JP2015184620A - Light splitting device and optical measurement device provided therewith - Google Patents

Light splitting device and optical measurement device provided therewith Download PDF

Info

Publication number
JP2015184620A
JP2015184620A JP2014063255A JP2014063255A JP2015184620A JP 2015184620 A JP2015184620 A JP 2015184620A JP 2014063255 A JP2014063255 A JP 2014063255A JP 2014063255 A JP2014063255 A JP 2014063255A JP 2015184620 A JP2015184620 A JP 2015184620A
Authority
JP
Japan
Prior art keywords
light
optical
image
imaging
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014063255A
Other languages
Japanese (ja)
Inventor
覚司 瀧本
Satoshi Takimoto
覚司 瀧本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to JP2014063255A priority Critical patent/JP2015184620A/en
Publication of JP2015184620A publication Critical patent/JP2015184620A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a light splitting device that makes it possible to downsize the whole device and an optical measurement device provided with the same.SOLUTION: An optical measurement device 1 comprises: a microscope optical system 3 for forming an optical image on an image-forming face upon receiving light from a subject S; a relay lens 17 for relaying the pupil surface of the microscope optical system 3 upon receiving light from the image-forming face; a diffraction grating 15 for dividing light from the image-forming face into a 0'th order diffraction light L0 for generating the optical image of fluorescence occurring on the subject S and a first order diffraction light L1 for generating the optical image of excitation light; an image-forming optical element 21 having two optical axes A3, A2 each corresponding to the first order diffraction light L1 and 0'th order diffraction light L0, and forming each of the first order diffraction light L1 and 0'th order diffraction light L0 into an optical image G3 and an optical image G2; optical elements 19a, 19b for selecting the wavelength components of the first order diffraction light L1 and 0'th order diffraction light L0; and an image-capturing element 7 for capturing the images of the optical images G2, G3.

Description

本発明は、試料からの光を観察するために用いられる光分割装置及びそれを備える光計測装置に関する。   The present invention relates to a light splitting device used for observing light from a sample and an optical measuring device including the same.

ライフサイエンス分野では、試料からの蛍光などの光を、波長に応じて分割し、分割の結果得られる光像を撮像することが行われている。例えば、下記特許文献1には、試料により反射、散乱された光を光源からの光と合成してから検出系に導く光路と、試料から発せられた蛍光を分岐して別の検出系に導く光路とを形成する走査型顕微鏡が記載されている。   In the life science field, light such as fluorescence from a sample is divided according to wavelength, and an optical image obtained as a result of the division is captured. For example, in Patent Document 1 below, light reflected and scattered by a sample is combined with light from a light source and then guided to a detection system, and fluorescence emitted from the sample is branched and guided to another detection system. A scanning microscope is described which forms an optical path.

特開2000−292705号公報JP 2000-292705 A

しかしながら、上記特許文献1記載の走査型顕微鏡では、蛍光観察用の光学素子及び検出系と、蛍光波長以外の波長の光の観察用の光学素子及び検出系が別々に設けられているため、装置の構成が複雑化する傾向にある。そのため、装置全体の小型化が困難である。   However, in the scanning microscope described in Patent Document 1, an optical element and a detection system for fluorescence observation and an optical element and a detection system for observation of light having a wavelength other than the fluorescence wavelength are separately provided. Tend to be complicated. Therefore, it is difficult to reduce the size of the entire apparatus.

そこで、本発明は、かかる課題に鑑みて為されたものであり、装置全体の小型化を容易にする光分割装置及びそれを備える光計測装置を提供することを目的とする。   Therefore, the present invention has been made in view of such problems, and an object thereof is to provide an optical splitting device that facilitates downsizing of the entire device and an optical measurement device including the same.

すなわち、上記課題を解決するため、本発明の一形態に係る光分割装置は、対象物の観察用の対物レンズの結像面からの光を受けて、対物レンズの瞳面をリレーするリレーレンズと、結像面からの光を、対象物で生じる蛍光に対応する蛍光波長成分を含む第1の光像を生成するための第1の光と第2の光像を生成するための第2の光とに分割する回折格子と、第1の光及び第2の光にそれぞれ対応する2つの光軸を有し、第1の光と第2の光を、ぞれぞれ、第1の光像と第2の光像に結像する結像光学素子と、第2の光の波長成分を選択する波長選択部と、を備える。   That is, in order to solve the above-described problem, a light splitting device according to an aspect of the present invention receives light from an imaging surface of an objective lens for observing an object and relays a pupil plane of the objective lens And a second light for generating a first light and a second light image for generating a first light image including a fluorescence wavelength component corresponding to the fluorescence generated in the object. A diffraction grating that divides the light into two light axes and two optical axes respectively corresponding to the first light and the second light, and the first light and the second light, respectively, An imaging optical element that forms an optical image and a second optical image, and a wavelength selection unit that selects a wavelength component of the second light are provided.

或いは、本発明の他の形態に係る光計測装置は、対象物からの光を受けて、結像面に光像を結像する対物レンズと、結像面からの光を受けて、対物レンズの瞳面をリレーするリレーレンズと、結像面からの光を、対象物で生じる蛍光に対応する蛍光波長成分を含む第1の光像を生成するための第1の光と第2の光像を生成するための第2の光とに分割する回折格子と、第1の光及び第2の光にそれぞれ対応する2つの光軸を有し、第1の光と第2の光を、ぞれぞれ、第1の光像と第2の光像に結像する結像光学素子と、第2の光の波長成分を選択する波長選択部と、第1の光像及び第2の光像を撮像する撮像素子と、を備える。   Alternatively, an optical measurement device according to another aspect of the present invention includes an objective lens that receives light from an object and forms an optical image on an imaging surface, and an objective lens that receives light from the imaging surface. A first lens and a second light for generating a first light image including a fluorescence wavelength component corresponding to the fluorescence generated in the object from the relay lens that relays the pupil plane of A diffraction grating that divides into second light for generating an image, and two optical axes that respectively correspond to the first light and the second light, and the first light and the second light, The imaging optical element that forms the first light image and the second light image, the wavelength selection unit that selects the wavelength component of the second light, the first light image and the second light image, respectively. An image pickup device for picking up an optical image.

このような光分割装置、或いは光計測装置においては、リレーレンズによって対象物からの光を結像する対物レンズの瞳面がリレーされるとともに、対物レンズの結像面からの光は、回折格子によって蛍光波長成分を含む第1の光像を生成するための第1の光と第2の光像を生成するための第2の光とに分割される。さらに、回折格子によって分割された第1及び第2の光は、それぞれ、結像光学素子によって、第1及び第2の光像に結像され、第2の光は、所望の波長成分が選択される。このような構成により、対象物からの光を分割するための光学素子、及びその光を観察するための撮像素子の共通化が容易にされ、その結果、装置全体の小型化が容易に実現される。   In such a light splitting device or an optical measuring device, the pupil plane of the objective lens that images light from the object is relayed by the relay lens, and the light from the imaging surface of the objective lens is a diffraction grating. Is divided into first light for generating a first light image including a fluorescence wavelength component and second light for generating a second light image. Further, the first and second lights divided by the diffraction grating are respectively formed into first and second light images by the imaging optical element, and a desired wavelength component is selected for the second light. Is done. Such a configuration facilitates the common use of the optical element for dividing the light from the object and the imaging element for observing the light, and as a result, the entire apparatus can be easily downsized. The

上記の光分割装置或いは光計測装置においては、波長選択部は、蛍光を生じさせる励起光の波長成分を選択することが好適である。この場合、対象物から発せられる蛍光及び励起光が同時に観察可能にされ、蛍光を検出すると同時に、励起光により対象物の光像を取得するので、蛍光が生じている対象物の部位の特定が容易となる。   In the light splitting device or the optical measuring device, it is preferable that the wavelength selection unit selects a wavelength component of excitation light that causes fluorescence. In this case, the fluorescence emitted from the object and the excitation light can be observed at the same time, and the light image of the object is acquired by the excitation light at the same time that the fluorescence is detected. It becomes easy.

また、回折格子は、対物レンズの結像面とリレーレンズとの間に配置される、ことも好適である。かかる構成を採れば、光学系全体の長さを短縮化する設計が容易となる。   It is also preferable that the diffraction grating is disposed between the imaging surface of the objective lens and the relay lens. By adopting such a configuration, it becomes easy to design to shorten the entire length of the optical system.

さらに、第1の光は0次回折光であり、かつ、第2の光はn次回折光(nは正または負の整数)である、ことも好適である。このように0次回折光を蛍光波長とすることで、蛍光像の回折方向への広がりを抑制することができる。   Further, it is also preferable that the first light is 0th order diffracted light and the second light is nth order diffracted light (n is a positive or negative integer). In this way, by setting the 0th-order diffracted light to the fluorescence wavelength, the spread of the fluorescence image in the diffraction direction can be suppressed.

またさらに、0次回折光を結像する部分の結像光学素子の光軸は、リレーレンズの光軸とずれている、ことも好適である。かかる構成を採れば、無理のない配置で0次回折光とn次回折光(nは正または負の整数)それぞれにおいて良好な像を得ることができる。   Furthermore, it is also preferable that the optical axis of the imaging optical element at the portion where the 0th-order diffracted light is imaged is shifted from the optical axis of the relay lens. By adopting such a configuration, it is possible to obtain a good image in each of the 0th order diffracted light and the nth order diffracted light (n is a positive or negative integer) with a reasonable arrangement.

さらにまた、リレーレンズと結像光学素子との間に配置された光学素子をさらに備え、リレーレンズは、光学素子に対して対物レンズの瞳面をリレーする、ことも好適である。かかる構成を採れば、光学素子によって自由に調整された光像を観察することができる。   It is also preferable that the optical system further includes an optical element disposed between the relay lens and the imaging optical element, and the relay lens relays the pupil plane of the objective lens with respect to the optical element. With this configuration, it is possible to observe an optical image that is freely adjusted by the optical element.

また、波長選択部は、リレーレンズと結像光学素子との間に配置され、リレーレンズは、波長選択部に対して対物レンズの瞳面をリレーする、ことも好適である。こうすれば、波長選択部によって波長成分が自由に調整された光像を観察することができる。   It is also preferable that the wavelength selection unit is disposed between the relay lens and the imaging optical element, and the relay lens relays the pupil plane of the objective lens with respect to the wavelength selection unit. By so doing, it is possible to observe an optical image whose wavelength component is freely adjusted by the wavelength selector.

また、回折格子、リレーレンズ、波長選択部、及び結像光学素子の少なくとも1つが、対物レンズの光軸に対して傾けられている、ことも好適である。この場合、像面湾曲を補正することにより、良好な観察像を得ることができる。   It is also preferable that at least one of the diffraction grating, the relay lens, the wavelength selection unit, and the imaging optical element is inclined with respect to the optical axis of the objective lens. In this case, a good observation image can be obtained by correcting the curvature of field.

結像光学素子は、第1の光を第1の光像に結像する第1のレンズと第2の光を第2の光像に結像する第2のレンズとを有する、ことも好適である。また、結像光学素子は、第1の光を第1の光像に結像する第1のレンズ部と、第2の光を第2の光像に結像する第1のレンズ部と一体化された第2のレンズ部とを有する、ことも好適である。かかる結像光学素子を備えれば、結像光学素子の構造が単純化され、装置全体のさらなる小型化が容易となる。   The imaging optical element preferably includes a first lens that forms the first light on the first optical image and a second lens that forms the second light on the second optical image. It is. The imaging optical element is integrated with the first lens unit that forms the first light into the first optical image and the first lens unit that forms the second light into the second optical image. It is also preferable to have the second lens portion formed into a second shape. If such an imaging optical element is provided, the structure of the imaging optical element is simplified, and further miniaturization of the entire apparatus is facilitated.

上記の光分割装置においては、撮像素子は、対物レンズの光軸に対して傾いた状態で配置される、ことが好適である。この場合、像面湾曲を補正することにより、良好な観察像を得ることができる。   In the above light splitting device, it is preferable that the image pickup device is disposed in a state inclined with respect to the optical axis of the objective lens. In this case, a good observation image can be obtained by correcting the curvature of field.

本発明によれば、装置全体の小型化を容易にする光分割装置及びそれを備える光計測装置を提供することができる。   According to the present invention, it is possible to provide a light splitting device that facilitates downsizing of the entire device and an optical measuring device including the same.

本発明の一実施形態の光計測装置1の内部構成を示す透視図である。It is a perspective view which shows the internal structure of the optical measuring device 1 of one Embodiment of this invention. (a)は、図1の結像光学素子21の詳細な構造を示す正面図、(b)は、図1の結像光学素子21の詳細な構造を示す側面図である。FIG. 2A is a front view showing a detailed structure of the imaging optical element 21 in FIG. 1, and FIG. 2B is a side view showing a detailed structure of the imaging optical element 21 in FIG. 本発明の他の実施形態の光計測装置1Aの内部構成を示す透視図である。It is a perspective view which shows the internal structure of 1 A of optical measuring devices of other embodiment of this invention. 本発明の他の実施形態の光計測装置1Bの内部構成を示す透視図である。It is a perspective view which shows the internal structure of the optical measuring device 1B of other embodiment of this invention. (a)は、変形例に係る結像光学素子21Aの詳細な構造を示す正面図、(b)は、結像光学素子21Aの詳細な構造を示す側面図である。(A) is a front view showing a detailed structure of an imaging optical element 21A according to a modification, and (b) is a side view showing a detailed structure of the imaging optical element 21A. (a)は、変形例に係る結像光学素子21Bの詳細な構造を示す正面図、(b)は、結像光学素子21Bの詳細な構造を示す側面図である。(A) is a front view showing a detailed structure of an imaging optical element 21B according to a modification, and (b) is a side view showing a detailed structure of the imaging optical element 21B. 本発明の他の実施形態の光計測装置1Cの内部構成を示す透視図である。It is a perspective view which shows the internal structure of 1 C of optical measuring devices of other embodiment of this invention.

以下、添付図面を参照しながら本発明による光分割装置の実施の形態を詳細に説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。また、各図面は説明用のために作成されたものであり、説明の対象部位を特に強調するように描かれている。そのため、図面における各部材の寸法比率は、必ずしも実際のものとは一致しない。   Embodiments of a light splitting device according to the present invention will be described below in detail with reference to the accompanying drawings. In the description of the drawings, the same elements are denoted by the same reference numerals, and redundant description is omitted. Each drawing is made for the purpose of explanation, and is drawn so as to particularly emphasize the target portion of the explanation. Therefore, the dimensional ratio of each member in the drawings does not necessarily match the actual one.

図1は、本発明の一実施形態の光計測装置1の内部構成を示す透視図である。本実施形態による光計測装置1は、試料(対象物)の観察光を分割し、分割した2つの光像を観察するための光学装置である。   FIG. 1 is a perspective view showing an internal configuration of an optical measurement device 1 according to an embodiment of the present invention. The optical measurement device 1 according to the present embodiment is an optical device for dividing observation light of a sample (object) and observing two divided light images.

同図に示すように、光計測装置1は、試料保持部材(不図示)、励起光用光源(不図示)、顕微鏡光学系3、光分割装置5、及び撮像素子7を含んで構成されている。顕微鏡光学系3は、対象物Sからの光を受けて結像面に光像G1を結像する光学系であり、対物レンズ9と結像レンズ11とによって構成されている。光分割装置5は、顕微鏡光学系3に取り付けられ、顕微鏡光学系3から入力された光を分割し、分割した光を撮像素子7の受光面7a上の異なる位置に結像する光学装置である。撮像素子7は、光分割装置5に取り付けられ、光分割装置5によって受光面7a上の異なる位置に結像された光像G2,G3をそれぞれ撮像することにより、それらの光像G2,G3を電気信号に変換して出力する。   As shown in the figure, the optical measuring device 1 includes a sample holding member (not shown), an excitation light source (not shown), a microscope optical system 3, a light splitting device 5, and an image sensor 7. Yes. The microscope optical system 3 is an optical system that receives light from the object S and forms a light image G1 on an image forming surface, and is configured by an objective lens 9 and an image forming lens 11. The light splitting device 5 is an optical device that is attached to the microscope optical system 3, splits the light input from the microscope optical system 3, and focuses the split light on different positions on the light receiving surface 7 a of the image sensor 7. . The image sensor 7 is attached to the light splitting device 5 and picks up the light images G2 and G3 formed at different positions on the light receiving surface 7a by the light splitting device 5 to obtain the light images G2 and G3. Convert to electrical signal and output.

詳細には、光分割装置5は、絞り部材13、回折格子15、リレーレンズ17、光学素子(波長選択部)19a,19b、結像光学素子21がこの順で並んで配置されて構成されている。絞り部材13は、対物レンズ9を含む顕微鏡光学系3の1次結像面に配置され、撮像素子7の受光面7a上に結像される光像G3,G4の大きさが、受光面7aにおいて、受光面7aの大きさの半分以下となるように、対象物Sから顕微鏡光学系3を経由して入射する光を絞る。   More specifically, the light splitting device 5 includes a diaphragm member 13, a diffraction grating 15, a relay lens 17, optical elements (wavelength selection units) 19a and 19b, and an imaging optical element 21 arranged in this order. Yes. The aperture member 13 is disposed on the primary imaging surface of the microscope optical system 3 including the objective lens 9, and the size of the optical images G3 and G4 formed on the light receiving surface 7a of the image sensor 7 is such that the light receiving surface 7a. , The light incident from the object S via the microscope optical system 3 is narrowed down so as to be less than half the size of the light receiving surface 7a.

回折格子15は、顕微鏡光学系3の1次結像面とリレーレンズ17との間に配置されている。この回折格子15は、絞り部材13を通過した光を回折現象によって複数の分割光に分割する。回折格子15によって分割された複数の分割光のうちの0次回折光L0及び1次回折光L1は、後述するリレーレンズ17及び結像光学素子21を通過することにより、撮像素子7の受光面7a上に結像される。なお、回折格子15によって分割された0次回折光L0及び1次回折光L1は、共に、対象物Sで生じる蛍光に対応する波長成分を含んでいる。ここで、撮像素子7に結像させる分割光の組み合わせとしては、上記の組み合わせ以外であってもよい。例えば、0次回折光とn次回折光(nは、0以外の正または負の整数)の組み合わせであってもよい。また、リレーレンズ17が回折格子15によって分割された複数の光を受けるため、光学系を短縮化するような設計が容易になるという利点がある。   The diffraction grating 15 is disposed between the primary imaging plane of the microscope optical system 3 and the relay lens 17. The diffraction grating 15 divides the light that has passed through the diaphragm member 13 into a plurality of divided lights by a diffraction phenomenon. The 0th-order diffracted light L0 and the 1st-order diffracted light L1 among the plurality of divided lights divided by the diffraction grating 15 pass on a later-described relay lens 17 and the imaging optical element 21, and thus on the light receiving surface 7 a of the image sensor 7. Is imaged. Both the 0th-order diffracted light L0 and the 1st-order diffracted light L1 divided by the diffraction grating 15 include a wavelength component corresponding to the fluorescence generated in the object S. Here, the combination of the divided lights to be imaged on the image sensor 7 may be other than the above combination. For example, a combination of 0th order diffracted light and nth order diffracted light (n is a positive or negative integer other than 0) may be used. Further, since the relay lens 17 receives a plurality of lights divided by the diffraction grating 15, there is an advantage that the design for shortening the optical system becomes easy.

リレーレンズ17は、顕微鏡光学系3からの光を回折格子15を介して受け、回折格子15によって分割された0次回折光L0及び1次回折光L1を屈折させることにより、顕微鏡光学系3の対物レンズ9の分割光に対応する瞳面を、後述する光学素子19b,19aに対してそれぞれリレーする。このリレーレンズ17は、非球面レンズによって形成されてもよいし、複数のレンズの組み合わせによって構成されてもよい。また、リレーレンズ17は、分割された光を平行光束にしてリレーしてもよい。   The relay lens 17 receives the light from the microscope optical system 3 through the diffraction grating 15 and refracts the 0th-order diffracted light L0 and the first-order diffracted light L1 divided by the diffraction grating 15, thereby the objective lens of the microscope optical system 3. The pupil plane corresponding to the divided light of 9 is relayed to optical elements 19b and 19a described later. The relay lens 17 may be formed of an aspheric lens, or may be configured by a combination of a plurality of lenses. The relay lens 17 may relay the divided light as a parallel light flux.

結像光学素子21は、リレーレンズ17と撮像素子7との間に配置され、リレーレンズ17によってリレーされた0次回折光L0及び1次回折光L1にそれぞれ対応する2つの異なる光軸A2,A3を有し、0次回折光L0及び1次回折光L1を、それぞれ、受光面7a上の異なる位置の光像G2,G3に結像する。図2には、結像光学素子21の詳細な構造を示しており、(a)は、対物レンズ9の光軸A0に沿った方向から見た正面図、(b)は、対物レンズ9の光軸A0に垂直な方向から見た側面図である。同図に示すように、結像光学素子21には、2つの結像レンズ21a,21bが、撮像素子7の受光面7aに沿った方向に互いに離間した状態で備えられている。それぞれの結像レンズ21a,21bが、1次回折光L1及び0次回折光L0にそれぞれ対応する2つの光軸A3,A2を有する。このように、結像光学素子21が複数の分割光に対応して複数のレンズで構成されることにより、光学系の調整が容易となり、光学系の短縮化や像特性の向上を目的とした設計が容易となる。本実施形態では、2つの結像レンズ21a,21bが同一素子であるが、互いに異なる素子であってもよい。また、2つの結像レンズ21a,21bは互いに端部が接するように配置されてもよい。ここで、0次回折光L0を結像する部分の結像レンズ21bの光軸A2は、リレーレンズ17の光軸A0と同軸上に存在しないで光軸A0からずれるように設定されている。このように光軸A2が設定されることにより、0次回折光L0と1次回折光L1それぞれにおいて良好な像を得ることができるという利点がある。なお、この結像光学素子21は、リレーレンズ17と共に、光分割装置5内で両側テレセントリック光学系を形成してもよい。   The imaging optical element 21 is disposed between the relay lens 17 and the imaging element 7 and has two different optical axes A2 and A3 corresponding to the 0th-order diffracted light L0 and the 1st-order diffracted light L1 relayed by the relay lens 17, respectively. The zero-order diffracted light L0 and the first-order diffracted light L1 are formed on the light images G2 and G3 at different positions on the light receiving surface 7a, respectively. FIG. 2 shows a detailed structure of the imaging optical element 21, (a) is a front view of the objective lens 9 viewed from the direction along the optical axis A0, and (b) is a view of the objective lens 9. It is the side view seen from the direction perpendicular | vertical to optical axis A0. As shown in the figure, the imaging optical element 21 includes two imaging lenses 21 a and 21 b that are separated from each other in the direction along the light receiving surface 7 a of the imaging element 7. Each imaging lens 21a, 21b has two optical axes A3, A2 corresponding to the first-order diffracted light L1 and the 0th-order diffracted light L0, respectively. As described above, the imaging optical element 21 includes a plurality of lenses corresponding to a plurality of divided lights, so that the optical system can be easily adjusted, and the purpose is to shorten the optical system and improve the image characteristics. Design becomes easy. In the present embodiment, the two imaging lenses 21a and 21b are the same element, but they may be different elements. Further, the two imaging lenses 21a and 21b may be arranged so that their ends are in contact with each other. Here, the optical axis A2 of the image forming lens 21b that forms the 0th-order diffracted light L0 is set so as not to be coaxial with the optical axis A0 of the relay lens 17 and to deviate from the optical axis A0. By setting the optical axis A2 in this way, there is an advantage that a good image can be obtained for each of the 0th-order diffracted light L0 and the 1st-order diffracted light L1. The imaging optical element 21 may form a double-sided telecentric optical system in the light splitting device 5 together with the relay lens 17.

光学素子19a,19bは、リレーレンズ17と結像レンズ21a及び結像レンズ21bとの間の1次回折光L1及び0次回折光L0に関する瞳面付近に、それぞれ配置されている。光学素子19a,19bは、それぞれ、1次回折光L1及び0次回折光L0の波長成分を選択する波長選択フィルタであり、例えば、所望の波長を透過する帯域フィルタやローパスフィルタ、ハイパスフィルタなどである。光学素子19bは、0次回折光L0を受けて試料の蛍光の波長を含む波長成分を選択するように構成される。また、光学素子19aは、1次回折光L1を受けて試料の励起光の波長を含む波長成分を選択するように構成される。また、0次回折光L0は、蛍光波長を含む波長成分であるため、光学素子19bは必ずしも必須ではない。   The optical elements 19a and 19b are respectively arranged in the vicinity of the pupil plane related to the first-order diffracted light L1 and the 0th-order diffracted light L0 between the relay lens 17, the imaging lens 21a, and the imaging lens 21b. Each of the optical elements 19a and 19b is a wavelength selection filter that selects the wavelength components of the first-order diffracted light L1 and the 0th-order diffracted light L0, and is, for example, a band-pass filter, a low-pass filter, or a high-pass filter that transmits a desired wavelength. The optical element 19b is configured to receive the 0th-order diffracted light L0 and select a wavelength component including the fluorescence wavelength of the sample. The optical element 19a is configured to receive the first-order diffracted light L1 and select a wavelength component including the wavelength of the excitation light of the sample. In addition, since the 0th-order diffracted light L0 is a wavelength component including a fluorescence wavelength, the optical element 19b is not necessarily required.

撮像素子7は、結像光学素子21によって受光面7a上に結像された光像G2,G3を電気信号に変換するCCD(Charge Coupled Device)イメージセンサ、CMOS(Complementary Metal-Oxide Semiconductor)イメージセンサ等の固体撮像素子である。この撮像素子7は、受光面7a上の異なる位置に分離して結像された光像G2,G3を検出してもよいし、検出に支障が無い範囲で互いに重なり合った位置に結像された光像G2,G3を検出してもよい。   The imaging device 7 is a CCD (Charge Coupled Device) image sensor or a CMOS (Complementary Metal-Oxide Semiconductor) image sensor that converts the optical images G2 and G3 formed on the light receiving surface 7a by the imaging optical element 21 into electrical signals. And so on. The image sensor 7 may detect the light images G2 and G3 separately formed at different positions on the light receiving surface 7a, or may be formed at positions overlapping with each other within a range that does not interfere with detection. The optical images G2 and G3 may be detected.

以上説明した光計測装置1によれば、リレーレンズ17によって蛍光波長成分を含む対象物Sからの光を結像する顕微鏡光学系3の瞳面がリレーされるとともに、顕微鏡光学系3の結像面からの光は、回折格子15によって0次回折光L0と1次回折光L1とに分割される。さらに、回折格子15によって分割された0次回折光L0は、光学素子19bによって蛍光の波長を含む波長成分が選択され、結像光学素子21によって、光像G2に結像される。一方、回折格子15によって分割された1次回折光L1は、光学素子19aによって励起光の波長を含む波長成分が選択され、結像光学素子21によって、光像G3に結像される。このような構成により、対象物Sから発せられる蛍光及び励起光が同時に観察可能にされるので、蛍光が生じている対象物Sの部位の特定が容易となる。   According to the optical measuring device 1 described above, the relay lens 17 relays the pupil plane of the microscope optical system 3 that forms an image of light from the object S including the fluorescence wavelength component, and also forms an image of the microscope optical system 3. The light from the surface is split by the diffraction grating 15 into 0th order diffracted light L0 and 1st order diffracted light L1. Further, the 0th-order diffracted light L0 divided by the diffraction grating 15 is selected as a wavelength component including the fluorescence wavelength by the optical element 19b, and is imaged on the optical image G2 by the imaging optical element 21. On the other hand, for the first-order diffracted light L1 divided by the diffraction grating 15, a wavelength component including the wavelength of the excitation light is selected by the optical element 19a, and is imaged on the optical image G3 by the imaging optical element 21. With such a configuration, the fluorescence emitted from the object S and the excitation light can be observed at the same time, so that the part of the object S in which the fluorescence is generated can be easily identified.

また、光計測装置1においては、回折格子15が顕微鏡光学系3の結像面とリレーレンズ17との間に配置されている。リレーレンズ17が回折格子15によって分割された光を受けるようにすることで、0次回折光に対応する瞳とn次回折光に対応する瞳とを分割してリレーすることができ、波長選択フィルタである光学素子19a,19bの配置が容易になる。その結果、光学系全体の長さを短縮化する設計が容易となる。   Further, in the optical measuring device 1, the diffraction grating 15 is disposed between the imaging surface of the microscope optical system 3 and the relay lens 17. By allowing the relay lens 17 to receive the light divided by the diffraction grating 15, the pupil corresponding to the 0th-order diffracted light and the pupil corresponding to the nth-order diffracted light can be divided and relayed. Arrangement of certain optical elements 19a and 19b is facilitated. As a result, the design for shortening the entire length of the optical system becomes easy.

さらに、光計測装置1は、結像面からの光の蛍光波長成分を0次回折光L0に分割し、その光の励起光波長成分をn次回折光(nは正または負の整数)に分割する。このように0次回折光L0を蛍光波長とすることで、蛍光像の回折方向への広がりを抑制することができる。また、単一波長である励起光成分はn次回折光として分割し、光学素子19でその波長を選択することで、結像レンズで結像しても回折方向への像の広がりは抑えられる。その結果、高精度の蛍光像及び物体像の取得が可能になる。   Further, the optical measuring device 1 divides the fluorescence wavelength component of the light from the imaging plane into the 0th order diffracted light L0, and divides the excitation light wavelength component of the light into the nth order diffracted light (n is a positive or negative integer). . In this way, by setting the 0th-order diffracted light L0 to the fluorescence wavelength, the spread of the fluorescence image in the diffraction direction can be suppressed. Further, the excitation light component having a single wavelength is divided as the n-th order diffracted light, and the wavelength is selected by the optical element 19, so that the spread of the image in the diffraction direction can be suppressed even when the image is formed by the imaging lens. As a result, it is possible to acquire a highly accurate fluorescent image and object image.

また、0次回折光を結像する部分の結像レンズ21bの光軸A2は、リレーレンズ17の光軸A0とずれているので、0次回折光とn次回折光それぞれにおいて良好な像を得ることができる。   In addition, since the optical axis A2 of the imaging lens 21b in the portion where the 0th-order diffracted light is imaged is shifted from the optical axis A0 of the relay lens 17, it is possible to obtain a good image in each of the 0th-order diffracted light and the nth-order diffracted light. it can.

なお、本発明は、上述した実施形態に限定されるものではない。   In addition, this invention is not limited to embodiment mentioned above.

例えば、光計測装置1は、波長選択フィルタにより、回折格子15で分割された0次回折光から蛍光の波長を含む波長成分を選択し、一方、回折格子15で分割された1次回折光から励起光の波長を含む波長成分を選択し、それぞれの分割光の光像を検出可能にしていたが、このような構成には限定されない。例えば、波長選択フィルタにより、0次回折光から励起光の波長を含む波長成分を選択し、一方、1次回折光から蛍光の波長を含む波長成分を選択してもよい。また、光学素子19aで選択される波長成分は、励起光の波長を含む波長成分に限らず、例えば、光学素子19bと同様に、試料の蛍光の波長を含む波長成分を選択してもよく、それ以外の波長成分を選択してもよい。また、試料から複数の波長の蛍光が出力されている場合、光学素子19aが一方の蛍光の波長を含む波長成分を選択し、光学素子19bが他方の蛍光の波長を含む波長成分を選択するように構成してもよい。また、回折格子15によって分割された光は、0次回折光とn次回折光であることに限らず、n次回折光とm次回折光(mは正または負の整数(ただし、nを除く))であってもよい。また、対象物Sに励起光に加えて励起光波長でもなく蛍光波長でもない波長領域の照明光を照射した際に、光計測装置1は、その照明光の散乱光或いは反射光を受けてその光を分割し、その光の光像を検出可能に構成されていてもよい。   For example, the optical measuring device 1 selects the wavelength component including the fluorescence wavelength from the 0th-order diffracted light divided by the diffraction grating 15 by the wavelength selection filter, while the excitation light from the first-order diffracted light divided by the diffraction grating 15. However, the present invention is not limited to such a configuration. For example, the wavelength component including the wavelength of the excitation light may be selected from the 0th-order diffracted light by the wavelength selection filter, while the wavelength component including the wavelength of the fluorescence may be selected from the 1st-order diffracted light. Further, the wavelength component selected by the optical element 19a is not limited to the wavelength component including the wavelength of the excitation light, and for example, the wavelength component including the fluorescence wavelength of the sample may be selected in the same manner as the optical element 19b. Other wavelength components may be selected. When fluorescence of a plurality of wavelengths is output from the sample, the optical element 19a selects a wavelength component including one fluorescence wavelength, and the optical element 19b selects a wavelength component including the other fluorescence wavelength. You may comprise. The light split by the diffraction grating 15 is not limited to the 0th order diffracted light and the nth order diffracted light, but is an nth order diffracted light and an mth order diffracted light (m is a positive or negative integer (however, excluding n)). There may be. Further, when the object S is irradiated with illumination light in a wavelength region that is neither the excitation light wavelength nor the fluorescence wavelength in addition to the excitation light, the optical measuring device 1 receives the scattered light or reflected light of the illumination light and receives the light. The light may be divided so that a light image of the light can be detected.

また、光計測装置1においては、撮像素子7が顕微鏡光学系3の対物レンズ9の光軸A0に対して傾いた状態で配置されてもよい。図3は、本発明の他の実施形態の光計測装置1Aの内部構成を示す透視図である。同図に示すように、撮像素子7は、光軸A0に垂直な面に対してその受光面7aが角度θ1だけ傾くように配置されている。n次回折光の像面は、光分割装置5に入射した光の像面に対して傾いているために、入射した光の光軸A0から離れるほど像面は湾曲する。光計測装置1Aの構成によれば、撮像素子7を傾けて配置することで、像面湾曲を低減することができる。その結果、良好な結像特性を得ることができる。なお、撮像素子7に加えて、回折格子15、リレーレンズ17、光学素子19a,19b及び結像光学素子21のうちのいずれか或いはすべてが、光軸A0に対して傾けられて配置されてもよい。この場合、より一層良好な結像特性を得ることができる。   Further, in the optical measurement device 1, the image sensor 7 may be disposed in a state of being inclined with respect to the optical axis A 0 of the objective lens 9 of the microscope optical system 3. FIG. 3 is a perspective view showing an internal configuration of an optical measurement device 1A according to another embodiment of the present invention. As shown in the figure, the image sensor 7 is disposed such that the light receiving surface 7a is inclined by an angle θ1 with respect to a surface perpendicular to the optical axis A0. Since the image plane of the n-th order diffracted light is inclined with respect to the image plane of the light incident on the light splitting device 5, the image plane is curved as the distance from the optical axis A0 of the incident light is increased. According to the configuration of the optical measurement device 1 </ b> A, the curvature of field can be reduced by arranging the image sensor 7 at an angle. As a result, good imaging characteristics can be obtained. In addition to the imaging element 7, any or all of the diffraction grating 15, the relay lens 17, the optical elements 19a and 19b, and the imaging optical element 21 may be arranged to be inclined with respect to the optical axis A0. Good. In this case, even better imaging characteristics can be obtained.

また、光計測装置1,1Aにおいては、回折格子15が異なる位置に配置されてもよい。図4は、本発明の他の実施形態の光計測装置1Bの内部構成を示す透視図である。同図に示すように、回折格子15が、リレーレンズ17と結像光学素子21との間に配置されていてもよい。   Further, in the optical measurement devices 1 and 1A, the diffraction grating 15 may be arranged at different positions. FIG. 4 is a perspective view showing an internal configuration of an optical measurement device 1B according to another embodiment of the present invention. As shown in the figure, the diffraction grating 15 may be disposed between the relay lens 17 and the imaging optical element 21.

また、結像光学素子21の構成は、図2に示した構成以外の様々な構成を採り得る。図5及び図6は、それぞれ、本発明の変化例に係る結像光学素子21A,21Bの詳細な構造を示している。結像光学素子21A,21Bは、いずれも、2つの異なる光軸を有する結像レンズ部が一体的に形成された光像を有する。すなわち、結像光学素子21Aは、1次回折光L1を光像G3に結像する結像レンズ部21Aaと、0次回折光L0を光像G2に結像する結像レンズ部21Abとを有し、これらの結像レンズ部21Aa,21Abは、端部で一体化されて形成されている。また、結像光学素子21Bは、1次回折光L1を光像G3に結像する結像レンズ部21Baと、0次回折光L0を光像G2に結像する結像レンズ部21Bbとを有し、結像レンズ部21Baが結像レンズ部21Bbの内側に一体化されて形成されている。かかる結像光学素子21A,21Bを備えれば、結像光学素子の構造が単純化され、装置全体のさらなる小型化が容易となる。なお、図5の結像レンズ部21Aa,21Abは端部で一体化されているが、2枚の結像レンズを接するように構成することで図5の結像光学素子21Aを構成してもよい。   Further, the configuration of the imaging optical element 21 may take various configurations other than the configuration shown in FIG. 5 and 6 respectively show the detailed structures of the imaging optical elements 21A and 21B according to the modified example of the present invention. Each of the imaging optical elements 21A and 21B has an optical image in which imaging lens portions having two different optical axes are integrally formed. That is, the imaging optical element 21A includes an imaging lens unit 21Aa that forms the first-order diffracted light L1 into the optical image G3, and an imaging lens unit 21Ab that forms the zero-order diffracted light L0 into the optical image G2. These imaging lens portions 21Aa and 21Ab are formed integrally at the end portions. The imaging optical element 21B includes an imaging lens unit 21Ba that forms the first-order diffracted light L1 into the optical image G3, and an imaging lens unit 21Bb that forms the zero-order diffracted light L0 into the optical image G2. The imaging lens unit 21Ba is integrally formed inside the imaging lens unit 21Bb. If such imaging optical elements 21A and 21B are provided, the structure of the imaging optical element is simplified, and further downsizing of the entire apparatus is facilitated. Although the imaging lens portions 21Aa and 21Ab in FIG. 5 are integrated at the ends, the imaging optical element 21A in FIG. 5 may be configured by contacting two imaging lenses. Good.

また、光学素子19a,19bを波長選択部とする構成としたが、様々な構成を採り得る。例えば、図7に示す本発明の他の実施形態の光計測装置1Cのように、光学素子19a,19bとは別には波長選択部23を備えてもよい。同図の波長選択部23は、結像レンズ21aからの光を受ける位置に波長選択フィルタ23aが配置され、結像レンズ21bからの光を受ける位置には波長選択フィルタ23bが配置されている。なお、波長選択フィルタ23a,23bの位置はこれに限らず、リレーレンズ17と光学素子19a,19bとの間、又は光学素子19a,19bと結像レンズ21a,21bとの間に配置されもよい。また、同じ波長成分の光像を観察する場合は、絞り部材13とリレーレンズ17との間に配置してもよい。さらに、リレーレンズ17や結像光学素子21を波長選択コーティングしてもよく、撮像素子7の受光面7a上に波長選択フィルタを設けてもよい。
なお、これらの場合、光学素子19a,19bを波長選択フィルタ以外の光学素子とすることができる。例えば、光学素子19a,19bを偏光板で構成されることにより偏光方向を変化させてもよいし、絞り部材で構成されることにより光束を制限してもよいし、レンズで構成されることにより焦点位置を変化させてもよい。
Further, although the optical elements 19a and 19b are configured to be wavelength selection units, various configurations can be adopted. For example, a wavelength selection unit 23 may be provided separately from the optical elements 19a and 19b as in an optical measurement device 1C according to another embodiment of the present invention illustrated in FIG. In the wavelength selection unit 23 in the figure, a wavelength selection filter 23a is disposed at a position for receiving light from the imaging lens 21a, and a wavelength selection filter 23b is disposed at a position for receiving light from the imaging lens 21b. The positions of the wavelength selection filters 23a and 23b are not limited to this, and may be disposed between the relay lens 17 and the optical elements 19a and 19b, or between the optical elements 19a and 19b and the imaging lenses 21a and 21b. . Further, when observing an optical image having the same wavelength component, it may be disposed between the diaphragm member 13 and the relay lens 17. Furthermore, the wavelength selection coating may be applied to the relay lens 17 and the imaging optical element 21, and a wavelength selection filter may be provided on the light receiving surface 7 a of the imaging element 7.
In these cases, the optical elements 19a and 19b can be optical elements other than the wavelength selection filter. For example, the polarization direction may be changed by configuring the optical elements 19a and 19b with polarizing plates, the luminous flux may be limited by configuring with a diaphragm member, or by configuring with lenses. The focal position may be changed.

1,1A,1B,1C…光計測装置、3…顕微鏡光学系、5…光分割装置、7…撮像素子、7a…受光面、9…対物レンズ、15…回折格子、17…リレーレンズ、19a,19b…光学素子(波長選択部)、21,21A,21B…結像光学素子、21Aa,21Ab,21Ba,21Bb…結像レンズ部、21a,21b…結像レンズ、23…波長選択部、23a,23b…波長選択フィルタ、A0,A2,A3…光軸、G1,G2,G3…光像、L0…0次回折光、L1…1次回折光、S…対象物。   DESCRIPTION OF SYMBOLS 1,1A, 1B, 1C ... Optical measuring device, 3 ... Microscope optical system, 5 ... Light splitting device, 7 ... Imaging element, 7a ... Light-receiving surface, 9 ... Objective lens, 15 ... Diffraction grating, 17 ... Relay lens, 19a , 19b ... Optical element (wavelength selection unit) 21, 21A, 21B ... Imaging optical element, 21Aa, 21Ab, 21Ba, 21Bb ... Imaging lens unit, 21a, 21b ... Imaging lens, 23 ... Wavelength selection unit, 23a , 23b ... wavelength selection filter, A0, A2, A3 ... optical axis, G1, G2, G3 ... optical image, L0 ... 0th order diffracted light, L1 ... first order diffracted light, S ... object.

Claims (15)

対象物の観察用の対物レンズの結像面からの光を受けて、前記対物レンズの瞳面をリレーするリレーレンズと、
前記結像面からの前記光を、前記対象物で生じる蛍光に対応する蛍光波長成分を含む第1の光像を生成するための第1の光と第2の光像を生成するための第2の光とに分割する回折格子と、
前記第1の光及び前記第2の光にそれぞれ対応する2つの光軸を有し、前記第1の光と前記第2の光を、ぞれぞれ、前記第1の光像と前記第2の光像に結像する結像光学素子と、
前記第2の光の波長成分を選択する波長選択部と、
を備える光分割装置。
A relay lens that receives light from the imaging surface of the objective lens for observing the object and relays the pupil plane of the objective lens;
A first light for generating a first light image and a second light image for generating a first light image including a fluorescence wavelength component corresponding to the fluorescence generated in the object from the light from the imaging plane. A diffraction grating that divides into two light beams;
The first light and the second light respectively have two optical axes corresponding to the first light and the second light, respectively, and the first light image and the second light, respectively. An imaging optical element that forms an optical image of 2;
A wavelength selection unit that selects a wavelength component of the second light;
A light splitting device.
前記波長選択部は、前記蛍光を生じさせる励起光の波長成分を選択する、
請求項1記載の光分割装置。
The wavelength selection unit selects a wavelength component of excitation light that causes the fluorescence.
The light splitting device according to claim 1.
前記回折格子は、前記対物レンズの結像面と前記リレーレンズとの間に配置される、
請求項1又は2記載の光分割装置。
The diffraction grating is disposed between the imaging surface of the objective lens and the relay lens.
The light splitting device according to claim 1 or 2.
前記第1の光は0次回折光であり、かつ、前記第2の光はn次回折光(nは正または負の整数)である、
請求項1〜3のいずれか1項に記載の光分割装置。
The first light is zero-order diffracted light, and the second light is n-order diffracted light (n is a positive or negative integer).
The light splitting device according to claim 1.
前記0次回折光を結像する部分の前記結像光学素子の光軸は、前記リレーレンズの光軸とずれている、
請求項4に記載の光分割装置。
The optical axis of the imaging optical element of the portion that forms the 0th-order diffracted light is shifted from the optical axis of the relay lens,
The light splitting device according to claim 4.
前記リレーレンズと前記結像光学素子との間に配置された光学素子をさらに備え、
前記リレーレンズは、前記光学素子に対して前記対物レンズの瞳面をリレーする、
請求項1〜5のいずれか1項に記載の光分割装置。
Further comprising an optical element disposed between the relay lens and the imaging optical element;
The relay lens relays the pupil plane of the objective lens to the optical element;
The light splitting device according to any one of claims 1 to 5.
前記波長選択部は、前記リレーレンズと前記結像光学素子との間に配置され、前記リレーレンズは、前記波長選択部に対して前記対物レンズの瞳面をリレーする、
請求項1〜5のいずれか1項に記載の光分割装置。
The wavelength selection unit is disposed between the relay lens and the imaging optical element, and the relay lens relays the pupil plane of the objective lens to the wavelength selection unit,
The light splitting device according to any one of claims 1 to 5.
前記回折格子、前記リレーレンズ、前記波長選択部、及び前記結像光学素子の少なくとも1つが、前記対物レンズの光軸に対して傾けられている、
請求項1〜7のいずれか1項に記載の光分割装置。
At least one of the diffraction grating, the relay lens, the wavelength selection unit, and the imaging optical element is tilted with respect to the optical axis of the objective lens,
The light splitting device according to claim 1.
前記結像光学素子は、前記第1の光を前記第1の光像に結像する第1のレンズと前記第2の光を前記第2の光像に結像する第2のレンズとを有する、
請求項1〜8のいずれか1項に記載の光分割装置。
The imaging optical element includes a first lens that forms the first light on the first optical image and a second lens that forms the second light on the second optical image. Have
The light splitting device according to claim 1.
前記結像光学素子は、前記第1の光を前記第1の光像に結像する第1のレンズ部と、前記第2の光を前記第2の光像に結像する前記第1のレンズ部と一体化された第2のレンズ部とを有する、
請求項1〜8のいずれか1項に記載の光分割装置。
The imaging optical element includes a first lens unit that forms the first light on the first optical image, and the first lens that forms the second light on the second optical image. A second lens unit integrated with the lens unit,
The light splitting device according to claim 1.
対象物からの光を受けて、結像面に光像を結像する対物レンズと、
前記結像面からの光を受けて、前記対物レンズの瞳面をリレーするリレーレンズと、
前記結像面からの前記光を、前記対象物で生じる蛍光に対応する蛍光波長成分を含む第1の光像を生成するための第1の光と第2の光像を生成するための第2の光とに分割する回折格子と、
前記第1の光及び前記第2の光にそれぞれ対応する2つの光軸を有し、前記第1の光と前記第2の光を、ぞれぞれ、前記第1の光像と前記第2の光像に結像する結像光学素子と、
前記第2の光の波長成分を選択する波長選択部と、
前記第1の光像及び前記第2の光像を撮像する撮像素子と、
を備える光計測装置。
An objective lens that receives light from the object and forms an optical image on the imaging surface;
A relay lens that receives light from the imaging plane and relays the pupil plane of the objective lens;
A first light for generating a first light image and a second light image for generating a first light image including a fluorescence wavelength component corresponding to the fluorescence generated in the object from the light from the imaging plane. A diffraction grating that divides into two light beams;
The first light and the second light respectively have two optical axes corresponding to the first light and the second light, respectively, and the first light image and the second light, respectively. An imaging optical element that forms an optical image of 2;
A wavelength selection unit that selects a wavelength component of the second light;
An image sensor that captures the first optical image and the second optical image;
An optical measurement device comprising:
前記波長選択部は、前記蛍光を生じさせる励起光の波長成分を選択する、
請求項11記載の光計測装置。
The wavelength selection unit selects a wavelength component of excitation light that causes the fluorescence.
The optical measurement device according to claim 11.
前記回折格子は、前記対物レンズの結像面と前記リレーレンズとの間に配置される、
請求項11又は12記載の光計測装置。
The diffraction grating is disposed between the imaging surface of the objective lens and the relay lens.
The optical measuring device according to claim 11 or 12.
前記第1の光は0次回折光であり、かつ、前記第2の光はn次回折光(nは正または負の整数)である、
請求項11〜13のいずれか1項に記載の光計測装置。
The first light is zero-order diffracted light, and the second light is n-order diffracted light (n is a positive or negative integer).
The optical measuring device according to claim 11.
前記撮像素子は、前記対物レンズの光軸に対して傾いた状態で配置される、
請求項11〜14のいずれか1項に記載の光計測装置。
The image sensor is disposed in a state inclined with respect to the optical axis of the objective lens.
The optical measuring device of any one of Claims 11-14.
JP2014063255A 2014-03-26 2014-03-26 Light splitting device and optical measurement device provided therewith Pending JP2015184620A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014063255A JP2015184620A (en) 2014-03-26 2014-03-26 Light splitting device and optical measurement device provided therewith

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014063255A JP2015184620A (en) 2014-03-26 2014-03-26 Light splitting device and optical measurement device provided therewith

Publications (1)

Publication Number Publication Date
JP2015184620A true JP2015184620A (en) 2015-10-22

Family

ID=54351166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014063255A Pending JP2015184620A (en) 2014-03-26 2014-03-26 Light splitting device and optical measurement device provided therewith

Country Status (1)

Country Link
JP (1) JP2015184620A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111324006A (en) * 2018-12-13 2020-06-23 卡尔蔡司Smt有限责任公司 Inspection device and apparatus for inspecting structures on area portions of a lithographic mask

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111324006A (en) * 2018-12-13 2020-06-23 卡尔蔡司Smt有限责任公司 Inspection device and apparatus for inspecting structures on area portions of a lithographic mask
KR20200074022A (en) * 2018-12-13 2020-06-24 칼 짜이스 에스엠티 게엠베하 Detection device for detecting a structure on an area portion of a lithography mask, and apparatus comprising a detection device of this type
US11029259B2 (en) 2018-12-13 2021-06-08 Carl Zeiss Smt Gmbh Detection device for detecting a structure on an area portion of a lithography mask, and apparatus comprising a detection device of this type
KR102354325B1 (en) * 2018-12-13 2022-01-21 칼 짜이스 에스엠티 게엠베하 Detection device for detecting a structure on an area portion of a lithography mask, and apparatus comprising a detection device of this type
CN111324006B (en) * 2018-12-13 2023-10-13 卡尔蔡司Smt有限责任公司 Detection device and apparatus for detecting structure on region part of photoetching mask

Similar Documents

Publication Publication Date Title
JP5509400B1 (en) Endoscope
JP5966982B2 (en) Confocal measuring device
US9810896B2 (en) Microscope device and microscope system
EP3070507B1 (en) Endoscope imaging device
JP2011039005A (en) Measurement device
US20130141634A1 (en) Imaging device
JP2008256594A (en) Spectrometer and imaging device
JP5254291B2 (en) Solid-state imaging device
US20100097693A1 (en) Confocal microscope
JP2014216970A (en) Distance measuring device
JP6123213B2 (en) Multiband camera
JP2014216970A5 (en) Imaging device, distance measuring device, and imaging device
JP6639716B2 (en) Optical system, imaging apparatus including the same, and imaging system
JP6237161B2 (en) Imaging device
JP2011085432A (en) Axial chromatic aberration optical system and three-dimensional shape measuring device
JP2015184620A (en) Light splitting device and optical measurement device provided therewith
JP6639718B2 (en) Optical system, imaging apparatus including the same, and imaging system
JP6677818B2 (en) Imaging device and imaging method
KR101620594B1 (en) spectroscopy apparatus
JP2012220611A (en) Microscope device
JP6125131B1 (en) Wavefront measuring device and optical system assembly device
KR20160082076A (en) Simultaneous Imaging device for tomography and surface profiler based on interferometer
US10948715B2 (en) Chromatic lens and methods and systems using same
JP2012044443A (en) Imaging module and imaging apparatus
JP2010181716A (en) Observing apparatus