JP2015186477A - PLANT-DERIVED β-GLUCAN CONTAINING SYRUP - Google Patents

PLANT-DERIVED β-GLUCAN CONTAINING SYRUP Download PDF

Info

Publication number
JP2015186477A
JP2015186477A JP2015045118A JP2015045118A JP2015186477A JP 2015186477 A JP2015186477 A JP 2015186477A JP 2015045118 A JP2015045118 A JP 2015045118A JP 2015045118 A JP2015045118 A JP 2015045118A JP 2015186477 A JP2015186477 A JP 2015186477A
Authority
JP
Japan
Prior art keywords
glucan
derived
plant
syrup
containing syrup
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015045118A
Other languages
Japanese (ja)
Other versions
JP6648973B2 (en
Inventor
田邊 陽一
Yoichi Tanabe
陽一 田邊
直 鎌田
Sunao Kamata
直 鎌田
亮平 福本
Ryohei Fukumoto
亮平 福本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gun Ei Chemical Industry Co Ltd
Original Assignee
Gun Ei Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gun Ei Chemical Industry Co Ltd filed Critical Gun Ei Chemical Industry Co Ltd
Priority to JP2015045118A priority Critical patent/JP6648973B2/en
Publication of JP2015186477A publication Critical patent/JP2015186477A/en
Application granted granted Critical
Publication of JP6648973B2 publication Critical patent/JP6648973B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Non-Alcoholic Beverages (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Jellies, Jams, And Syrups (AREA)
  • Medicines Containing Plant Substances (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a plant-derived β-glucan containing syrup that has a sufficiently low viscosity and is easy to handle.SOLUTION: A plant-derived β-glucan containing syrup comprises plant-derived β-glucan with a weight average molecular weight of 2,500-40,000, wherein the content of the plant-derived β-glucan is 2 mass%-8 mass% relative to the total soluble solid content.

Description

本発明は、植物由来のβ−グルカンを含有するシロップ、及びそれを含む食品又は飲料に関する。   The present invention relates to a syrup containing β-glucan derived from a plant, and a food or beverage containing the syrup.

β−グルカンは、グルコースを構成ユニットとし、これらがβ−1,3結合、β−1,4結合する直鎖状の高分子である。そして、このβ−グルカンは、血中コレステロールの正常化や食後の血糖値の上昇抑制、そして満腹感の持続作用など生理機能が報告されてきた。   β-glucan is a linear polymer in which glucose is a constituent unit and these are β-1,3 bonds and β-1,4 bonds. And this β-glucan has been reported to have physiological functions such as normalization of blood cholesterol, suppression of an increase in blood glucose level after meals, and a sustained action of satiety.

特に、血中コレステロールの正常化という点に関して、以下のメカニズムが知られている。コレステロールは胆汁酸ミセルと会合して胆汁酸ミセル内にコレステロールが取り込まれることで小腸に吸収される。β−グルカンは、これらのミセルの形成を阻害又は形成されたミセルを破壊して、コレステロールが小腸に吸収されるのを抑制する。   In particular, the following mechanism is known regarding the normalization of blood cholesterol. Cholesterol is absorbed into the small intestine by associating with bile acid micelles and incorporating cholesterol into bile acid micelles. β-glucan inhibits the formation of these micelles or destroys the formed micelles, thereby suppressing the absorption of cholesterol into the small intestine.

しかし、このような阻害能は、オーツ麦由来の重量平均分子量が300,000を越えるような非常に大きなβ−グルカンでのみ確認されているだけで(非特許文献1)、比較的小さい重量平均分子量のβ−グルカンでは特にそのような効果は報告されていなかった。   However, such inhibition ability has been confirmed only with a very large β-glucan having a weight average molecular weight derived from oats exceeding 300,000 (Non-patent Document 1), and a relatively small weight average. No such effect has been reported with molecular weight β-glucan.

ところで、β−グルカンは、例えば大麦などの細胞壁に含まれることが知られている。モルトシロップは、大麦を発芽させた麦芽を糖化して製造される食品素材であるが、発芽又は糖化の過程でβ−グルカンが分解されてしまい、シロップ中にはほとんど含まれない。特許文献1には、重量平均分子量が50,000〜500,000の大麦由来のβ−グルカンを含有するシロップであって、パンやヨーグルトなどの食品や清涼飲料水や清酒などの飲料に用いられることが記載されている。   By the way, it is known that β-glucan is contained in a cell wall such as barley. Malt syrup is a food material produced by saccharification of malt germinated from barley, but β-glucan is decomposed in the process of germination or saccharification, and is hardly contained in the syrup. Patent Document 1 discloses a syrup containing barley-derived β-glucan having a weight average molecular weight of 50,000 to 500,000, and is used in foods such as bread and yogurt, and beverages such as soft drinks and sake. It is described.

しかし、例えば、食品や飲料の原料としてシロップを用いることを考えた場合、特許文献1に記載されたシロップは、重量平均分子量50,000〜500,000という非常に高分子のβ−グルカンを含有するものであり、粘度が高すぎ取り扱いが困難であるという問題があった。また、特許文献1には、粘度が十分に低いシロップが得られたことも記載されているが、それは、単に、得られたシロップのBrixを10%未満にすることで低粘度を実現しているに過ぎず、低いBrixであるがゆえに、β−グルカン含有濃度が低い、また、シロップ保管時の微生物増殖リスクが高いという観点で、食品や飲料向けのシロップとしてはその取扱いに問題を有するものであった。   However, for example, when considering using syrup as a raw material for foods and beverages, the syrup described in Patent Document 1 contains a very high molecular weight β-glucan having a weight average molecular weight of 50,000 to 500,000. There is a problem that the viscosity is too high and handling is difficult. Patent Document 1 also describes that a syrup having a sufficiently low viscosity was obtained, but this was achieved simply by reducing the Brix of the obtained syrup to less than 10%. However, because of its low Brix, it has a low β-glucan concentration, and it has a high risk of microbial growth during storage of syrup, and as a syrup for foods and beverages, it has a problem in its handling. Met.

特許第5186311号公報Japanese Patent No. 5186311

Hyun Jung Kim et al., Journal of Agricultural and Food Chemistry(2010) vol.58, pp.628−634Hyun Jung Kim et al. , Journal of Agricultural and Food Chemistry (2010) vol. 58, pp. 628-634

本発明は、粘度が十分に低く取り扱いが容易な植物由来β−グルカン含有シロップを提供することを課題とする。また、コレステロールのミセル化阻害能を有し、機能性にも優れた植物由来β−グルカン含有シロップを提供することを課題とする。さらに、当該植物由来β−グルカン含有シロップを添加した新たな食品や飲料を提供することを課題とする。   An object of the present invention is to provide a plant-derived β-glucan-containing syrup having a sufficiently low viscosity and easy to handle. Another object of the present invention is to provide a plant-derived β-glucan-containing syrup that has the ability to inhibit micellization of cholesterol and is excellent in functionality. Furthermore, it is an object to provide a new food or beverage to which the plant-derived β-glucan-containing syrup is added.

本発明者らは、上記課題を解決するために、重量平均分子量が2,500〜40,000の植物由来β−グルカンを含有する植物由来β−グルカン含有シロップを製造し、そのような植物由来β−グルカン含有シロップは、粘度が十分に低く取り扱いが容易であることを見出した。従って、本発明の第1の局面は、
(1)重量平均分子量が2,500〜40,000の植物由来β−グルカンを可溶性固形分全体に対して2質量%〜8質量%の含有量で含むことを特徴とする植物由来β−グルカン含有シロップ、である。
In order to solve the above problems, the inventors of the present invention manufactured a plant-derived β-glucan-containing syrup containing a plant-derived β-glucan having a weight average molecular weight of 2,500 to 40,000, and derived from such a plant. It has been found that the β-glucan-containing syrup has a sufficiently low viscosity and is easy to handle. Therefore, the first aspect of the present invention is
(1) A plant-derived β-glucan containing a plant-derived β-glucan having a weight average molecular weight of 2,500 to 40,000 in a content of 2% by mass to 8% by mass with respect to the entire soluble solid content. Containing syrup.

本発明の好適な態様は、
(2)含有される前記植物由来β−グルカンがコレステロールのミセル化阻害能を有することを特徴とする上記(1)の植物由来β−グルカン含有シロップ、である。
A preferred embodiment of the present invention is:
(2) The plant-derived β-glucan-containing syrup according to (1) above, wherein the plant-derived β-glucan contained has an ability to inhibit cholesterol micellization.

本発明の好適な態様は、
(3)粘度が20,000cP以下であることを特徴とする上記(1)又は(2)の植物由来β−グルカン含有シロップ、である。
A preferred embodiment of the present invention is:
(3) The plant-derived β-glucan-containing syrup according to (1) or (2), wherein the viscosity is 20,000 cP or less.

本発明の好適な態様は、
(4)Brixが30%〜80%であることを特徴とする上記(1)〜(3)のいずれかの植物由来β−グルカン含有シロップ、である。
A preferred embodiment of the present invention is:
(4) The plant-derived β-glucan-containing syrup according to any one of (1) to (3) above, wherein Brix is 30% to 80%.

本発明の好適な態様は、
(5)pHが4.0〜8.0であることを特徴とする上記(1)〜(4)のいずれかの植物由来β−グルカン含有シロップ、である。
A preferred embodiment of the present invention is:
(5) The plant-derived β-glucan-containing syrup according to any one of (1) to (4) above, wherein the pH is 4.0 to 8.0.

本発明の好適な態様は、
(6)前記植物由来β−グルカンが、イネ科植物由来β−グルカンであることを特徴とする上記(1)〜(5)のいずれかの植物由来β−グルカン含有シロップ、である。
A preferred embodiment of the present invention is:
(6) The plant-derived β-glucan-containing syrup according to any one of (1) to (5) above, wherein the plant-derived β-glucan is a gramineous plant-derived β-glucan.

本発明の好適な態様は、
(7)グルコアミラーゼを用いた反応工程を備える製造方法によって得られたことを特徴とする上記(1)〜(6)のいずれかの植物由来β−グルカン含有シロップ、である。
A preferred embodiment of the present invention is:
(7) A plant-derived β-glucan-containing syrup according to any one of (1) to (6) above, which is obtained by a production method including a reaction step using glucoamylase.

また、上記(1)〜(7)の植物由来β−グルカン含有シロップは、粘度が低く取り扱いが容易であって、食品又は飲料の原料として優れていることが見出された。更に、重量平均分子量が40,000以下であってもコレステロールが溶解されたミセルの形成を阻害しうることが確認された。従って、本発明の他の局面は、
(8)上記(1)〜(7)のいずれかの植物由来β−グルカン含有シロップを含むことを特徴とする食品又は飲料、である。
Moreover, it was found that the plant-derived β-glucan-containing syrups (1) to (7) have low viscosity and are easy to handle, and are excellent as raw materials for foods or beverages. Further, it was confirmed that even when the weight average molecular weight is 40,000 or less, the formation of micelles in which cholesterol is dissolved can be inhibited. Accordingly, another aspect of the present invention is:
(8) A food or beverage comprising the plant-derived β-glucan-containing syrup of any one of (1) to (7) above.

本発明により、粘度が十分に低く取り扱いが容易な植物由来β−グルカン含有シロップを提供することができる。また、取り扱いが容易であるにもかかわらず、コレステロールのミセル化阻害能を有し、機能性にも優れた植物由来β−グルカン含有シロップを提供することができる。さらに、当該植物由来β−グルカン含有シロップを添加した新たな食品や飲料を提供することができる。   According to the present invention, a plant-derived β-glucan-containing syrup having a sufficiently low viscosity and easy to handle can be provided. Moreover, although it is easy to handle, a plant-derived β-glucan-containing syrup having an ability to inhibit cholesterol micelle formation and excellent functionality can be provided. Furthermore, a new food or beverage to which the plant-derived β-glucan-containing syrup is added can be provided.

図1は、実施例1によって得られた植物由来β−グルカン含有シロップからβ−グルカンを抽出しゲル濾過クロマトグラフィーによって分子量分布を測定した結果を示す図である。FIG. 1 is a diagram showing the results of extracting β-glucan from the plant-derived β-glucan-containing syrup obtained in Example 1 and measuring the molecular weight distribution by gel filtration chromatography. 図2は、比較例1によって得られた植物由来β−グルカン含有シロップからβ−グルカンを抽出しゲル濾過クロマトグラフィーによって分子量分布を測定した結果を示す図である。FIG. 2 is a diagram showing the results of extracting β-glucan from the plant-derived β-glucan-containing syrup obtained in Comparative Example 1 and measuring the molecular weight distribution by gel filtration chromatography. 図3は、実施例1の植物由来β−グルカン含有シロップにおける各Brixと粘度との関係を測定した結果を示す図である。FIG. 3 is a diagram showing the results of measuring the relationship between each Brix and viscosity in the plant-derived β-glucan-containing syrup of Example 1. 図4は、被験者Aにおいて摂取された各シロップの血糖値上昇抑制能の評価試験結果を示す図である。FIG. 4 is a diagram showing the evaluation test results of the ability to suppress the increase in blood glucose level of each syrup taken by subject A. 図5は、被験者Bにおいて摂取された各シロップの血糖値上昇抑制能の評価試験結果を示す図である。FIG. 5 is a diagram showing the evaluation test results of the ability to suppress the increase in blood glucose level of each syrup taken by subject B.

本発明では、重量平均分子量が2,500〜40,000の植物由来β−グルカンを可溶性固形分全体に対して2質量%〜8質量%の含有量で含む植物由来β−グルカン含有シロップを製造している。このような植物由来β−グルカン含有シロップは、前記先行技術文献には、何ら示唆されていない。具体的に、本発明は以下のようにして実施可能である。   In the present invention, a plant-derived β-glucan-containing syrup containing a plant-derived β-glucan having a weight average molecular weight of 2,500 to 40,000 at a content of 2% by mass to 8% by mass with respect to the entire soluble solid content is produced. doing. Such a plant-derived β-glucan-containing syrup is not suggested in the prior art document. Specifically, the present invention can be implemented as follows.

<植物由来β−グルカン>
本発明に係るシロップの原料としては、一例として、β−グルカンを含有する植物が用いられる。このようなβ−グルカンを含有する「植物」の形態としては、葉、花弁、茎、木部、根、表皮、繊維細胞、枝、果実、種子等、いずれでもよい。
<Plant-derived β-glucan>
As an example of a syrup raw material according to the present invention, a plant containing β-glucan is used. The form of the “plant” containing such β-glucan may be any of leaves, petals, stems, xylem, roots, epidermis, fiber cells, branches, fruits, seeds and the like.

原料として用いる「植物」として、好ましくは、米類、小麦類、トウモロコシ類、モロコシ類、ヒエ類、アワ類、キビ類、大麦類、オーツ麦類、ライ麦等のイネ科植物が挙げられ、より好ましくは、大麦類やオーツ麦類が挙げられ、更に好ましくは、大麦類が挙げられる。なお、原料としては、これらの植物から用途・目的に応じて選択して、単独で用いても良いし、適宜組み合わせて用いても良い。   Preferred examples of the “plant” used as a raw material include rice plants such as rice, wheat, corn, sorghum, barnyard millet, millet, millet, barley, oats, and rye. Preferably, barley and oats are mentioned, More preferably, barley is mentioned. In addition, as a raw material, it selects according to a use and the objective from these plants, and may be used independently, and may be used in combination as appropriate.

なお、原料として、大麦類を用いる場合には、二条大麦、四条大麦、六条大麦、裸大麦など任意の品種の大麦を用いることができる。また、その形態としては、全粒、精麦粒、糠等、大麦種子の任意の組織又は画分を用いることができる。なお、大麦種子においては、胚乳にβ−グルカンが多量に含まれていることから、胚乳を含む全粒、精麦粒を用いるのがより好ましく、精麦粒を用いることが特に好ましい。   In addition, when using barley as a raw material, barley of arbitrary varieties, such as Nijo barley, Shijo barley, Rojo barley, and bare barley, can be used. Moreover, as the form, arbitrary structures | tissues or fractions of barley seeds, such as whole grain, wheat grains, and straw, can be used. In barley seeds, since the endosperm contains a large amount of β-glucan, it is more preferable to use whole grains including the endosperm and barley grains, and it is particularly preferable to use the barley grains.

<植物由来β−グルカン含有シロップの製造方法>
以下、本発明に係る植物由来β−グルカン含有シロップの製造方法を、大麦を原料とした場合について説明するが、用いる原料は大麦に限られず、大麦以外にも、当然上記植物を用いることが可能である。また、本製造方法も植物由来β−グルカン含有シロップの製造方法の一例であって、当然他の製造方法を用いることもできる。
<Method for producing plant-derived β-glucan-containing syrup>
Hereinafter, the production method of a plant-derived β-glucan-containing syrup according to the present invention will be described in the case of using barley as a raw material, but the raw material to be used is not limited to barley, and naturally the above plant can be used in addition to barley. It is. This production method is also an example of a method for producing a plant-derived β-glucan-containing syrup, and other production methods can be used as a matter of course.

1.仕込工程
まず、本発明に係るシロップを製造するにあたり、大麦種子の粉砕物を、適宜攪拌しながら純水と混合する。その後、大麦種子の粉砕物が混合された溶液を恒温槽で30℃〜60℃に保持しながら攪拌し、大麦粉砕物を完全に純水中に分散させる。
1. Preparation process First, when manufacturing the syrup which concerns on this invention, the ground barley seeds are mixed with a pure water, stirring suitably. Thereafter, the solution in which the pulverized barley seeds are mixed is stirred in a thermostatic bath at 30 ° C. to 60 ° C. to completely disperse the barley pulverized substances in pure water.

このときの大麦種子粉砕物の濃度としては、溶液全量に対する質量基準(W/W)で好ましくは5%〜50%、より好ましくは10%〜30%であることが望ましい。なお、この濃度が50%より高い場合、液化工程において、十分な液化反応を行うことができず、未分解のデンプンが残ってしまい、商品価値の低下の原因となる。また、未分解のデンプンが残った溶液は粘度が高くなる原因となり、濾過工程やフィルター処理工程における固液分離が困難となる。   The concentration of the barley seed pulverized product at this time is preferably 5% to 50%, more preferably 10% to 30% on a mass basis (W / W) based on the total amount of the solution. In addition, when this density | concentration is higher than 50%, sufficient liquefaction reaction cannot be performed in a liquefaction process, undegraded starch remains, and causes a fall of commercial value. Moreover, the solution in which the undegraded starch remains causes the viscosity to increase, and makes it difficult to separate the solid and the liquid in the filtration process and the filtering process.

また、適当なpH調整剤を用いて、溶液のpHを好ましくは3.0〜8.0、より好ましくはpH4.0〜7.0、更に好ましくはpH5.0〜6.0に調整することが望ましい。pHが8以下だと反応による着色が抑制され、得られるシロップの風味が良くなる。pHが3以上だと酵素活性が高く、反応を十分に行うことができる。用いるpH調整剤としては、食品又は飲料に適したものであればいずれでもよい。一例としては、pHを下げるために用いられるpH調整剤として、好ましくは塩酸、リン酸、クエン酸、酒石酸、フマル酸、アジピン酸、酢酸、コハク酸、ソルビン酸、エリソルビン酸、リン酸二水素カリウム、リン酸二水素ナトリウム又はこれらの組み合わせが、より好ましくはクエン酸やリンゴ酸、更に好ましくはリンゴ酸が用いられる。また、pHを上げるために用いられるpH調整剤として、好ましくは炭酸ナトリウム、炭酸カリウム、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、水酸化マグネシウム、酸化カルシウム、酸化マグネシウム、リン酸水素二カリウム、リン酸水素二ナトリウム又はこれらの組み合わせが、より好ましくは水酸化カルシウムや水酸化ナトリウムが、更に好ましくは水酸化カルシウムが用いられる。   Further, the pH of the solution is preferably adjusted to 3.0 to 8.0, more preferably pH 4.0 to 7.0, and still more preferably pH 5.0 to 6.0 using an appropriate pH adjuster. Is desirable. When the pH is 8 or less, coloring due to the reaction is suppressed, and the flavor of the resulting syrup is improved. When the pH is 3 or more, the enzyme activity is high and the reaction can be carried out sufficiently. Any pH adjusting agent may be used as long as it is suitable for food or beverage. For example, the pH adjuster used to lower the pH is preferably hydrochloric acid, phosphoric acid, citric acid, tartaric acid, fumaric acid, adipic acid, acetic acid, succinic acid, sorbic acid, erythorbic acid, potassium dihydrogen phosphate Sodium dihydrogen phosphate or a combination thereof, more preferably citric acid or malic acid, and still more preferably malic acid. Further, as a pH adjuster used for raising the pH, preferably sodium carbonate, potassium carbonate, sodium hydroxide, potassium hydroxide, calcium hydroxide, magnesium hydroxide, calcium oxide, magnesium oxide, dipotassium hydrogen phosphate, Disodium hydrogen phosphate or a combination thereof is more preferably calcium hydroxide or sodium hydroxide, and still more preferably calcium hydroxide.

その後、大麦粉砕物が分散された溶液中に、タンパク質分解酵素を添加し、その溶液の温度を添加したタンパク質分解酵素の反応温度まで上げ、所定の反応時間で反応させる。タンパク質分解反応は、液化反応の前に行うことが重要である。β−グルカンの周囲にはタンパク質が存在しているため、タンパク質分解反応を行わなければ、β−グルカンに酵素が近づくことができない。このため、最終的にβ−グルカンが十分含まれないシロップしか得られない。   Thereafter, the proteolytic enzyme is added to the solution in which the barley pulverized product is dispersed, and the temperature of the solution is raised to the reaction temperature of the added proteolytic enzyme, and the reaction is performed for a predetermined reaction time. It is important to carry out the proteolytic reaction before the liquefaction reaction. Since a protein exists around β-glucan, an enzyme cannot approach β-glucan unless a proteolytic reaction is performed. For this reason, finally, only a syrup that does not contain sufficient β-glucan can be obtained.

添加するタンパク質分解酵素としては、EC番号が3.4群のものであれば良く、好ましくはプロテアーゼ(EC3.4.22.2)を用いることができる。このようなタンパク質分解酵素としては市販のものでも良く、特に好ましくは、商品名「スミチームP」(新日本化学工業社製)である。   As a proteolytic enzyme to be added, it is sufficient if it has an EC number of Group 3.4, and preferably a protease (EC 3.4.22.2) can be used. Such a proteolytic enzyme may be a commercially available one, and particularly preferably, trade name “Sumiteam P” (manufactured by Shin Nippon Chemical Industry Co., Ltd.).

タンパク質分解酵素の添加量は、原料に対する質量基準(W/W)で好ましくは0.001%〜2.0%、より好ましくは0.01%〜1.0%、更に好ましくは0.03%〜0.1%である。2.0%以下であれば、不快な風味を抑制でき、0.001%以上であれば十分にタンパク質分解反応が進む。   The amount of proteolytic enzyme added is preferably 0.001% to 2.0%, more preferably 0.01% to 1.0%, still more preferably 0.03% on a mass basis (W / W) relative to the raw material. ~ 0.1%. If it is 2.0% or less, unpleasant flavor can be suppressed, and if it is 0.001% or more, the proteolytic reaction proceeds sufficiently.

タンパク質分解酵素の反応温度及び反応時間は、添加するタンパク質分解酵素の種類や原料として用いる植物によっても異なる。しかし、一例として、好ましくは30℃〜65℃の反応温度、より好ましくは40℃〜65℃の反応温度、更に好ましくは45℃〜60℃の反応温度であって、好ましくは0.05時間〜24時間の反応時間、より好ましくは0.2時間〜12時間の反応時間、更に好ましくは0.3時間〜6時間の反応時間、特に好ましくは0.5時間〜2時間の反応時間が挙げられる。   The reaction temperature and reaction time of the proteolytic enzyme vary depending on the type of proteolytic enzyme to be added and the plant used as a raw material. However, as an example, the reaction temperature is preferably 30 ° C. to 65 ° C., more preferably 40 ° C. to 65 ° C., still more preferably 45 ° C. to 60 ° C., and preferably 0.05 hours to The reaction time is 24 hours, more preferably 0.2 to 12 hours, still more preferably 0.3 to 6 hours, and particularly preferably 0.5 to 2 hours. .

2.液化工程
仕込工程を経て得られた溶液に液化酵素を添加し、その溶液を加温し、添加した液化酵素の反応温度まで上げ、所定の反応時間で液化反応させる。この液化反応には、沸騰湯浴であったり、ジェットクッカーなどの連続式液化装置を利用することができる。
2. Liquefaction process A liquefaction enzyme is added to the solution obtained through the preparation process, the solution is heated, raised to the reaction temperature of the added liquefaction enzyme, and liquefied for a predetermined reaction time. For this liquefaction reaction, a boiling water bath or a continuous liquefaction apparatus such as a jet cooker can be used.

添加する液化酵素としては、デンプンのα−1,4グリコシド結合をランダムに切断するものであればよく、好ましくはα−アミラーゼ(EC3.2.1.1)を用いることができる。このような液化酵素としては市販のものでも良く、特に好ましくは、商品名「クライスターゼT10S」(天野エンザイム社製)である。   The liquefying enzyme to be added is not particularly limited as long as it randomly cleaves the α-1,4 glycosidic bond of starch, and α-amylase (EC 3.2.1.1) can be preferably used. Such a liquefying enzyme may be a commercially available product, and particularly preferably, trade name “Chrytase T10S” (manufactured by Amano Enzyme).

液化酵素の添加量は、液化不良にならなければよいが、原料に対する質量基準(W/W)で好ましくは0.001%〜1.0%、より好ましくは0.03%〜0.5%、更に好ましくは0.1%〜0.4%である。0.001%以上であれば、液化反応は十分に進み、1.0%以下であれば経済的である。   The amount of liquefied enzyme added is not limited to liquefaction, but is preferably 0.001% to 1.0%, more preferably 0.03% to 0.5% on a mass basis (W / W) relative to the raw material. More preferably, it is 0.1% to 0.4%. If it is 0.001% or more, the liquefaction reaction proceeds sufficiently, and if it is 1.0% or less, it is economical.

液化酵素の反応温度及び反応時間は、添加する液化酵素の種類や原料として用いる植物によっても異なる。しかし、一例として、好ましくは65℃〜120℃の反応温度、より好ましくは80℃〜110℃の反応温度であって、好ましくは0.01時間〜24時間の反応時間、より好ましくは0.1時間〜12時間の反応時間、更に好ましくは0.1時間〜2時間の反応時間が挙げられる。   The reaction temperature and reaction time of the liquefaction enzyme vary depending on the type of liquefaction enzyme to be added and the plant used as a raw material. However, as an example, the reaction temperature is preferably 65 ° C. to 120 ° C., more preferably 80 ° C. to 110 ° C., preferably 0.01 to 24 hours, more preferably 0.1 The reaction time is from 12 hours to 12 hours, more preferably from 0.1 to 2 hours.

3.糖化工程
液化酵素溶液を糖化酵素の反応温度まで低下させた後に、その溶液に糖化酵素及びβ−グルカン分解酵素を添加し、その反応温度で所定の反応時間、糖化反応させる。糖化反応後の溶液は、糖化酵素及びβ−グルカン分解酵素を失活させるため、90℃以上の高温下で所定時間処理される。
3. Saccharification Step After the liquefying enzyme solution is lowered to the saccharification enzyme reaction temperature, saccharification enzyme and β-glucan degrading enzyme are added to the solution, and the saccharification reaction is carried out at the reaction temperature for a predetermined reaction time. The solution after the saccharification reaction is treated at a high temperature of 90 ° C. or higher for a predetermined time in order to deactivate the saccharifying enzyme and β-glucan degrading enzyme.

なお、添加する糖化酵素としては、液化により生じるデキストリン類を更に分解し少糖類とするものであればよく、適宜市販の糖化酵素を用いることができる。   The saccharifying enzyme to be added may be any saccharifying enzyme as long as dextrins generated by liquefaction are further decomposed into oligosaccharides, and commercially available saccharifying enzymes can be used as appropriate.

糖化酵素としてβ−アミラーゼ(EC3.2.1.2)を用いた場合には二糖類であるマルトースを多く含む溶液を得ることができる。このようなβ−アミラーゼとしては、商品名「β−アミラーゼ#1500S」(ナガセケムテックス社製)が特に好ましい。そして、このようなβ−アミラーゼの添加量は、原料に対する質量基準(W/W)で好ましくは0.001%〜2.0%、より好ましくは0.1%〜1.5%、更に好ましくは0.2%〜1.0%である。   When β-amylase (EC 3.2.1.2) is used as a saccharification enzyme, a solution containing a large amount of maltose which is a disaccharide can be obtained. As such β-amylase, the trade name “β-amylase # 1500S” (manufactured by Nagase ChemteX Corporation) is particularly preferable. And the addition amount of such β-amylase is preferably 0.001% to 2.0%, more preferably 0.1% to 1.5%, still more preferably on a mass basis (W / W) with respect to the raw material. Is 0.2% to 1.0%.

また、β−アミラーゼに加えて、糖化酵素として、いわゆる枝切酵素を更に添加するのが好ましい。この枝切酵素とは、液化により生じるデキストリン類のα−1,6結合を切断するための酵素で、好ましくはプルラナーゼ(EC3.2.1.41)やイソアミラーゼ(EC3.2.1.68)を、特に好ましくは商品名「プルラナーゼアマノ3」(天野エンザイム社製)を用いることができる。そして、このような枝切酵素の添加量は、原料に対する質量基準(W/W)で好ましくは0.001%〜2.0%、より好ましくは0.01%〜1.5%、更に好ましくは0.01%〜1.0%である。   In addition to β-amylase, it is preferable to further add a so-called debranching enzyme as a saccharifying enzyme. This debranching enzyme is an enzyme for cleaving the α-1,6 bond of dextrins generated by liquefaction, and preferably pullulanase (EC 3.2.1.41) or isoamylase (EC 3.2.1.68). In particular, the trade name “Pulllanase Amano 3” (manufactured by Amano Enzyme) can be used. And the addition amount of such a debranching enzyme is preferably 0.001% to 2.0%, more preferably 0.01% to 1.5%, and still more preferably on a mass basis (W / W) relative to the raw material. Is 0.01% to 1.0%.

また、本発明においては、食品や飲料への使用を考慮すると、最終的に低粘度の溶液が得られるのが望ましい。従って、最終的に得られる溶液中に含まれる糖組成として、単糖類や二糖類などがより多く含まれる方が望ましい。従って、β−アミラーゼ及び枝切酵素に加えて、糖化酵素として、更にグルコアミラーゼ(EC3.2.1.3)を、特に好ましくは商品名「ダイザイムGPS」(天野エンザイム社製)を添加することができる。そして、このグルコアミラーゼの添加量は、原料に対する質量基準(W/W)で好ましくは0.001%〜5.0%、より好ましくは0.1%〜3.0%、更に好ましくは0.2%〜2.5%である。   In the present invention, it is desirable that a solution having a low viscosity is finally obtained in consideration of use in foods and beverages. Therefore, it is desirable that the sugar composition contained in the finally obtained solution contains more monosaccharides, disaccharides and the like. Therefore, in addition to β-amylase and debranching enzyme, glucoamylase (EC 3.2.1.3), particularly preferably “Daizyme GPS” (manufactured by Amano Enzyme) is added as a saccharifying enzyme. Can do. And the addition amount of this glucoamylase is preferably 0.001% to 5.0%, more preferably 0.1% to 3.0%, still more preferably 0.00% by mass basis (W / W) relative to the raw material. 2% to 2.5%.

さらに、本発明においては、より低分子量のβ−グルカン含有溶液を得ることを目的とすることを考慮すると、糖化工程において、上記糖化酵素に加えて、さらにβ−グルカン分解酵素(EC3.2.1.73)を添加するのが望ましい。このβ−グルカン分解酵素は適宜市販のものを利用することができるが、特に好ましくは商品名「Finizym(登録商標)250L」(Novozymes社製)を利用することができる。   Furthermore, in the present invention, in consideration of the purpose of obtaining a β-glucan-containing solution having a lower molecular weight, in the saccharification step, in addition to the saccharifying enzyme, a β-glucan degrading enzyme (EC 3.2. It is desirable to add 1.73). As this β-glucan-degrading enzyme, a commercially available one can be used as appropriate, but the product name “Finizym (registered trademark) 250L” (manufactured by Novozymes) can be particularly preferably used.

本製造方法で用いる大麦粉砕物中には、一般的に、重量平均分子量で数百万程度のβ−グルカンが含有されている。そこで、最終的な溶液の粘度や所望のミセル化阻害能を得るという観点から、β−グルカン分解酵素による分解により、所望の重量平均分子量のβ−グルカンを得るのである。当該β−グルカン分解酵素の添加量や反応時のpHを調整すれば、β−グルカンの重量平均分子量を所定の範囲にコントロールすることが可能である。   The barley pulverized product used in this production method generally contains several millions of β-glucan in terms of weight average molecular weight. Therefore, from the viewpoint of obtaining the final solution viscosity and the desired ability to inhibit micelle formation, β-glucan having a desired weight average molecular weight is obtained by decomposition with β-glucan degrading enzyme. By adjusting the addition amount of the β-glucan degrading enzyme and the pH during the reaction, it is possible to control the weight average molecular weight of β-glucan within a predetermined range.

本発明においてβ−グルカンの好ましい重量平均分子量としては、好ましくは2,500〜40,000、より好ましくは6,000〜30,000、更に好ましくは7,000〜25,000、特に好ましくは8,000〜20,000である。そして、この重量平均分子量を得るのに用いられるβ−グルカン分解酵素の添加量は、原料に対する質量基準(W/W)で、好ましくは0.0001%〜1.0%、より好ましくは0.001%〜0.1%、更に好ましくは0.002%〜0.01%である。また、β−グルカン分解酵素による分解反応時の溶液のpHは、当該酵素が短時間で失活しない程度であれば特に問題ないが、好ましくはpH4.0〜pH8.0、より好ましくはpH4.5〜pH7.0、更に好ましくは、pH5.0〜pH6.0である。   In the present invention, β-glucan preferably has a weight average molecular weight of preferably 2,500 to 40,000, more preferably 6,000 to 30,000, still more preferably 7,000 to 25,000, particularly preferably 8. , 20,000 to 20,000. And the addition amount of (beta) -glucan degrading enzyme used for obtaining this weight average molecular weight is 0.0001%-1.0%, More preferably, it is 0.0001%-1.0% by the mass reference | standard (W / W) with respect to a raw material. 001% to 0.1%, more preferably 0.002% to 0.01%. Further, the pH of the solution at the time of the degradation reaction with β-glucan degrading enzyme is not particularly limited as long as the enzyme is not inactivated in a short time, but preferably pH 4.0 to pH 8.0, more preferably pH 4.0. 5 to pH 7.0, more preferably pH 5.0 to pH 6.0.

本工程における反応温度及び反応時間は、添加する糖化酵素やβ−グルカン分解酵素の種類や原料として用いる植物によっても異なる。しかし、一例として、好ましくは40℃〜80℃の反応温度、より好ましくは50℃〜70℃の反応温度、更に好ましくは55℃〜65℃の反応温度であって、好ましくは0.1時間〜24時間の反応時間、より好ましくは0.5時間〜12時間の反応時間、更に好ましくは1時間〜2時間の反応時間が挙げられる。   The reaction temperature and reaction time in this step vary depending on the type of saccharifying enzyme and β-glucan degrading enzyme to be added and the plant used as a raw material. However, as an example, the reaction temperature is preferably 40 ° C. to 80 ° C., more preferably 50 ° C. to 70 ° C., still more preferably 55 ° C. to 65 ° C., and preferably 0.1 hours to The reaction time is 24 hours, more preferably 0.5 to 12 hours, and still more preferably 1 to 2 hours.

4.濾過/フィルター処理/濃縮工程
糖化工程を経て得られた溶液を珪藻土や活性炭を助剤とする濾過を行い、さらにフィルター上を通液することで不溶部を取り除いた液部を得る。そして、その用途に応じたBrixとなるようにエバポレータなどを用いて濃縮を行う。
4). Filtration / filter treatment / concentration step The solution obtained through the saccharification step is filtered using diatomaceous earth or activated carbon as an auxiliary agent, and further passed through the filter to obtain a liquid portion from which insoluble portions have been removed. And it concentrates using an evaporator etc. so that it may become Brix according to the use.

以上の仕込工程、液化工程、糖化工程、濾過/フィルター処理/濃縮工程によって、植物由来β−グルカン含有シロップを得ることができる。   A plant-derived β-glucan-containing syrup can be obtained by the above charging step, liquefaction step, saccharification step, and filtration / filter treatment / concentration step.

<Brix(可溶性固形分濃度)>
本発明において、Brixとは、可溶性固形分濃度(%)のことであり、可溶性固形分が溶解した水溶液の20℃における屈折率を測定し、ICUMSA(International Commission for Uniform Methods of Sugar Analysis)提供の換算表に基づいて、純ショ糖溶液の質量/質量パーセントに換算した値のことである。本発明においては、水溶液中、すなわち、上記製造工程で製造された植物由来β−グルカン含有シロップ中に含まれる可溶性固形分の濃度のことを意味する。このBrixは既に知られている公知の測定法を適宜用いて測定することができ、一般的には市販の糖度計(例えば、デジタル屈折計 商品名「RX−5000α」:アタゴ社製)を用いて測定することができる。
<Brix (soluble solid content concentration)>
In the present invention, Brix refers to a soluble solid content concentration (%). The refractive index of an aqueous solution in which the soluble solid content is dissolved is measured at 20 ° C., and provided by ICUMSA (International Commission for Uniform of Sugar Analysis). It is the value converted into the mass / mass percent of the pure sucrose solution based on the conversion table. In this invention, it means the density | concentration of the soluble solid content contained in the aqueous solution, ie, the plant-derived (beta) -glucan containing syrup manufactured at the said manufacturing process. This Brix can be measured by appropriately using a known measurement method that is already known. Generally, a commercially available saccharimeter (for example, a digital refractometer, trade name “RX-5000α”: manufactured by Atago Co., Ltd.) is used. Can be measured.

なお、この最適なBrixは、製造されたシロップとして取り扱いが容易な低い粘度を実現しつつ、シロップの微生物増殖リスクを低くするという観点から適宜調整するとよい。   The optimal Brix may be appropriately adjusted from the viewpoint of reducing the risk of microbial growth of the syrup while realizing a low viscosity that is easy to handle as a manufactured syrup.

<β−グルカンのミセル化阻害能>
コレステロールの吸収に関与する胆汁酸は、所定の濃度以上になると胆汁酸ミセルを形成する。コレステロールは単独では小腸に吸収されないが、胆汁酸ミセルに取り込まれることで、小腸から吸収されうる。すなわち、コレステロールは、胆汁酸ミセルに取り込まれたミセルとして、小腸に吸収される。
<The ability of β-glucan to inhibit micellization>
Bile acids involved in cholesterol absorption form bile acid micelles when the concentration exceeds a predetermined level. Cholesterol is not absorbed by the small intestine alone, but can be absorbed from the small intestine by being taken into bile acid micelles. That is, cholesterol is absorbed into the small intestine as micelles incorporated into bile acid micelles.

このとき、β−グルカンは胆汁酸ミセルにコレステロールが会合するのを阻害する、又は、一旦形成されたコレステロールが取り込まれたミセルを破壊し、再度コレステロールを遊離させることによって、コレステロールの小腸での吸収が阻害される。   At this time, β-glucan absorbs cholesterol in the small intestine by inhibiting the association of cholesterol with bile acid micelles, or destroying the micelles once incorporated with cholesterol and releasing cholesterol again. Is inhibited.

すなわち、コレステロールのミセル化阻害能とは、広義には、コレステロールが胆汁酸ミセルに取り込まれて新たなミセルを形成することで小腸に吸収されるのを阻害することを意味している。   That is, the ability of cholesterol to inhibit micelle formation broadly means that cholesterol is taken into bile acid micelles to form new micelles, thereby inhibiting absorption into the small intestine.

そして、上記製造方法によって得られた植物由来β−グルカン含有シロップがコレステロールのミセル化阻害能を有しているか否かは、以下の試験によって確認することができる。   And it can be confirmed by the following tests whether the plant-derived β-glucan-containing syrup obtained by the above production method has the ability to inhibit cholesterol micellization.

まず、胆汁酸の塩とコレステロールに加え、生体内に吸収されうる他の脂質(例えば、レシチン、オレイン酸など)が添加されたミセル溶液を用意する。次に、上記製造方法によって得られた植物由来β−グルカン含有シロップから公知の方法でβ−グルカンの抽出を行う。そして、最初に用意したミセル溶液に抽出したβ−グルカン溶液を所定量添加して、室温〜40℃で、12時間〜48時間インキュベートする。そしてインキュベート後の溶液を遠心分離等により上層と下層とに分け、上層部分に含まれる遊離コレステロールの濃度を測定する。   First, a micelle solution to which other lipids (for example, lecithin, oleic acid, etc.) that can be absorbed in the living body are added in addition to bile acid salt and cholesterol is prepared. Next, β-glucan is extracted from the plant-derived β-glucan-containing syrup obtained by the above production method by a known method. Then, a predetermined amount of the extracted β-glucan solution is added to the prepared micelle solution and incubated at room temperature to 40 ° C. for 12 hours to 48 hours. Then, the incubated solution is divided into an upper layer and a lower layer by centrifugation or the like, and the concentration of free cholesterol contained in the upper layer portion is measured.

なお、植物由来β−グルカン含有シロップ中のβ−グルカンの抽出は、上記の通り公知の方法を適宜用いることができるが、一例としては、AOAC(Association of Official Analytical Chemists) Internationalの公定法であるAOAC 985.12に規定された方法を用いることが好ましい。また、この方法を用いた市販キットを用いることができ、例えば、商品名「Total Dietary Fiber Assay」(Sigma Aldrich社製)が利用可能な市販のキットとして挙げられる。   In addition, extraction of β-glucan in plant-derived β-glucan-containing syrup can be appropriately performed using a known method as described above, but as an example, it is an official method of AOAC (Association of Official Analytical Chemistry) International. It is preferable to use the method defined in AOAC 985.12. In addition, a commercially available kit using this method can be used, and examples thereof include a commercially available kit under the trade name “Total Dietary Fiber Assay” (manufactured by Sigma Aldrich).

また、上記方法により抽出されたβ−グルカン溶液がミセル化阻害能を有しているか否かの判断は、標品を用いて定性的に行うことができる。例えば、大麦由来のβ−グルカン含有シロップを試験に用いた場合には、入手した大麦β−グルカン標品をβ−グルカン分解酵素で分解した標品由来のβ−グルカン溶液を用意する。そして、最初に用意したミセル溶液に所定量の標品由来β−グルカン溶液を添加した後、上記試験と同様に、インキュベート、遠心分離等を経て、遊離コレステロールの濃度を測定する。こうして得られた大麦β−グルカン標品と、上記製造方法由来のβ−グルカンを用いて上記試験を行って、遊離コレステロール濃度を比較することにより、ミセル化阻害能を評価する。   In addition, the determination of whether the β-glucan solution extracted by the above method has the ability to inhibit micellization can be qualitatively performed using a sample. For example, when a barley-derived β-glucan-containing syrup is used for the test, a standard-derived β-glucan solution obtained by decomposing the obtained barley β-glucan standard with a β-glucan degrading enzyme is prepared. Then, after adding a predetermined amount of standard-derived β-glucan solution to the prepared micelle solution, the concentration of free cholesterol is measured through incubation, centrifugation, and the like in the same manner as in the above test. The above test is performed using the barley β-glucan sample thus obtained and the β-glucan derived from the above production method, and the micelle formation inhibitory ability is evaluated by comparing the free cholesterol concentration.

<血糖値上昇抑制能>
動物(好ましくはヒト)における、本発明に係る植物由来β−グルカン含有シロップの血糖値上昇抑制能は、種々の方法によって確認することが可能である。一例としては、まず十分に空腹にさせた健常者に本発明に係る植物由来β−グルカン含有シロップを最初の食事(ファーストミール)として所定量摂取させ、その後一定期間ごとに血糖値を測定することによって確認することが可能である。
<Ability to suppress blood sugar level rise>
The ability of the plant-derived β-glucan-containing syrup according to the present invention to suppress an increase in blood glucose level in animals (preferably humans) can be confirmed by various methods. As an example, first, a healthy person who is sufficiently hungry ingests a predetermined amount of the plant-derived β-glucan-containing syrup as the first meal (first meal) according to the present invention, and then measures the blood glucose level at regular intervals. Can be confirmed.

さらに、所定時間後、次の食事(セカンドミール)を摂取させ、ファーストミールとして摂取させた植物由来β−グルカン含有シロップが次の食事(セカンドミール)による血糖値上昇に与える影響を、一定時間ごとに評価する。これによって、ファーストミールとして摂取した食事が、次に摂取した食事(セカンドミール)後の血糖値にも影響を及ぼすことを意味するセカンドミール効果も確認することが可能である。   Furthermore, after a predetermined time, the next meal (second meal) was ingested, and the effect of the plant-derived β-glucan-containing syrup ingested as the first meal on the blood glucose level increase by the next meal (second meal) was determined at regular intervals. To evaluate. Thereby, it is possible to confirm the second meal effect which means that the meal taken as the first meal also affects the blood glucose level after the next meal (second meal).

<植物由来β−グルカン含有シロップ>
本発明に係る植物由来β−グルカン含有シロップは、以下の特性を有することが望ましい。すなわち、重量平均分子量として、好ましくは2,500〜40,000、より好ましくは6,000〜30,000、更に好ましくは7,000〜25,000、特に好ましくは8,000〜20,000のβ−グルカンを含有するのが良い。これにより、例えば食品や飲料の原料としての取り扱いが容易になるだけでなく、β−グルカンの生理機能も十分に発揮することが可能となる。
<Plant-derived β-glucan-containing syrup>
The plant-derived β-glucan-containing syrup according to the present invention desirably has the following characteristics. That is, the weight average molecular weight is preferably 2,500 to 40,000, more preferably 6,000 to 30,000, still more preferably 7,000 to 25,000, and particularly preferably 8,000 to 20,000. It is preferable to contain β-glucan. Thereby, for example, not only the handling as a raw material for foods and beverages is facilitated, but also the physiological function of β-glucan can be sufficiently exhibited.

例えば食品や飲料の原料としての取り扱いという観点から、植物由来β−グルカン含有シロップの粘度は、好ましくは20,000cP以下、より好ましくは1,000cP〜15,000cP、更に好ましくは、2,000cP〜10,000cPであることが望ましい。また、植物由来β−グルカン含有シロップのBrixとしては、好ましくは30%〜80%に、より好ましくは50%〜80%に、更に好ましくは60%〜75%であることが望ましい。また、植物由来β−グルカン含有シロップのpHとしては、好ましくはpH4.0〜pH8.0、より好ましくはpH4.5〜pH7.0、更に好ましくはpH5.0〜pH6.0であることが望ましい。   For example, from the viewpoint of handling as a raw material for foods and beverages, the viscosity of the plant-derived β-glucan-containing syrup is preferably 20,000 cP or less, more preferably 1,000 cP to 15,000 cP, and still more preferably 2,000 cP to It is desirable to be 10,000 cP. The Brix of the plant-derived β-glucan-containing syrup is preferably 30% to 80%, more preferably 50% to 80%, and still more preferably 60% to 75%. The pH of the plant-derived β-glucan-containing syrup is preferably pH 4.0 to pH 8.0, more preferably pH 4.5 to pH 7.0, and still more preferably pH 5.0 to pH 6.0. .

<植物由来β−グルカン含有シロップを含む食品又は飲料>
上記特性を有する植物由来β−グルカン含有シロップは、各種食品又は飲料に添加することで当該食品又は飲料の素材として利用することができる。この食品の例としては、果物類(リンゴ、バナナ、メロン等のカットフルーツ、シロップ漬けなど)、穀物加工品(パン、餅など)、食肉加工品(ハム、ソーセージなど)、乳製品(バター、チーズ、ヨーグルトなど)、果実加工品(ジャム、マーマレードなど)、菓子類(チョコレート、クッキー、ケーキ、ゼリーなど)、調味料(醤油、ソース、みりんなど)、サプリメントなどの、様々な食品が挙げられる。また、飲料の例としては、ビール、ノンアルコール飲料、ジュース、コーヒー、紅茶、緑茶、炭酸飲料などの様々な飲料が挙げられる。
<Food or beverage containing plant-derived β-glucan-containing syrup>
The plant-derived β-glucan-containing syrup having the above characteristics can be used as a material for the food or beverage by adding it to various foods or beverages. Examples of this food include fruits (cut fruits such as apples, bananas and melons, pickled syrup, etc.), processed cereals (bread, strawberries, etc.), processed meats (ham, sausages, etc.), dairy products (butter, Cheese, yogurt, etc.), processed fruits (jam, marmalade, etc.), confectionery (chocolate, cookies, cakes, jelly, etc.), seasonings (soy sauce, sauce, mirin, etc.), supplements, etc. . Examples of beverages include various beverages such as beer, non-alcoholic beverages, juice, coffee, tea, green tea, and carbonated beverages.

なお、これら食品又は飲料には、植物由来β−グルカン含有シロップに加えて、その食品の種類に応じて種々の成分を添加することができる。例えば、ブドウ糖、果糖、ショ糖、マルトース、水飴、乳糖等の糖質類、ソルビトール、エリスリトール、マルチトール、キシリトール等の糖アルコール類、アスパルテーム、ステビオサイド、スクラロース、アセスルファムK等の高甘味度甘味料、クエン酸、酒石酸、リンゴ酸、コハク酸、乳酸等の有機酸類、L−アスコルビン酸、dl−α−トコフェロール、ビタミンB類、ニコチン酸アミド、パントテン酸カルシウム等のビタミン類、グリセリン脂肪酸エステル、ポリグリセリン脂肪酸エステル、ショ糖脂肪酸エステル、ソルビタン脂肪酸エステル、プロピレングリコール脂肪酸エステル等の界面活性剤、アラビアガム、カラギーナン、ペクチン、寒天等の増粘剤、カゼイン、ゼラチン等の安定化剤、アミノ酸類、カルシウム塩等ミネラル類、エリソルビン酸ナトリウム、グリセリン、プロピレングリコール等添加物、色素、香料、保存剤等の食品又は飲料素材が挙げられる。   In addition to the plant-derived β-glucan-containing syrup, various components can be added to these foods or beverages depending on the type of the food. For example, sugars such as glucose, fructose, sucrose, maltose, starch syrup, and lactose, sugar alcohols such as sorbitol, erythritol, maltitol, and xylitol, high-intensity sweeteners such as aspartame, stevioside, sucralose, and acesulfame K Organic acids such as citric acid, tartaric acid, malic acid, succinic acid, lactic acid, L-ascorbic acid, dl-α-tocopherol, vitamin B, vitamins such as nicotinic acid amide, calcium pantothenate, glycerin fatty acid ester, polyglycerin Surfactants such as fatty acid esters, sucrose fatty acid esters, sorbitan fatty acid esters, propylene glycol fatty acid esters, thickeners such as gum arabic, carrageenan, pectin, agar, stabilizers such as casein, gelatin, amino acids, calcium salts Minine Le acids, sodium erythorbate, glycerol, propylene glycol and the like additives, dyes, perfumes, include food or beverage material, such as preservatives.

また、食品又は飲料中に添加する植物由来β−グルカン含有シロップは、そのままシロップとして製品としてもよいが、食品又は飲料に含有させてもよく、
その添加量は食品又は飲料に対して、質量基準で好ましくは0.01%〜100%、より好ましくは0.1%〜50%、更に好ましくは1%〜20%で用いられる。
Moreover, the plant-derived β-glucan-containing syrup added to food or beverage may be used as a product as it is as a syrup, but may be contained in food or beverage,
The amount added is preferably 0.01% to 100%, more preferably 0.1% to 50%, and still more preferably 1% to 20% based on the mass of the food or beverage.

以下、実施例により本発明を更に詳しく説明するが、本発明はそれらに限定されるものではない。なお、以下の実施例において、特に断りのない限り、「%」は質量/質量%を意味する。   EXAMPLES Hereinafter, although an Example demonstrates this invention in more detail, this invention is not limited to them. In the following examples, “%” means mass / mass% unless otherwise specified.

[実施例1]
実施例1では、以下の材料及び方法を用いた。
<植物由来β−グルカン含有シロップの調製>
大麦の粉砕物が30%となるよう純水で分散させたのち、恒温槽で50℃まで加温しながら大麦粉砕物の塊がなくなり完全に純水中に分散するまで攪拌した。その後、10%水酸化カルシウム溶液を加えて、大麦粉砕物溶液のpHを5.6に調整した。次いで、大麦粉砕物溶液に、タンパク質分解酵素(EC3.4.22.2)として商品名「スミチームP」(新日本化学工業社製)を原料に対する質量基準(W/W)で0.05%、液化酵素であるα−アミラーゼ(EC3.2.1.1)として商品名「クライスターゼT10S」(天野エンザイム社製)を原料に対する質量基準(W/W)で0.4%の濃度で添加し、50℃で1時間反応させた。
[Example 1]
In Example 1, the following materials and methods were used.
<Preparation of plant-derived β-glucan-containing syrup>
After being dispersed with pure water so that the pulverized barley was 30%, it was stirred until it was completely dispersed in the pure water while the barley pulverized mass disappeared while heating to 50 ° C. in a thermostatic bath. Thereafter, 10% calcium hydroxide solution was added to adjust the pH of the barley grind solution to 5.6. Subsequently, 0.05% of the barley pulverized product solution with a trade name “Sumiteam P” (manufactured by Shin Nippon Chemical Industry Co., Ltd.) as a proteolytic enzyme (EC 3.4.22.2) based on the mass of the raw material (W / W) , As the liquefying enzyme α-amylase (EC 3.2.1.1), the trade name “Chrytase T10S” (manufactured by Amano Enzyme) was added at a concentration of 0.4% on a mass basis (W / W) relative to the raw material And reacted at 50 ° C. for 1 hour.

次に、沸騰湯浴中に上記反応液をいれ90℃以上に加温し、1時間液化反応をさせた。そして、液化反応後、120℃で15分間オートクレーブをかけて添加した液化酵素を失活させた。   Next, the reaction solution was placed in a boiling water bath and heated to 90 ° C. or higher to cause a liquefaction reaction for 1 hour. After the liquefaction reaction, the added liquefied enzyme was inactivated by autoclaving at 120 ° C. for 15 minutes.

次に、上記反応液を恒温槽中で60℃まで冷却し、糖化酵素としてβ−アミラーゼ(EC3.2.1.2)である商品名「β−アミラーゼ#1500S」(ナガセケムテックス社製)を原料に対する質量基準(W/W)で0.52%の濃度で、プルラナーゼ(EC3.2.1.41)である商品名「プルラナーゼアマノ3」(天野エンザイム社製)を原料に対する質量基準(W/W)で0.26%の濃度で、グルコアミラーゼ(EC3.2.1.3)である商品名「ダイザイムGPS」(天野エンザイム社製)を原料に対する質量基準(W/W)で0.26%の濃度で、β−グルカン分解酵素(EC3.2.1.73)である商品名「Finizym(登録商標)250L」(Novozymes社製)を原料に対する質量基準(W/W)で0.0052%の濃度で、上記反応液中に添加した。その後、60℃で2時間糖化反応を行ったのち、90℃まで加温して酵素を失活させた。   Next, the reaction solution is cooled to 60 ° C. in a thermostatic bath, and the product name “β-amylase # 1500S” (manufactured by Nagase ChemteX Corporation), which is β-amylase (EC 3.2.1.2) as a saccharifying enzyme. At a concentration of 0.52% based on the mass of the raw material (W / W), and the product name “Pulllanase Amano 3” (manufactured by Amano Enzyme), which is pullulanase (EC 3.2.1.41), based on the mass based on the raw material ( The product name “Dyzyme GPS” (manufactured by Amano Enzyme), which is glucoamylase (EC 3.2.1.3), at a concentration of 0.26% in terms of W / W) is 0 on a mass basis (W / W) relative to the raw material. At a concentration of 26%, the trade name “Finzym (registered trademark) 250L” (manufactured by Novozymes), which is β-glucan-degrading enzyme (EC 3.2. In 0052% of concentration was added into the reaction solution. Then, after saccharification reaction was performed at 60 ° C. for 2 hours, the enzyme was inactivated by heating to 90 ° C.

次に、珪藻土(商品名「ラヂオライト#500S」:昭和化学工業社製)で被覆した濾紙(商品名「定性濾紙No.2」:ADVANTEC社製)を張ったヌッチェに、80℃〜85℃に保持した上記反応液を通液させた。この濾過液を細孔サイズ0.8μmのメンブレンフィルター(商品名「Mixed Cellulose Esters(MCE) Membrane Filters」:ADVANTEC社製)を張ったヌッチェに、70℃〜75℃に保持した上記濾過液を通液した。得られた濾過液はエバポレータによって固着しない程度まで濃縮した。なお、ここでの固着とは、濃縮中、フラスコ底面のシロップの一部が流動性を失い、フラスコに付着した状態のことを言う。   Next, 80 ° C. to 85 ° C. is applied to Nutsche covered with filter paper (trade name “Qualitative filter paper No. 2”: ADVANTEC) covered with diatomaceous earth (trade name “Radiolite # 500S”: manufactured by Showa Chemical Industry Co., Ltd.). The reaction solution held in was passed through. The filtrate was held at 70 ° C. to 75 ° C. through a Nutsche with a membrane filter (trade name “Mixed Cellulose Esters (MCE) Membrane Filters” manufactured by ADVANTEC) having a pore size of 0.8 μm. Liquid. The obtained filtrate was concentrated to such an extent that it was not fixed by an evaporator. Here, the term “fixed” refers to a state in which part of the syrup on the bottom of the flask loses fluidity and adheres to the flask during concentration.

<β−グルカンの定量方法>
上記方法により調製された植物由来β−グルカン含有シロップ中のβ−グルカンの定量は、β−グルカン測定キット(商品名「MIXED LINKAGE BETA−GLUCAN ASSAY KIT:Megazyme社製)を用いて、McCleary法(酵素法)により行った。すなわち、Brix10%に調整した植物由来β−グルカン含有シロップを15mlチューブに5ml入れ、細かく粉砕した硫酸アンモニウム2.5gを加え、溶解した。4℃、20時間静置した後、4℃、3,000rpmで、10分遠心し、上清を除去した。残ったペレットに50%(V/V)エタノール水溶液1mLを加え、激しく攪拌してペレットを懸濁させ、さらに50%(V/V)エタノール水溶液10mL加えて混合した。再び、4℃、3,000rpmで、5分遠心し、上清を除去した。再度、ペレット懸濁、エタノール添加、遠心及び上清除去の操作を繰り返した。ペレットを20mMのリン酸ナトリウム緩衝液(pH6.5)4.8mLに再溶解後、上記緩衝液で10倍希釈した溶液4.8mLにリケナーゼ溶液200μLを加え、40℃、5分インキュベーションした。4℃、3,000rpm、10分遠心した上清を100μLずつ15mlチューブに移した。チューブにβ-グルコシダーゼ溶液100μL加えて40℃、15分反応させた。その後、チューブにglucose oxidase/peroxidase(GOPOD)を3mLずつ加え、40℃、20分反応させ、510nmの吸光度を測定した。キットに記載の方法に従い、別途グルコース100μgの吸光度を測定し、基準とした。なお、β-グルコシダーゼ溶液のかわりに50mM 酢酸バッファー(pH4.0)100μLを加えたものをブランクとした。β−グルカン濃度は、次式により求めた。
<Method for quantifying β-glucan>
Β-glucan in the plant-derived β-glucan-containing syrup prepared by the above method was determined using the McCleary method (trade name “MIXED LINKAGE BETA-GLUCAN ASSAY KIT: manufactured by Megazyme) using the McCleary method ( That is, the plant-derived β-glucan-containing syrup adjusted to 10% Brix was added to 5 ml in a 15 ml tube, and 2.5 g of finely pulverized ammonium sulfate was added and dissolved. The supernatant was removed by centrifugation at 3,000 rpm for 10 minutes at 4 ° C. 1 mL of 50% (V / V) aqueous ethanol solution was added to the remaining pellet, and the pellet was suspended by vigorous stirring. (V / V) 10 mL of ethanol aqueous solution was added and mixed. The supernatant was removed by centrifuging at rpm for 5 minutes, and the operations of pellet suspension, ethanol addition, centrifugation and supernatant removal were repeated again, and the pellet was washed with 20 mM sodium phosphate buffer (pH 6.5). After redissolving in 8 mL, 200 μL of the lichenase solution was added to 4.8 mL of the solution diluted 10-fold with the above buffer, and incubated at 40 ° C. for 5 minutes. 100 μL of β-glucosidase solution was added to the tube and reacted at 40 ° C. for 15 minutes, after which 3 mL of glucose oxidase / peroxidase (GOPOD) was added to the tube, reacted at 40 ° C. for 20 minutes, and absorbance at 510 nm. According to the method described in the kit, the absorbance of 100 μg of glucose was separately obtained. Measured, as a reference. In addition, .Beta- glucan concentrations as blank plus 50mM acetate buffer (pH 4.0) 100 [mu] L in place of β- glucosidase solution was determined by the following equation.

β−グルカン濃度(可溶性固形分に対して、%)=ΔA×F×9×D×(100/Brix)
ここに、
ΔA=サンプルの吸光度−ブランクの吸光度
F=100/グルコース100μgの吸光度
D=シロップを希釈した際の希釈倍率
β-glucan concentration (% with respect to soluble solid content) = ΔA × F × 9 × D × (100 / Brix)
here,
ΔA = absorbance of the sample−absorbance of the blank F = 100 / absorbance of 100 μg of glucose D = dilution ratio when the syrup was diluted

<β−グルカンの抽出方法及びその分子量の測定方法>
上記方法により調製された植物由来β−グルカン含有シロップ中のβ−グルカンの重量平均分子量は、以下の方法により測定した。まず、AOAC985.29の公定法に基づいて、測定キット(商品名「Total Dietary Fiber Assay」:Sigma Aldrich社製)を用いて精製した。すなわち、三角フラスコ中に植物由来β−グルカン含有シロップ1gと0.08Mリン酸緩衝液(pH6.0)を50mL、上記キットに付属のα−アミラーゼ(EC3.2.1.1)溶液を100μL添加し、アルミホイルで蓋をした後、沸騰水中で30分間インキュベートした。その後、室温で30分間の冷却を経た後、0.275Nの水酸化ナトリウム水溶液を10mL程度上記反応液に添加しpHを7.5±0.2に調整した。その後、上記キットに付属のプロテアーゼ(EC3.4.21.62)溶液を50mg/mLに希釈した溶液を100μL、反応液に添加し、60℃で30分間振盪しながらインキュベートし、その後室温で30分間の冷却を行った。次に、0.325Nの塩酸水溶液を10mL上記反応液に添加しpHを4.3±0.3に調整した。その後、上記キットに付属のアミログルコシダーゼ(EC3.2.1.3)溶液を100μL、反応液に添加し、60℃で30分間振盪しながらインキュベートした。その後、反応液を3分間沸騰し上記酵素を失活させた。その後、反応液を濾紙(商品名「定性濾紙No.2」:ADVANTEC社製)に通液した。
<Method for Extracting β-Glucan and Method for Measuring Its Molecular Weight>
The weight average molecular weight of β-glucan in the plant-derived β-glucan-containing syrup prepared by the above method was measured by the following method. First, based on the official method of AOAC985.29, it refine | purified using the measurement kit (Brand name "Total Dietary Fiber Assay": Sigma Aldrich company make). That is, 1 g of plant-derived β-glucan-containing syrup and 50 mL of 0.08M phosphate buffer (pH 6.0) in an Erlenmeyer flask, and 100 μL of α-amylase (EC 3.2.1.1) solution attached to the above kit After adding and capping with aluminum foil, it was incubated in boiling water for 30 minutes. Thereafter, after cooling at room temperature for 30 minutes, about 10 mL of 0.275N sodium hydroxide aqueous solution was added to the reaction solution to adjust the pH to 7.5 ± 0.2. Thereafter, 100 μL of a solution obtained by diluting the protease (EC 3.4.21.62) solution attached to the kit to 50 mg / mL is added to the reaction solution, and incubated at 60 ° C. for 30 minutes with shaking. Cooling for a minute was performed. Next, 10 mL of a 0.325N hydrochloric acid aqueous solution was added to the reaction solution to adjust the pH to 4.3 ± 0.3. Thereafter, 100 μL of the amyloglucosidase (EC 3.2.1.3) solution attached to the kit was added to the reaction solution, and incubated at 60 ° C. for 30 minutes with shaking. Thereafter, the reaction solution was boiled for 3 minutes to deactivate the enzyme. Thereafter, the reaction solution was passed through filter paper (trade name “Qualitative Filter Paper No. 2” manufactured by ADVANTEC).

次に、上記反応液に陽イオン交換樹脂(商品名「ダイヤイオンPA218」:三菱化学社製)と陰イオン交換樹脂(商品名「ダイヤイオンPA408」:三菱化学社製)を混合、攪拌したのち、固層抽出カラム(商品名「Sep−Pak C18 Cartridge」:Waters社製)に通液させた。通液させた反応液を5mL分取し、それに硫酸アンモニウム2.5gを添加し、4℃で20時間、静置した。その後、4℃で10分間、3,000rpmで遠心分離をした後、上清を破棄し、ペレットに5mLの75%エタノールを添加しボルテックスミキサーを用いて洗浄した。そして、再度4℃で10分間、3,000rpmで遠心分離をした後、上清を破棄し、ペレットに5mLの75%エタノールを添加しボルテックスミキサーを用いて洗浄した。この遠心分離と洗浄の工程を再度繰り返した後、得られたペレットに純水を加えて80℃以上で加熱溶解した。その溶解液を0.45μmの細孔サイズのメンブレンフィルター(商品名「MILLEX(登録商標)−HP 0.45μm」:MILLIPORE社製)に通液した。β−グルカン溶液は、ゲル濾過クロマトグラフィーでその分子量分布及び重量平均分子量を測定した。   Next, a cation exchange resin (trade name “Diaion PA218”: manufactured by Mitsubishi Chemical Corporation) and an anion exchange resin (trade name “Diaion PA408”: manufactured by Mitsubishi Chemical Corporation) are mixed and stirred in the reaction solution. The solution was passed through a solid layer extraction column (trade name “Sep-Pak C18 Cartridge” manufactured by Waters). 5 mL of the reaction solution allowed to flow was taken, 2.5 g of ammonium sulfate was added thereto, and the mixture was allowed to stand at 4 ° C. for 20 hours. Then, after centrifuging at 3,000 rpm for 10 minutes at 4 ° C., the supernatant was discarded, and 5 mL of 75% ethanol was added to the pellet and washed using a vortex mixer. Then, after centrifuging again at 3,000 rpm for 10 minutes at 4 ° C., the supernatant was discarded, and 5 mL of 75% ethanol was added to the pellet and washed using a vortex mixer. After repeating the centrifugation and washing steps again, pure water was added to the obtained pellets and dissolved by heating at 80 ° C. or higher. The solution was passed through a membrane filter having a pore size of 0.45 μm (trade name “MILLEX (registered trademark) -HP 0.45 μm”: manufactured by MILLIPORE). The molecular weight distribution and weight average molecular weight of the β-glucan solution were measured by gel filtration chromatography.

ゲル濾過クロマトグラフィーでの分子量分布及び重量平均分子量の測定は、HLC−8220GPC(東ソー社製)を用いて以下の条件で行った。
カラム:G2500PW−G3000PW−G6000PW(東ソー社製)の3本連結カラム
溶媒:純水
温度:80℃
流速:1.0ml/min
検出:RI(示差屈折率)
得られた分子量分布及び重量平均分子量は、分子量が既知のプルラン(商品名「STANDARD P−82」:Shodex社製)を用いて作成した検量線に基づいて算出した。
The molecular weight distribution and the weight average molecular weight were measured by gel filtration chromatography using HLC-8220GPC (manufactured by Tosoh Corporation) under the following conditions.
Column: Three connected columns of G2500PW-G3000PW-G6000PW (manufactured by Tosoh Corporation) Solvent: Pure water Temperature: 80 ° C
Flow rate: 1.0 ml / min
Detection: RI (differential refractive index)
The obtained molecular weight distribution and weight average molecular weight were calculated based on a calibration curve prepared using pullulan having a known molecular weight (trade name “STANDARD P-82” manufactured by Shodex).

<粘度測定方法>
上記製造方法によって得られた植物由来β−グルカン含有シロップを、E型粘度計(商品名「VISCONIC ED」:東京計器社製)のプレートにそれぞれ1.2mL入れて、各Brixにおけるシロップの粘度を測定した。測定時の温度は25℃にした。
<Viscosity measurement method>
1.2 mL each of plant-derived β-glucan-containing syrup obtained by the above production method is put on a plate of an E-type viscometer (trade name “VISCONIC ED”: manufactured by Tokyo Keiki Co., Ltd.), and the viscosity of the syrup in each Brix is measured. It was measured. The temperature during measurement was 25 ° C.

<植物由来β−グルカン含有シロップ中のβ−グルカンの特性評価結果>
実施例1として、上記製造方法によって得られた植物由来β−グルカン含有シロップを用意した。そして、この実施例1に係るシロップのBrix、及び抽出したβ−グルカンの濃度、分子量分布、重量平均分子量、の各特性を評価した。
<Characteristic evaluation results of β-glucan in plant-derived β-glucan-containing syrup>
As Example 1, a plant-derived β-glucan-containing syrup obtained by the above production method was prepared. And each characteristic of the density | concentration, molecular weight distribution, and weight average molecular weight of Brix of the syrup which concerns on this Example 1, and the extracted (beta) -glucan was evaluated.

[比較例1]
比較例1として、原料として特殊大麦粉(β−グルカン含有量が7.5質量%)を用い、上記製造方法に記載されたグルコアミラーゼ(EC3.2.1.3)である商品名「ダイザイムGPS」(天野エンザイム社製)にかえて、転移酵素としてトランスグルコシダーゼ(EC3.2.1.20)である商品名「トランスグルコシダーゼLアマノ」(天野エンザイム社製)を原料に対する質量基準(W/W)で0.1%で添加した以外は、全て上記製造方法と同様の方法によって得られた植物由来β−グルカン含有シロップを用意した。ここで、比較例1で製造したβ−グルカン含有シロップは、濃縮工程においてBrix30%以下で固着した。そして、比較例1に係るシロップのBrix、及び抽出したβ−グルカンの濃度、分子量分布、重量平均分子量、の各特性を評価した。なお、分子量分布及び重量平均分子量の測定は、高速液体クロマトグラフ Prominence(島津製作所社製)を用いて、以下のゲル濾過クロマトグラフィーの条件で行った。
<測定条件>
カラム:GS520−GS320(Shodex社製)
溶媒:純水
温度:50℃
流速:1.0ml/min
検出:CAD(コロナ荷電化粒子検出器:日本ダイオネクス社製)
[Comparative Example 1]
As Comparative Example 1, special barley flour (β-glucan content is 7.5% by mass) is used as a raw material, and the trade name “Dyzyme” which is glucoamylase (EC 3.2.1.3) described in the above production method. Instead of “GPS” (manufactured by Amano Enzyme), the trade name “transglucosidase L Amano” (manufactured by Amano Enzyme), which is transglucosidase (EC 3.2.1.20) as a transferase, is used as a mass standard (W / A plant-derived β-glucan-containing syrup obtained by the same method as in the above production method except that 0.1% was added in (W). Here, the β-glucan-containing syrup produced in Comparative Example 1 was fixed at a Brix of 30% or less in the concentration step. And each characteristic of Brix of the syrup which concerns on the comparative example 1, and the density | concentration of the extracted (beta) -glucan, molecular weight distribution, and a weight average molecular weight was evaluated. The molecular weight distribution and the weight average molecular weight were measured using a high performance liquid chromatograph Prominence (manufactured by Shimadzu Corporation) under the following gel filtration chromatography conditions.
<Measurement conditions>
Column: GS520-GS320 (manufactured by Shodex)
Solvent: Pure water Temperature: 50 ° C
Flow rate: 1.0 ml / min
Detection: CAD (corona charged particle detector: manufactured by Nippon Dionex)

まず、図1は、実施例1によって得られた植物由来β−グルカン含有シロップからβ−グルカンを抽出しゲル濾過クロマトグラフィーによって分子量分布を測定した結果を示す図である。図2は、比較例1によって得られた植物由来β−グルカン含有シロップからβ−グルカンを抽出しゲル濾過クロマトグラフィーによって分子量分布を測定した結果を示す図である。また、表1は、図1の分子量分布に基づいて、どの分子量のβ−グルカンがどの程度存在しているかを算出したものである。   First, FIG. 1 is a diagram showing the results of extracting β-glucan from the plant-derived β-glucan-containing syrup obtained in Example 1 and measuring the molecular weight distribution by gel filtration chromatography. FIG. 2 is a diagram showing the results of extracting β-glucan from the plant-derived β-glucan-containing syrup obtained in Comparative Example 1 and measuring the molecular weight distribution by gel filtration chromatography. Table 1 shows how much β-glucan of which molecular weight is present based on the molecular weight distribution of FIG.

Figure 2015186477
Figure 2015186477

これによると、実施例1に係る製造方法によって得られた植物由来β−グルカン含有シロップ中には分子量2,000〜10,000のβ−グルカンや、2,000未満のβ−グルカンが多量に存在しており、上記製造方法によって、より低分子のβ−グルカンを多量に得ることができた。   According to this, the plant-derived β-glucan-containing syrup obtained by the production method according to Example 1 contains a large amount of β-glucan having a molecular weight of 2,000 to 10,000 and β-glucan having a molecular weight of less than 2,000. It was possible to obtain a large amount of low-molecular β-glucan by the above production method.

表2は、実施例1と比較例1について、重量平均分子量、β−グルカン濃度、シロップとして存在できる最大Brixの各特性を比較した結果を示したものである。一般にBrixを上げていくと、シロップの流動性がなくなり、実質的に、シロップの取り扱いができなくなる。当該Brixはシロップとして取り扱いができる流動性を有しているBrixの最大値を示すものである。具体的には、濃縮時の固着の有無を指標とした。   Table 2 shows the results of comparing the characteristics of Example 1 and Comparative Example 1 of the weight average molecular weight, the β-glucan concentration, and the maximum Brix that can exist as a syrup. In general, when Brix is increased, the syrup becomes less fluid and the syrup cannot be handled substantially. The Brix indicates the maximum value of Brix having fluidity that can be handled as a syrup. Specifically, the presence or absence of fixation during concentration was used as an index.

Figure 2015186477
Figure 2015186477

表2によると、実施例1に係る製造方法によって得られた植物由来β−グルカン含有シロップ中には、可溶性固形分に対して4.1%の濃度でβ−グルカンが含まれていることが分かった。また、その重量平均分子量も13,000と、比較例1の重量平均分子量と比較して、十分に低い値であることが分かった。一般的に、Brixが低いと、微生物増殖リスクが高くなり、食品や飲料としての利用には不向きである。しかし、一方で、Brixを上げていくと、シロップの粘度が高くなり、その取り扱いが困難になる。このような観点において、実施例1の植物由来β−グルカン含有シロップは、十分に低い重量平均分子量を示しており、Brix70%以上という高いBrixをとっても、適度な粘度を有するシロップであり、食品や飲料としての用途が期待される。   According to Table 2, the plant-derived β-glucan-containing syrup obtained by the production method according to Example 1 contains β-glucan at a concentration of 4.1% with respect to the soluble solid content. I understood. Moreover, it turned out that the weight average molecular weight is also 13,000, and is a sufficiently low value compared with the weight average molecular weight of the comparative example 1. In general, if Brix is low, the risk of microbial growth increases and is not suitable for use as a food or beverage. On the other hand, however, increasing Brix increases the viscosity of the syrup, making it difficult to handle. From this point of view, the plant-derived β-glucan-containing syrup of Example 1 has a sufficiently low weight average molecular weight, and is a syrup having an appropriate viscosity even with a high Brix of Brix of 70% or more. Use as a beverage is expected.

<植物由来β−グルカン含有シロップの特性評価結果>
実施例1に係るシロップについては、上記特性以外にも、単糖類、二糖類、三糖類、四糖類以上の糖類の組成比、シロップの粘度等の特性も評価した。糖組成の評価方法は以下の通りである。シロップをBrix10%程度に希釈し、活性炭(商品名「白鷺A」:日本エンバイロケミカルズ社製)を適量添加して混合した。つぎに、サンプル溶液を煮沸するまで加熱し、濾紙(商品名「定性濾紙No.2」:ADVANTEC社製)に通液した。その後、サンプル溶液に陽イオン交換樹脂(商品名「ダイヤイオンPA218」:三菱化学社製)と陰イオン交換樹脂(商品名「ダイヤイオンPA408」:三菱化学社製)を混合、攪拌したのち、固層抽出カラム(商品名「Sep−Pak C18 Cartridge」:Waters社製)に通液させた。サンプルのBrixを1%〜5%程度に調整し、0.45μmの細孔サイズのメンブレンフィルター(商品名「MILLEX(登録商標)−HP 0.45μm」:メルク社製)に通液させ、糖組成分析用サンプルとした。糖組成は、商品名「Alliance(登録商標)HPLCシステム」(日本ウォーターズ社製)を用いて分析した。
<測定条件>
カラム:ULTRON PS80−N(島津ジーエルシー社製)
溶媒:純水
温度:60℃
流速:0.6ml/min
検出:RI(示差屈折率)
<Results of characterization of plant-derived β-glucan-containing syrup>
For the syrup according to Example 1, in addition to the above characteristics, characteristics such as the composition ratio of monosaccharides, disaccharides, trisaccharides, saccharides higher than tetrasaccharides, and viscosity of the syrup were also evaluated. The method for evaluating the sugar composition is as follows. The syrup was diluted to about Brix 10%, and an appropriate amount of activated carbon (trade name “Shirakaba A” manufactured by Nippon Enviro Chemicals) was added and mixed. Next, the sample solution was heated until boiling, and passed through a filter paper (trade name “qualitative filter paper No. 2” manufactured by ADVANTEC). Thereafter, a cation exchange resin (trade name “Diaion PA218”: manufactured by Mitsubishi Chemical Corporation) and an anion exchange resin (trade name “Diaion PA408”: manufactured by Mitsubishi Chemical Corporation) are mixed and stirred in the sample solution. The solution was passed through a layer extraction column (trade name “Sep-Pak C18 Cartridge” manufactured by Waters). The Brix of the sample is adjusted to about 1% to 5%, and is passed through a membrane filter (trade name “MILLEX (registered trademark) -HP 0.45 μm”: Merck) having a pore size of 0.45 μm, and sugar A sample for composition analysis was obtained. The sugar composition was analyzed using a trade name “Alliance (registered trademark) HPLC system” (manufactured by Nihon Waters).
<Measurement conditions>
Column: ULTRON PS80-N (manufactured by Shimadzu LLC)
Solvent: Pure water Temperature: 60 ° C
Flow rate: 0.6 ml / min
Detection: RI (differential refractive index)

[実施例2]
また、実施例2として、上記実施例1に係る製造方法から、添加するグルコアミラーゼを原料に対する質量基準(W/W)で0.052%にした以外は、全て同じ方法で製造した植物由来β−グルカン含有シロップを用意した。そしてこの実施例2に係るシロップについて、実施例1と同様、単糖類、二糖類、三糖類、四糖類以上の糖類の組成比、シロップの粘度等の特性を評価した。
[Example 2]
Moreover, as Example 2, the plant-derived β produced by the same method except that the glucoamylase to be added is 0.052% on a mass basis (W / W) with respect to the raw material from the production method according to Example 1 above. -A glucan-containing syrup was prepared. And about the syrup which concerns on this Example 2, similarly to Example 1, characteristics, such as a monosaccharide, a disaccharide, a trisaccharide, the composition ratio of saccharides more than a tetrasaccharide, the viscosity of a syrup, were evaluated.

[実施例3]
また、実施例3として、上記実施例1に係る製造方法から、添加するグルコアミラーゼを原料に対する質量基準(W/W)で2.08%にした以外は、全て同じ方法で製造した植物由来β−グルカン含有シロップを用意した。そしてこの実施例2に係るシロップについて、実施例1と同様、単糖類、二糖類、三糖類、四糖類以上の糖類の組成比、シロップの粘度等の特性を評価した。
[Example 3]
Moreover, as Example 3, all the plant-derived β produced by the same method except that the glucoamylase to be added was 2.08% by mass standard (W / W) with respect to the raw material from the production method according to Example 1 above. -A glucan-containing syrup was prepared. And about the syrup which concerns on this Example 2, similarly to Example 1, characteristics, such as a monosaccharide, a disaccharide, a trisaccharide, the composition ratio of saccharides more than a tetrasaccharide, the viscosity of a syrup, were evaluated.

[実施例4]
また、実施例4として、上記実施例1に係る製造方法から、グルコアミラーゼの添加をしなかった以外は、全て同じ方法で製造した植物由来β−グルカン含有シロップを用意した。そしてこの実施例2に係るシロップについて、実施例1と同様、単糖類、二糖類、三糖類、四糖類以上の糖類の組成比、シロップの粘度等の特性を評価した。
[Example 4]
Moreover, as Example 4, the plant-derived β-glucan-containing syrup was prepared by the same method except that glucoamylase was not added from the production method according to Example 1 above. And about the syrup which concerns on this Example 2, similarly to Example 1, characteristics, such as a monosaccharide, a disaccharide, a trisaccharide, the composition ratio of saccharides more than a tetrasaccharide, the viscosity of a syrup, were evaluated.

表3は、実施例1〜実施例4について、単糖類、二糖類、三糖類、四糖類以上の糖類の組成比、シロップの粘度等の各特性を比較した結果である。   Table 3 shows the results of comparing the characteristics such as monosaccharide, disaccharide, trisaccharide, composition ratio of saccharides higher than tetrasaccharide, syrup viscosity, and the like for Examples 1 to 4.

Figure 2015186477
Figure 2015186477

上記表3からも明らかなように、実施例1〜実施例4に係る植物由来β−グルカン含有シロップには、いずれにも重量平均分子量が2,500〜40,000の範囲にあるβ−グルカンが含まれていた。また、重量平均分子量2,500〜40,000のβ−グルカンを含む実施例1〜実施例4の植物由来β−グルカン含有シロップは、可溶性固形分に対して3.8%〜4.2%のβ−グルカン濃度を有していた。   As apparent from Table 3 above, the plant-derived β-glucan-containing syrups according to Examples 1 to 4 all have β-glucan having a weight average molecular weight in the range of 2,500 to 40,000. Was included. The plant-derived β-glucan-containing syrup of Examples 1 to 4 containing β-glucan having a weight average molecular weight of 2,500 to 40,000 is 3.8% to 4.2% with respect to the soluble solid content. Β-glucan concentration.

また、一般的に、シロップは、例えば保管時の微生物増殖リスクを低減するという観点から、Brixが70%以上にあることが望まれるが、一方で、そのように高いBrixを有するシロップは高粘度となり食品や飲料としての用途に不向きである。   In general, it is desirable that the syrup has a Brix of 70% or more from the viewpoint of reducing the risk of microbial growth during storage, for example. On the other hand, a syrup having such a high Brix has a high viscosity. It is unsuitable for use as a food or beverage.

しかし、重量平均分子量2,500〜40,000のβ−グルカンを含む実施例1〜実施例4の植物由来β−グルカン含有シロップは、いずれも、Brix70%以上のときの粘度として、適度な粘度を有することが分かった。特に、実施例1〜実施例3で得られた植物由来β−グルカン含有シロップは、その糖化工程でグルコアミラーゼを添加したことから、それを添加しなかった実施例4で得られた植物由来β−グルカン含有シロップと比して、糖組成において単糖類の割合が大きい。従って、実施例4の植物由来β−グルカン含有シロップに対して、その実施例1〜実施例3の植物由来β−グルカン含有シロップでは、粘度が3,100cP〜9,900cPと低い値を示しており、食品や飲料の原料としても非常に優れた特性を有していることが分かった。   However, any of the plant-derived β-glucan-containing syrups of Examples 1 to 4 containing β-glucan having a weight average molecular weight of 2,500 to 40,000 is an appropriate viscosity as the viscosity when Brix is 70% or more. It was found to have In particular, since the plant-derived β-glucan-containing syrup obtained in Examples 1 to 3 was added with glucoamylase in the saccharification step, the plant-derived β obtained in Example 4 in which it was not added. -The proportion of monosaccharides in the sugar composition is large compared to the glucan-containing syrup. Therefore, with respect to the plant-derived β-glucan-containing syrup of Example 4, the plant-derived β-glucan-containing syrup of Examples 1 to 3 has a viscosity as low as 3,100 cP to 9,900 cP. As a result, it has been found that it has excellent properties as a raw material for foods and beverages.

また、図3は、実施例1の植物由来β−グルカン含有シロップにおける各Brixと粘度との関係を測定した結果を示す図である。これによると、上記で説明したBrixが70%以上であっても、10,000cP以下の適度な粘度を有している。   Moreover, FIG. 3 is a figure which shows the result of having measured the relationship between each Brix and viscosity in the plant-derived β-glucan-containing syrup of Example 1. According to this, even if Brix explained above is 70% or more, it has an appropriate viscosity of 10,000 cP or less.

さらに、例えば食品や飲料の原料としての用途への適用を考慮した場合、当然、実施例2〜実施例4の植物由来β−グルカン含有シロップも食品や飲料の原料としての用途として、十分利用しうるものであるが、実施例1の植物由来β−グルカン含有シロップを用いることが特に好ましい。   Furthermore, for example, when considering application to the use as a raw material for foods and beverages, naturally, the plant-derived β-glucan-containing syrup of Examples 2 to 4 is sufficiently utilized as a raw material for foods and beverages. However, it is particularly preferable to use the plant-derived β-glucan-containing syrup of Example 1.

糖化工程でより多量のグルコアミラーゼを添加した実施例3の植物由来β−グルカン含有シロップでは、単糖類を多量に含んでいることからBrixを高めると糖類が析出する可能性が考えられる。また、糖化工程でより少量のグルコアミラーゼを添加した実施例2、及び全く添加しなかった実施例4の植物由来β−グルカン含有シロップは、実施例1の植物由来β−グルカン含有シロップに対して、二糖類以上の糖類を多量に含んでいることから、実施例1の植物由来β−グルカン含有シロップと比較すると、その粘度が若干高い。   Since the plant-derived β-glucan-containing syrup of Example 3 to which a larger amount of glucoamylase was added in the saccharification step contains a large amount of monosaccharides, there is a possibility that saccharides may precipitate when Brix is increased. In addition, the plant-derived β-glucan-containing syrup of Example 2 in which a smaller amount of glucoamylase was added in the saccharification process and the plant-derived β-glucan-containing syrup of Example 4 in which no glucoamylase was added at all was used The viscosity is slightly higher than that of the plant-derived β-glucan-containing syrup of Example 1 because it contains a large amount of disaccharides or more.

従って、糖化工程で0.2%〜2.5%の範囲にあるグルコアミラーゼを添加した実施例1の植物由来β−グルカン含有シロップが適度な粘度を有しており、食品や飲料の原料としての用途として特に優れていることが分かった。   Therefore, the plant-derived β-glucan-containing syrup of Example 1 to which glucoamylase in the range of 0.2% to 2.5% is added in the saccharification step has an appropriate viscosity, and is used as a raw material for foods and beverages. It was found to be particularly excellent as a use for.

<ミセル化阻害能の評価方法>
上記製造方法によって得られた植物由来β−グルカン含有シロップのコレステロールのミセル化阻害能の評価は、Nagaoka et al., The Journal of Nutrition(1999), vol.129, pp.1725−1730に記載の方法を適宜改変して行った。具体的には、以下の各工程を通じて行った。
1.ミセル溶液の調製
上記製造方法によって得られた植物由来β−グルカン含有シロップのコレステロールのミセル化阻害能を評価するために用いるミセル溶液は、以下の通り調製した。
<Evaluation method of micellization inhibition ability>
Evaluation of the ability of plant-derived β-glucan-containing syrup obtained by the above production method to inhibit the micellization of cholesterol is described in Nagaoka et al. The Journal of Nutrition (1999), vol. 129, pp. The method described in 1725-1730 was appropriately modified. Specifically, it was performed through the following steps.
1. Preparation of micelle solution The micelle solution used for evaluating the ability of plant-derived β-glucan-containing syrup obtained by the above production method to inhibit the micellization of cholesterol was prepared as follows.

Figure 2015186477
Figure 2015186477

ミセル溶液は、15mMリン酸緩衝液(pH7.4)を250mL添加して表4に記載の各試薬を所定の終濃度になるようにガラスボトル中で調製した。そして、超音波洗浄機(商品名「UT−604」:シャープ社製)に溶液の入ったガラスボトルをいれ、30分間、上記試薬を超音波で完全に分散させた。   The micelle solution was prepared in a glass bottle so that 250 mL of 15 mM phosphate buffer (pH 7.4) was added and each reagent described in Table 4 was adjusted to a predetermined final concentration. The glass bottle containing the solution was placed in an ultrasonic cleaner (trade name “UT-604”: manufactured by Sharp Corporation), and the reagent was completely dispersed with ultrasonic waves for 30 minutes.

2.植物由来β−グルカン含有シロップからのβ−グルカンの抽出方法
実施例1で調製した植物由来β−グルカン含有シロップから、上記「β−グルカンの抽出方法及びその分子量の測定方法」の項で記載した方法を用いて、β−グルカンを抽出した。硫安沈殿及びエタノール洗浄後のβ−グルカンのペレットを−80℃で約2時間保存し、凍結させた。その後、凍結乾燥機(商品名「FreeZone(登録商標)」:ラブコンコ社製)により0.133m Bar以下の真空度で20時間以上ペレットを凍結乾燥した。
2. Extraction method of β-glucan from plant-derived β-glucan-containing syrup It was described in the above section “Method for extracting β-glucan and method for measuring its molecular weight” from the plant-derived β-glucan-containing syrup prepared in Example 1. Β-glucan was extracted using the method. The pellet of β-glucan after ammonium sulfate precipitation and ethanol washing was stored at −80 ° C. for about 2 hours and frozen. Thereafter, the pellets were freeze-dried for 20 hours or more at a degree of vacuum of 0.133 mBar or less by a freeze dryer (trade name “FreeZone (registered trademark)” manufactured by Labconco).

3.標品由来のβ−グルカン溶液の調製
大麦由来のβ−グルカン標品(Sigma Aldrich社製)を純水で溶解し、1%の溶液を複数準備した。次に、リケナーゼ(EC3.2.1.73:Megazyme社製)を0.125及び1.0Uそれぞれの溶液に添加して、各溶液ごとに決められた時間だけ38℃で反応を行い、その時間が経過後直ちに90℃で10分間加熱し、酵素を失活させた。各実施例に用いた酵素量及び反応時間を表5に記載した。なお、得られた各反応液は、ゲル濾過クロマトグラフィーでその分子量分布を測定した。その測定は、「β−グルカンの抽出方法及びその分子量の測定方法」の項で記載した方法と同じ方法で行った。
3. Preparation of standard-derived β-glucan solution A barley-derived β-glucan standard (manufactured by Sigma Aldrich) was dissolved in pure water to prepare a plurality of 1% solutions. Next, lichenase (EC 3.2.1.73: manufactured by Megazyme) was added to each solution of 0.125 and 1.0 U, and the reaction was performed at 38 ° C. for a time determined for each solution. Immediately after the elapse of time, the enzyme was inactivated by heating at 90 ° C. for 10 minutes. Table 5 shows the amount of enzyme and reaction time used in each example. In addition, each obtained reaction liquid measured the molecular weight distribution by the gel filtration chromatography. The measurement was performed by the same method as that described in the section “Method for extracting β-glucan and method for measuring its molecular weight”.

4.ミセル化阻害能の評価試験
植物由来β−グルカン含有シロップから抽出したβ−グルカン凍結乾燥粉末2.5mgを純水0.25gに懸濁したもの、及びβ−グルカン標品を上記方法により酵素分解した1%β−グルカン溶液0.25gを15mLチューブに入れ、ミセル溶液を4.75g添加してβ−グルカン終濃度0.05%(W/W)とした。なお、このとき、ポジティブコントロールとして既にコレステロール吸収阻害能が確認されている大麦由来のβ−グルカン標品(Sigma Aldrich社製)2.5mgを純水0.25gに懸濁したものをミセル溶液と混合した。ネガティブコントロールとしてグルコース2.5mgを純水0.25gに懸濁したものをミセル溶液と混合した(比較例2)。また、ブランクとして純水0.25gをミセル溶液と混合した(比較例3)。
4). Evaluation test of ability to inhibit micellization Enzymatic degradation of β-glucan lyophilized powder 2.5 mg extracted from plant-derived β-glucan-containing syrup and suspended in 0.25 g of pure water and β-glucan preparation by the above method 0.25 g of the 1% β-glucan solution was put into a 15 mL tube, and 4.75 g of the micelle solution was added to make the final concentration of β-glucan 0.05% (W / W). At this time, as a positive control, a suspension of 2.5 mg of barley-derived β-glucan preparation (manufactured by Sigma Aldrich), which has been confirmed to inhibit cholesterol absorption, was suspended in 0.25 g of pure water as a micelle solution. Mixed. As a negative control, 2.5 mg of glucose suspended in 0.25 g of pure water was mixed with a micelle solution (Comparative Example 2). Moreover, 0.25 g of pure water was mixed with the micelle solution as a blank (Comparative Example 3).

その後、各溶液は、超音波洗浄機(商品名「UT−604」:シャープ社製)で30分間超音波処理により、完全に分散させた後、37℃で24時間インキュベートした。その後、各反応液をスイングローター(商品名「SW28」:ベックマンコールター社製)、遠心分離機(商品名「L7−55」:ベックマンコールター社製)を用いて、20,000rpm(100,000g)で60分間遠心分離した。各反応液の上層200μLを分取し、3mLの発色液(商品名「遊離コレステロールE−テストワコー」:和光純薬工業社製)をその分取液に添加した。添加後の溶液を37℃で5分間インキュベートし、その後、分光光度計(商品名「BioSpec−mini」:島津製作所社製)を用いて、600nmで吸光度測定して遊離コレステロール濃度を算出した。   Thereafter, each solution was completely dispersed by ultrasonic treatment for 30 minutes with an ultrasonic cleaner (trade name “UT-604”: manufactured by Sharp Corporation), and then incubated at 37 ° C. for 24 hours. Thereafter, each reaction solution was 20,000 rpm (100,000 g) using a swing rotor (trade name “SW28”: manufactured by Beckman Coulter) and a centrifuge (trade name “L7-55”: manufactured by Beckman Coulter). For 60 minutes. 200 μL of the upper layer of each reaction solution was collected, and 3 mL of a coloring solution (trade name “Free Cholesterol E-Test Wako” manufactured by Wako Pure Chemical Industries, Ltd.) was added to the collected solution. The solution after addition was incubated at 37 ° C. for 5 minutes, and then the absorbance was measured at 600 nm using a spectrophotometer (trade name “BioSpec-mini” manufactured by Shimadzu Corporation) to calculate the free cholesterol concentration.

[実施例5]
実施例5として、植物由来β−グルカン含有シロップから、上記「2.植物由来β−グルカン含有シロップからのβ−グルカンの抽出方法」の項で説明した方法で抽出したβ−グルカンを用いて、「4.ミセル化阻害能の評価試験」の項に記載の方法で、そのミセル化阻害能を評価した。
[Example 5]
As Example 5, using β-glucan extracted from the plant-derived β-glucan-containing syrup by the method described in the above section “2. Extraction method of β-glucan from plant-derived β-glucan-containing syrup”, The micelle inhibition ability was evaluated by the method described in the section “4. Evaluation test of micelle inhibition ability”.

[実施例6]〜[実施例11]
また、実施例6として、上記「3.標品由来のβ−グルカン溶液の調製」の項で説明した方法に従い、大麦由来のβ−グルカン標品を、表5に記載のリケナーゼ添加量及び反応時間でリケナーゼと反応させ、同じく表5に記載の重量平均分子量を示すβ−グルカンを調製した。そして、このβ−グルカンを用いて、「4.ミセル化阻害能の評価試験」の項に記載の方法で、そのミセル化阻害能を評価した。同様に、実施例7〜実施例11として、表5に記載のリケナーゼ添加量及び反応時間で、同じく表5に記載の重量平均分子量の各β−グルカンを調製し、各β−グルカンにおけるミセル化阻害能を評価した。
[Example 6] to [Example 11]
In addition, as Example 6, according to the method described in the above section “3. Preparation of β-glucan solution derived from sample”, the amount of barium-derived β-glucan sample was added to the lichenase addition amount and reaction described in Table 5 By reacting with lichenase over time, β-glucan having the weight average molecular weight shown in Table 5 was also prepared. Then, using this β-glucan, the micelle inhibition ability was evaluated by the method described in the section “4. Evaluation test of micelle inhibition ability”. Similarly, as Examples 7 to 11, each β-glucan having the weight average molecular weight described in Table 5 was prepared with the addition amount and reaction time described in Table 5, and micelle formation in each β-glucan was performed. Inhibitory ability was evaluated.

[参考例1]〜[参考例3]
参考例1として、上記「3.標品由来のβ−グルカン溶液の調製」の項で説明した方法に従い、大麦由来のβ−グルカン標品を、表5に記載のリケナーゼ添加量及び反応時間でリケナーゼと反応させ、実施例5〜実施例11で用いたβ−グルカンと比して、より重量平均分子量が大きいβ−グルカンを調製した。その具体的な重量平均分子量は表5に記載の通りである。そして、このβ−グルカンを用いて、β−グルカンのミセル化阻害能を評価した。また、同様に、参考例2及び参考例3として、表5に記載のリケナーゼ添加量及び反応時間で、同じく表5に記載の重量平均分子量の各β−グルカンを調製し、各β−グルカンのミセル化阻害能を評価した。
[Reference Example 1] to [Reference Example 3]
As Reference Example 1, according to the method described in the above section “3. Preparation of β-glucan solution derived from sample”, β-glucan sample derived from barley was added with the amount of lichenase and reaction time shown in Table 5. By reacting with lichenase, β-glucan having a larger weight average molecular weight than that of β-glucan used in Examples 5 to 11 was prepared. The specific weight average molecular weight is as shown in Table 5. Then, using this β-glucan, the ability of β-glucan to inhibit micellization was evaluated. Similarly, as Reference Example 2 and Reference Example 3, each β-glucan having the weight average molecular weight described in Table 5 was also prepared with the addition amount and reaction time described in Table 5, and each β-glucan The ability to inhibit micellization was evaluated.

[比較例2]及び[比較例3]
さらに、比較例2として、「4.ミセル化阻害能の評価試験」の項で記載したとおり、β−グルカンに代えて、グルコース2.5mgを純水0.25gに懸濁したものをミセル化阻害能の評価試験に用いた。また、比較例3として、β−グルカンに代えて、純水0.25gをミセル化阻害能の評価試験に用いた。
[Comparative Example 2] and [Comparative Example 3]
Furthermore, as described in Comparative Example 2, as described in “4. Evaluation test of micelle inhibition ability”, instead of β-glucan, 2.5 mg of glucose suspended in 0.25 g of pure water was micellized. It used for the evaluation test of inhibition ability. Further, as Comparative Example 3, 0.25 g of pure water was used in the evaluation test of micelle inhibition ability in place of β-glucan.

表5は、実施例5〜実施例11、並びに、参考例1〜参考例3、比較例2及び比較例3における各ミセル化阻害能を、遊離コレステロール濃度(mg/dL)に基づいて評価した結果を示す。   Table 5 evaluated each micellization inhibitory ability in Examples 5 to 11 and Reference Examples 1 to 3, Comparative Example 2 and Comparative Example 3 based on the free cholesterol concentration (mg / dL). Results are shown.

Figure 2015186477
Figure 2015186477

表5によると、より小さい重量平均分子量(13,000)である、実施例5の植物由来β−グルカン含有シロップから抽出したβ−グルカンにおいても、ネガティブコントロールとして用いた比較例2及び比較例3に対して、より高い遊離コレステロール濃度(59.4mg/dL)を示した。同様に、本発明に係るβ−グルカンの重量平均分子量は、好ましくは2,500〜40,000であるところ、実施例6〜実施例11の重量平均分子量を示すβ−グルカンにおいても、ネガティブコントロールとして用いた比較例2及び比較例3に対して、より高い遊離コレステロール濃度を示した。   According to Table 5, in the β-glucan extracted from the plant-derived β-glucan-containing syrup of Example 5 having a smaller weight average molecular weight (13,000), Comparative Example 2 and Comparative Example 3 used as negative controls In contrast, a higher free cholesterol concentration (59.4 mg / dL) was exhibited. Similarly, the β-glucan according to the present invention preferably has a weight average molecular weight of 2,500 to 40,000, and the β-glucan having the weight average molecular weights of Examples 6 to 11 is also a negative control. As compared with Comparative Example 2 and Comparative Example 3 used as above, a higher free cholesterol concentration was shown.

また、従来から非常に大きい重量平均分子量のβ−グルカン(例えば、参考例3)はミセル化阻害能を有することが報告されていた。これは参考例3において高い遊離コレステロール濃度が測定されたことにも合致する。一方で、実施例5〜実施例11においては、重量平均分子量が実施例5〜実施例11のβ−グルカンよりも大きい参考例1及び参考例2と比べても、同等又はそれ以上の遊離コレステロール濃度を示した。   In addition, it has been reported that β-glucan having a very large weight average molecular weight (for example, Reference Example 3) has the ability to inhibit micellization. This is consistent with the high free cholesterol concentration measured in Reference Example 3. On the other hand, in Example 5 to Example 11, compared with Reference Example 1 and Reference Example 2 whose weight average molecular weight is larger than that of β-glucan of Example 5 to Example 11, equivalent or more free cholesterol. Concentration was indicated.

すなわち、本発明のように、2,500〜40,000の重量平均分子量であるβ−グルカンであっても、従来報告されていたような非常に高い重量平均分子量(300,000以上)であるβ−グルカンと同様に、コレステロールが胆汁酸ミセルに取り込まれて新たなミセルを形成し小腸に吸収されることを阻害しうることが示唆された。   That is, as in the present invention, even β-glucan having a weight average molecular weight of 2,500 to 40,000 has a very high weight average molecular weight (300,000 or more) as conventionally reported. Similar to β-glucan, it was suggested that cholesterol could be taken up by bile acid micelles to form new micelles and be absorbed by the small intestine.

<血糖値上昇抑制能の評価試験>
1.植物由来β−グルカン(重量平均分子量:12,000)含有シロップの調製
植物由来β−グルカン(重量平均分子量:12,000)含有シロップの調製においては、原料となる大麦粉砕物溶液を大麦粉砕物が20%となるように純水中に分散させて調製した点を除いて、上記実施例1の植物由来β−グルカン含有シロップの調製方法に従って調製した(実施例1では大麦粉砕物が30%となるように純水に混合した)。そして、最終的に、植物由来β−グルカン含有(重量平均分子量:12,000、可溶性固形分全体に対して4.0質量%)シロップを得た。
<Evaluation test of blood glucose level rise suppression ability>
1. Preparation of plant-derived β-glucan (weight average molecular weight: 12,000) -containing syrup In preparation of plant-derived β-glucan (weight-average molecular weight: 12,000) -containing syrup, a barley pulverized product solution as a raw material is used as a barley pulverized product. Was prepared according to the method for preparing a plant-derived β-glucan-containing syrup of Example 1 except that it was prepared by dispersing in pure water so as to be 20% (in Example 1, 30% of barley grind was 30%) To be mixed with pure water). Finally, a plant-derived β-glucan-containing syrup (weight average molecular weight: 12,000, 4.0% by mass based on the entire soluble solid content) was obtained.

2.植物由来β−グルカンを含有しないシロップの調製
植物由来β−グルカンを含有しないシロップの調製においては、原料となる大麦粉砕物溶液を大麦粉砕物が20%となるように純水中に分散させて調製した点、またβ−グルカン分解酵素(EC3.2.1.73)である商品名「Finizym(登録商標)250L」(Novozymes社製)の添加量を上記実施例1の調製方法の10倍量(原料に対する質量基準(W/W)で0.052%の濃度)で反応液中に添加した点、以外は全て上記実施例1の調製方法に従って調製した。そして、最終的に、植物由来β−グルカンを含有しない(可溶性固形分全体に対して0.2質量%)シロップを得た。
2. Preparation of plant-derived β-glucan-free syrup In preparation of plant-derived β-glucan-free syrup, the barley pulverized product solution as a raw material was dispersed in pure water so that the barley pulverized product was 20%. The addition amount of the prepared point and the trade name “Finzym (registered trademark) 250L” (manufactured by Novozymes), which is β-glucan degrading enzyme (EC 3.2.1.73), is 10 times that of the preparation method of Example 1 above. It was prepared according to the preparation method of Example 1 above, except that it was added to the reaction solution in an amount (concentration of 0.052% by mass basis (W / W) relative to the raw material). And finally, the syrup which does not contain plant origin beta-glucan (0.2 mass% with respect to the whole soluble solid content) was obtained.

3.植物由来β−グルカン(重量平均分子量:81,000)含有シロップの調製
植物由来β−グルカン(重量平均分子量:81,000)含有シロップの調製においては、原料となる大麦粉砕物溶液を大麦粉砕物が20%となるように純水中に分散させて調製した点、またβ−グルカン分解酵素(EC3.2.1.73)である商品名「Finizym(登録商標)250L」(Novozymes社製)の添加量を上記実施例1の調製方法の1/2倍量(原料に対する質量基準(W/W)で0.0026%の濃度)で反応液中に添加した点、以外は全て上記実施例1の調製方法に従って調製した。そして、最終的に、植物由来β−グルカン含有(重量平均分子量:81,000、可溶性固形分全体に対して3.9質量%)シロップを得た。
3. Preparation of plant-derived β-glucan (weight average molecular weight: 81,000) -containing syrup In the preparation of plant-derived β-glucan (weight average molecular weight: 81,000) -containing syrup, the barley pulverized product solution used as a raw material was crushed with barley. The product name is “Finzym (registered trademark) 250L” (manufactured by Novozymes), which is a β-glucan-degrading enzyme (EC 3.2.1.73). All of the above examples except that it was added to the reaction solution in an amount 1/2 times that of the preparation method of Example 1 above (concentration of 0.0026% on a mass basis (W / W) relative to the raw material). Prepared according to one preparation method. Finally, a plant-derived β-glucan-containing syrup (weight average molecular weight: 81,000, 3.9% by mass based on the entire soluble solid content) was obtained.

[実施例12]及び[実施例13]
健常者2名(いずれもヒト)を被験者(被験者A:HbA1cのNGSP値5.1%、被験者B:HbA1cのNGSP値5.1%)として、以下の試験方法にしたがって、上記1で調製した植物由来β−グルカン(重量平均分子量:12,000)含有シロップの血糖値上昇抑制能の評価試験を行った。なお、被験者Aによる評価試験の結果を実施例12と、被験者Bによる評価試験の結果を実施例13とした。
[Example 12] and [Example 13]
Two healthy subjects (both human) were prepared as 1 above according to the following test method as subjects (subject A: NGSP value of HbA1c 5.1%, subject B: NGSP value of HbA1c 5.1%). An evaluation test was conducted on the ability to suppress increase in blood glucose level of plant-derived β-glucan (weight average molecular weight: 12,000) -containing syrup. In addition, the result of the evaluation test by the subject A was set as Example 12, and the result of the evaluation test by the test subject B was set as Example 13.

まず、各被験者に対して、当該試験の実施日前日の午後9時以降は、水以外の飲食は控えさせた。次に、早朝空腹時の血糖値を測定後、上記1で調製した植物由来β−グルカン(重量平均分子量:12,000)含有シロップを、最初の食事(ファーストミール)として、糖質50g(当該糖質中にβ−グルカン2.1gを含む)となる量摂取させた。そして、当該摂取後、30分、60分、90分、120分、150分における血糖値をそれぞれ測定した。さらに、昼食前空腹時(シロップ摂取後240分)の血糖値を測定後、セカンドミールとして米飯150g(糖質52g)を摂取させ、シロップ摂取後270分、300分、330分、360分での血糖値をそれぞれ測定した。上記評価試験において、血糖値は酵素法(ヘキソキナーゼ法)及び自動分析装置(ベックマン・コールター社製)を用いて測定した。なお、上記評価試験の間、被験者には座位安静を維持させた。上記評価試験によって、健常者2名から得られた血糖値の測定結果を、それぞれ表6並びに図4及び図5に示した。   First, each subject was refrained from eating and drinking other than water after 9:00 pm on the day before the test. Next, after measuring the fasting blood glucose level in the early morning, the plant-derived β-glucan (weight average molecular weight: 12,000) -containing syrup prepared in 1 above was used as the first meal (first meal), and carbohydrates 50 g The amount of saccharide contained 2.1 g of β-glucan). And after the said intake, the blood glucose level in 30 minutes, 60 minutes, 90 minutes, 120 minutes, and 150 minutes was measured, respectively. Furthermore, after measuring the blood glucose level on an empty stomach before lunch (240 minutes after ingesting syrup), 150 g of rice (52 g of carbohydrates) was ingested as a second meal, and after syrup ingestion at 270 minutes, 300 minutes, 330 minutes, and 360 minutes Each blood glucose level was measured. In the above evaluation test, the blood glucose level was measured using an enzymatic method (hexokinase method) and an automatic analyzer (manufactured by Beckman Coulter). During the evaluation test, the subject was allowed to remain seated. The measurement results of blood glucose levels obtained from two healthy subjects by the above evaluation test are shown in Table 6 and FIGS. 4 and 5, respectively.

[比較例4]及び[比較例5]
上記実施例12及び実施例13と同じ健常者2名を被験者(被験者A及び被験者B)として、被験者ごとに上記2で調製したシロップを糖質50g(当該糖質中にβ−グルカン0.1gを含む)となる量摂取させ、血糖値上昇抑制能の評価試験を行った。そして、被験者Aによる評価試験の結果を比較例4と、被験者Bによる評価試験の結果を比較例5として、それぞれ表6並びに図4及び図5に示した。
[Comparative Example 4] and [Comparative Example 5]
Assuming that the same two healthy subjects as in Examples 12 and 13 were subjects (Subject A and Subject B), 50 g of syrup prepared in 2 above for each subject (0.1 g of β-glucan in the carbohydrate) And an evaluation test of the ability to suppress an increase in blood glucose level. And the result of the evaluation test by the subject A is shown in Comparative Example 4 and the result of the evaluation test by the subject B is shown as Comparative Example 5 in Table 6 and FIGS. 4 and 5 respectively.

なお、比較例4及び比較例5における試験方法は、各被験者に摂取させるシロップとして、上記2で調製した植物由来β−グルカンを含有しないシロップを用いた以外は、上記実施例12及び実施例13における試験方法と同じ方法で実施した。また、上記実施例12及び実施例13の試験実施日から十分な期間(5日以上)をあけて当該評価試験を行った。   The test methods in Comparative Examples 4 and 5 were the same as those in Examples 12 and 13 except that the syrup containing no plant-derived β-glucan prepared in 2 was used as the syrup to be ingested by each subject. The test was performed in the same manner as in the above. Moreover, the said evaluation test was done for a sufficient period (5 days or more) from the test implementation date of the said Example 12 and Example 13.

[比較例6]及び[比較例7]
上記実施例12及び実施例13と同じ健常者2名を被験者(被験者A及び被験者B)として、被験者ごとに上記3で調製したシロップを糖質50g(当該糖質中にβ−グルカン2.0gを含む)となる量摂取させ、血糖値上昇抑制能の評価試験を行った。そして、被験者Aによる評価試験の結果を比較例6と、被験者Bによる評価試験の結果を比較例7として、それぞれ表6並びに図4及び図5に示した。
[Comparative Example 6] and [Comparative Example 7]
Assuming that the same two healthy subjects as in Examples 12 and 13 were subjects (Subject A and Subject B), 50 g of syrup prepared in 3 above for each subject (2.0 g of β-glucan in the carbohydrate) And an evaluation test of the ability to suppress an increase in blood glucose level. And the result of the evaluation test by the subject A is shown in Comparative Example 6 and the result of the evaluation test by the subject B is shown as Comparative Example 7 in Table 6 and FIGS. 4 and 5 respectively.

なお、比較例6及び比較例7における試験方法は、各被験者に摂取させるシロップとして、上記3で調製した植物由来β−グルカン(重量平均分子量:81,000)含有シロップを用いた以外は、上記実施例12及び実施例13における試験方法と同じ方法で実施した。また、上記実施例及び比較例の試験実施日から十分な期間(5日以上)をあけて当該評価試験を行った。   The test methods in Comparative Example 6 and Comparative Example 7 were the same as those described above except that the plant-derived β-glucan (weight average molecular weight: 81,000) -containing syrup prepared in 3 was used as the syrup to be ingested by each subject. The test was performed in the same manner as the test methods in Example 12 and Example 13. Moreover, the said evaluation test was done for a sufficient period (5 days or more) from the test implementation day of the said Example and comparative example.

Figure 2015186477
Figure 2015186477

図4及び図5は、それぞれ、被験者A又は被験者Bにおいて摂取された各シロップの血糖値上昇抑制能の評価試験結果を示す図である。また、表6は、被験者A及び被験者Bにおいて摂取された各シロップにおける、血糖値上昇抑制能の評価試験で得られた具体的な血糖値を示す。これによれば、被験者A及び被験者Bのいずれにおいても、植物由来β−グルカン(重量平均分子量12,000)含有シロップを早朝空腹時にファーストミールとして摂取させた場合(実施例12及び実施例13)、植物由来β−グルカンを含有しないシロップをファーストミールとして摂取させた場合に比べて(比較例4及び比較例5)、血糖値の上昇が顕著に抑制された。さらに、セカンドミールとして米飯を摂取させた後も、ファーストミールとして植物由来β−グルカン(重量平均分子量12,000)含有シロップを摂取させた場合の方が(実施例12及び実施例13)、植物由来β−グルカンを含有しないシロップを摂取させた場合に比べて(比較例4及び比較例5)、血糖値の上昇の抑制が持続され、いわゆるセカンドミール効果が確認された。   4 and 5 are diagrams showing the evaluation test results of the ability to suppress the increase in blood glucose level of each syrup taken by subject A or subject B, respectively. Table 6 shows specific blood glucose levels obtained in an evaluation test of the ability to suppress the increase in blood glucose level in each syrup ingested by subjects A and B. According to this, in both subject A and subject B, when a plant-derived β-glucan (weight average molecular weight 12,000) -containing syrup is ingested as a first meal on an early morning fast (Example 12 and Example 13) As compared with the case where syrup not containing plant-derived β-glucan was ingested as a first meal (Comparative Example 4 and Comparative Example 5), the increase in blood glucose level was significantly suppressed. Furthermore, even after ingesting cooked rice as the second meal, the plant-derived β-glucan (weight average molecular weight 12,000) -containing syrup is ingested as the first meal (Example 12 and Example 13). Compared with the case where syrup containing no derived β-glucan was ingested (Comparative Example 4 and Comparative Example 5), the suppression of the increase in blood glucose level was sustained, and the so-called second-meal effect was confirmed.

なお、植物由来β−グルカン(重量平均分子量81,000)含有シロップを摂取させた比較例6及び比較例7においても、実施例12及び実施例13と同様に、植物由来β−グルカンを含有しないシロップを摂取させた比較例4及び比較例6に対して、血糖値の上昇抑制が確認された。しかし、植物由来β−グルカン(重量平均分子量81,000)含有シロップよりも、実施例12及び実施例13で用いたより重量平均分子量の小さい植物由来β−グルカン(重量平均分子量12,000)含有シロップの方が、実施例1〜4及び比較例1で確認されたとおり、高いBrixを有するので微生物増殖リスクも低く、かつ適度な粘度を有しており、食品や飲料用途においてより望ましい。   In addition, in Comparative Example 6 and Comparative Example 7 in which plant-derived β-glucan (weight average molecular weight 81,000) -containing syrup was ingested, as in Example 12 and Example 13, no plant-derived β-glucan was contained. As compared with Comparative Example 4 and Comparative Example 6 in which syrup was ingested, it was confirmed that blood glucose level was inhibited from rising. However, plant-derived β-glucan (weight average molecular weight 12,000) -containing syrup having a smaller weight average molecular weight than that used in Example 12 and Example 13 than plant-derived β-glucan (weight average molecular weight 81,000) -containing syrup. As is confirmed in Examples 1 to 4 and Comparative Example 1, this has a high Brix, so the risk of microbial growth is low and has an appropriate viscosity, which is more desirable in food and beverage applications.

本発明により、十分に粘度が低く、コレステロールのミセル化阻害能及び血糖値上昇抑制能を有する植物由来β−グルカン含有シロップを提供することができるので、本発明は食品や飲料産業等において利用可能である。   According to the present invention, it is possible to provide a plant-derived β-glucan-containing syrup having a sufficiently low viscosity and capable of inhibiting the micellization of cholesterol and suppressing the increase in blood glucose level. Therefore, the present invention can be used in the food and beverage industries. It is.

Claims (8)

重量平均分子量が2,500〜40,000の植物由来β−グルカンを可溶性固形分全体に対して2質量%〜8質量%の含有量で含むことを特徴とする植物由来β−グルカン含有シロップ。   A plant-derived β-glucan-containing syrup comprising a plant-derived β-glucan having a weight average molecular weight of 2,500 to 40,000 in a content of 2% by mass to 8% by mass with respect to the entire soluble solid content. 含有される前記植物由来β−グルカンがコレステロールのミセル化阻害能を有することを特徴とする請求項1に記載の植物由来β−グルカン含有シロップ。   The plant-derived β-glucan-containing syrup according to claim 1, wherein the plant-derived β-glucan contained has an ability to inhibit cholesterol micellization. 粘度が20,000cP以下であることを特徴とする請求項1又は2に記載の植物由来β−グルカン含有シロップ。   The plant-derived β-glucan-containing syrup according to claim 1 or 2, wherein the viscosity is 20,000 cP or less. Brixが30%〜80%であることを特徴とする請求項1〜3のいずれか一項に記載の植物由来β−グルカン含有シロップ。   The plant-derived β-glucan-containing syrup according to any one of claims 1 to 3, wherein Brix is 30% to 80%. pHが4.0〜8.0であることを特徴とする請求項1〜4のいずれか一項に記載の植物由来β−グルカン含有シロップ。   The plant-derived β-glucan-containing syrup according to any one of claims 1 to 4, wherein the pH is 4.0 to 8.0. 前記植物由来β−グルカンが、イネ科植物由来β−グルカンであることを特徴とする請求項1〜5のいずれか一項に記載の植物由来β−グルカン含有シロップ。   The plant-derived β-glucan-containing syrup according to any one of claims 1 to 5, wherein the plant-derived β-glucan is a gramineous plant-derived β-glucan. グルコアミラーゼを用いた反応工程を備える製造方法によって得られたことを特徴とする請求項1〜6のいずれか一項に記載の植物由来β−グルカン含有シロップ。   The plant-derived β-glucan-containing syrup according to any one of claims 1 to 6, which is obtained by a production method including a reaction step using glucoamylase. 請求項1〜7のいずれか一項に記載の植物由来β−グルカン含有シロップを含むことを特徴とする食品又は飲料。   A food or beverage comprising the plant-derived β-glucan-containing syrup according to any one of claims 1 to 7.
JP2015045118A 2014-03-10 2015-03-06 Syrup containing plant-derived β-glucan Active JP6648973B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015045118A JP6648973B2 (en) 2014-03-10 2015-03-06 Syrup containing plant-derived β-glucan

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014046943 2014-03-10
JP2014046943 2014-03-10
JP2015045118A JP6648973B2 (en) 2014-03-10 2015-03-06 Syrup containing plant-derived β-glucan

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2020005346A Division JP6837584B2 (en) 2014-03-10 2020-01-16 Plant-derived β-glucan-containing syrup

Publications (2)

Publication Number Publication Date
JP2015186477A true JP2015186477A (en) 2015-10-29
JP6648973B2 JP6648973B2 (en) 2020-02-19

Family

ID=54429147

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2015045118A Active JP6648973B2 (en) 2014-03-10 2015-03-06 Syrup containing plant-derived β-glucan
JP2020005346A Active JP6837584B2 (en) 2014-03-10 2020-01-16 Plant-derived β-glucan-containing syrup

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2020005346A Active JP6837584B2 (en) 2014-03-10 2020-01-16 Plant-derived β-glucan-containing syrup

Country Status (1)

Country Link
JP (2) JP6648973B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017191109A1 (en) * 2016-05-02 2017-11-09 Carlsberg Breweries A/S Beverages containing barley beta-glucan
WO2022075222A1 (en) * 2020-10-06 2022-04-14 株式会社Adeka Growth promoter for intestinal bacteria, blood glucose lowering agent, serum cholesterol lowering agent, and food or beverage composition containing same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009142184A (en) * 2007-12-13 2009-07-02 Gun Ei Chem Ind Co Ltd beta-GLUCAN-CONTAINING BEVERAGE

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009142184A (en) * 2007-12-13 2009-07-02 Gun Ei Chem Ind Co Ltd beta-GLUCAN-CONTAINING BEVERAGE

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
BR. J. NUTR., vol. 104, no. 3, JPN6018033411, 2010, pages 364 - 373 *
CONFERENCE ON PROCEEDINGS OF 11TH INTERNATIONAL CONGRESS ENGINEERING FOOD (ICEF11), JPN6018033409, 2011, pages 1 - 5 *
J. NUTR., vol. 134, no. 10, JPN6018033412, 2004, pages 2617 - 2622 *
第9回大麦食品シンポジウム, JPN6018033414, 2011, pages 1 - 17 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017191109A1 (en) * 2016-05-02 2017-11-09 Carlsberg Breweries A/S Beverages containing barley beta-glucan
EA037907B1 (en) * 2016-05-02 2021-06-04 Карлсберг Брюириз А/С Beverages containing barley beta-glucan
US11116242B2 (en) 2016-05-02 2021-09-14 Carlsberg Breweries A/S Beverages containing barley β-glucan
WO2022075222A1 (en) * 2020-10-06 2022-04-14 株式会社Adeka Growth promoter for intestinal bacteria, blood glucose lowering agent, serum cholesterol lowering agent, and food or beverage composition containing same

Also Published As

Publication number Publication date
JP2020054399A (en) 2020-04-09
JP6648973B2 (en) 2020-02-19
JP6837584B2 (en) 2021-03-03

Similar Documents

Publication Publication Date Title
RU2572740C2 (en) Frozen confectionary products containing hydrolysed whole grains
RU2549932C2 (en) Hydrolysed whole grains containing milk-and-grain beverage for young children
JP2013513368A (en) Nutritional products containing hydrolyzed whole grains
KR20140001238A (en) Instant drink powders comprising hydrolyzed whole grain
JP5000874B2 (en) Agents that inhibit sucrase activity or glucoamylase activity
JP6837584B2 (en) Plant-derived β-glucan-containing syrup
JP7092572B2 (en) Lactic acid fermented beverage or food, and its manufacturing method
RU2536911C1 (en) Children alimentation products containing hydrolysed whole grains
US20050222406A1 (en) Condensed palatinose in hydrogenated form
JP2006306831A5 (en)
CN108185250A (en) A kind of production method of the full liquid fermented beverage of coarse cereals
RU2577356C2 (en) Filling composition containing hydrolysed whole grains
JP6920695B2 (en) Barley β-glucan-containing beverage
JP2009142184A (en) beta-GLUCAN-CONTAINING BEVERAGE
JP4874191B2 (en) Method for producing the composition
KR20140005891A (en) Syrup comprising hydrolyzed whole grain
JP2018042521A (en) β-GLUCAN-CONTAINING BEVERAGE AND METHOD FOR PRODUCING THE SAME
Martins et al. Polysaccharide degradation for oligosaccharide production with nutraceutical potential for the food industry
KR101829680B1 (en) Sugar free Sikhye and Method the Same
RU2550004C2 (en) Hydrolysed whole grains containing grain products for young children
JP2023064843A (en) Food containing grain-saccharification solution
KR20130124953A (en) Ready-to-drink beverages comprising hydrolyzed whole grain
Haghi Food science: research and technology
JP6802027B2 (en) Beverage
JP2008280466A (en) Non-digestible amylose particle, its preparation, food and drink, drug, and quasi drug containing it

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150825

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170920

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180828

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190305

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190418

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191015

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200116

R150 Certificate of patent or registration of utility model

Ref document number: 6648973

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250