキシ(フェニルオキシ、トリルオキシ、ナフチルオキシなど)、アラルキルオキシ(ベンジルオキシ、フェネチルオキシなど)、ハロゲン原子(F,Cl,Br,I)、ニトロ、シアノ、ヒドロキシ、アミノ、モノアルキルアミノ(メチルアミノ、エチルアミノ、n-プロピルアミノ、イソプロピルアミノ、n-ブチルアミノ、イソブチルアミノ、sec-ブチルアミノ、tert-ブチルアミノなど)、ジアルキルアミノ(ジメチルアミノ、ジエチルアミノ、ジn-プロピルアミノ、ジイソプロピルアミノ、ジn-ブチルアミノ、ジイソブチルアミノ、ジsec-ブチルアミノ、ジtert-ブチルアミノなど)、アルキルヒドロキシアルキルアミノ(エチル(2-ヒドロキシエチル)アミノなど)、アルカノイル(アセチル、プロピオニル、n-ブチリル、イソブチリル、sec-ブチリル、tert-ブチリルなど)、アシルオキシ(アセチルオキシ、プロピオニルオキシ、n-ブチリルオキシ、イソブチリルオキシ、sec-ブチリルオキシ、tert-ブチリルオキシ、バレリルオキシ、ベンゾイルオキシ)などを挙げることができる。好ましい可逆的光異性化基は、アゾベンゼン基である。 Substituents of the azobenzene moiety, spiropyran moiety, and spirooxazine moiety are not particularly limited as long as the isomerization reaction occurs continuously by irradiating light that causes isomerization reversibly and simultaneously causing isomerization reaction. As a substituent, a linear or branched C 1 -C 4 alkyl group (methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, pentyl, etc.), linear Or branched C 1 -C 4 alkoxy groups (methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, isobutoxy, sec-butoxy, tert-butoxy, pentoxy, etc.), aryloxy (phenyloxy, tolyloxy) , Naphthyloxy, etc.), aralkyloxy (benzyloxy, phenethyloxy, etc.), halogen atoms (F, Cl, Br, I), nitro, cyano, hydroxy, amino, monoalkylamino (methylamino, ethylamino, n-propyl) Amino, isopropylamino, n-butylamino, isobutylamino, sec-butylamino, tert-butylamino ), Dialkylamino (dimethylamino, diethylamino, di-n-propylamino, diisopropylamino, di-n-butylamino, diisobutylamino, disec-butylamino, ditert-butylamino, etc.), alkylhydroxyalkylamino (ethyl (2 -Hydroxyethyl) amino), alkanoyl (acetyl, propionyl, n-butyryl, isobutyryl, sec-butyryl, tert-butyryl, etc.), acyloxy (acetyloxy, propionyloxy, n-butyryloxy, isobutyryloxy, sec-butyryloxy, etc.) Tert-butyryloxy, valeryloxy, benzoyloxy) and the like. A preferred reversible photoisomerization group is an azobenzene group.

本発明の光異性化基は、多孔性膜材料の細孔内と細孔外表面に修飾される。多孔性膜材料としては、例えば、ろ過膜材料を例示することができる。ろ過膜材料としては、陽極酸化アルミナより製造されうるろ過膜、セルロースやPTFEからなるろ過膜等を例示することができる。また、高分子膜や無機質膜であってもよい。さらに、シリカ等の多孔性材料でも良い。   The photoisomerization group of the present invention is modified on the inside and outside of the pores of the porous membrane material. An example of the porous membrane material is a filtration membrane material. Examples of the filter membrane material include a filter membrane that can be produced from anodized alumina, a filter membrane made of cellulose or PTFE, and the like. Further, it may be a polymer film or an inorganic film. Further, a porous material such as silica may be used.

多孔性膜の素材としては、セルロース、酢酸セルロース、芳香族ポリアミド、ポリビニルアルコール、ポリスルホン等の有機ポリマー、金属や金属酸化物等の結晶性の無機膜、ガラスやシリカ等の非晶質無機膜、陽極酸化膜等のアルミナ材料、有機無機ハイブリッド体の膜等を例示できるが、これらに特に限定されるものではない。また多孔性膜材料の形状は特に限定されず、平面状、筒状、器状等であっても構わない。これらの多孔性膜材料は、光異性化性基を細孔表面に修飾することが可能で、かつ光照射を妨げない限り、特に限定されない。   As the material of the porous film, organic polymers such as cellulose, cellulose acetate, aromatic polyamide, polyvinyl alcohol and polysulfone, crystalline inorganic films such as metals and metal oxides, amorphous inorganic films such as glass and silica, An alumina material such as an anodized film, an organic-inorganic hybrid film, and the like can be exemplified, but are not particularly limited thereto. The shape of the porous membrane material is not particularly limited, and may be a planar shape, a cylindrical shape, a vessel shape, or the like. These porous membrane materials are not particularly limited as long as the photoisomerizable group can be modified on the pore surface and light irradiation is not hindered.

多孔性膜材料中の液体の通路となる細孔のサイズは、特に限定されないが、好ましくは2nm以上、より好ましくは3nm以上、さらに好ましくは5nm以上である。細孔直径が小さすぎると光異性化基を修飾するのが困難となる。一方、細孔径の上限は、修飾する光異性化基を大きくすることで光非照射時には液体の細孔内での通過を阻止し、光照射時に液体の細孔内通過を許容するようにデザインすることができるため、例えば800nm程度、好ましくは500nm程度、より好ましくは300nm程度、特に好ましくは200nm程度である。   The size of the pores serving as the liquid passages in the porous membrane material is not particularly limited, but is preferably 2 nm or more, more preferably 3 nm or more, and further preferably 5 nm or more. If the pore diameter is too small, it is difficult to modify the photoisomerization group. On the other hand, the upper limit of the pore diameter is designed so that the photoisomerization group to be modified is increased to prevent the passage of liquid through the pores when light is not irradiated, and allow the liquid to pass through the pores during light irradiation. Therefore, for example, it is about 800 nm, preferably about 500 nm, more preferably about 300 nm, and particularly preferably about 200 nm.

多孔性膜の膜厚は、膜としての形状を維持できる程度のものであれば特に限定されないが、1マイクロメートルから1ミリメートル程度、好ましくは5〜500μm、より好ましくは10〜300μm程度である。この膜厚は単一の多孔性膜に関するもので、分離性能等を向上させるために多段膜にする際の全体の膜厚は特に限定されない。   The thickness of the porous membrane is not particularly limited as long as it can maintain the shape as a membrane, but is about 1 micrometer to 1 millimeter, preferably 5 to 500 μm, more preferably about 10 to 300 μm. This film thickness relates to a single porous film, and the overall film thickness when the multistage film is formed in order to improve the separation performance and the like is not particularly limited.

照射される光の波長は、可逆的光異性化基の種類によって変化するが、通常300〜500nm程度である。このような紫外線と可視光を照射すれば、光異性化基が異性化反応を反復的、連続的に起こすことができ、こうして誘起された有機基の運動が、膜面にある液体を蒸気化させて、細孔の透過・通過を引き起こす。アゾベンゼンの場合は、アゾベンゼンがトランス体からシス体へと異性化する紫外光等とシス体がトランス体へと異性化する可視光を同時照射することが良いが、この2つの光異性化反応を起こす光ならば、特に限定されない。また、光源の種類も光異性化性有機基が有効に光異性化反応を起こすものならば特に限定されず、高圧水銀ランプ、低圧水銀ランプ、キセノンランプ、ハロゲンランプ、発光ダイオード(LED)ランプ、蛍光灯、太陽光等の自然光を例示することができ、それらを単独、あるいは複数用いても良い。   The wavelength of the irradiated light varies depending on the type of the reversible photoisomerization group, but is usually about 300 to 500 nm. When irradiated with such ultraviolet rays and visible light, the photoisomerization group can repeatedly and continuously cause the isomerization reaction, and the movement of the organic group thus induced vaporizes the liquid on the film surface. To cause permeation and passage of pores. In the case of azobenzene, it is better to irradiate UV light etc. that isomerizes azobenzene from trans form to cis form and visible light that isomerizes cis form to trans form. There is no particular limitation as long as the light is generated. The type of the light source is not particularly limited as long as the photoisomerizable organic group effectively causes a photoisomerization reaction. The high pressure mercury lamp, the low pressure mercury lamp, the xenon lamp, the halogen lamp, the light emitting diode (LED) lamp, Natural light such as fluorescent lamps and sunlight can be exemplified, and these may be used alone or in combination.

多孔性膜上に適用される液体は、多孔性膜や光異性化基と反応等を起こして破壊することがない限り、特に限定されない。一方、液体が多孔性膜中の細孔を通過するには、蒸気となる必要がある。蒸発を起こすかどうかは、外部の温度や圧力等により決まるため特に限定されないが、液体は20℃、1気圧の条件下で液体であり、かつ沸点が250℃以下のものならば、膜中細孔を蒸気として透過することができる。このような液体としては、例えば、ヘキサン、ペンタン、オクタン、デカン、ウンデカン、ドデカン、トリデカン等の脂肪族系炭化水素、シクロヘキサン等の脂環式炭化水素、ベンゼン、トルエン、キシレン等の芳香族系炭化水素、クロロホルム、塩化炭素等のハロゲン系溶剤、テトラヒドロフラン、テトラヒドロピラン、N,N−ジメチルホルムアミド、ジメチルスルホキシド等の極性を持つ有機系溶媒等を例示することができる。さらに、水、メタノール、エタノール、プロパノール、酢酸、エチレングリコール等の溶媒も挙げることができる。ただし、この透過性は、温度や圧力等の外部環境や、多孔性膜の素材や細孔サイズ、光異性化性有機基の種類を最適化することで一定程度変えることができる。水は好ましい液体である。   The liquid applied on the porous membrane is not particularly limited as long as it does not break by reacting with the porous membrane or the photoisomerization group. On the other hand, in order for the liquid to pass through the pores in the porous membrane, it needs to be vapor. Whether or not to cause evaporation is not particularly limited because it depends on the external temperature, pressure, etc., but if the liquid is a liquid at 20 ° C. and 1 atm and has a boiling point of 250 ° C. or less, it is fine in the film. The holes can permeate as vapor. Examples of such a liquid include aliphatic hydrocarbons such as hexane, pentane, octane, decane, undecane, dodecane, and tridecane, alicyclic hydrocarbons such as cyclohexane, and aromatic carbonization such as benzene, toluene, and xylene. Examples thereof include halogen solvents such as hydrogen, chloroform and carbon chloride, and polar organic solvents such as tetrahydrofuran, tetrahydropyran, N, N-dimethylformamide and dimethyl sulfoxide. Furthermore, solvents, such as water, methanol, ethanol, propanol, acetic acid, ethylene glycol, can also be mentioned. However, this permeability can be changed to some extent by optimizing the external environment such as temperature and pressure, the material and pore size of the porous membrane, and the type of photoisomerizable organic group. Water is a preferred liquid.

多孔性膜上に適用させる液体中に種々の物質、特に不揮発性物質を溶解させることもできる。添加される物質は、多孔性膜状材料や光異性化性基と反応等を起こして破壊することがない限り、特に限定されない。しかしながら、光照射によって多孔性膜の細孔を通過するには蒸気となる必要があり、蒸気圧の低い物質、例えば難揮発性物質や不揮発性物質は細孔を通過しないために液体から分離される。液体に溶解される物質は、有機化合物であっても無機化合物であってもよい。また、常温常圧下で液体であっても固体であってもよい。   Various substances, particularly non-volatile substances, can also be dissolved in the liquid applied on the porous membrane. The substance to be added is not particularly limited as long as it does not cause a reaction with a porous film-like material or a photoisomerizable group to cause destruction. However, it is necessary to become vapor in order to pass through the pores of the porous membrane by light irradiation, and substances with low vapor pressure, such as hardly volatile substances and non-volatile substances, are separated from the liquid because they do not pass through the pores. The The substance dissolved in the liquid may be an organic compound or an inorganic compound. Further, it may be liquid or solid at normal temperature and pressure.

無機化合物としては、塩化ナトリウム、塩化カリウムなどの塩酸塩、臭化ナトリウム、臭化カリウムなどの臭化水素酸塩、硫酸ナトリウム、硫酸カリウムなどの硫酸塩、リン酸ナトリウム、リン酸水素ナトリウムなどのリン酸塩、硝酸ナトリウム、硝酸カリウムなどの硝酸塩を含む電解質、鉄、クロム、ニッケル、銅、銀、亜鉛、マンガン、アルミニウム、水銀などの遷移金属のイオンを含む塩などの無機汚染物質が挙げられる。   Examples of inorganic compounds include hydrochlorides such as sodium chloride and potassium chloride, hydrobromides such as sodium bromide and potassium bromide, sulfates such as sodium sulfate and potassium sulfate, sodium phosphate and sodium hydrogen phosphate. Examples include inorganic pollutants such as electrolytes containing nitrates such as phosphate, sodium nitrate and potassium nitrate, and salts containing ions of transition metals such as iron, chromium, nickel, copper, silver, zinc, manganese, aluminum and mercury.

液体中に含まれる有機汚染物質としては、細菌、酵母、ウイルス、カビなどの微生物、アミン類、ダイオキシン類、界面活性剤、芳香族又はヘテロ芳香族化合物、有機リン化合物、有機ハロゲン化合物、有機金属化合物などのヒトに毒性を有する物質、などが挙げられる。   Organic pollutants contained in the liquid include microorganisms such as bacteria, yeast, viruses and molds, amines, dioxins, surfactants, aromatic or heteroaromatic compounds, organophosphorus compounds, organohalogen compounds, organometallics Examples thereof include substances that are toxic to humans, such as compounds.

多孔質膜を透過させる液体は、海水、雨水、河川水、池の水などの環境水であってもよい。大気中の汚染物質が溶け込んだ環境水は、本発明のより汚染物質を除去し、水を浄化することができる。   The liquid that permeates the porous membrane may be environmental water such as seawater, rainwater, river water, and pond water. The environmental water in which the pollutant in the atmosphere is dissolved can remove the pollutant and purify the water according to the present invention.

本発明は、以下に述べる場合に限定されないが、好ましい実施形態であるアゾベンゼン基を修飾した陽極酸化アルミナ膜を用いて、本発明をより詳細に説明する。   Although this invention is not limited to the case described below, this invention is demonstrated in detail using the anodic oxidation alumina film | membrane which modified the azobenzene group which is preferable embodiment.

アゾベンゼン誘導体として、下記スキーム1に示すようなアゾベンゼン誘導体を使用した。このアゾベンゼンのシラン誘導体を溶解させた溶液を、陽極酸化アルミナ膜一面に塗り込み、十分になじませた。その後、この膜を100〜150℃で5〜20時間空気中で加熱し、アゾベンゼン化合物のシランを介して、アルミナ表面上に修飾させた。この膜を、十分量のアセトンに浸漬して陽極酸化アルミナ膜に修飾されなかったアゾベンゼン化合物成分を取り除いた。通常この処理は、3回程度行えば、用いたアセトン溶液中にアゾベンゼン由来の紫外線吸収は無くなる。この処理により、アゾベンゼン化合物のシラン基と陽極酸化アルミナ膜のアルミナ部分にSi−O−Al結合が形成されて、しっかりと修飾されたことになる。   As the azobenzene derivative, an azobenzene derivative as shown in the following scheme 1 was used. The solution in which the silane derivative of azobenzene was dissolved was applied to the entire surface of the anodized alumina film and thoroughly blended. Thereafter, this film was heated in air at 100 to 150 ° C. for 5 to 20 hours to be modified on the alumina surface through silane of an azobenzene compound. This film was immersed in a sufficient amount of acetone to remove the azobenzene compound component that was not modified into the anodized alumina film. Usually, if this treatment is performed about 3 times, the ultraviolet solution derived from azobenzene disappears in the used acetone solution. By this treatment, Si—O—Al bonds are formed in the silane group of the azobenzene compound and the alumina portion of the anodized alumina film, and are firmly modified.

このようにして得られたアゾベンゼン基修飾陽極酸化アルミナ膜の拡散反射紫外可視光スペクトルを図2に示す。光を照射しない場合は、トランス体のアゾベンゼンに由来するスペクトルが得られた。この材料に波長域350nmの紫外線を照射すると光異性化が進行し、アゾベンゼンのシス体に由来する約440nmの吸収が増加した。一方、紫外線と可視光を同時に照射した場合、ここには示さないが、光照射無しの場合と紫外線を照射した場合の中間のスペクトルが得られた。このことは、紫外線と可視光を同時に照射した場合、アゾベンゼン部が連続的にシス体・トランス体間の光異性化反応を起こしていることを示している。これらのことより、陽極酸化アルミナ膜に修飾したアゾベンゼン基は、膜中の細孔も含めてアゾベンゼン基が連続的に分子運動し、細孔近傍にある液体の分子運動も促進して、当該液体の蒸気化を促進したものと考えられ、気体となった物質は膜細孔を通り抜けて、膜を透過・浸透できるようになるものと考えられる。   FIG. 2 shows a diffuse reflection ultraviolet-visible light spectrum of the azobenzene group-modified anodized alumina film thus obtained. When light was not irradiated, a spectrum derived from trans azobenzene was obtained. When this material was irradiated with ultraviolet rays having a wavelength range of 350 nm, photoisomerization proceeded and absorption at about 440 nm derived from the cis-isomer of azobenzene increased. On the other hand, when ultraviolet light and visible light were irradiated simultaneously, although not shown here, an intermediate spectrum between the case of no light irradiation and the case of ultraviolet light irradiation was obtained. This indicates that the azobenzene moiety continuously undergoes a photoisomerization reaction between the cis form and the trans form when irradiated with ultraviolet rays and visible light simultaneously. From these facts, the azobenzene group modified on the anodized alumina film causes the azobenzene group to continuously perform molecular motion including the pores in the film and promotes the molecular motion of the liquid in the vicinity of the pores. It is thought that the vaporization of the gas was promoted, and the substance that became a gas could pass through the membrane pores and permeate and permeate the membrane.

アゾベンゼン基修飾陽極酸化アルミナ膜を用いた、液体の膜状材料の透過・浸透への光制御の方法の一例を、以下に説明する。厚さ数ミリの輪の上に乗せて、種々の液体を膜上に置いた。膜上方より種々の光を照射し、液が膜を通り抜けて膜下部に通り抜けることを確認して、膜の透過・浸透の光制御を評価した(図3)。   An example of a light control method for transmission / penetration of a liquid film-like material using an azobenzene group-modified anodized alumina film will be described below. Various liquids were placed on the membrane in a few millimeters thick. Various light was irradiated from above the membrane, and it was confirmed that the liquid passed through the membrane and passed through the lower portion of the membrane, and the light control of permeation / penetration of the membrane was evaluated (FIG. 3).

例えば、陽極酸化アルミナ膜として、市販のAnodisc 25(Whatman社製)を用い、アゾベンゼン基修飾陽極酸化アルミナ膜を作成した。このAnodisc 25は、膜厚60μm、膜径21mm、基本細孔径20nmのものである。このアゾベンゼン基修飾陽極酸化アルミナ膜上に、10μLの水滴を置き、上方より種々の光を15分間照射し、膜を透過して下部で凝集した液量を調べた。紫外線照射と可視光照射はそれぞれ350nmと440nmを光透過のピークに持つバンドパスフィルターを用い、紫外線・可視光照射は、光学ミラーモジュールにより主に300〜600nmの範囲の光のみを照射した。実験結果を表1にまとめた。光を照射せず、外光もほとんど排除した「光無し」の条件では、15分後、全ての液体に関して、膜の下方に液体を観測することができなかった。一方、多くの液体に関し、紫外線照射、可視光照射、紫外線・可視光照射で液体の透過が観測できた。液体の透過量は、紫外線照射、可視光照射、紫外線・可視光照射の順に多くなった。光無しではアゾベンゼン基の光異性化反応は起きず、液体はAnodisc 25の20nmの細孔を通り抜けることができなかったと考えられる。350nmの紫外線照射では、アゾベンゼンはシス体に固定される。一方、実験時の室温は約20℃であり、この熱によりゆっくりとシス体はトランス体へ戻り、この戻ったトランス体は紫外線により再びシス体へと異性化する。これらのアゾベンゼンの可逆的異性化効果により、アゾベンゼン基のトランス体・シス体間の分子運動がゆっくり起こり、液体が透過したものと考えられる。440nmの可視光のみの照射の場合、アゾベンゼンはこの可視光を吸収してシス体はトランス体になると同時に、紫外線と比べると効果は弱いもののトランス体がシス体に異性化する。これらの可逆的異性化により、Anodisc 25の細孔内やその近傍でアゾベンゼン基のトランス体・シス体間の分子運動がよく起こり、液体が透過したと思われる。さらに、波長300〜600nmの紫外線と可視光を同時に照射すると、アゾベンゼン基のトランス体・シス体間の光異性化反応は最も効果的に起こって、それに伴う分子運動が激しくなり、多量の液体がAnodisc 25の細孔を通り抜けて、膜の下部に透過したものと考えられる。   For example, as the anodized alumina film, a commercially available Anodisc 25 (manufactured by Whatman) was used to prepare an azobenzene group-modified anodized alumina film. This Anodisc 25 has a film thickness of 60 μm, a film diameter of 21 mm, and a basic pore diameter of 20 nm. On this azobenzene group-modified anodized alumina film, 10 μL of water droplets were placed, irradiated with various light for 15 minutes from above, and the amount of liquid aggregated at the bottom through the film was examined. For ultraviolet irradiation and visible light irradiation, band pass filters having light transmission peaks of 350 nm and 440 nm, respectively, were used, and for ultraviolet / visible light irradiation, only light in the range of 300 to 600 nm was irradiated mainly by an optical mirror module. The experimental results are summarized in Table 1. Under the condition of “no light” in which light was not irradiated and external light was almost excluded, no liquid could be observed below the film for all liquids after 15 minutes. On the other hand, for many liquids, transmission of the liquid was observed by ultraviolet irradiation, visible light irradiation, and ultraviolet / visible light irradiation. The amount of liquid permeation increased in the order of ultraviolet irradiation, visible light irradiation, and ultraviolet / visible light irradiation. Without light, the photoisomerization reaction of the azobenzene group did not occur, and it is considered that the liquid could not pass through the 20 nm pores of Anodisc 25. With 350 nm ultraviolet irradiation, azobenzene is fixed in the cis form. On the other hand, the room temperature at the time of the experiment is about 20 ° C., and this heat slowly returns the cis isomer to the trans isomer, and the returned trans isomer is isomerized again to the cis isomer by ultraviolet rays. Due to the reversible isomerization effect of these azobenzenes, the molecular movement between the trans and cis isomers of the azobenzene group occurs slowly, and it is thought that the liquid permeated. In the case of irradiation only with visible light of 440 nm, azobenzene absorbs this visible light and the cis isomer becomes a trans isomer, and at the same time, the trans isomer is isomerized to a cis isomer, although the effect is weak compared to ultraviolet light. Due to these reversible isomerizations, the molecular movement between the trans- and cis-isomers of the azobenzene group frequently occurs in and around the pores of Anodisc 25, and the liquid seems to have permeated. Furthermore, when UV and visible light with a wavelength of 300 to 600 nm are irradiated simultaneously, the photoisomerization reaction between the trans- and cis-isomers of the azobenzene group occurs most effectively, resulting in intense molecular motion and a large amount of liquid. It is thought that it passed through the pores of Anodisc 25 and penetrated to the bottom of the membrane.

次に、水の透過・浸透に関して、光の強度の影響を調べた。光源装置は光強度を設定できる装置である。光の強度を上げることで、光透過性能は向上し、水のアゾベンゼン基修飾陽極酸化アルミナ膜の透過は、光によって誘起されていることがわかった。なお、50%以上の光強度の場合は、明瞭な水の蒸発が観察でき、その結果、透過して回収された水の量も減少したものと考えられる。   Next, the effect of light intensity on water permeation / penetration was examined. The light source device is a device that can set the light intensity. It was found that the light transmission performance was improved by increasing the light intensity, and that the transmission of water through the azobenzene group-modified anodized alumina film was induced by light. In addition, when the light intensity is 50% or more, clear water evaporation can be observed, and as a result, it is considered that the amount of water recovered through transmission is also reduced.

他の成分が溶解した水溶液のアゾベンゼン基修飾陽極酸化アルミナ膜の透過・浸透を検討した。溶解させた成分としては、有機物としては、ローダミンBとメチレンブルーを例として用いて行った。紫外光・可視光を光強度50%で照射して膜の下部に透過した水を回収し、可視光スペクトルにて、554nmのローダミンBの吸収、および665nmのメチレンブルーの吸収を観測した。その結果、両方の場合において、ローダミンBとメチレンブルーに由来する吸収を全く観測することができなかった。また、無機塩である酢酸銅、硝酸(II)コバルトを例として用いて同様の実験を行った。酢酸銅および硝酸(II)コバルトの水溶液を膜の上部に展開し、膜下部に透過した水の可視光スペクトルを測定した結果、酢酸銅および硝酸(II)コバルトに由来する766nm、511nmの吸収を全く観測できなかった。このように、アゾベンゼン基修飾陽極酸化アルミナ膜を透過した水には、膜上に展開した水に溶解した有機物、無機物ともに含まれないことが確認できた。これは、水が膜中細孔を通り抜ける時に水が水蒸気となり透過し、膜を通り抜けた後の下方において凝集したためと考えられる。すなわち、アゾベンゼン基修飾陽極酸化アルミナ膜に光照射して水を透過・浸透させると、水中に含まれる有機物、無機物等の不純物を除去し、水を浄化する機能があることが確認できた。同様の効果は、ピレンを溶解させたドデカン溶液においても観察されたが、この場合は、膜上方に展開された液中ピレンの量が約20分の1に減少した。   The permeation and permeation of azobenzene group-modified anodized alumina membranes in aqueous solutions in which other components were dissolved were investigated. As dissolved components, rhodamine B and methylene blue were used as examples of organic substances. The water which permeate | transmitted the lower part of the film | membrane by irradiating ultraviolet light and visible light with 50% of light intensity | strength was collect | recovered, and the absorption of 554 nm rhodamine B and the absorption of 665 nm methylene blue were observed in the visible light spectrum. As a result, in both cases, no absorption derived from rhodamine B and methylene blue could be observed. The same experiment was conducted using inorganic salts such as copper acetate and cobalt (II) nitrate as examples. An aqueous solution of copper acetate and nitric acid (II) cobalt was developed at the top of the membrane, and the visible light spectrum of the water transmitted through the bottom of the membrane was measured. As a result, absorption at 766 nm and 511 nm derived from copper acetate and nitric acid (II) cobalt was observed. It was not observable at all. Thus, it was confirmed that the water that permeated through the azobenzene group-modified anodized alumina film did not contain both organic and inorganic substances dissolved in the water developed on the film. This is presumably because when water passes through the pores in the membrane, water permeates as water vapor and aggregates in the lower part after passing through the membrane. In other words, it was confirmed that when the azobenzene group-modified anodized alumina film was irradiated with light and allowed to permeate and permeate water, it had a function of removing impurities such as organic substances and inorganic substances contained in the water and purifying the water. A similar effect was observed in the dodecane solution in which pyrene was dissolved. In this case, the amount of pyrene in the liquid developed above the membrane was reduced to about 1/20.

一方、アゾベンゼン基修飾陽極酸化アルミナ膜上に10μLの水滴を2つ置き、一方の水滴には紫外線(360nm)、可視光(440nm)、紫外線と可視光(300-600nm)をそれぞれ光強度50%で照射し、もう一つにはマスクをして光が当たらないようにして、透過・浸透実験を行った。その結果、光を照射した水滴の下部には透過した水を観測できたが、光を照射しなかった水滴の下部には水は観測できなかった。この際の水の透過量はほぼ表1に示した数値と同じである。すなわち、アゾベンゼン基修飾陽極酸化アルミナ膜に光照射しての水の透過・浸透は、光が照射された場所のみで起こり、光が照射されない場所では起こらないことが確認できた。これにより、液体を透過させる膜の場所や時間を、光の照射で制御することができることも明らかとなった。   On the other hand, two 10 μL water droplets were placed on the azobenzene group-modified anodized alumina film, and one of the water droplets was irradiated with ultraviolet light (360 nm), visible light (440 nm), ultraviolet light and visible light (300-600 nm). We conducted a transmission / penetration experiment in which the other was masked and exposed to no light. As a result, it was possible to observe the transmitted water in the lower part of the water droplet irradiated with light, but no water was observed in the lower part of the water droplet not irradiated with light. The amount of water permeated at this time is almost the same as the numerical value shown in Table 1. That is, it was confirmed that the permeation / penetration of water by irradiating light to the azobenzene group-modified anodized alumina film occurred only at the place where the light was irradiated and not at the place where the light was not irradiated. As a result, it has become clear that the location and time of the film that allows liquid to pass through can be controlled by light irradiation.

このアゾベンゼン基修飾陽極酸化アルミナ膜上の水等の液体の透過には、アゾベンゼン等の光異性化性有機基が光異性化するためのエネルギーが必要であるが、必ずしも特殊な光源を用いなくとも良い。上記の実験は全て光化学実験用のキセノンランプを用いたものであるが、市販の蛍光灯を用いても同様の結果が得られた。アゾベンゼン基修飾陽極酸化アルミナ膜上に0.5mLの水を展開し、市販の蛍光灯で30分間照射すると、膜の下部に4.8μLの水が透過していた。このように、照射光の光源は特殊なものである必要がなく、蛍光灯や自然光等を用いることも可能である。   The permeation of a liquid such as water on the azobenzene group-modified anodized alumina film requires energy for photoisomerization of a photoisomerizable organic group such as azobenzene, but a special light source is not necessarily used. good. All of the above experiments used xenon lamps for photochemical experiments, but similar results were obtained using commercially available fluorescent lamps. When 0.5 mL of water was developed on the azobenzene group-modified anodized alumina film and irradiated with a commercially available fluorescent lamp for 30 minutes, 4.8 μL of water permeated the lower part of the film. As described above, the light source of the irradiation light does not need to be special, and a fluorescent lamp, natural light, or the like can be used.

擬似太陽光でもある蛍光灯を用い、アゾベンゼン基修飾陽極酸化アルミナ膜上に、擬似海水としての3.4%の塩化ナトリウム水溶液を1mL展開し、蛍光灯照射を4時間行った。膜下部に透過した水の量は4μLであった。この透過した水を、電気伝導度計での測定を可能にするために超純水0.15mLで希釈し、電気伝導度を測定したところ、10μS/cmであった。一方、膜上部に展開した擬似海水を同様に希釈した場合の電気伝導度は1750μS/cmであった。この電気伝導度の比率を塩化ナトリウム濃度に換算すると約0.019%になる。一般に淡水の塩分濃度は0.05%以下であり、アゾベンゼン基修飾陽極酸化アルミナ膜を蛍光灯の光エネルギーを用いて透過させた擬似海水は淡水となることがわかった。   Using a fluorescent lamp that is also simulated sunlight, 1 mL of a 3.4% sodium chloride aqueous solution as simulated seawater was developed on the azobenzene group-modified anodized alumina film and irradiated with a fluorescent lamp for 4 hours. The amount of water that permeated the lower part of the membrane was 4 μL. The permeated water was diluted with 0.15 mL of ultrapure water to enable measurement with an electric conductivity meter, and the electric conductivity was measured to be 10 μS / cm. On the other hand, the electrical conductivity when the simulated seawater developed on the upper part of the membrane was similarly diluted was 1750 μS / cm. When this electrical conductivity ratio is converted to sodium chloride concentration, it is about 0.019%. In general, the salinity of fresh water was 0.05% or less, and it was found that the simulated seawater that permeated the azobenzene group-modified anodized alumina film using the light energy of the fluorescent lamp became fresh water.

以上のように、膜状材料表面にアゾベンゼン等の光異性化性有機基を修飾した材料に関して、当該膜状材料の貫通細孔を当該材料上に展開させた液体が透過することを、光異性化性有機基が2つ以上の光異性化反応を起こす光を同時に照射することで、
(1)液体の透過が起きるかどうかを制御でき、
(2)液体の透過に関し、液体中の蒸気になりやすい成分は透過し、なりづらい成分は透過しないことで、それら成分を分離することができ、
(3)液体透過に関し、その程度、場所、時間を制御できる技術を発明した。
As described above, regarding a material in which the surface of the film material is modified with a photoisomerizable organic group such as azobenzene, the photoisomerism indicates that the liquid in which the through pores of the film material are spread on the material is transmitted. By simultaneously irradiating light that causes two or more photoisomerization reactions of the curable organic group,
(1) can control whether liquid permeation occurs,
(2) Regarding the permeation of the liquid, components that are likely to become vapor in the liquid are permeated, and components that are difficult to permeate are not permeated, so that these components can be separated,
(3) Invented a technology that can control the degree, location, and time of liquid permeation.

以下、実施例によって本発明を具体的に説明するが、本発明はこれら実施例のみに限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited only to these Examples.

実施例1 光異性化性アゾベンゼン基の合成
4−フェニルアゾフェノール(0.217g, 1.1 mmol)と3−トリエトキシシリルプロピルイソシアナート(0.247g, 1 mmol)とを、脱水DMF10mLに加え、150℃、20時間反応させた。反応の進行は赤外線スペクトルで、イソシアナート吸収(2272cm−1)の消失により確認した。アゾベンゼン基修飾陽極酸化アルミナ膜の作成は、このDMF溶液を直接あるいは他の溶媒で希釈した溶液を陽極酸化アルミナ膜に塗布することで行った。
Example 1 Synthesis of Photoisomerizable Azobenzene Group 4-Phenylazophenol (0.217 g, 1.1 mmol) and 3-triethoxysilylpropyl isocyanate (0.247 g, 1 mmol) were added to 10 mL of dehydrated DMF at 150 ° C. The reaction was performed for 20 hours. Progress of the reaction was confirmed by disappearance of isocyanate absorption (2272 cm −1 ) in an infrared spectrum. The preparation of the azobenzene group-modified anodized alumina film was performed by applying a solution obtained by diluting the DMF solution directly or with another solvent to the anodized alumina film.

実施例2 アゾベンゼン基修飾陽極酸化アルミナ膜の作成
実施例1で合成したアゾベンゼンのシラン誘導体溶液0.1mLを、市販のAnodisc 25(Whatman社製、膜厚60μm、膜径21mm、基本細孔径20nm)一面に均等に塗布し、その後、室温で約20時間放置して十分に馴染ませた。その後、この膜を120℃で20時間空気中で加熱し、アゾベンゼン化合物のシラン基を介して、アルミナ表面上に修飾させた。この膜は、十分量のアセトンに漬けて陽極酸化アルミナ膜に修飾されなかったアゾベンゼン化合物成分を取り除いた。この処理は、洗浄に用いたアセトン溶液中にアゾベンゼン由来の紫外線吸収は無くなるまで行ったが、通常は3回で十分であった。こうして得られたアゾベンゼン基修飾陽極酸化アルミナ膜は、橙色をしており、拡散反射紫外可視スペクトル(図2)より、アゾベンゼン基が修飾されていることが確認できた。
Example 2 Preparation of Azobenzene Group-Modified Anodized Alumina Membrane 0.1 mL of the azobenzene silane derivative solution synthesized in Example 1 was placed on the surface of a commercially available Anodisc 25 (Whatman, film thickness 60 μm, film diameter 21 mm, basic pore diameter 20 nm). And then allowed to stand at room temperature for about 20 hours to fully acclimate. Thereafter, this film was heated in air at 120 ° C. for 20 hours to be modified on the alumina surface via the silane group of the azobenzene compound. This film was immersed in a sufficient amount of acetone to remove the azobenzene compound component that was not modified into the anodized alumina film. This treatment was carried out until the ultraviolet solution derived from azobenzene disappeared in the acetone solution used for washing, but three times was usually sufficient. The azobenzene group-modified anodized alumina film thus obtained was orange, and it was confirmed from the diffuse reflection ultraviolet-visible spectrum (FIG. 2) that the azobenzene group was modified.

実施例3 アゾベンゼン基修飾陽極酸化アルミナ膜の水の透過
ガラス製シャーレの上にAnodisc 25と同じ直径の厚さ数ミリの輪を置き、その上に実施例2で作成したアゾベンゼン基修飾陽極酸化アルミナ膜を乗せた。この膜のほぼ中心部に、イオン交換水10μLを置いた。Anodisc 25上に置いた水滴の接触角は10度以下で、Anodisc 25は親水性であるが、アゾベンゼン基修飾陽極酸化アルミナ膜上の水滴のアルミナ膜面に対しての接触角は約75度であり、アゾベンゼンを修飾した陽極酸化アルミナ膜は疎水性になっていることが確認された。外光が入らないような箱の中に入れ、光無し、350nm近傍の紫外線のみ照射、440nm近傍の可視光のみ照射、300〜600nmの範囲の紫外線と可視光の同時照射の場合について、膜上の水が透過し下部のシャーレ上に観測されるかを調べた。光照射には朝日分光社製の光化学反応用光源MAX−301とUV−Vis用ミラーモジュール(朝日分光社製)を用いて、照射される光の波長をほぼ300〜600nmの範囲とした。さらに、350nm近傍の紫外線のみ照射の場合はバンドパスフィルターLX0350(HQBP350-UVφ25、朝日分光社製)を、440nm近傍の可視光のみ照射の場合はバンドパスフィルターLX0440(HQBP440-VISφ25、朝日分光社製)を用いて照射される光の波長を限定した。紫外線と可視光の同時照射の場合はバンドパスフィルターを用いずに、300〜600nmの全光を照射した。光源の光量設定を50%に固定し、膜上方約30mmより約15分間種々の光を照射し、膜の下部に水が通り抜けシャーレ上に水滴が存在するかどうかを確認した。この際、アルミナ膜上に水を張ったガラス製シャーレを置き、光源からの熱の伝わりがないようにした。光源と水滴が確認できた場合は、マイクロシリンジで吸い取ることによって液量を測定し、透過量を評価した。結果は表1にまとめた。なお、光無しの場合は、1時間後においても水は下部に全く透過しなかった。
Example 3 Permeation of water through an azobenzene group-modified anodized alumina membrane An azobenzene group-modified anodized alumina prepared in Example 2 was placed on a glass petri dish with a ring of the same diameter as Anodisc 25 and several millimeters in thickness. A membrane was placed. 10 μL of ion-exchanged water was placed almost at the center of the membrane. The contact angle of water drops placed on Anodisc 25 is 10 degrees or less, and Anodisc 25 is hydrophilic, but the contact angle of water drops on the azobenzene group-modified anodized alumina film to the alumina film surface is about 75 degrees. It was confirmed that the anodized alumina film modified with azobenzene was hydrophobic. Place in a box that does not allow external light to enter, and there is no light, only irradiation with ultraviolet light near 350 nm, only irradiation with visible light near 440 nm, and simultaneous irradiation with ultraviolet light and visible light in the range of 300 to 600 nm. It was investigated whether or not the water was permeated and observed on the lower petri dish. For light irradiation, a photochemical reaction light source MAX-301 manufactured by Asahi Spectroscopic Co., Ltd. and a UV-Vis mirror module (manufactured by Asahi Spectroscopic Co., Ltd.) were used, and the wavelength of the irradiated light was set to a range of about 300 to 600 nm. Furthermore, in the case of irradiating only ultraviolet rays near 350 nm, the band-pass filter LX0350 (HQBP350-UVφ25, manufactured by Asahi Spectroscope) is used. In the case of irradiating only visible light near 440 nm, the bandpass filter LX0440 (HQBP440-VISφ25, manufactured by Asahi Spectroscopic Co., Ltd.) is used. ) Was used to limit the wavelength of light irradiated. In the case of simultaneous irradiation with ultraviolet and visible light, all light of 300 to 600 nm was irradiated without using a bandpass filter. The light amount setting of the light source was fixed at 50%, and various lights were irradiated for about 15 minutes from about 30 mm above the film, and it was confirmed whether water passed through the lower part of the film and water droplets existed on the petri dish. At this time, a glass petri dish filled with water was placed on the alumina film so that heat was not transmitted from the light source. When the light source and water droplets were confirmed, the amount of liquid was measured by sucking with a microsyringe, and the amount of permeation was evaluated. The results are summarized in Table 1. In the absence of light, water did not penetrate at all below even after 1 hour.

実施例4 アゾベンゼン基修飾陽極酸化アルミナ膜の有機物液体の透過
実施例3と同様の方法を用い、水の代わりに、エチレングリコール、メシチレン、デカン、ドデカン、ヘキサデカンを用いて行った。有機物液体の膜透過の結果は表1にまとめた。なお、光無しの場合は、全ての液体において、1時間後においても全く下部に透過しなかった。
Example 4 Permeation of Organic Liquid through Azobenzene Group-Modified Anodized Alumina Membrane Using the same method as in Example 3, ethylene glycol, mesitylene, decane, dodecane, and hexadecane were used instead of water. The results of membrane permeation of organic liquid are summarized in Table 1. In the case of no light, all the liquids did not transmit to the lower part even after 1 hour.

実施例5 アゾベンゼン基修飾陽極酸化アルミナ膜の液体透過の光量の効果
実施例3と同様の方法を用い、化学反応用光源MAX−301の光量値を、10%、25%、50%、75%、100%として、膜の液体の透過量を評価した。結果を表2に示す。
Example 5 Effect of light quantity of liquid permeation of azobenzene group-modified anodized alumina membrane Using the same method as in Example 3, the light quantity value of chemical reaction light source MAX-301 was 10%, 25%, 50%, 75%. 100%, the amount of liquid permeation through the membrane was evaluated. The results are shown in Table 2.

実施例6 アゾベンゼン基修飾陽極酸化アルミナ膜のローダミンB水溶液の透過
アゾベンゼン基修飾陽極酸化アルミナ膜上に置く水をイオン交換水から、イオン交換水にローダミンBを加えた水溶液に変えて、実施例3と同じ方法で、水の膜透過実験を行った。ローダミンB水溶液の濃度は、1mmol/Lとした。紫外線・可視光を15分照射して膜の下部に透過した水を回収し、分光光度計を用いて当該水の可視光スペクトルを調べたところ、554nmのローダミンBの吸収が全くないことを確認した。
Example 6 Permeation of Rhodamine B aqueous solution of azobenzene group-modified anodized alumina membrane The water placed on the azobenzene group-modified anodized alumina membrane was changed from ion-exchanged water to an aqueous solution in which rhodamine B was added to ion-exchanged water. The membrane permeation experiment of water was conducted by the same method. The concentration of the rhodamine B aqueous solution was 1 mmol / L. Irradiate UV / visible light for 15 minutes to collect the water that has penetrated the lower part of the membrane and examine the visible light spectrum of the water using a spectrophotometer to confirm that there is no absorption of rhodamine B at 554 nm. did.

実施例7 アゾベンゼン基修飾陽極酸化アルミナ膜のメチレンブルー水溶液の透過
アゾベンゼン基修飾陽極酸化アルミナ膜上に置く水をイオン交換水から、イオン交換水にメチレンブルーを加えた水溶液に変えて、実施例3と同じ方法で、水の膜透過実験を行った。メチレンブルー水溶液の濃度は、1mmol/Lとした。紫外線・可視光を15分照射して膜の下部に透過した水を回収し、分光光度計を用いて当該水の可視光スペクトルを調べたところ、665nmのメチレンブルーの吸収が全くないことを確認した。
Example 7 Permeation of Azobenzene Group-Modified Anodized Alumina Membrane in Methylene Blue Aqueous Solution Same as Example 3 except that the water placed on the azobenzene group-modified anodized alumina membrane was changed from ion exchange water to an aqueous solution in which methylene blue was added to ion exchange water. The water membrane permeation experiment was conducted by this method. The concentration of the methylene blue aqueous solution was 1 mmol / L. The UV light and visible light were irradiated for 15 minutes, and the water that permeated the lower part of the membrane was collected. The visible light spectrum of the water was examined using a spectrophotometer, and it was confirmed that there was no absorption of methylene blue at 665 nm. .

実施例8 アゾベンゼン基修飾陽極酸化アルミナ膜の酢酸銅水溶液の透過
アゾベンゼン基修飾陽極酸化アルミナ膜上に置く水をイオン交換水から、イオン交換水に酢酸銅・一水和物を加えた水溶液に変えて、実施例3と同じ方法で、水の膜透過実験を行った。酢酸銅水溶液の濃度は、0.3mol/Lとした。紫外線・可視光を15分照射して膜の下部に透過した水を回収し、分光光度計を用いて当該水の可視光スペクトルを調べたところ、766nmの酢酸銅の銅イオンに由来する吸収が全くないことを確認した。
Example 8 Permeation of Azobenzene Group-Modified Anodized Alumina Membrane with Copper Acetate Aqueous Solution The water placed on the azobenzene group-modified anodized alumina membrane was changed from ion-exchanged water to an aqueous solution in which copper acetate / monohydrate was added to ion-exchanged water. Then, a water membrane permeation experiment was performed in the same manner as in Example 3. The concentration of the aqueous copper acetate solution was 0.3 mol / L. Irradiated with UV / visible light for 15 minutes to recover the water that penetrated the lower part of the membrane and examined the visible light spectrum of the water using a spectrophotometer. It was confirmed that there was none.

実施例9 アゾベンゼン基修飾陽極酸化アルミナ膜の硝酸コバルト水溶液の透過
アゾベンゼン基修飾陽極酸化アルミナ膜上に置く水をイオン交換水から、イオン交換水に硝酸コバルト・六水和物を加えた水溶液に変えて、実施例3と同じ方法で、水の膜透過実験を行った。硝酸コバルトの水溶液の濃度は、0.3mol/Lとした。紫外線・可視光を照射して膜の下部に透過した水を回収し、分光光度計を用いて当該水の可視光スペクトルを調べたところ、511nmの硝酸コバルトのコバルトイオンに由来する吸収が全くないことを確認した。
Example 9 Permeation of Azobenzene Group-Modified Anodized Alumina Membrane with Cobalt Nitrate Aqueous Solution The water placed on the azobenzene group-modified anodized alumina membrane was changed from ion-exchanged water to an aqueous solution obtained by adding cobalt nitrate hexahydrate to ion-exchanged water. Then, a water membrane permeation experiment was performed in the same manner as in Example 3. The concentration of the cobalt nitrate aqueous solution was 0.3 mol / L. When the visible light spectrum of the water was examined using a spectrophotometer after collecting ultraviolet light and visible light that was transmitted to the lower part of the film, there was no absorption derived from cobalt ions of 511 nm cobalt nitrate. It was confirmed.

実施例10 アゾベンゼン基修飾陽極酸化アルミナ膜のピレンのドデカン溶液の透過
アゾベンゼン基修飾陽極酸化アルミナ膜上に置く液体を、ピレンのドデカン水溶液に変えて、実施例4と同じ方法で、ドデカンの膜透過実験を行った。ピレン溶液の濃度は、500mg/Lとした。紫外光・可視光を15分照射して膜の下部に透過したドデカンを回収し、分光光度計を用いて当該溶液の紫外線スペクトルを調べたところ、334nmのピレンの吸収が観測された。ピークの強度より透過したドデカン溶液の濃度を計算したところ、元の溶液の濃度と比べ、6%にまで減少したことが確認できた。この場合の溶液のアルミナ膜上の接触角は10度以下であり、アルミナ膜内に溶液が十分にしみ込んでいた。しかしながら、当該膜を透過・浸透した液中のピレン濃度は約20分の1にまで減少し、有機系溶媒においても、分離性能を持っていることが確認された。
Example 10 Permeation of Azobenzene Group-Modified Anodized Alumina Membrane with Pyrene Dodecane Solution The liquid placed on the azobenzene group-modified anodized alumina membrane was changed to a pyrene dodecane aqueous solution in the same manner as in Example 4 and permeated with dodecane through the membrane. The experiment was conducted. The concentration of the pyrene solution was 500 mg / L. Irradiation with ultraviolet light / visible light for 15 minutes was performed, and dodecane transmitted through the lower part of the film was collected. When the ultraviolet spectrum of the solution was examined using a spectrophotometer, absorption of 334 nm pyrene was observed. When the concentration of the permeated dodecane solution was calculated from the peak intensity, it was confirmed that it decreased to 6% compared to the concentration of the original solution. In this case, the contact angle of the solution on the alumina film was 10 degrees or less, and the solution was sufficiently immersed in the alumina film. However, the concentration of pyrene in the liquid that permeated and permeated the membrane was reduced to about 1/20, and it was confirmed that even organic solvents have separation performance.

実施例11 アゾベンゼン基修飾陽極酸化アルミナ膜の水の透過の照射位置による制御
実施例2で作成したアゾベンゼン基修飾陽極酸化アルミナ膜の中央部より約5mm離した両端の場所にイオン交換水10μLを2つ乗せ、一方の水滴上部に厚い黒紙を被せて光が当たらないようにし、一方の水滴はそのままにしておき光が当たるようにした。その後、実施例3と同様の方法で3種類の光を照射し、水滴下部のシャーレ上の水の有無を確認した。厚い黒紙を被せず光が照射された水滴の下部には水はあったが、厚い黒紙を被せて光が当たらないようにした水滴の下部には水は無かった。次に、十分に水滴を拭き取った後、先ほどと同じ箇所に水滴を2つ置き、今後は前回とは逆の水滴の方に厚い黒紙を被せて光が当たらないようにし、もう一方の水滴はそのままにしておき光が当たるようにした。その後、実施例3と同様の方法で3種類の光を照射し、水滴下部のシャーレ上の水の有無を確認した結果、厚い黒紙を被せず光が照射された水滴の下部には水はあったが、厚い黒紙を被せて光が当たらないようにした水滴の下部には水は無かった。なお、光照射により透過した水の量は、表1に示した量とほぼ同じであった。このように、アゾベンゼン基修飾陽極酸化アルミナ膜の水の透過は、光が照射された箇所でのみ起こることが確認できた。
Example 11 Control of the transmission of water through an azobenzene group-modified anodized alumina membrane by the irradiation position 2 10 μL of ion-exchanged water was placed at both ends about 5 mm away from the center of the azobenzene group-modified anodized alumina membrane prepared in Example 2. A thick black paper was placed on the top of one water droplet so that it was not exposed to light, and one water droplet was left as it was so that it could be exposed to light. Thereafter, three types of light were irradiated in the same manner as in Example 3 to confirm the presence or absence of water on the petri dish of the water dropping part. There was water in the lower part of the water droplets that were exposed to light without covering the thick black paper, but there was no water in the lower part of the water droplets that were covered with the thick black paper so that the light was not exposed. Next, after sufficiently wiping off the water droplets, place two water droplets in the same place as before, and in the future, cover the water droplets opposite to the previous one with a thick black paper so that it will not be exposed to light. Was left untouched so that it could be exposed to light. After that, as a result of irradiating three kinds of light in the same manner as in Example 3 and confirming the presence or absence of water on the petri dish of the water dropping part, water is not applied to the lower part of the water droplet irradiated with light without covering the thick black paper. However, there was no water at the bottom of the water droplets that were covered with thick black paper to prevent exposure to light. Note that the amount of water transmitted by light irradiation was almost the same as the amount shown in Table 1. As described above, it was confirmed that the water permeation through the azobenzene group-modified anodized alumina film occurred only at the portion irradiated with light.

実施例12 蛍光灯を用いた水の透過
実施例3と同じ類似の方法で、アゾベンゼン基修飾陽極酸化アルミナ膜上に溢れないようにイオン交換水0.5mLを展開した。この水溶液の上方約6cmより、蛍光ランプ(三菱電機製ツイン蛍光灯FPL27ANX)を用い光照射した。4時間照射の後、膜の下部に透過した水を回収し液量をマイクロシリンジで測ったところ、4.8μLであった。
Example 12 Permeation of water using a fluorescent lamp In the same manner as in Example 3, 0.5 mL of ion-exchanged water was developed so as not to overflow on the azobenzene group-modified anodized alumina film. From about 6 cm above this aqueous solution, light was irradiated using a fluorescent lamp (Mitsubishi Electric twin fluorescent lamp FPL27ANX). After irradiation for 4 hours, the water permeated to the lower part of the membrane was collected and the amount of liquid was measured with a microsyringe, and it was 4.8 μL.

実施例13 擬似海水の淡水化
実施例12と同じ類似の方法で、イオン交換水を擬似海水としての3.4%の塩化ナトリウム水溶液に変えて、アゾベンゼン基修飾陽極酸化アルミナ膜上に溢れないように1mL展開した。この水溶液の上方約6cmより、実施例12と同じ蛍光灯ランプを用い4時間光照射した。その後、膜の下部に透過した水を回収し液量をマイクロシリンジで測ったところ、4.0μLであった。この膜を透過した水の全量を、電気伝導度3μS/cm以下の超純水0.15mLで希釈し、当該水溶液を電気伝導率計(堀場製作所製、コンパクト電気伝導率計LAQUAtwin B-771)を用いて電気伝導度を測定し、同値は10μS/cmであった。一方、膜上方に展開した塩化ナトリウム水溶液4.0μLを0.15mLの超純水で希釈した溶液の電気伝導度は、1750μS/cmであった。この範囲の塩化ナトリウム水溶液では、電気伝導度と塩化ナトリウム濃度は直線関係にあるため、膜を透過した水の塩化ナトリウム濃度は0.019%と算出できた。一般に、塩分濃度が0.05%以下の水が淡水と言われており、アゾベンゼン基修飾陽極酸化アルミナ膜を蛍光灯の光照射下で透過した擬似海水は、淡水になったことが確認できた。
Example 13 Desalination of simulated seawater In the same manner as in Example 12, 1 mL of ion-exchanged water was changed to 3.4% sodium chloride aqueous solution as simulated seawater so as not to overflow on the azobenzene group-modified anodized alumina membrane. Expanded. Light was irradiated from about 6 cm above this aqueous solution for 4 hours using the same fluorescent lamp lamp as in Example 12. Thereafter, the water permeated to the lower part of the membrane was collected, and the amount of liquid measured with a microsyringe was 4.0 μL. Dilute the total amount of water that has permeated through this membrane with 0.15 mL of ultrapure water with an electrical conductivity of 3 μS / cm or less, and use the conductivity meter (Horiba Seisakusho, compact electrical conductivity meter LAQUAtwin B-771). The electrical conductivity was measured using the same value, which was 10 μS / cm. On the other hand, the electric conductivity of a solution obtained by diluting 4.0 μL of an aqueous sodium chloride solution developed above the membrane with 0.15 mL of ultrapure water was 1750 μS / cm. In this range of sodium chloride aqueous solution, the electrical conductivity and the sodium chloride concentration have a linear relationship, so the sodium chloride concentration of the water that permeated the membrane was calculated to be 0.019%. In general, water having a salt concentration of 0.05% or less is said to be fresh water, and it was confirmed that the pseudo-seawater that passed through the azobenzene group-modified anodized alumina film under light irradiation of a fluorescent lamp became fresh water.

実施例14 光異性化性ジメチルアミノアゾベンゼン基の合成
ヒドロキシ-4'-ジメチルアミノアゾベンゼン(0.265g, 1.1 mmol)と3−トリエトキシシリルプロピルイソシアナート(0.247g, 1 mmol)とを、脱水DMF10mLに加え、150℃、20時間反応させた。反応の進行は赤外線スペクトルで、イソシアナート吸収(2272cm−1)の消失により確認した。アゾベンゼン基修飾陽極酸化アルミナ膜の作成は、このDMF溶液を直接あるいは他の溶媒で希釈した溶液を陽極酸化アルミナ膜に塗布することで行った。
Example 14 Synthesis of photoisomerizable dimethylaminoazobenzene group Hydroxy-4'-dimethylaminoazobenzene (0.265 g, 1.1 mmol) and 3-triethoxysilylpropyl isocyanate (0.247 g, 1 mmol) were added to 10 mL of dehydrated DMF. In addition, the mixture was reacted at 150 ° C. for 20 hours. Progress of the reaction was confirmed by disappearance of isocyanate absorption (2272 cm −1 ) in an infrared spectrum. The preparation of the azobenzene group-modified anodized alumina film was performed by applying a solution obtained by diluting the DMF solution directly or with another solvent to the anodized alumina film.

実施例15 ジメチルアミノアゾベンゼン基修飾陽極酸化アルミナ膜の作成
実施例14で合成したジメチルアミノアゾベンゼンのシラン誘導体溶液0.1mLを、市販のAnodisc 25(Whatman社製、膜厚60μm、膜径21mm、基本細孔径20nm)一面に均等に塗布し、その後、室温で約20時間放置して十分に馴染ませた。その後、この膜を120℃で20時間空気中で加熱し、ジメチルアミノアゾベンゼン化合物のシラン基を介して、アルミナ表面上に修飾させた。この膜は、十分量のアセトンに漬けて陽極酸化アルミナ膜に修飾されなかったジメチルアミノアゾベンゼン化合物成分を取り除いた。この処理は、洗浄に用いたアセトン溶液中にジメチルアミノアゾベンゼン由来の紫外線吸収は無くなるまで行ったが、通常は3回で十分であった。こうして得られたジメチルアミノアゾベンゼン基修飾陽極酸化アルミナ膜は、赤色をしており、拡散反射紫外可視スペクトル(図4)より、400nmに強い吸収があり、ジメチルアミノアゾベンゼン基が修飾されていることが確認できた。
Example 15 Preparation of dimethylaminoazobenzene group-modified anodized alumina film 0.1 mL of the dimethylaminoazobenzene silane derivative solution synthesized in Example 14 was added to a commercially available Anodisc 25 (Whatman, film thickness 60 μm, film diameter 21 mm, basic fine film). (Pore diameter 20 nm) was applied evenly over one surface, and then allowed to stand at room temperature for about 20 hours to fully acclimate. Thereafter, this film was heated in air at 120 ° C. for 20 hours to be modified on the alumina surface via the silane group of the dimethylaminoazobenzene compound. This film was immersed in a sufficient amount of acetone to remove the dimethylaminoazobenzene compound component that was not modified into the anodized alumina film. This treatment was performed until the ultraviolet ray derived from dimethylaminoazobenzene disappeared in the acetone solution used for washing, but three times was usually sufficient. The dimethylaminoazobenzene group-modified anodized alumina film thus obtained has a red color, and has a strong absorption at 400 nm from the diffuse reflection UV-visible spectrum (FIG. 4), and the dimethylaminoazobenzene group is modified. It could be confirmed.

実施例16 ディスパースレッド1を用いた修飾陽極酸化アルミナ膜の作成
実施例14と同様の方法で、アゾベンゼンベンゼン化合物をディスパースレッド1(4-[エチル(2-ヒドロキシエチル)アミノ]-4'-ニトロアゾベンゼン)を用い、シラン誘導体を合成し、実施例15と同様の方法で、このアゾベンゼン誘導体基を修飾陽極酸化アルミナ膜に修飾した。得られた膜は赤色をしており、拡散反射紫外可視スペクトル(図5)より、約500nmに強い吸収があり、ディスパースレッド1の誘導体が修飾されていることが確認できた。
Example 16 Production of Modified Anodized Alumina Film Using Disperse Red 1 In the same manner as in Example 14, azobenzenebenzene compound was converted to Disper Red 1 (4- [ethyl (2-hydroxyethyl) amino] -4′-nitro Azobenzene) was used to synthesize a silane derivative, and this azobenzene derivative group was modified into a modified anodized alumina film in the same manner as in Example 15. The obtained film was red, and from the diffuse reflection ultraviolet-visible spectrum (FIG. 5), it was confirmed that the derivative of Disperse Red 1 was modified with strong absorption at about 500 nm.

実施例17 ジメチルアミノアゾベンゼン基修飾陽極酸化アルミナ膜の水の透過
実施例3と同様の方法で、アゾベンゼン基修飾陽極酸化アルミナ膜の代わりに、ジメチルアミノアゾベンゼン基修飾陽極酸化アルミナ膜を用いて行った。この膜のほぼ中心部に、イオン交換水10μLを置いた。ジアミノアミノアゾベンゼン基修飾陽極酸化アルミナ膜上の水滴のアルミナ膜面に対しての接触角は約97度であり、ジメチルアミノアゾベンゼンを修飾した陽極酸化アルミナ膜も疎水性になっていることが確認された。外光が入らないような箱の中に入れ、光無し、300〜600nmの範囲の紫外線と可視光の同時照射の場合について、膜上の水が透過し下部のシャーレ上に観測されるかを調べた。光照射方法は、実施例3と同じ方法で行った。また、朝日分光社製の波長385〜740nmのVis用ミラーモジュールも用いての光照射も行った。その結果、光無しの場合は、1時間後においても水は下部に全く透過しなかったが、300〜600nmと385〜740nmの光の15分間の照射では、それぞれ1.8μL、1.5μLの水が透過し、本ジメチルアミノアゾベンゼン基修飾陽極酸化アルミナ膜は可視光でも水を良好に透過させる性能があることがわかった。
Example 17 Permeation of water through dimethylaminoazobenzene group-modified anodized alumina membrane In the same manner as in Example 3, a dimethylaminoazobenzene group-modified anodized alumina membrane was used instead of the azobenzene group-modified anodized alumina membrane. . 10 μL of ion-exchanged water was placed almost at the center of the membrane. The contact angle of water droplets on the diaminoaminoazobenzene group-modified anodized alumina film with respect to the alumina film surface was about 97 degrees, and it was confirmed that the anodized alumina film modified with dimethylaminoazobenzene was also hydrophobic. It was. Put in a box that does not allow external light to enter, and in the case of no light, simultaneous irradiation of UV and visible light in the range of 300-600 nm, see if water on the membrane is transmitted and observed on the lower petri dish Examined. The light irradiation method was the same as in Example 3. Moreover, light irradiation was also performed using a mirror module for Vis having a wavelength of 385 to 740 nm manufactured by Asahi Spectroscopic Co., Ltd. As a result, in the absence of light, water did not penetrate at the lower part even after 1 hour, but when irradiated with light of 300 to 600 nm and 385 to 740 nm for 15 minutes, 1.8 μL and 1.5 μL of water were respectively obtained. It was found that this dimethylaminoazobenzene group-modified anodized alumina film has the ability to transmit water well even under visible light.

実施例18 アゾベンゼン基修飾陽極酸化アルミナ膜による擬似海水の淡水化
実施例3と同様の方法で、アゾベンゼン基修飾陽極酸化アルミナ膜に1mLの3.5%塩化ナトリウム水溶液を展開し、上部より上述のミラーモジュールを用いて300〜600nmの光を2時間照射した。膜下部に透過した水の量は0.182mLで、その電気伝導度は17μS/cm、塩分濃度0.01%未満であった。
Example 18 Desalination of simulated seawater with an azobenzene group-modified anodized alumina membrane In the same manner as in Example 3, 1 mL of 3.5% sodium chloride aqueous solution was developed on the azobenzene group-modified anodized alumina membrane, and the above-mentioned mirror module from above Was irradiated with light of 300 to 600 nm for 2 hours. The amount of water that permeated the lower part of the membrane was 0.182 mL, and its electrical conductivity was 17 μS / cm and the salt concentration was less than 0.01%.

実施例19 ジメチルアミノアゾベンゼン基修飾陽極酸化アルミナ膜による擬似海水の淡水化
実施例18と同様の方法で、ジメチルアミノアゾベンゼン基修飾陽極酸化アルミナ膜に1mLの3.5%塩化ナトリウム水溶液を展開し、上部より上述のミラーモジュールを用いて385〜740nmの光を2時間照射した。膜下部に透過した水の量は0.022mLで、その電気伝導度は15μS/cm、塩分濃度0.01%未満であった。
Example 19 Desalination of simulated seawater using a dimethylaminoazobenzene group-modified anodized alumina membrane In the same manner as in Example 18, 1 mL of 3.5% sodium chloride aqueous solution was developed on a dimethylaminoazobenzene group-modified anodized alumina membrane. Using the above-described mirror module, light of 385 to 740 nm was irradiated for 2 hours. The amount of water that permeated into the lower part of the membrane was 0.022 mL, its electric conductivity was 15 μS / cm, and the salt concentration was less than 0.01%.

実施例20 ソーラーシミュレータを用いたアゾベンゼン基修飾陽極酸化アルミナ膜の水の透過
実施例3と同様の方法で、照射光は朝日分光社製ソーラーシミュレータHAL−320を用い、太陽光強度1sunで、アゾベンゼン基修飾陽極酸化アルミナ膜上のイオン交換水10μLに15分間擬似太陽光を照射した。この光は水の蒸発が激しいため、膜の下部にあるシャーレの下に保冷剤を敷くことで、透過した水の蒸発を抑えた。その結果、膜の下部に透過した水を回収し液量をマイクロシリンジで測ったところ0.8μLであった。
Example 20 Permeation of Water through Azobenzene Group-Modified Anodized Alumina Membrane Using Solar Simulator In the same manner as in Example 3, the irradiated light was azobenzene with solar intensity 1 sun using solar simulator HAL-320 manufactured by Asahi Spectroscopic Co., Ltd. Simulated sunlight was irradiated for 15 minutes to 10 μL of ion-exchanged water on the base-modified anodized alumina film. Since this light is intensively evaporated, the evaporation of the transmitted water was suppressed by placing a cooling agent under the petri dish at the bottom of the membrane. As a result, the water permeated to the lower part of the membrane was recovered and the amount of liquid measured with a microsyringe was 0.8 μL.

実施例21 ソーラーシミュレータを用いたジメチルアミノアゾベンゼン基修飾陽極酸化アルミナ膜の水の透過
実施例3と同様の方法で、ジメチルアミノアゾベンゼン基修飾陽極酸化アルミナ膜上のイオン交換水10μLに15分間擬似太陽光を照射した。この光は水の蒸発が激しいため、膜の下部にあるシャーレの下に保冷剤を敷くことで、透過した水の蒸発を抑えた。その結果、膜の下部に透過した水量は0.10μLであった。
Example 21 Permeation of water through dimethylaminoazobenzene group-modified anodized alumina membrane using solar simulator In the same manner as in Example 3, 10 μL of ion-exchanged water on dimethylaminoazobenzene group-modified anodized alumina membrane was simulated for 15 minutes. Irradiated with light. Since this light is intensively evaporated, the evaporation of the transmitted water was suppressed by placing a cooling agent under the petri dish at the bottom of the membrane. As a result, the amount of water permeated to the lower part of the membrane was 0.10 μL.

実施例22 ソーラーシミュレータを用いたアゾベンゼン基修飾陽極酸化アルミナ膜による擬似海水の淡水化
実施例18と同様の方法で、アゾベンゼン基修飾陽極酸化アルミナ膜上に展開した1mLの擬似海水3.5%の塩化ナトリウム水溶液に、照射光は朝日分光社製ソーラーシミュレータHAL−320を用い、太陽光強度1sunで、2時間擬似太陽光を照射した。膜の下部に透過した水量は0.037mLであり、実施例13に示す方法で分析した電気伝導度136μS/cmから塩分濃度は0.01%となった。淡水の塩分濃度は0.05%以下であり、擬似太陽光での海水淡水化に成功した。
Example 22 Desalination of simulated seawater using an azobenzene group-modified anodized alumina membrane using a solar simulator 1 mL of simulated seawater 3.5% sodium chloride developed on an azobenzene group-modified anodized alumina membrane in the same manner as in Example 18 Irradiation light was irradiated with simulated sunlight for 2 hours at a sunlight intensity of 1 sun using a solar simulator HAL-320 manufactured by Asahi Spectroscopic Co., Ltd. The amount of water permeated to the bottom of the membrane was 0.037 mL, and the salt concentration was 0.01% from the electrical conductivity of 136 μS / cm analyzed by the method shown in Example 13. The salinity of fresh water was 0.05% or less, and the seawater desalination with simulated sunlight was successful.

実施例23 ソーラーシミュレータを用いたジメチルアミノアゾベンゼン基修飾陽極酸化アルミナ膜による擬似海水の淡水化
実施例22と同様の方法で、ジメチルアミノアゾベンゼン基修飾陽極酸化アルミナ膜に展開した1mLの擬似海水3.5%の塩化ナトリウム水溶液に、照射光は朝日分光社製ソーラーシミュレータHAL−320を用い、太陽光強度1sunで、2時間擬似太陽光を照射した。膜の下部に透過した水量は0.045mLであり、電気伝導度36μS/cmから塩分濃度0.01%未満となった。淡水の塩分濃度は0.05%以下であり、擬似太陽光での海水淡水化に成功した。
Example 23 Desalination of simulated seawater using a dimethylaminoazobenzene group-modified anodized alumina membrane using a solar simulator 1 mL of simulated seawater 3.5% developed on a dimethylaminoazobenzene group-modified anodized alumina membrane in the same manner as in Example 22 The irradiated sodium chloride solution was irradiated with simulated sunlight for 2 hours at a sunlight intensity of 1 sun using a solar simulator HAL-320 manufactured by Asahi Spectroscopic Co., Ltd. The amount of water permeated to the lower part of the membrane was 0.045 mL, and the electric conductivity was 36 μS / cm, and the salt concentration was less than 0.01%. The salinity of fresh water was 0.05% or less, and the seawater desalination with simulated sunlight was successful.

実施例24 ソーラーシミュレータを用いたジメチルアミノアゾベンゼン基修飾陽極酸化アルミナ膜による擬似海水の淡水化
実施例23と同様の方法で、ジメチルアミノアゾベンゼン基修飾陽極酸化アルミナ膜に展開した1mLの擬似海水3.5%の塩化ナトリウム水溶液に、照射光は朝日分光社製ソーラーシミュレータHAL−320を用い、太陽光強度1sunで、4時間擬似太陽光を照射した。膜の下部に透過した水量は0.125mLであり、電気伝導度420μS/cmから塩分濃度0.02%となった。淡水の塩分濃度は0.05%以下であり、擬似太陽光での海水淡水化に成功した。
Example 24 Desalination of simulated seawater with dimethylaminoazobenzene group-modified anodized alumina membrane using solar simulator 1 mL of simulated seawater 3.5% developed on dimethylaminoazobenzene group-modified anodized alumina membrane in the same manner as in Example 23 The irradiated sodium chloride solution was irradiated with simulated sunlight for 4 hours at a sunlight intensity of 1 sun using a solar simulator HAL-320 manufactured by Asahi Spectroscopic Co., Ltd. The amount of water permeated to the lower part of the membrane was 0.125 mL, and the salt concentration was 0.02% from the electric conductivity of 420 μS / cm. The salinity of fresh water was 0.05% or less, and the seawater desalination with simulated sunlight was successful.

実施例25 ソーラーシミュレータを用いたディスパースレッド1誘導体修飾陽極酸化アルミナ膜の水の透過
実施例3と同様の方法で、照射光は朝日分光社製ソーラーシミュレータHAL−320を用い、太陽光強度1sunで、アゾベンゼン基修飾陽極酸化アルミナ膜上のイオン交換水10μLに15分間擬似太陽光を照射した。この光は水の蒸発が激しいため、膜の下部にあるシャーレの下に保冷剤を敷くことで、透過した水の蒸発を抑えた。その結果、膜の下部に透過した水を回収し液量をマイクロシリンジで測ったところ1.5μLであった。
Example 25 Permeation of Water through Disperse Red 1 Derivative-Modified Anodized Alumina Membrane Using Solar Simulator In the same manner as in Example 3, the irradiation light was solar solar intensity 1 sun using Asahi Spectroscopic Solar Simulator HAL-320. Then, simulated sunlight was irradiated for 15 minutes to 10 μL of ion-exchanged water on the azobenzene group-modified anodized alumina film. Since this light is intensively evaporated, the evaporation of the transmitted water was suppressed by placing a cooling agent under the petri dish at the bottom of the membrane. As a result, the water permeated to the lower part of the membrane was recovered and the amount of liquid measured with a microsyringe was 1.5 μL.

実施例26 ソーラーシミュレータを用いたディスパースレッド1誘導体修飾陽極酸化アルミナ膜による擬似海水の淡水化
実施例23と同様の方法で、ジメチルアミノアゾベンゼン基修飾陽極酸化アルミナ膜に展開した0.5mLの擬似海水3.5%の塩化ナトリウム水溶液に、照射光は朝日分光社製ソーラーシミュレータHAL−320を用い、太陽光強度1sunで、2時間擬似太陽光を照射した。膜の下部に透過した水量は0.041mLであり、電気伝導度162μS/cmから塩分濃度0.01%となった。淡水の塩分濃度は0.05%以下であり、擬似太陽光での海水淡水化に成功した。
Example 26 Desalination of Simulated Seawater with Disperse Red 1 Derivative Modified Anodized Alumina Membrane Using Solar Simulator In the same manner as in Example 23, 0.5 mL of simulated seawater developed on a dimethylaminoazobenzene group modified anodized alumina membrane 3.5 The irradiated light was irradiated with simulated sunlight for 2 hours at a solar intensity of 1 sun using a solar simulator HAL-320 manufactured by Asahi Spectroscopic Co., Ltd. The amount of water permeated to the lower part of the membrane was 0.041 mL, and the salt concentration became 0.01% from the electric conductivity of 162 μS / cm. The salinity of fresh water was 0.05% or less, and the seawater desalination with simulated sunlight was successful.

実施例27 ソーラーシミュレータを用いたアゾベンゼン基修飾陽極酸化アルミナ膜のローダミンB水溶液の透過
実施例6と同様の方法で、アゾベンゼン基修飾陽極酸化アルミナ膜上の10μLの10mMローダミンB水溶液に、ソーラーシミュレータを用いた擬似太陽光を15分間照射した。透過した水の量は1.4μLであり、回収した水を分光光度計を用いて可視光スペクトルを調べたところ、554nmのローダミンBの吸収が全くないこと確認した。
Example 27 Permeation of rhodamine B aqueous solution of azobenzene group-modified anodized alumina membrane using solar simulator In the same manner as in Example 6, solar simulator was applied to 10 μL of 10 mM rhodamine B aqueous solution on azobenzene group-modified anodized alumina membrane. The used simulated sunlight was irradiated for 15 minutes. The amount of water that permeated was 1.4 μL, and when the visible water spectrum of the recovered water was examined using a spectrophotometer, it was confirmed that there was no absorption of rhodamine B at 554 nm.

実施例28 ソーラーシミュレータを用いたジメチルアミノアゾベンゼン基修飾陽極酸化アルミナ膜のローダミンB水溶液の透過
実施例27と同様の方法で、ジメチルアミノアゾベンゼン基修飾陽極酸化アルミナ膜上の10μLの10mMローダミンB水溶液に、ソーラーシミュレータを用いた擬似太陽光を15分間照射した。透過した水の量は0.2μLであり、回収した水を分光光度計を用いて可視光スペクトルを調べたところ、554nmのローダミンBの吸収が全くないこと確認した。
Example 28 Permeation of Rhodamine B aqueous solution of dimethylaminoazobenzene group-modified anodized alumina membrane using solar simulator In the same manner as in Example 27, 10 μL of 10 mM Rhodamine B aqueous solution on dimethylaminoazobenzene group-modified anodized alumina membrane was applied. The simulated sunlight was irradiated for 15 minutes using a solar simulator. The amount of permeated water was 0.2 μL, and when the visible water spectrum of the collected water was examined using a spectrophotometer, it was confirmed that there was no absorption of rhodamine B at 554 nm.

実施例29 ソーラーシミュレータを用いたディスパースレッド1誘導体修飾陽極酸化アルミナ膜のローダミンB水溶液の透過
実施例27と同様の方法で、ディスパースレッド1誘導体修飾陽極酸化アルミナ膜上の10μLの10mMローダミンB水溶液に、ソーラーシミュレータを用いた擬似太陽光を15分間照射した。透過した水の量は0.4μLであり、回収した水を分光光度計を用いて可視光スペクトルを調べたところ、554nmのローダミンBの吸収が全くないこと確認した。
Example 29 Permeation of Disperse Red 1 Derivative Modified Anodized Alumina Membrane Using Solar Simulator Through Rhodamine B Aqueous Solution In the same manner as in Example 27, 10 μL of 10 mM Rhodamine B aqueous solution on Disper Red 1 Derivative Modified Anodized Alumina Membrane The simulated sunlight was irradiated for 15 minutes using a solar simulator. The amount of permeated water was 0.4 μL, and when the visible water spectrum of the recovered water was examined using a spectrophotometer, it was confirmed that there was no absorption of rhodamine B at 554 nm.

本特許で新しく見いだされた材料、技術の応用は、種々想定されるが、例えば以下のような応用が考えられる。例えば、当該膜を備え付けた容器からの液体の拡散を光で制御することが可能となる。それにより、例えば、農薬や芳香剤等の液体成分を光照射することで外部へと放出させるような応用が想定できる。また、膜上に複数の液滴を離して展開し、光が照射された液のみが膜を透過することで、物質の供給を、種類、時間や量も含めて自在に制御することができる。   Various applications of materials and techniques newly found in this patent are envisaged. For example, the following applications are conceivable. For example, it is possible to control the diffusion of the liquid from the container provided with the film with light. Thereby, for example, an application in which liquid components such as agricultural chemicals and fragrances are emitted to the outside by light irradiation can be assumed. In addition, it is possible to freely control the supply of substances, including the type, time, and amount, by separating a plurality of liquid droplets on the film and spreading only the liquid irradiated with light through the film. .

さらに、ミネラルや有機物等の不純物を含んだ水や有機溶剤を膜上に展開し、そこに光を照射することで、水や比較的揮発しやすい有機溶剤のみが膜を透過し、揮発しない成分は膜を通り抜けなくなるようなことが実現できる可能性がある。これにより、水や有機溶剤の浄化や、水や有機溶剤に溶解している種々の成分を分離することが可能となる。   In addition, water and organic solvents containing impurities such as minerals and organic substances are spread on the film and irradiated with light, so that only water and relatively volatile organic solvents permeate the film and do not volatilize. May not be able to pass through the membrane. This makes it possible to purify water and organic solvents and to separate various components dissolved in water and organic solvents.

さらに、海水の淡水化や塩分濃度の高い水の淡水化等にも応用可能である。   Furthermore, it can be applied to desalination of seawater and desalination of water with high salinity.

Claims (13)

細孔内に可逆的光異性化基を有する多孔性膜材料上に液体又は液体に非揮発性物質を溶解した溶液を適用し、前記膜材料に光照射することで液体を蒸気として細孔内を通過させることを特徴とする、液体の分離方法。 Apply a liquid or a solution in which a non-volatile substance is dissolved in a liquid onto a porous membrane material having a reversible photoisomerization group in the pores, and irradiate the membrane material with light to make the liquid vapor into the pores. A method for separating a liquid, characterized in that a liquid is passed. 前記液体が水である、請求項1に記載の分離方法。 The separation method according to claim 1, wherein the liquid is water. 細孔内に可逆的光異性化基を有する多孔性膜材料上に非揮発性の有機汚染物質又は無機汚染物質の水溶液を適用し、前記膜材料に光照射することで水を蒸気として細孔内を通過させて浄化された水を得ることを特徴とする、水の浄化方法。 Applying an aqueous solution of non-volatile organic pollutants or inorganic pollutants onto a porous membrane material having a reversible photoisomerization group in the pores, and irradiating the membrane material with light to form pores as water vapor A method for purifying water, characterized by obtaining purified water by passing through the inside. 無機汚染物質が重金属イオンを含む、請求項3に記載の水の浄化方法。 The method for purifying water according to claim 3, wherein the inorganic pollutant contains heavy metal ions. 有機汚染物質が細菌、ウイルス、アミン類、ダイオキシン類、界面活性剤、芳香族又はヘテロ芳香族化合物、有機リン化合物、有機ハロゲン化合物、有機金属化合物を含む、請求項3に記載の水の浄化方法。 The method for purifying water according to claim 3, wherein the organic pollutant includes bacteria, viruses, amines, dioxins, surfactants, aromatic or heteroaromatic compounds, organophosphorus compounds, organohalogen compounds, and organometallic compounds. . 前記水溶液が塩化ナトリウムを含む水溶液であり、多孔性膜材料に光照射することで塩化ナトリウム濃度が低減された水を得ることを特徴とする、請求項3に記載の水の浄化方法。 The method for purifying water according to claim 3, wherein the aqueous solution is an aqueous solution containing sodium chloride, and water having a reduced sodium chloride concentration is obtained by irradiating the porous membrane material with light. 細孔内に可逆的光異性化基を有する多孔性膜材料上に電解質水溶液を適用し、前記膜材料に光照射することで水を蒸気として細孔内を通過させることを特徴とする、電解質濃度が低減した水の製造方法。 An electrolyte characterized in that an aqueous electrolyte solution is applied onto a porous membrane material having a reversible photoisomerization group in the pores, and the membrane material is irradiated with light so that water passes through the pores as vapor. A method for producing water with reduced concentration. 前記電解質水溶液が海水、雨水、河川水、池の水などの環境水である、請求項7に記載の電解質濃度が低減した水の製造方法。 The method for producing water with reduced electrolyte concentration according to claim 7, wherein the aqueous electrolyte solution is environmental water such as seawater, rainwater, river water, or pond water. 前記電解質水溶液が海水であり、電解質フリーの水を得ることを特徴とする、請求項7又は8に記載の電解質濃度が低減した水の製造方法。 The method for producing water with reduced electrolyte concentration according to claim 7 or 8, wherein the electrolyte aqueous solution is seawater, and electrolyte-free water is obtained. 細孔内に可逆的光異性化基を有する多孔性膜材料上に液体又は液体に非揮発性物質を溶解した溶液を適用し、光照射部分の細孔内において選択的に液体を蒸気として通過させることを特徴とする、液体の細孔内の通過を光制御する方法。 Apply a liquid or a solution in which a non-volatile substance is dissolved in a liquid on a porous membrane material having a reversible photoisomerization group in the pores, and selectively pass the liquid as a vapor in the pores of the light irradiation part. A method for optically controlling the passage of a liquid through pores. 光の照射時間、照射場所及び光量からなる群から選ばれる少なくとも1種により液体の細孔内の通過量を制御する、請求項10に記載の光制御方法。 The light control method according to claim 10, wherein the amount of passage of the liquid through the pores is controlled by at least one selected from the group consisting of light irradiation time, irradiation place, and light quantity. 照射される光が蛍光灯、太陽光または紫外光である、請求項10又は11に記載の光制御方法 The light control method according to claim 10 or 11, wherein the irradiated light is a fluorescent lamp, sunlight or ultraviolet light. 可逆的光異性化基がアゾベンゼン部分、スピロピラン部分及びスピロオキサジン部分からなる群から選ばれる少なくとも1種の部分(moiety)を有する請求項1〜12のいずれかに記載の方法。 13. A process according to any of claims 1 to 12, wherein the reversible photoisomerization group has at least one moiety selected from the group consisting of an azobenzene moiety, a spiropyran moiety and a spirooxazine moiety.
JP2014245617A 2014-03-10 2014-12-04 Light control technology for liquid membrane permeation Expired - Fee Related JP6112566B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014245617A JP6112566B2 (en) 2014-03-10 2014-12-04 Light control technology for liquid membrane permeation

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014045899 2014-03-10
JP2014045899 2014-03-10
JP2014245617A JP6112566B2 (en) 2014-03-10 2014-12-04 Light control technology for liquid membrane permeation

Publications (2)

Publication Number Publication Date
JP2015186794A true JP2015186794A (en) 2015-10-29
JP6112566B2 JP6112566B2 (en) 2017-04-12

Family

ID=54429384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014245617A Expired - Fee Related JP6112566B2 (en) 2014-03-10 2014-12-04 Light control technology for liquid membrane permeation

Country Status (1)

Country Link
JP (1) JP6112566B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109030761A (en) * 2018-06-15 2018-12-18 中国电建集团山东电力建设第工程有限公司 A kind of sea water desalination detection device and application method
CN110548421A (en) * 2019-08-27 2019-12-10 武汉艾科滤膜技术有限公司 Preparation method and application of strong adsorption type ultrafiltration membrane
CN114749029A (en) * 2022-03-28 2022-07-15 浙江理工大学 Method for repairing polyamide composite reverse osmosis membrane

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60125203A (en) * 1983-12-13 1985-07-04 Nitto Electric Ind Co Ltd Thermo-pervaporation apparatus
JP2000325955A (en) * 1999-05-25 2000-11-28 Akon Higuchi Removal of endocrine disrupter
JP2002346560A (en) * 2001-05-28 2002-12-03 Takehisa Yamaguchi Method for treating water and membrane for water treatment
JP2006256885A (en) * 2005-03-16 2006-09-28 National Institute Of Advanced Industrial & Technology Photoresponsive mesoporous body and its slow release function
JP2008229503A (en) * 2007-03-20 2008-10-02 Toshiba Corp Membrane, membrane module and membrane filter system
JP2013066881A (en) * 2011-09-09 2013-04-18 Sumitomo Electric Ind Ltd Membrane distillation solar water production system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60125203A (en) * 1983-12-13 1985-07-04 Nitto Electric Ind Co Ltd Thermo-pervaporation apparatus
JP2000325955A (en) * 1999-05-25 2000-11-28 Akon Higuchi Removal of endocrine disrupter
JP2002346560A (en) * 2001-05-28 2002-12-03 Takehisa Yamaguchi Method for treating water and membrane for water treatment
JP2006256885A (en) * 2005-03-16 2006-09-28 National Institute Of Advanced Industrial & Technology Photoresponsive mesoporous body and its slow release function
JP2008229503A (en) * 2007-03-20 2008-10-02 Toshiba Corp Membrane, membrane module and membrane filter system
JP2013066881A (en) * 2011-09-09 2013-04-18 Sumitomo Electric Ind Ltd Membrane distillation solar water production system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109030761A (en) * 2018-06-15 2018-12-18 中国电建集团山东电力建设第工程有限公司 A kind of sea water desalination detection device and application method
CN109030761B (en) * 2018-06-15 2024-01-19 中国电建集团山东电力建设第一工程有限公司 Seawater desalination detection device and use method
CN110548421A (en) * 2019-08-27 2019-12-10 武汉艾科滤膜技术有限公司 Preparation method and application of strong adsorption type ultrafiltration membrane
CN114749029A (en) * 2022-03-28 2022-07-15 浙江理工大学 Method for repairing polyamide composite reverse osmosis membrane
CN114749029B (en) * 2022-03-28 2023-01-03 浙江理工大学 Method for repairing polyamide composite reverse osmosis membrane

Also Published As

Publication number Publication date
JP6112566B2 (en) 2017-04-12

Similar Documents

Publication Publication Date Title
Gao et al. The construction of amorphous metal-organic cage-based solid for rapid dye adsorption and time-dependent dye separation from water
Ou et al. A sunlight-responsive metal–organic framework system for sustainable water desalination
Rasheed et al. Metal-organic frameworks based adsorbents: A review from removal perspective of various environmental contaminants from wastewater
Khan et al. Anti-bacterial PES-cellulose composite spheres: dual character toward extraction and catalytic reduction of nitrophenol
Wang et al. Adsorption removal of organic dyes on covalent triazine framework (CTF)
SungáPark et al. Photochromic spiropyran-embedded PDMS for highly sensitive and tunable optochemical gas sensing
Li et al. Highly efficient Cr 2 O 7 2− removal of a 3D metal-organic framework fabricated by tandem single-crystal to single-crystal transformations from a 1D coordination array
JP6112566B2 (en) Light control technology for liquid membrane permeation
Zhang et al. Extremely effective boron removal from water by stable metal organic framework ZIF-67
Fujiwara Water desalination using visible light by disperse red 1 modified PTFE membrane
Moscoso et al. Luminescent MOF crystals embedded in PMMA/PDMS transparent films as effective NO 2 gas sensors
Masoomi et al. High efficiency of mechanosynthesized Zn-based metal–organic frameworks in photodegradation of congo red under UV and visible light
CN115151554A (en) Synthesis of nano porous polyphenol-based coordination polymer framework and use method thereof
Mendret et al. Influence of solution pH on the performance of photocatalytic membranes during dead-end filtration
Kadirova et al. Photodegradation of gaseous acetaldehyde and methylene blue in aqueous solution with titanium dioxide-loaded activated carbon fiber polymer materials and aquatic plant ecotoxicity tests
Du et al. Fabrication of superwetting and antimicrobial wood-based mesoporous composite decorated with silver nanoparticles for purifying the polluted-water with oils, dyes and bacteria
Wei et al. A series of iodoargentates directed by solvated metal cations featuring uptake and photocatalytic degradation of organic dye pollutants
JP6721909B2 (en) Method for membrane separation of aqueous solution by light irradiation
Nambikkattu et al. Tailoring the performance of thin-film composite membrane using ZIF-8 for wastewater treatment
Emam et al. Selective separation of chlorophyll-a using recyclable hybrids based on Zn-MOF@ cellulosic fibers
Chandhru et al. Bio-fabricated silver nanocatalyst for photocatalytic degradation and organic transformation of toxic pollutants
Kocak et al. Synthesized of sporopollenin-immobilized Schiff bases and their vanadium (IV) sorption studies
Shaabanzadeh et al. CuS NPs/Zeolite A/ZIF-8 dual-action composite for removal of methylene blue from aqueous solutions
Jiang et al. Highly efficient and selective Hg (II) adsorbent: ZnS grown on the surface of 4A zeolite and supported on starch aerogels
Sinha et al. A new and facile strategy for the one-pot fabrication of luminescent gold nanoclusters and their prospective application

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20160720

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160722

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20160722

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161128

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20161128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170308

R150 Certificate of patent or registration of utility model

Ref document number: 6112566

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees