JP2015183225A - Apparatus and method for recovering rare metal - Google Patents

Apparatus and method for recovering rare metal Download PDF

Info

Publication number
JP2015183225A
JP2015183225A JP2014060196A JP2014060196A JP2015183225A JP 2015183225 A JP2015183225 A JP 2015183225A JP 2014060196 A JP2014060196 A JP 2014060196A JP 2014060196 A JP2014060196 A JP 2014060196A JP 2015183225 A JP2015183225 A JP 2015183225A
Authority
JP
Japan
Prior art keywords
rare metal
working electrode
recovery
temperature
cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2014060196A
Other languages
Japanese (ja)
Inventor
中村 等
Hitoshi Nakamura
等 中村
祥平 金村
Shohei Kanemura
祥平 金村
優也 高橋
Yuya Takahashi
優也 高橋
水口 浩司
Koji Mizuguchi
浩司 水口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2014060196A priority Critical patent/JP2015183225A/en
Publication of JP2015183225A publication Critical patent/JP2015183225A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Electrolytic Production Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To efficiently recover rare metal such as Nd and Dy at low cost using a compact and highly efficient apparatus for recovering rare metal.SOLUTION: The apparatus for recovering rare metal includes an electrolysis tank 10 filled with a molten salt 12 containing a rare metal constituent, an electric furnace 11 provided around the electrolysis tank, an anode 13 disposed in the electrolysis tank, and a cathode 14 disposed in the electrolysis tank and having a working electrode and a heating device 2 provided inside the working electrode 1. Rare metal 4 deposited on the working electrode is recovered as a liquid alloy 5 by keeping a temperature of the working electrode 1 at a temperature higher than a temperature of the molten salt 12, the temperature being a recovery temperature at which the rear metal bonds a constituent of the working electrode 1 to form a liquid alloy.

Description

本発明は高性能磁石等に使用されたレアメタルを回収するためのレアメタル回収装置及び回収方法に関する。   The present invention relates to a rare metal recovery apparatus and recovery method for recovering rare metals used in high performance magnets and the like.

近年、高性能磁石に使用するレアメタル(主に、Nd(ネオジウム)、Dy(ディスプロジウム))は原産地が限られているため、安定供給の観点からレアメタルを回収して再利用するリサイクル技術の必要性が高まっている。このリサイクル技術として、従来から湿式分離法や溶融塩電解法を用いたレアメタルの回収方法が知られている。   In recent years, rare metals used in high-performance magnets (mainly Nd (neodymium) and Dy (dysprodium)) are limited in their origins, so the need for recycling technology to collect and reuse rare metals from the viewpoint of stable supply The nature is increasing. As this recycling technique, a rare metal recovery method using a wet separation method or a molten salt electrolysis method is conventionally known.

湿式分離法を用いたレアメタル回収方法では、回収対象のレアメタルを含む溶液にシュウ酸等を添加してシュウ酸塩沈殿物を生成し、次に沈殿物を加熱乾燥してレアメタルの酸化物を生成した後、溶媒抽出法やイオン交換法等の湿式分離法による精製濃縮を行うことにより、レアメタルを回収していた。   In the rare metal recovery method using the wet separation method, oxalic acid or the like is added to the solution containing the rare metal to be recovered to generate an oxalate precipitate, and then the precipitate is heated and dried to generate a rare metal oxide. After that, the rare metal was recovered by performing purification and concentration by a wet separation method such as a solvent extraction method or an ion exchange method.

また、溶融塩電解法を用いたレアメタル回収方法では、陰極に析出するレアメタル金属を電極母材と反応させることで低融点化させ、液体合金として回収する方法が提案されている(特許文献1)。   In addition, a rare metal recovery method using a molten salt electrolysis method has been proposed in which a rare metal metal deposited on a cathode is reacted with an electrode base material to lower the melting point and recovered as a liquid alloy (Patent Document 1). .

特開2012−214855号公報JP 2012-214855 A

上述した従来の溶融塩電解法を用いたレアメタル回収方法では、陰極に析出するレアメタル金属を電極母材と反応させることで低融点化させ、液体合金として回収しているが、その際、陰極における反応温度を析出金属と陰極母材金属との共晶により液体化する温度に維持する必要がある。例えば、高性能磁石に用いられるNdやDyを陰極と反応させる場合、電解槽の温度を700〜900℃に維持する必要がある。   In the rare metal recovery method using the conventional molten salt electrolysis method described above, the rare metal metal deposited on the cathode is reacted with the electrode base material to lower the melting point, and is recovered as a liquid alloy. It is necessary to maintain the reaction temperature at a temperature at which the reaction is liquefied by the eutectic of the deposited metal and the cathode base metal. For example, when Nd or Dy used for a high-performance magnet is reacted with the cathode, the temperature of the electrolytic cell needs to be maintained at 700 to 900 ° C.

しかしながら大量の溶融塩を含む電解槽を700℃以上に維持するためには膨大なエネルギーを消費する大容量の加熱装置が必要となるとともに、電解槽容器や付随する構成材料についても高い耐熱性や耐蝕性を有する材料を用いなければならないため、設備が大型化するとともに、設備費や稼働費が高くなり、その結果、回収コストが大きくなるという課題があった。   However, in order to maintain an electrolytic cell containing a large amount of molten salt at 700 ° C. or higher, a large-capacity heating device that consumes enormous energy is required, and the electrolytic cell container and the accompanying constituent materials have high heat resistance. Since a material having corrosion resistance has to be used, there is a problem that the facility is enlarged and the facility cost and the operating cost are increased, and as a result, the recovery cost is increased.

本発明は上記課題を解決するためになされたもので、NdやDy等のレアメタルを効率的に回収することができるコンパクトで高効率のレアメタル回収装置及び回収方法を提供することを目的とする。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a compact and highly efficient rare metal recovery apparatus and recovery method that can efficiently recover rare metals such as Nd and Dy.

上記課題を解決するために、本発明に係るレアメタル回収装置は、レアメタル成分を含む溶融塩が満たされた電解槽と、前記電解槽の周囲に設けられた加熱炉と、前記電解槽内に配置された陽極と、前記電解槽内に配置され作用電極とこの作用電極の内部に設けられた加熱装置を有する陰極と、を備えたレアメタル回収装置であって、前記作用電極の温度を前記溶融塩の温度よりも高く、かつ、前記レアメタル金属が前記作用電極の成分と結合して液体合金となる回収温度に保持することにより、前記作用陰極に析出したレアメタル金属を液体合金として回収することを特徴とする。   In order to solve the above problems, a rare metal recovery apparatus according to the present invention is arranged in an electrolytic cell filled with a molten salt containing a rare metal component, a heating furnace provided around the electrolytic cell, and the electrolytic cell. A rare metal recovery device comprising a working anode disposed in the electrolytic cell and a cathode having a heating device provided inside the working electrode, wherein the temperature of the working electrode is set to the molten salt And the rare metal metal deposited on the working cathode is recovered as a liquid alloy by maintaining the recovery temperature at which the rare metal metal is combined with the components of the working electrode to form a liquid alloy. And

また、本発明に係るレアメタル回収方法は、レアメタル成分を含む溶融塩が満たされた電解槽と、前記電解槽の周囲に設けられた加熱炉と、前記電解槽内に配置された陽極と、前記電解槽内に配置され作用電極とこの作用電極の内部に設けられた加熱装置を有する陰極と、を備え、前記作用陰極に析出したレアメタル金属を液体合金として回収するレアメタル回収方法であって、前記陰極の作用電極の温度を前記溶融塩の温度よりも高く、かつ、前記レアメタル金属が前記作用電極の成分と結合して液体合金となる回収温度に保持することを特徴とする。   Moreover, the rare metal recovery method according to the present invention includes an electrolytic cell filled with a molten salt containing a rare metal component, a heating furnace provided around the electrolytic cell, an anode disposed in the electrolytic cell, A rare metal recovery method comprising: a working electrode disposed in an electrolytic cell; and a cathode having a heating device provided inside the working electrode, wherein the rare metal deposited on the working cathode is recovered as a liquid alloy, The temperature of the working electrode of the cathode is higher than the temperature of the molten salt, and the rare metal metal is held at a recovery temperature at which a component of the working electrode is combined to form a liquid alloy.

本発明によれば、NdやDy等のレアメタルを効率的かつ低コストで回収することができるコンパクトで高効率のレアメタル回収装置及び回収方法を提供することができる。   According to the present invention, it is possible to provide a compact and highly efficient rare metal recovery apparatus and recovery method capable of recovering rare metals such as Nd and Dy efficiently and at low cost.

第1の実施形態に係るレアメタル回収装置の概略図。Schematic of the rare metal collection | recovery apparatus which concerns on 1st Embodiment. 第2の実施形態に係る陰極の構成図。The block diagram of the cathode which concerns on 2nd Embodiment. (a)から(c)は各々第3の実施形態に係る陰極の消耗状態を説明する構成図。(A) to (c) is a configuration diagram for explaining the consumption state of the cathode according to the third embodiment. 第4の実施形態に係る陰極の構成図。The block diagram of the cathode which concerns on 4th Embodiment. 第5の実施形態に係る陰極の構成図。The block diagram of the cathode which concerns on 5th Embodiment.

以下、本発明に係るレアメタル回収装置及び回収方法の実施形態について図を用いて説明する。
[第1の実施形態]
第1の実施形態に係るレアメタル回収装置及び回収方法について図1を用いて説明する。
Hereinafter, embodiments of a rare metal recovery apparatus and recovery method according to the present invention will be described with reference to the drawings.
[First Embodiment]
A rare metal recovery apparatus and recovery method according to the first embodiment will be described with reference to FIG.

(構成)
本第1の実施形態に係るレアメタル回収装置は、図1に示すように、LiCl、KCL又はCaCl等からなる溶融塩12が満たされる電解槽10と、電解槽10の周囲に配設された加熱炉である電気炉11と、電解槽10内に配置された例えば炭素からなる陽極13と、Fe又はNi等からなる作用電極1を有する陰極14と、から構成される。
(Constitution)
As shown in FIG. 1, the rare metal recovery apparatus according to the first embodiment is disposed around an electrolytic cell 10 filled with a molten salt 12 made of LiCl, KCL, CaCl 2 or the like, and the electrolytic cell 10. An electric furnace 11 which is a heating furnace, an anode 13 made of carbon, for example, and a cathode 14 having a working electrode 1 made of Fe, Ni or the like disposed in the electrolytic cell 10 are configured.

陰極14は作用電極1とその内部に設置された加熱装置2とから構成され、作用電極1は電気的接続を維持するためのリード線7を備えている。また、加熱装置2はリード線により電源15に接続されている。   The cathode 14 is composed of a working electrode 1 and a heating device 2 installed therein, and the working electrode 1 includes a lead wire 7 for maintaining an electrical connection. The heating device 2 is connected to the power source 15 by a lead wire.

(作用)
このように構成されたレアメタル回収装置において、レアメタルを回収する際は、加熱炉である例えば電気炉11により電解槽10内の溶融塩12を加熱する。溶融塩12は使用する溶融塩12の材質によって異なるが概ね500〜700℃に加熱される。
(Function)
In the rare metal recovery apparatus configured as described above, when recovering the rare metal, the molten salt 12 in the electrolytic cell 10 is heated by, for example, an electric furnace 11 which is a heating furnace. Although the molten salt 12 varies depending on the material of the molten salt 12 to be used, it is generally heated to 500 to 700 ° C.

そして、陰極14では、加熱装置2により作用電極1を電解槽10内の溶融塩12の温度よりも高温の回収温度に加熱する。作用電極1の回収温度は、Nd又はDyと作用電極1の成分(Fe又はNi)との共晶温度近辺となるように加熱される。なお、回収温度はNd又はDyと作用電極1の成分との組合せによって異なるが、作用電極1の材料の健全性を維持できる限り高い方が好ましい。具体的な回収温度は概ね700〜900℃である。   In the cathode 14, the working electrode 1 is heated by the heating device 2 to a recovery temperature higher than the temperature of the molten salt 12 in the electrolytic cell 10. The recovery temperature of the working electrode 1 is heated so as to be close to the eutectic temperature of Nd or Dy and the component (Fe or Ni) of the working electrode 1. The recovery temperature varies depending on the combination of Nd or Dy and the components of the working electrode 1, but is preferably as high as possible so that the soundness of the material of the working electrode 1 can be maintained. The specific recovery temperature is approximately 700 to 900 ° C.

この状態で、回収対象である溶融塩12中のレアメタル3は金属析出物(レアメタル金属)4として作用電極1の表面に析出する。なお、これらの反応は次式(1)、(2)で表される。
Nd3+ + 3e = Nd ・・・(1)
Dy3+ + 3e = Dy ・・・(2)
In this state, the rare metal 3 in the molten salt 12 to be collected is deposited on the surface of the working electrode 1 as a metal precipitate (rare metal metal) 4. These reactions are represented by the following formulas (1) and (2).
Nd 3+ + 3e = Nd (1)
Dy 3+ + 3e = Dy (2)

作用電極1の表面に析出したNd又はDyの金属析出物4は、直ちに作用電極1の成分(Fe又はNi)と結合して液体合金5となり、電解槽10の底部に滴下する。この滴下物を吸引具等によって回収する(図示せず)。   The metal deposit 4 of Nd or Dy deposited on the surface of the working electrode 1 immediately combines with the component (Fe or Ni) of the working electrode 1 to form the liquid alloy 5 and is dropped on the bottom of the electrolytic cell 10. The dripping material is collected by a suction tool or the like (not shown).

(効果)
本実施形態によれば、陰極14に加熱装置2を設け陰極14のみを高温の回収温度に維持することで、電解槽10全体を高温に加熱する必要がなくなり、回収装置の小型化、並びに回収作業の効率化及び低コスト化を図ることができる。
(effect)
According to the present embodiment, by providing the heating device 2 on the cathode 14 and maintaining only the cathode 14 at a high recovery temperature, there is no need to heat the entire electrolytic cell 10 to a high temperature, and the recovery device can be reduced in size and recovered. Work efficiency and cost reduction can be achieved.

[第2の実施形態]
第2の実施形態に係るレアメタル回収装置及び回収方法について図2を用いて説明する。
第2の実施形態に係る陰極14は、加熱装置2が内部に挿入された絶縁体6と、絶縁体6の周囲を覆うように設けられた作用電極1とから構成される。
[Second Embodiment]
A rare metal recovery apparatus and recovery method according to the second embodiment will be described with reference to FIG.
The cathode 14 according to the second embodiment includes an insulator 6 in which the heating device 2 is inserted, and a working electrode 1 provided so as to cover the periphery of the insulator 6.

これにより、電解精製が進行し作用電極1が金属析出物4と反応して消耗しても加熱装置2が露出することなく物理的、電気的絶縁が維持されるので、加熱装置2を含む陰極14の健全性を維持することができる。
本実施形態によれば、加熱装置2と作用電極1との間に絶縁体6を配置したことにより、加熱装置2を含む陰極14の健全性を長期にわたって維持することができる。
Thus, even if the electrolytic purification proceeds and the working electrode 1 reacts with the metal deposit 4 and is consumed, the heating device 2 is not exposed and the physical and electrical insulation is maintained. 14 soundness can be maintained.
According to this embodiment, since the insulator 6 is disposed between the heating device 2 and the working electrode 1, the soundness of the cathode 14 including the heating device 2 can be maintained over a long period of time.

[第3の実施形態]
第3の実施形態に係るレアメタル回収装置及び回収方法について図3を用いて説明する。
第3の実施形態に係る陰極14では、作用電極1は絶縁体6に密着されておらず、絶縁体6の下部に設けられた基台8に載置され、これにより絶縁体6に対し上下動可能に構成されている。
[Third Embodiment]
A rare metal recovery apparatus and recovery method according to a third embodiment will be described with reference to FIG.
In the cathode 14 according to the third embodiment, the working electrode 1 is not in close contact with the insulator 6, and is placed on a base 8 provided at the lower portion of the insulator 6. It is configured to be movable.

ところで、電解精製が進行すると作用電極1は金属析出物4と反応して消耗し、最終的に陰極14の作用電極1は消失して電解の進行が止まることとなる。
そのため、本実施形態では、図3(a)〜(c)に示すように、作用電極1を絶縁体6の基台8上に載置する構成としたことにより、電解浴界面の下部で作用電極1が電解により消耗、消失したとしても(図3(a)、(b))、作用電極1はその自重により落下し(図3(c))、これにより電解精製を継続することができる。
By the way, when the electrolytic purification progresses, the working electrode 1 reacts with the metal deposit 4 and is consumed, and finally the working electrode 1 of the cathode 14 disappears and the progress of electrolysis is stopped.
Therefore, in this embodiment, as shown in FIGS. 3A to 3C, the working electrode 1 is placed on the base 8 of the insulator 6 so that it acts at the lower part of the electrolytic bath interface. Even if the electrode 1 is consumed and disappeared by electrolysis (FIGS. 3A and 3B), the working electrode 1 falls due to its own weight (FIG. 3C), and thus the electrolytic purification can be continued. .

本実施形態によれば、作用電極1の消耗による電解停止を防止することができるため、長期にわたって回収作業を継続することができる。   According to the present embodiment, the electrolysis stop due to the consumption of the working electrode 1 can be prevented, so that the recovery operation can be continued for a long time.

[第4の実施形態]
第4の実施形態に係るレアメタル回収装置及び回収方法について図4を用いて説明する。
第4の実施形態に係る陰極14は、加熱装置2が内部に挿入された絶縁体6と、絶縁体6の周囲を覆うように設けられた作用電極1と、絶縁体6の下端部に設けられた凹部状の回収容器9とから構成される。
[Fourth Embodiment]
A rare metal recovery apparatus and recovery method according to the fourth embodiment will be described with reference to FIG.
The cathode 14 according to the fourth embodiment is provided on the insulator 6 in which the heating device 2 is inserted, the working electrode 1 provided so as to cover the periphery of the insulator 6, and the lower end portion of the insulator 6. It is comprised from the concave-shaped collection | recovery container 9 made.

ところで、上記第1〜第3の実施形態では、作用電極1で生成した液体合金5は電解槽10の底部に滴下する構造となっているが、電解槽10内の溶融塩12は比較的低温に保持されているため、液体合金5は滴下する過程で固形化する可能性がある。液体合金5が固形化すると、その後の取り出し、回収作業が困難となるという問題がある。   By the way, in the said 1st-3rd embodiment, although the liquid alloy 5 produced | generated with the working electrode 1 has a structure dripped at the bottom part of the electrolytic cell 10, the molten salt 12 in the electrolytic cell 10 is comparatively low temperature. Therefore, the liquid alloy 5 may be solidified during the dropping process. When the liquid alloy 5 is solidified, there is a problem that subsequent removal and recovery operations become difficult.

そのため、本実施形態では、図4に示すように、絶縁体6の下部に滴下した液体合金5を収容する回収容器9を設けるとともに、加熱装置2を絶縁体6の下端部まで延在させ、回収容器9に対しても加熱可能に構成し、これにより、回収容器9に回収された液体合金5を液体状態に保持し、吸引等により液体合金5を簡便に回収することができる。   Therefore, in this embodiment, as shown in FIG. 4, while providing the collection container 9 which accommodates the liquid alloy 5 dripped at the lower part of the insulator 6, the heating apparatus 2 is extended to the lower end part of the insulator 6, The recovery container 9 is also configured to be heatable, whereby the liquid alloy 5 recovered in the recovery container 9 can be held in a liquid state, and the liquid alloy 5 can be easily recovered by suction or the like.

なお、図4に示すように、作用電極1を回収容器9の上面に載置するように構成してもよい。
本実施形態によれば、絶縁体6の下部に回収容器9を設け、加熱装置2により作用電極1及び回収容器9を加熱可能に構成することで、さらにレアメタルの回収作業の効率化を図ることができる。
In addition, as shown in FIG. 4, you may comprise so that the working electrode 1 may be mounted in the upper surface of the collection container 9. FIG.
According to the present embodiment, the recovery container 9 is provided below the insulator 6, and the working electrode 1 and the recovery container 9 can be heated by the heating device 2, thereby further improving the efficiency of the rare metal recovery operation. Can do.

[第5の実施形態]
第5の実施形態に係るレアメタル回収装置及び回収方法について図5を用いて説明する。
上記第4の実施形態では1つの加熱装置2により作用電極1及び回収容器9を加熱可能に構成している。
[Fifth Embodiment]
A rare metal recovery apparatus and recovery method according to a fifth embodiment will be described with reference to FIG.
In the fourth embodiment, the working electrode 1 and the collection container 9 can be heated by a single heating device 2.

しかしながら、作用電極1の回収温度は陰極材料の健全性を維持できる限り高い方が好ましい。一方、回収容器9を必要以上に加熱すると他の不純物が混入したり、容器材料の健全性を損なう可能性があるとともに、液体合金5の温度が低い方が液体合金の蒸気圧が低くなり回収効率が向上する。したがって、回収容器9に回収される液体合金5は融点付近に維持されれば十分である。   However, the recovery temperature of the working electrode 1 is preferably as high as possible so that the soundness of the cathode material can be maintained. On the other hand, if the recovery container 9 is heated more than necessary, other impurities may be mixed in, or the soundness of the container material may be impaired, and the lower the temperature of the liquid alloy 5, the lower the vapor pressure of the liquid alloy. Efficiency is improved. Therefore, it is sufficient that the liquid alloy 5 recovered in the recovery container 9 is maintained near the melting point.

このように、作用電極1と回収容器9における加熱温度はそれぞれ異なる方が望ましいため、本第5の実施形態では、図5に示すように、作用電極1を加熱する加熱装置17と回収容器9を加熱する加熱装置18を別個に設けた構成としている。
本実施形態によれば、作用電極1と回収容器9をそれぞれの最適な温度に加熱することが可能となるため、さらにレアメタルの回収作業の効率化を図ることができる。
Thus, since it is desirable that the heating temperatures of the working electrode 1 and the recovery container 9 are different from each other, in the fifth embodiment, as shown in FIG. 5, the heating device 17 for heating the working electrode 1 and the recovery container 9 are used. It is set as the structure which provided separately the heating apparatus 18 which heats.
According to the present embodiment, since the working electrode 1 and the recovery container 9 can be heated to their optimum temperatures, the efficiency of the rare metal recovery operation can be further improved.

以上、本発明の実施形態を説明したが、この実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。この新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、組み合わせ、置き換え、変更を行うことができる。この実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   As mentioned above, although embodiment of this invention was described, this embodiment is shown as an example and is not intending limiting the range of invention. The novel embodiment can be implemented in various other forms, and various omissions, combinations, replacements, and changes can be made without departing from the spirit of the invention. This embodiment and its modifications are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

1…作用電極、2、17、18…加熱装置、3…レアメタル成分、4…金属析出物(レアメタル金属)、5…液体合金、6…絶縁体、7…リード線、8…基台、9…回収容器、10…電解槽、11…電気炉(加熱炉)、12…溶融塩、13…陽極、14…陰極、15…電源。
DESCRIPTION OF SYMBOLS 1 ... Working electrode 2, 17, 18 ... Heating device, 3 ... Rare metal component, 4 ... Metal deposit (rare metal metal), 5 ... Liquid alloy, 6 ... Insulator, 7 ... Lead wire, 8 ... Base, 9 DESCRIPTION OF SYMBOLS ... Recovery container, 10 ... Electrolytic cell, 11 ... Electric furnace (heating furnace), 12 ... Molten salt, 13 ... Anode, 14 ... Cathode, 15 ... Power supply.

Claims (6)

レアメタル成分を含む溶融塩が満たされた電解槽と、前記電解槽の周囲に設けられた加熱炉と、前記電解槽内に配置された陽極と、前記電解槽内に配置され作用電極とこの作用電極の内部に設けられた加熱装置を有する陰極と、を備えたレアメタル回収装置であって、
前記作用電極の温度を前記溶融塩の温度よりも高く、かつ、前記レアメタル金属が前記作用電極の成分と結合して液体合金となる回収温度に保持することにより、前記作用陰極に析出したレアメタル金属を液体合金として回収することを特徴とするレアメタル回収装置。
An electrolytic cell filled with a molten salt containing a rare metal component, a heating furnace provided around the electrolytic cell, an anode disposed in the electrolytic cell, a working electrode disposed in the electrolytic cell, and this action A rare metal recovery device comprising a cathode having a heating device provided inside the electrode,
Rare metal metal deposited on the working cathode by maintaining the temperature of the working electrode higher than the temperature of the molten salt and maintaining the recovery temperature at which the rare metal metal is combined with the components of the working electrode to form a liquid alloy. A rare metal recovery device characterized in that it is recovered as a liquid alloy.
前記陰極は、加熱装置が内部に設けられた絶縁体と、前記絶縁体の周囲を覆うように設けられた作用電極とから構成されることを特徴とする請求項1記載のレアメタル回収装置。   The rare metal recovery apparatus according to claim 1, wherein the cathode includes an insulator having a heating device provided therein and a working electrode provided to cover the periphery of the insulator. 前記絶縁体の下部に前記作用電極が載置される基台を設けたことを特徴とする請求項2記載のレアメタル回収装置。   The rare metal recovery apparatus according to claim 2, wherein a base on which the working electrode is placed is provided below the insulator. 前記絶縁体の下部に、液体合金を収容する回収容器を設けたことを特徴とする請求項2又は3記載のレアメタル回収装置。   4. The rare metal recovery apparatus according to claim 2, wherein a recovery container for storing a liquid alloy is provided below the insulator. 前記絶縁体の内部に、前記作用電極を加熱する加熱装置と、前記回収容器を加熱する加熱装置を別個に設けたことを特徴とする請求項4記載のレアメタル回収装置。   5. The rare metal recovery apparatus according to claim 4, wherein a heating device for heating the working electrode and a heating device for heating the recovery container are separately provided in the insulator. レアメタル成分を含む溶融塩が満たされた電解槽と、前記電解槽の周囲に設けられた加熱炉と、前記電解槽内に配置された陽極と、前記電解槽内に配置され作用電極とこの作用電極の内部に設けられた加熱装置を有する陰極と、を備え、前記作用陰極に析出したレアメタル金属を液体合金として回収するレアメタル回収方法であって、
前記陰極の作用電極の温度を前記溶融塩の温度よりも高く、かつ、前記レアメタル金属が前記作用電極の成分と結合して液体合金となる回収温度に保持することを特徴とするレアメタル回収方法。
An electrolytic cell filled with a molten salt containing a rare metal component, a heating furnace provided around the electrolytic cell, an anode disposed in the electrolytic cell, a working electrode disposed in the electrolytic cell, and this action A cathode having a heating device provided inside an electrode, and a rare metal recovery method for recovering a rare metal metal deposited on the working cathode as a liquid alloy,
A method for recovering a rare metal, characterized in that the temperature of the working electrode of the cathode is higher than the temperature of the molten salt, and the rare metal metal is held at a recovery temperature at which the component of the working electrode is combined to form a liquid alloy.
JP2014060196A 2014-03-24 2014-03-24 Apparatus and method for recovering rare metal Withdrawn JP2015183225A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014060196A JP2015183225A (en) 2014-03-24 2014-03-24 Apparatus and method for recovering rare metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014060196A JP2015183225A (en) 2014-03-24 2014-03-24 Apparatus and method for recovering rare metal

Publications (1)

Publication Number Publication Date
JP2015183225A true JP2015183225A (en) 2015-10-22

Family

ID=54350123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014060196A Withdrawn JP2015183225A (en) 2014-03-24 2014-03-24 Apparatus and method for recovering rare metal

Country Status (1)

Country Link
JP (1) JP2015183225A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017053016A (en) * 2015-09-11 2017-03-16 住友電気工業株式会社 Method for producing rare earth metal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017053016A (en) * 2015-09-11 2017-03-16 住友電気工業株式会社 Method for producing rare earth metal

Similar Documents

Publication Publication Date Title
JP5504515B2 (en) Rare earth metal recovery method
Mohandas et al. FFC Cambridge process and removal of oxygen from metal-oxygen systems by molten salt electrolysis: an overview
KR101684266B1 (en) Apparatus for recovering neodymium matal using electrowinning
JP6057250B2 (en) Rare earth metal recovery method and recovery apparatus
WO2014019513A3 (en) Rare earth metal, rare earth metal alloy and method for the preparation of same by molten salt electrolysis
Xie et al. Electro-reduction of hematite using water as the redox mediator
CN103732801A (en) Method for recovering element and apparatus for recovering element
JP5787785B2 (en) Molten salt electrolysis apparatus and molten salt electrolysis method
JP2015183225A (en) Apparatus and method for recovering rare metal
JP2017179488A (en) Molten salt electrolysis apparatus and molten salt electrolysis method
JP5907188B2 (en) Method for producing scandium concentrate
JP6502805B2 (en) Method of manufacturing rare earth metal
CN205223376U (en) A recovery unit for reducing metal ion in waste water
JP5814585B2 (en) Rare earth metal recovery method and recovery apparatus
CN105514400B (en) The method for battery cathode active material hydrogen bearing alloy is prepared using waste nickel hydrogen battery
JP7486199B2 (en) Electrochemical generation of reactive metals
JP7263213B2 (en) How to recycle used secondary batteries
CN204550728U (en) A kind of device be separated containing antimony alloy
CN203546162U (en) Rare earth electrolysis equipment
CN102181648B (en) Method for recovering noble metals from dead catalyst for hydrogenation for preparing DSD acid
Natsui et al. Molten Oxide Electrolysis Using Copper-Containing Carbon-Saturated Molten Iron Anode
CN205223368U (en) Zinc metal recycling mechanism
JP2016172882A (en) Method and apparatus for separating and recovering rare earth element
CN106917114A (en) Metallic titanium powder molten-salt electrolysis retracting device
JP2016056393A (en) Recycle device and method of rare earth-including alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160215

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20160808