JP2015182135A - Welding method for projection bolt - Google Patents

Welding method for projection bolt Download PDF

Info

Publication number
JP2015182135A
JP2015182135A JP2014079744A JP2014079744A JP2015182135A JP 2015182135 A JP2015182135 A JP 2015182135A JP 2014079744 A JP2014079744 A JP 2014079744A JP 2014079744 A JP2014079744 A JP 2014079744A JP 2015182135 A JP2015182135 A JP 2015182135A
Authority
JP
Japan
Prior art keywords
welding
gap
steel plate
melting
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014079744A
Other languages
Japanese (ja)
Other versions
JP5645041B1 (en
Inventor
青山 好高
Yoshitaka Aoyama
好高 青山
青山 省司
Shoji Aoyama
省司 青山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2014079744A priority Critical patent/JP5645041B1/en
Application granted granted Critical
Publication of JP5645041B1 publication Critical patent/JP5645041B1/en
Publication of JP2015182135A publication Critical patent/JP2015182135A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Connection Of Plates (AREA)

Abstract

PROBLEM TO BE SOLVED: To properly ensure a molten state on a thin steel plate side when a projection bolt is welded to a thin steel plate by electric resistance welding.SOLUTION: A projection bolt 1, which is formed of a shaft part 2, a circular expanded diameter part 3, and a welding projection 4 consisting of an initial molten part 4A having a tapered part 6 and a main molten part 4B, is welded to a steel plate component 8 made of a thin steel plate by electric resistance welding. The space width C of a space 19 between the expanded diameter part 3 and the steel plate component 8 is reduced by electrode pressurization. At the same time of the reduction, air inside the space 19 is rapidly expanded by heat of melting to be rapidly discharged outside the space 19. Outside cool air is sucked into the space 19 by pressure drop in the space 19 generated by the discharge. A space width C1 after the completion of the welding is made approximately equal to the height dimension of the main molten part 4B. Consequently, the melting amount of the steel plate component 8 is properly ensured.

Description

この発明は、軸部と、この軸部と一体的に形成された拡径部と、この拡径部の中央に配置された溶着用突起によって構成されたプロジェクションボルトを薄鋼板に溶接する溶接方法に関している。  The present invention relates to a welding method for welding a projection bolt composed of a shaft portion, a diameter-enlarged portion formed integrally with the shaft portion, and a welding protrusion disposed in the center of the diameter-extended portion to a thin steel plate. It is related.

特許第4032313号公報(特許文献1)には、軸部と、この軸部と一体的に形成された拡径部と、この拡径部の中央に配置された溶着用突起によって構成されたプロジェクションボルトを、鋼板部品に電気抵抗溶接で溶接することが記載されている。  Japanese Patent No. 4032313 (Patent Document 1) discloses a projection constituted by a shaft portion, a diameter-enlarged portion formed integrally with the shaft portion, and a welding protrusion disposed at the center of the diameter-extended portion. It is described that a bolt is welded to a steel plate part by electric resistance welding.

上記の特許文献1に開示されているプロジェクションボルトは、図7(A)に示した形状である。このプロジェクションボルト20は鉄製であり、雄ねじが形成された軸部21と、この軸部21と一体的に形成され軸部21の直径よりも大径とされた円形の拡径部22と、前記軸部21とは反対側の拡径部中央に配置された円形の溶着用突起23によって構成されている。前記溶着用突起23は、拡径部22よりも小径とされた円形の隆起形状部であり、先端面側に小さな傾斜角のテーパ部24と中心部が尖った形状の頂部25を備えている。そして、溶着用突起23以外の部分における拡径部22の端面は、外周側が低くなったテーパ面26とされている。  The projection bolt disclosed in Patent Literature 1 has the shape shown in FIG. The projection bolt 20 is made of iron, and includes a shaft portion 21 in which a male screw is formed, a circular enlarged diameter portion 22 formed integrally with the shaft portion 21 and having a diameter larger than the diameter of the shaft portion 21, It is comprised by the circular welding protrusion 23 arrange | positioned in the center of the enlarged diameter part on the opposite side to the axial part 21. As shown in FIG. The welding protrusion 23 is a circular raised shape portion having a smaller diameter than the enlarged diameter portion 22, and includes a tapered portion 24 having a small inclination angle and a top portion 25 having a sharp central portion on the distal end surface side. . And the end surface of the enlarged diameter part 22 in parts other than the welding protrusion 23 is made into the taper surface 26 where the outer peripheral side became low.

特許第4032313号公報Japanese Patent No. 4032313

特許文献1に記載されている発明(以下、先行発明という)は、本件特許出願にかかる発明の発明者である、青山好高および青山省司によって実用化されている。上記発明者達は、プロジェクションボルトを自動車車体の鋼板部品に溶接することによって、上記先行発明の実用化に成功している。すなわち、前記溶着用突起23が拡径部22の中央部において鋼板部品27に溶着しているとともに、前記テーパ面26が鋼板部品27の表面に密着している。このような中央部の溶着とそれ以外の部分の密着、すなわち「中央溶着・全面密着」によって所定の溶融状態や溶接強度とされた溶接品質が確保されている。  The invention described in Patent Document 1 (hereinafter referred to as the prior invention) has been put to practical use by Yoshitaka Aoyama and Shoji Aoyama, the inventors of the invention according to the present patent application. The inventors have succeeded in practical use of the prior invention by welding projection bolts to steel plate parts of an automobile body. That is, the welding protrusion 23 is welded to the steel plate part 27 at the center of the enlarged diameter portion 22, and the tapered surface 26 is in close contact with the surface of the steel plate part 27. The weld quality of a predetermined melted state and weld strength is ensured by such welding at the center and adhesion between the other parts, that is, “center welding / overall contact”.

ところで、例えば自動車車体の分野においては、車体軽量化の重要な方策として、高張力鋼板のような鋼板の強度向上による板厚の低減が推進されおり、このような薄板化にともなってプロジェクションボルトの電気抵抗溶接にも、特別な技術的配慮が必要になってきている。  By the way, in the field of automobile bodies, for example, as an important measure for reducing the weight of a vehicle body, reduction of the plate thickness is promoted by improving the strength of a steel plate such as a high-strength steel plate. Special technical considerations are also required for electrical resistance welding.

その状況は、図7(B)に示されている。進退動作をする可動電極28に受入孔29が開けられ、ここに軸部21が挿入されることによってプロジェクションボルト20が可動電極28に保持されている。一方、固定電極30上に高張力鋼板製の鋼板部品27が載置してあり、そこへ可動電極28の進出によって溶着用突起23が鋼板部品27に加圧されて溶接電流が通電される。これにより、溶着用突起23と鋼板部品27が溶融状態になって、図示のようにボルト20が鋼板部品27に溶接される。  The situation is shown in FIG. A receiving hole 29 is formed in the movable electrode 28 that moves forward and backward, and the projection bolt 20 is held by the movable electrode 28 by inserting the shaft portion 21 therein. On the other hand, a steel plate part 27 made of a high-strength steel plate is placed on the fixed electrode 30, and the welding projection 23 is pressed onto the steel plate part 27 by the advancement of the movable electrode 28, so that a welding current is applied. Thereby, the welding projection 23 and the steel plate part 27 are in a molten state, and the bolt 20 is welded to the steel plate part 27 as shown in the figure.

図7(B)に示されている溶着状態は、異常な態様である。これは、黒く塗りつぶした溶融部32が鋼板部品27の板厚全域わたって形成されている。つまり、鋼板部品27の厚さ方向で見て、板厚全体が一旦溶融状態になり、その後、凝固している。このような過剰溶融の現象は、板厚が0.65mmや0.7mmのように薄くなってくると発生しやすいものであり、熱容量の小さな薄い板厚に対してプロジェクションボルト20側の大きな熱量が影響して発生していると考えられる。つまり、プロジェクションボルト20側の溶融体積が薄板に対して過大になり、加圧力、通電時間および電流値などの溶接条件や、溶融金属の体積を正確に管理しても薄板であるために、板厚全域にわたる過剰溶融が発生する。  The welding state shown in FIG. 7B is an abnormal mode. The melted portion 32 painted black is formed across the entire thickness of the steel plate part 27. That is, as viewed in the thickness direction of the steel plate part 27, the entire plate thickness is once melted and then solidified. Such an excessive melting phenomenon is likely to occur when the plate thickness is reduced to 0.65 mm or 0.7 mm, and a large amount of heat on the projection bolt 20 side with respect to a thin plate thickness having a small heat capacity. It is thought that this occurred due to the influence. That is, the molten volume on the projection bolt 20 side is excessive with respect to the thin plate, and it is a thin plate even if the welding conditions such as the applied pressure, energization time and current value, and the volume of the molten metal are accurately controlled. Excessive melting occurs throughout the thickness.

さらに、テーパ面26が鋼板部品27の表面に密着しているので、溶融部32からの放熱性が不十分になり、そのために上記過剰溶融が発生しているものと考えられる。  Furthermore, since the taper surface 26 is in close contact with the surface of the steel plate part 27, it is considered that the heat dissipation from the melting part 32 becomes insufficient, and the above-described excessive melting occurs.

通常、鋼板部品にボルトやナットを電気抵抗溶接で溶接する場合には、鋼板部品の板厚方向で見た鋼板の溶融範囲は、板厚の半分あるいは3分の2位にとどめて所要の溶接強度を確保している。すなわち、非溶融部である母材を残置している。このように溶接強度が確保できるのは、溶融範囲が上記のような領域であるので、溶融しなかった母材部分が鋼板自体の強度を維持するとともに、溶融部分と非溶融部分の境界面積が広くなって溶融部分と非溶融部分との接合強度が十分な値になるためであると考えられる。  Usually, when bolts and nuts are welded to steel plate parts by electric resistance welding, the melting range of the steel plate viewed in the thickness direction of the steel plate parts is limited to half or two thirds of the plate thickness, and the required welding is performed. Strength is secured. That is, the base material which is a non-melting part is left behind. The weld strength can be ensured in this way because the melting range is the region as described above. This is considered to be because the bonding strength between the melted portion and the non-melted portion becomes a sufficient value due to widening.

しかしながら、図7(B)に示したような厚さ全域にわたる溶融であると、ボルト20と鋼板部品27の溶接強度が十分に確保できない、という問題がある。  However, if the melting is performed over the entire thickness as shown in FIG. 7B, there is a problem that the welding strength between the bolt 20 and the steel plate part 27 cannot be sufficiently secured.

この問題について考察すると、つぎのとおりである。溶融部(Nugget)32は通電完了後の急冷によって凝固するため、マルテンサイト組織となって著しく高い硬度となり、脆い性質となる。また、溶融部32の近傍の領域に、組織変化部分が同図の梨地箇所のようになって現れる。このような梨地箇所は、一般に熱影響部(Heat Affected Zone/HAZ)として知られている。この部分は符号33で示され、溶融部32ほどの脆さではないが、母材部分よりも脆い性質となっている。  Considering this problem, it is as follows. Since the melted part (Nugget) 32 is solidified by rapid cooling after completion of energization, it becomes a martensite structure, has extremely high hardness, and is brittle. In addition, in the region in the vicinity of the melted portion 32, the tissue change portion appears as a satin portion in the figure. Such a satin place is generally known as a heat affected zone (HAZ). This portion is indicated by reference numeral 33 and is not as brittle as the melted portion 32, but is more brittle than the base material portion.

そこで、固定された鋼板部品27に対して、ボルト20に傾き方向の曲げ力が反復して作用すると、高硬度で脆い性質の溶融部32と組織変化部分33の境界箇所に応力が集中するので、この境界箇所に疲労による割れが発生する。あるいは、組織変化部分33に割れが発生する。さらに、この問題は、板厚が薄いので溶融部32と非溶融部との境界部分の面積が小さくなり、さらに境界面が板厚方向を向いているために、この境界部分に割れが発生しやすくなり、溶接強度が向上しないものと考えられる。  Therefore, when a bending force in the tilt direction is repeatedly applied to the bolt 20 on the fixed steel plate part 27, stress concentrates on the boundary portion between the melted portion 32 and the texture changing portion 33 having high hardness and brittleness. Cracks due to fatigue occur at this boundary. Alternatively, cracks occur in the texture change portion 33. In addition, since the plate thickness is thin, the area of the boundary portion between the melting portion 32 and the non-melting portion is reduced, and further, the boundary portion faces the plate thickness direction, so that the boundary portion is cracked. It is considered that the welding strength is not improved.

本発明は、上記の問題点を解決するために提供されたもので、拡径部と鋼板部品の間に形成された空隙内に外部の冷気を吸入し、溶着局部の冷却を促進して、鋼板部品の過剰溶融を防止するプロジェクションボルトの溶接方法を提供することを目的とする。  The present invention is provided in order to solve the above problems, sucking external cold air into the gap formed between the enlarged diameter portion and the steel plate part, and promoting the cooling of the welded local portion, It aims at providing the welding method of the projection bolt which prevents the excessive fusion | melting of steel plate components.

以下の説明において、プロジェクションボルトを単にボルトと表現する場合もある。  In the following description, the projection bolt may be simply expressed as a bolt.

請求項1記載の発明は、雄ねじが形成された軸部と、この軸部と一体的に形成され軸部の直径よりも大径とされた円形の拡径部と、端面に外周側が低くなる小さな傾斜角のテーパ部を有する初期溶融部とこの初期溶融部に連なる主溶融部からなるとともに前記軸部とは反対側の拡径部中央に配置されている円形の溶着用突起によって形成されたプロジェクションボルトを、一対の電極間で前記溶着用突起を鋼板部品に加圧した状態で、当該鋼板部品に電気抵抗溶接で溶接するものであり、
前記初期溶融部が鋼板部品に加圧された状態で溶接電流が通電されて初期溶融部が溶融を開始することにより、前記拡径部と鋼板部品の間に形成される空隙の空隙幅を縮小し、この縮小と同時に、前記空隙内の空気を前記溶融の熱で急膨張させて空隙外へ急速に排出し、この排出によって生じる空隙内の圧力低下により、外部の冷気を空隙内に吸入し、
溶接完了後において、前記空隙幅は、前記主溶融部の高さ寸法とほぼ同じとされることを特徴とするプロジェクションボルトの溶接方法である。
According to the first aspect of the present invention, a shaft portion in which a male screw is formed, a circular enlarged diameter portion formed integrally with the shaft portion and having a diameter larger than the diameter of the shaft portion, and an outer peripheral side of the end surface are lowered. It was formed by a circular welding protrusion which is composed of an initial melting portion having a taper portion with a small inclination angle and a main melting portion connected to the initial melting portion and arranged at the center of the enlarged diameter portion on the opposite side to the shaft portion. The projection bolt is welded to the steel plate part by electric resistance welding in a state where the welding protrusion is pressed between the pair of electrodes to the steel plate part.
When the initial melted portion is pressed against the steel plate part, a welding current is applied and the initial melted portion starts melting, thereby reducing the gap width of the gap formed between the enlarged diameter portion and the steel plate part. Simultaneously with this reduction, the air in the gap is rapidly expanded by the heat of melting and rapidly discharged out of the gap, and due to the pressure drop in the gap caused by this discharge, external cold air is sucked into the gap. ,
The welding bolt welding method according to claim 1, wherein after the welding is completed, the gap width is substantially the same as a height dimension of the main melted portion.

溶着用突起は、端面に外周側が低くなる小さな傾斜角のテーパ部を有する初期溶融部と、この初期溶融部に連なる主溶融部から形成されているので、初期溶融部の体積部分の溶融と同時進行的に鋼板部品の表面が溶融を開始する。この初期溶融部の溶融にともなって拡径部と鋼板部品の間に形成される空隙の空隙幅が縮小される。この空隙幅縮小と同時に、初期溶融部の溶融に引き続いて主溶融部の一部への溶融が進行する。しかし、鋼板部品に対する溶着用突起の溶着は、実質的には初期溶融部全域の溶融で十分に達成されるので、主溶融部の溶融はきわめてわずかな量とされるか、または初期溶融部だけの溶融とされる。したがって、主溶融部が溶融しても、溶接完了後において、空隙幅は、主溶融部の高さ寸法とほぼ同じになる。なお、拡径部と鋼板部品の間に形成される空隙は、直径方向に所定の長さを有する環状の空間、言い換えるとドーナツ型の空間とされている。  Since the welding protrusion is formed of an initial melting portion having a tapered portion with a small inclination angle whose outer peripheral side is lowered on the end surface and a main melting portion continuous with the initial melting portion, the melting portion of the initial melting portion is simultaneously melted. Progressively the surface of the steel plate part starts to melt. Along with the melting of the initial melting portion, the gap width of the gap formed between the enlarged diameter portion and the steel plate part is reduced. Simultaneously with the reduction of the gap width, the melting of a part of the main melting part proceeds following the melting of the initial melting part. However, since welding of the welding protrusions to the steel plate parts is substantially achieved by melting the entire initial melting portion, the melting of the main melting portion is very small or only the initial melting portion. It is said to be melted. Therefore, even if the main melted portion is melted, the gap width is substantially the same as the height of the main melted portion after the completion of welding. The gap formed between the enlarged diameter portion and the steel plate part is an annular space having a predetermined length in the diameter direction, in other words, a donut-shaped space.

電極の加圧力は、例えば、2900Nであるため、前記溶融が開始されると、静止していた電極は溶融量に応じた電極進出距離を高速で進出する。これにともなって拡径部も高速で進出して空隙幅縮小がなされるので、空隙の片側が外気に開放されていても、空隙内の空気は瞬間的に圧縮された状態になり、この圧縮と同時に上記溶融熱で空気が急膨張をする。つまり、圧縮された空気が急加熱を受けることにより、膨張速度が一層高められた急膨張が形成される。この圧縮と急加熱でえられた高圧空気により、空隙内の空気が高速で空隙外へ噴出する。このように急速噴出がなされるので、それと同時に、空隙内が希薄になって空隙内の圧力が急激に低下し、この圧力低下によって、冷気である外気が空隙内に吸入される。  Since the applied pressure of the electrode is, for example, 2900 N, when the melting is started, the stationary electrode advances at an electrode advance distance corresponding to the amount of fusion at a high speed. Along with this, the expanded diameter part also advances at a high speed and the gap width is reduced, so even if one side of the gap is open to the outside air, the air in the gap is instantaneously compressed, and this compression At the same time, the air rapidly expands due to the heat of fusion. That is, when the compressed air is subjected to rapid heating, rapid expansion with a further increased expansion speed is formed. The high-pressure air obtained by this compression and rapid heating causes the air in the gap to be ejected out of the gap at a high speed. Since rapid ejection is performed in this manner, at the same time, the inside of the air gap becomes lean and the pressure in the air gap suddenly drops, and due to this pressure drop, cool air is sucked into the air gap.

上述のように、空隙内の空気が急速に空隙外へ噴出するときには、噴流が鋼板部品の表面に沿った方向となる。このような噴流であるから、外気は鋼板部品の表面から離隔した方向から空隙内に吸入される。空気の噴流が鋼板部品の表面に沿った方向となるのは、コアンダ効果のような現象が生じているため、と考えられる。  As described above, when the air in the gap rapidly jets out of the gap, the jet is in a direction along the surface of the steel plate part. Because of such a jet, the outside air is sucked into the gap from a direction away from the surface of the steel plate part. The reason why the jet of air is in the direction along the surface of the steel plate part is thought to be due to a phenomenon such as the Coanda effect.

このような冷気の吸入は、溶融部が凝固しきらない液相状態の段階でなされるので、溶融が過度に進行することが抑制される。そして、冷気が前記溶融で加熱されている拡径部下面、鋼板部品表面、主溶融部外周面、溶融部露出面などに接触した状態になるので、これらの加熱部分が良好に冷却される。そして、初期溶融部の溶融に引き続いた主溶融部の溶融量は、前述のようにきわめて微量かまたは溶融なしなので、溶融前の主溶融部の高さはほとんど変わることなく存置される。このため、溶接完了後において、空隙幅は、主溶融部の高さ寸法とほぼ同じ状態になる。空隙幅がこのような空間幅とされているので、拡径部下面、鋼板部品表面、主溶融部外周面、溶融部露出面などからの放熱が良好に継続する。  Such inhalation of cold air is performed at a stage of a liquid phase where the melted portion cannot be solidified, and therefore, excessive melting is suppressed. And since cold air will be in the state which contacted the lower surface of the enlarged diameter part heated by the said fusion | melting, the steel plate component surface, the main fusion part outer peripheral surface, a fusion | melting part exposure surface, etc., these heating parts are cooled favorably. Then, the amount of melting in the main melted part following the melting in the initial melted part is extremely small or not melted as described above, so that the height of the main melted part before melting remains almost unchanged. For this reason, after the welding is completed, the gap width is substantially the same as the height dimension of the main melted portion. Since the gap width is such a space width, heat radiation from the lower surface of the enlarged diameter portion, the surface of the steel plate part, the outer peripheral surface of the main melted portion, the exposed surface of the melted portion, etc. continues favorably.

上述の冷気吸入によって溶融熱が奪われるので、溶融が過剰に進行することが抑制され、板厚の薄い鋼板部品の過剰溶融が回避できる。つまり、溶融部とその近傍の組織変化部分が板厚全域にわたって形成されることがなく、溶融部近傍の組織変化部分と鋼板表面との間に溶融していない母材部分が存置される。したがって、この母材部分が鋼板部品としての強度を維持する機能を果たし、ボルトの溶接接合強度が十分に確保できる。また、組織変化部分と母材部分の境界面積が広い領域にわたって確保できるので、この境界面積部分の接合強度を高く保つことができ、ボルトに曲げ方向の外力が作用しても、容易に割れなどが発生することがない。  Since the heat of fusion is taken away by the above-described cold air suction, it is possible to prevent the melting from proceeding excessively and to avoid the excessive melting of the steel sheet component having a thin plate thickness. That is, the melted portion and the structure changing portion in the vicinity thereof are not formed over the entire plate thickness, and the unmelted base material portion is left between the structure changing portion in the vicinity of the melting portion and the steel plate surface. Therefore, this base material part fulfills the function of maintaining the strength as a steel plate part, and the weld joint strength of the bolt can be sufficiently secured. In addition, since the boundary area between the structure change part and the base material part can be secured over a wide region, the bonding strength of this boundary area part can be kept high, and even if an external force in the bending direction acts on the bolt, it can be easily cracked, etc. Will not occur.

なお、吸入された冷気が、拡径部下面、鋼板部品表面、主溶融部外周面、溶融部露出面などの残留熱で再び加熱されると、吸入空気は膨張し、空隙外へ排出され、これにともなう圧力低下で冷気が再び吸入されるもの、と考えられる。  In addition, when the sucked cold air is heated again with residual heat such as the lower surface of the enlarged diameter portion, the steel plate component surface, the outer peripheral surface of the main melting portion, the exposed surface of the melting portion, the intake air expands and is discharged out of the gap, It is considered that cold air is sucked again due to the pressure drop accompanying this.

溶接完了後において、空隙幅は、主溶融部の高さ寸法とほぼ同じとされている。空隙幅が狭すぎると、塗料液の粘性によってこの空隙における塗料液の流動性がえられないので、空隙に停滞している空気が排出されることなく、塗料液で封じ込められることとなる。この封入空気が原因となって錆が発生する、という問題がある。あるいは、空隙の長さが過剰になった場合も、空隙の奥まで塗料液が入りきらず、同様な問題が発生する。  After the welding is completed, the gap width is substantially the same as the height dimension of the main melted part. If the gap width is too narrow, the fluidity of the coating liquid in the gap cannot be obtained due to the viscosity of the coating liquid, so that the air stagnating in the gap is not exhausted and is contained in the coating liquid. There is a problem that rust is generated due to the enclosed air. Or when the length of a space | gap becomes excessive, a coating liquid does not enter into the back of a space | gap, and the same problem generate | occur | produces.

しかし、本発明のように、溶接完了後の空隙幅が主溶融部の高さ寸法とほぼ同じとされているので、拡径部と鋼板部品の間に、塗料液によって気泡が封入されることのない大きさの空隙が存置され、上記錆発生の問題が解消される。すなわち、空隙幅が十分な空間として確保できるため、この空隙への塗料液の流入が積極的に行われる。このような流動によって、空隙内の空気が排出され、塗料液は空隙を形成する拡径部下面、鋼板部品表面、主溶融部外周面、溶融部露出面などに付着し、気泡が封入されることがなく、前述のような錆発生の問題が解消される。  However, as in the present invention, since the gap width after welding is almost the same as the height dimension of the main melted part, air bubbles are enclosed by the coating liquid between the enlarged diameter part and the steel plate part. A void with no size is left, and the problem of rust generation is solved. That is, since the gap width can be secured as a sufficient space, the coating liquid is actively introduced into the gap. By such a flow, the air in the gap is discharged, and the coating liquid adheres to the lower surface of the enlarged diameter part, the surface of the steel plate part, the outer peripheral surface of the main melting part, the exposed surface of the molten part, etc. This eliminates the problem of rust generation as described above.

上記塗装は、通常、電着塗装による下塗りであり、比較的低い濃度(通常、固形分5〜10%)の水性塗料浴中に、ボルトが溶接された鋼板部品あるいは自動車の車体などを電極として浸し、他方、浴槽を対極として両電極間に直流電流を印加して電流を通じ、ボルトや鋼板部品に膜厚が20〜30μの皮膜を均一に析出させる。水性塗料の粘性は、固形分の含有量が上記の値であることから非常に低く設定されており、製品の隙間や空洞部分のいたるところに気泡を巻き込むことなく流入するので、前記拡径部と鋼板部品間の空隙内への流入が淀みなくなされる。  The above-mentioned coating is usually an undercoating by electrodeposition coating, and a steel plate part or an automobile body, etc., to which a bolt is welded in an aqueous paint bath having a relatively low concentration (normally 5 to 10% solids) is used as an electrode. On the other hand, a direct current is applied between both electrodes using the bathtub as a counter electrode, and the current is passed through to uniformly deposit a film having a thickness of 20 to 30 μm on the bolt or the steel plate part. The viscosity of the water-based paint is set to be very low because the solid content is the above value, and it flows without entraining air bubbles in the gaps and cavities of the product. And inflow into the gap between the steel plate parts.

請求項2記載の発明は、前記空隙幅に対する前記拡径部の直径方向で見た空隙長さの比が、2〜8である請求項1記載のプロジェクションボルトの溶接方法である。  The invention according to claim 2 is the projection bolt welding method according to claim 1, wherein the ratio of the gap length viewed in the diameter direction of the enlarged diameter portion to the gap width is 2 to 8.

上記のように、空隙幅に対する拡径部の直径方向で見た空隙長さの比が、2〜8に設定されていることにより、空隙の最も奥まった箇所に主溶融部の外周面が位置し、そこから外周側に向かって細長い空間が形成されることになる。したがって、空隙幅が縮小されることと、空気の熱膨張が急激であることが相乗して、前述のような急速な空気噴出が形成される。  As described above, the ratio of the gap length viewed in the diameter direction of the enlarged diameter portion to the gap width is set to 2 to 8, so that the outer peripheral surface of the main melting portion is located at the deepest part of the gap. Then, an elongated space is formed from there toward the outer peripheral side. Therefore, the rapid air ejection as described above is formed by synergy between the reduction of the gap width and the rapid thermal expansion of the air.

請求項3記載の発明は、前記溶着前の空隙幅が、0.8〜1.6mmである請求項1または請求項2記載のプロジェクションボルトの溶接方法である。  A third aspect of the present invention is the projection bolt welding method according to the first or second aspect, wherein the gap width before the welding is 0.8 to 1.6 mm.

空隙幅が、0.8〜1.6mmであるから、空隙幅縮小と空気急膨張が同時発生的に形成され、強い空気噴射がえられる。このような現象は、空隙の容積や、空気の粘性、空隙幅の大小などが関係しているものと考えられる。空隙幅が0.8〜1.6mmに設定されていることにより、これらの要素が良好に関係していると考えられる。  Since the gap width is 0.8 to 1.6 mm, the gap width reduction and the rapid air expansion are formed simultaneously, and strong air injection is obtained. Such a phenomenon is considered to be related to the volume of the air gap, the viscosity of the air, the size of the air gap width, and the like. It is considered that these elements are well related because the gap width is set to 0.8 to 1.6 mm.

さらに、溶接完了後の空隙幅は主溶融部の高さとほぼ同じとされている。したがって、空隙内へ塗料液が空気を排出しながら流入して前述の電着塗装が施されると、きわめて良好な塗膜が空隙内面全体にわたって均一に析出される。  Further, the gap width after completion of welding is substantially the same as the height of the main melted part. Therefore, when the coating liquid flows into the gap while discharging air and the above-described electrodeposition coating is performed, a very good coating film is uniformly deposited over the entire inner surface of the gap.

請求項4記載の発明は、前記鋼板部品の板厚が、0.6mm〜1.0mmである請求項1〜請求項3のいずれかに記載のプロジェクションボルトの溶接方法である。  A fourth aspect of the present invention is the projection bolt welding method according to any one of the first to third aspects, wherein the plate thickness of the steel plate component is 0.6 mm to 1.0 mm.

上記のように、板厚が0.6mm〜1.0mmであっても、前述の冷却作用により、過度な溶融深さにならず、良好な溶接強度がえられる。  As described above, even if the plate thickness is 0.6 mm to 1.0 mm, the above-described cooling action does not result in an excessive melting depth, and good welding strength can be obtained.

ボルトの各部形状を示す側面図と平面図である。It is the side view and top view which show each part shape of a volt | bolt. ボルトが溶接される状態を示す断面図である。It is sectional drawing which shows the state in which a volt | bolt is welded. 溶接時の溶着過程を示す断面図である。It is sectional drawing which shows the welding process at the time of welding. 空気の噴出と吸入を示す断面図である。It is sectional drawing which shows the ejection and suction | inhalation of air. 空隙の幅と長さの比と、T1、T2の関係を示す線図である。It is a diagram which shows the ratio of the width | variety of width | variety and length, and the relationship between T1 and T2. 引っ張り試験後の状態を示す断面図である。It is sectional drawing which shows the state after a tension test. 従来のボルトの溶着状態を示す図である。It is a figure which shows the welding state of the conventional volt | bolt.

つぎに、本発明のプロジェクションボルトの溶接方法を実施するための形態を説明する。  Next, an embodiment for carrying out the projection bolt welding method of the present invention will be described.

図1〜図6は、本発明の実施例1を示す。  1 to 6 show a first embodiment of the present invention.

まず、プロジェクションボルトの寸法や形状について説明する。  First, the dimensions and shape of the projection bolt will be described.

鉄製のプロジェクションボルト1の形状は、図1(A)と(B)に示されている。このボルト1は、雄ねじが形成された軸部2と、この軸部2と一体的に形成され軸部2の直径よりも大径とされた円形の拡径部3と、前記軸部2とは反対側の拡径部中央に配置された円形の溶着用突起4によって形成されている。そして、符号5は軸部2の外周面に形成された雄ねじであり、谷部と山部を有している。  The shape of the iron projection bolt 1 is shown in FIGS. 1 (A) and 1 (B). The bolt 1 includes a shaft portion 2 on which a male screw is formed, a circular enlarged diameter portion 3 formed integrally with the shaft portion 2 and having a diameter larger than the diameter of the shaft portion 2, and the shaft portion 2. Is formed by a circular welding protrusion 4 arranged in the center of the enlarged diameter portion on the opposite side. Reference numeral 5 denotes a male screw formed on the outer peripheral surface of the shaft portion 2 and has a valley portion and a mountain portion.

前記溶着用突起4は、図1や図4などに示すように、初期溶融部4Aと主溶融部4Bから構成されている。初期溶融部4Aは、溶着用突起4の端面に外周側が低くなる小さなテーパ傾斜角のテーパ部6を設けることによって形成された平たい形状の円錐形状部である。この初期溶融部4Aの中央部に尖った形状の頂部7が形成されている。そして、主溶融部4Bは、初期溶融部4Aに連なった状態で形成された円錐台の形状部分である。ボルト1は金型成型やロール加工などが施されるので、拡大して観察すると実際には、上記の頂部7は鋭利に尖った形状ではなく、若干の丸みを帯びた形状となる。  As shown in FIGS. 1 and 4, the welding protrusion 4 includes an initial melting part 4 </ b> A and a main melting part 4 </ b> B. The initial fusion part 4A is a flat conical part formed by providing a taper part 6 with a small taper inclination angle at the outer peripheral side of the end face of the welding projection 4 to be lowered. A sharp top portion 7 is formed at the center of the initial melting portion 4A. The main melting part 4B is a truncated cone shaped part formed in a state of being connected to the initial melting part 4A. Since the bolt 1 is subjected to mold molding, roll processing, and the like, when observed in an enlarged manner, the top portion 7 actually has a slightly rounded shape instead of a sharply pointed shape.

図1(C)には、実施例の寸法状態などを理解しやすくするために、各部の寸法や傾斜角度が記載されている。この図に示すように、軸部2の直径(山径)は5.5mm、軸部2の長さは24.5mm、拡径部3の直径と厚さはそれぞれ20.5mmと1.2mmである。さらに、溶着用突起4の端面(テーパ部6)の直径は10.5mm、初期溶融部4Aの高さ(厚さ)は0.35mm、主溶融部4Bの高さ(厚さ)は1.0mm、テーパ部6の傾斜角度θは4.5度である。  In FIG. 1C, the dimensions and inclination angles of each part are described for easy understanding of the dimensional state of the embodiment. As shown in this figure, the diameter (crest diameter) of the shaft portion 2 is 5.5 mm, the length of the shaft portion 2 is 24.5 mm, and the diameter and thickness of the enlarged diameter portion 3 are 20.5 mm and 1.2 mm, respectively. It is. Further, the diameter of the end face (tapered portion 6) of the welding projection 4 is 10.5 mm, the height (thickness) of the initial melting portion 4A is 0.35 mm, and the height (thickness) of the main melting portion 4B is 1. The inclination angle θ of the tapered portion 6 is 4.5 mm and 0 mm.

つぎに、ボルト1の溶接状態を説明する。  Next, the welding state of the bolt 1 will be described.

図2は、ボルト1が鋼板部品8に溶接される状態を示す断面図である。可動電極9は、エアシリンダまたは進退出力型の電動モータなど(図示していない)で進退動作をする。その端面中央部に可動電極9の長手方向に受入孔10があけられ、その奥部に永久磁石11が取り付けてある。鋼板部品8は、可動電極9と同軸状態で配置された固定電極12上に載置されている。鋼板部品8の板厚は、0.65mmである。  FIG. 2 is a cross-sectional view showing a state in which the bolt 1 is welded to the steel plate part 8. The movable electrode 9 is advanced and retracted by an air cylinder or an advancing / retracting output type electric motor (not shown). A receiving hole 10 is opened in the longitudinal direction of the movable electrode 9 at the center of the end face, and a permanent magnet 11 is attached to the inner part. The steel plate component 8 is placed on a fixed electrode 12 arranged coaxially with the movable electrode 9. The plate thickness of the steel plate component 8 is 0.65 mm.

作業者または供給ロッドによって、軸部2が可動電極9の受入孔10に挿入され、軸部2が永久磁石11で吸引されてボルト1が可動電極9に保持される。このときには、可動電極9の端面13に拡径部3の裏面が密着している。図2は、ボルト1を保持した可動電極9が進出してきて、溶着用突起4が鋼板部品8に加圧されている状態を示している。この加圧によって頂部7とその近傍のテーパ部6が、図示していないが、鋼板部品8の表面にめり込んでいる。つまり、初期溶融部4Aのテーパ部6の先端部分が鋼板部品8の表面にわずかに食い込んで、溶着用突起4と鋼板部品8の接触面積が増大している。この状態で溶接電流が通電されて、鋼板部品8への溶接がなされる。  The shaft portion 2 is inserted into the receiving hole 10 of the movable electrode 9 by an operator or a supply rod, the shaft portion 2 is attracted by the permanent magnet 11, and the bolt 1 is held by the movable electrode 9. At this time, the back surface of the enlarged diameter portion 3 is in close contact with the end surface 13 of the movable electrode 9. FIG. 2 shows a state in which the movable electrode 9 holding the bolt 1 has advanced and the welding projection 4 is being pressed against the steel plate component 8. The top portion 7 and the tapered portion 6 in the vicinity thereof are recessed into the surface of the steel plate component 8 by this pressurization, although not shown. That is, the tip end portion of the taper portion 6 of the initial melting portion 4A slightly bites into the surface of the steel plate component 8, and the contact area between the welding projection 4 and the steel plate component 8 is increased. In this state, a welding current is applied and welding to the steel plate part 8 is performed.

図2や図4(A)に示した加圧状態においては、拡径部3の下面と鋼板部品8の表面との間に空隙19が形成されている。この空隙19を軸部2の軸線方向で見た間隔幅が、空隙幅Cである。また、空隙19を拡径部3の直径方向で見た長さが、空隙長さDである。この実施例では、図1(C)に記載した寸法から明らかなように、前記空隙幅Cが1.35mm、空隙長さDが5.0mmである。そして、空隙幅Cに対する空隙長さDの比Hは3.7である。  In the pressurized state shown in FIG. 2 and FIG. 4A, a gap 19 is formed between the lower surface of the enlarged diameter portion 3 and the surface of the steel plate component 8. The gap width when the gap 19 is viewed in the axial direction of the shaft portion 2 is the gap width C. The length of the gap 19 when viewed in the diameter direction of the enlarged diameter portion 3 is the gap length D. In this embodiment, as apparent from the dimensions shown in FIG. 1C, the gap width C is 1.35 mm and the gap length D is 5.0 mm. The ratio H of the gap length D to the gap width C is 3.7.

つぎに、加圧通電条件を説明する。  Next, pressurizing energization conditions will be described.

可動電極9による加圧力、すなわち鋼板部品8に対する溶着用突起4の加圧力は2900Nであり、溶接電流は12000A、通電時間は9サイクルである。この通電時間9サイクルは、通電開始時点から所定時間経過後の初期溶融部4Aの溶融開始、それに引き続く主溶融部4Bの一部分の溶融終了までの時間である。なお、1サイクルは1/60秒である。  The pressing force by the movable electrode 9, that is, the pressing force of the welding projection 4 on the steel plate part 8, is 2900N, the welding current is 12000A, and the energization time is 9 cycles. This energization time of 9 cycles is the time from the start of energization to the start of melting of the initial melting part 4A after the elapse of a predetermined time and the subsequent end of melting of a part of the main melting part 4B. One cycle is 1/60 second.

上述の条件で良好な溶接が可能であるが、各条件の設定範囲は、加圧力は2000〜3300N、溶接電流は10000〜15000A、通電時間は5〜12サイクルとするのが良好である。  Good welding is possible under the above-mentioned conditions, but the setting range of each condition is preferably 2000 to 3300 N, welding current of 10,000 to 15000 A, and energization time of 5 to 12 cycles.

つぎに、溶着過程を説明する。  Next, the welding process will be described.

図3は、溶着過程を示す。同図は断面図であるが、見やすくするために断面箇所のハッチング記載は省略してある。図3(A)は、図2の押し付け状態で溶接電流を通電した通電初期の段階であり、頂部7近傍とそれに対応する鋼板部品8が僅かに溶融している。この溶融箇所は符号14で示されている。  FIG. 3 shows the welding process. Although this figure is a cross-sectional view, the hatching description of the cross-sectional portion is omitted for easy viewing. FIG. 3A is an initial stage of energization in which a welding current is applied in the pressing state of FIG. 2, and the vicinity of the top portion 7 and the corresponding steel plate part 8 are slightly melted. This melting point is indicated by reference numeral 14.

さらに加圧通電が継続されると、テーパ部6の傾斜角によって溶融箇所14は、直径方向に放射状のほぼ平面的な溶融範囲となって円形に拡大してゆく。この拡大過渡状態が図3(B)に示されている。  When the energization is further continued, the melted portion 14 becomes a radial and substantially flat melting range in the diameter direction and expands in a circular shape due to the inclination angle of the tapered portion 6. This enlarged transient state is shown in FIG.

その後、加圧通電が継続されることにより、初期溶融部4A全域の溶融に引き続いて主溶融部4Bの溶融が同時進行的に開始される。しかし、前述のように、この主溶融部4Bの溶融量はきわめて僅かであるため、溶接完了後における主溶融部4Bの高さはほとんど減少することがない。初期溶融部4Aの溶融によって、初期溶融部4Aの円形範囲に対応した鋼板部品8の表面全域が図3(C)や(D)に示すように、溶融する。前述の通電時間9サイクルが経過した時点で、図3(C)に示す溶融状態となる。  Thereafter, by continuing the energization with pressure, the melting of the main melting portion 4B is started simultaneously following the melting of the entire initial melting portion 4A. However, as described above, since the melting amount of the main melting portion 4B is very small, the height of the main melting portion 4B after the completion of welding hardly decreases. Due to the melting of the initial melting portion 4A, the entire surface area of the steel plate part 8 corresponding to the circular range of the initial melting portion 4A is melted as shown in FIGS. When the aforementioned energization time of 9 cycles elapses, the molten state shown in FIG.

図3(C)や(D)から明らかなように、主溶融部4Bの溶融がきわめて僅かなものとされるように、あるいは実質的に初期溶融部4Aだけの溶融となるように、前述の加圧力、電流値、通電時間などの溶接条件が定められている。  As is apparent from FIGS. 3C and 3D, the main melting portion 4B is melted very little or substantially so that only the initial melting portion 4A is melted. Welding conditions such as applied pressure, current value, and energization time are defined.

初期溶融部4Aの溶融前の形状は、図1(C)や図4(A)に示すように、扁平な円錐形であるが、溶融初期の段階で円錐形の形状は消滅し、主溶融部4Bの一部分の溶融が僅かに加算されて、鋼板部品8の表面部分の溶融部と一体になった平たい溶融域となっている。  As shown in FIGS. 1 (C) and 4 (A), the shape of the initial melting part 4A before melting is a flat conical shape, but the conical shape disappears at the initial stage of melting, and the main melting The melting of a part of the portion 4B is slightly added to form a flat melting region integrated with the melting portion of the surface portion of the steel plate part 8.

図3(D)は、溶着完了後の組織状態を示す部分的な拡大断面図であり、黒く塗りつぶされた部分が溶融箇所14であり、前述のナゲットである。そして、溶融箇所14の近傍に層状になって現れている部分が組織変化部分15であり、前述の熱影響部である。組織変化部分15は、同図に梨地を付して示されている。  FIG. 3D is a partial enlarged cross-sectional view showing the structure state after the completion of welding, and a blacked-out portion is the melted portion 14, which is the aforementioned nugget. And the part which appears in the vicinity of the fusion | melting location 14 in the layer form is the structure | tissue change part 15, and is the above-mentioned heat affected zone. The tissue change portion 15 is shown with a satin finish in the drawing.

符号16は非溶融部であり、組織変化部分15と熱的影響を受けていない鋼板の母材17によって形成されており、その厚さはT1で示されている。また、母材17だけの厚さはT2で示されている。  Reference numeral 16 denotes a non-melting portion, which is formed of a structure changing portion 15 and a base material 17 of a steel plate not subjected to thermal influence, and its thickness is indicated by T1. The thickness of the base material 17 alone is indicated by T2.

つぎに、空気の噴出と吸入について説明する。  Next, air ejection and inhalation will be described.

可動電極9の加圧力は、上述のように2900Nであるため、前記溶融が開始されると、静止していた可動電極9は溶融量に応じた電極進出距離を高速で進出する。これにともなって拡径部3も高速で進出して空隙幅Cの縮小がなされるので、空隙19の片側が外気に開放されていても、空隙19内の空気は瞬間的に圧縮された状態になり、この圧縮と同時に上記溶融熱で空気が急膨張をする。つまり、圧縮された空気が急加熱を受けることにより、膨張速度が一層高められた急膨張が形成される。この圧縮と急加熱でえられた高圧空気により、図4(B)に示す矢線20で示すように、空隙19内の空気が高速で空隙19外へ噴出する。このように急速噴出がなされるので、それと同時に、空隙19内が希薄になって空隙19内の圧力が急激に低下し、この圧力低下によって、同図矢線21で示すように、冷気である外気が空隙19内に吸入される。このような冷気の吸入は、溶融部14が凝固しきらない液相状態の段階からなされる。  Since the pressing force of the movable electrode 9 is 2900 N as described above, when the melting is started, the stationary movable electrode 9 advances at an electrode advance distance corresponding to the amount of fusion at a high speed. Along with this, the enlarged diameter portion 3 also advances at a high speed and the gap width C is reduced, so that the air in the gap 19 is instantaneously compressed even if one side of the gap 19 is open to the outside air. At the same time as this compression, the air rapidly expands due to the heat of fusion. That is, when the compressed air is subjected to rapid heating, rapid expansion with a further increased expansion speed is formed. The high-pressure air obtained by this compression and rapid heating causes the air in the gap 19 to be ejected outside the gap 19 at a high speed, as indicated by the arrow 20 shown in FIG. Since rapid ejection is performed in this manner, at the same time, the space 19 becomes lean and the pressure in the space 19 rapidly decreases, and this pressure drop causes cold air as shown by the arrow 21 in the figure. Outside air is sucked into the gap 19. Such inhalation of cold air is performed from the stage of the liquid phase where the melting part 14 cannot be solidified.

上述のように、空隙19内の空気が急速に空隙19外へ噴出するときには、矢線20で示すように、噴流が鋼板部品8の表面に沿った方向となる。このような噴流であるから、外気は鋼板部品8の表面から離隔した方向、すなわち図4(B)の上方から空隙内に吸入される。この吸入状態は矢線21で示されている。空気の噴流が鋼板部品8の表面に沿った方向となるのは、コアンダ効果のような現象が生じているため、と考えられる。また、噴出流は空隙19から遠ざかるにしたがって速度および圧力が低下し、膨張する。このため、図4(B)に鎖線で示した膨張域22が形成される。  As described above, when the air in the gap 19 rapidly jets out of the gap 19, the jet flows in the direction along the surface of the steel plate part 8 as indicated by the arrow 20. Since it is such a jet, the outside air is sucked into the gap from the direction separated from the surface of the steel plate part 8, that is, from above in FIG. This inhalation state is indicated by an arrow line 21. The reason why the air jet flows in the direction along the surface of the steel plate part 8 is considered to be due to a phenomenon such as the Coanda effect. Further, as the jet flow moves away from the gap 19, the velocity and pressure decrease and expands. For this reason, the expansion region 22 shown by the chain line in FIG. 4 (B) is formed.

つぎに、T1、T2の具体値について説明する。  Next, specific values of T1 and T2 will be described.

図5は、空隙幅Cに対する空隙長さDの比Hと、T1,T2の関係を示す線図である。上記比H3.7においては、上述のように、T1が0.32mm、T2が0.27mmである。この値は、鋼板部品8の厚さ方向に対する溶け込み量と、母材17の厚さが適正なものである。  FIG. 5 is a diagram showing the relationship between the ratio H of the gap length D to the gap width C and T1, T2. In the ratio H3.7, as described above, T1 is 0.32 mm and T2 is 0.27 mm. This value is appropriate for the amount of penetration of the steel plate part 8 in the thickness direction and the thickness of the base material 17.

上記のT1、T2の値確保と同時に、溶接完了後において、拡径部3の外周近傍と鋼板部品8の表面との間に、塗料液によって気泡が封入されることのない大きさの空隙C1が存置されている。この空隙C1は、溶接後の空間幅であり、主溶融部4Bの高さ寸法とほぼ同じ0.95mmである。また、空隙C1の大きさを、加圧力、電流値、通電時間などの溶接条件を変更することにより、初期溶融部4Aだけの溶融にとどめて、1.0mmとすることもできる。  At the same time as securing the values of T1 and T2, the gap C1 has a size such that bubbles are not sealed by the coating liquid between the vicinity of the outer periphery of the enlarged diameter portion 3 and the surface of the steel plate part 8 after completion of welding. Is kept. The gap C1 is a space width after welding, and is 0.95 mm which is substantially the same as the height dimension of the main melted part 4B. Further, the size of the gap C1 can be set to 1.0 mm by changing only the initial melting portion 4A by changing the welding conditions such as the applied pressure, the current value, and the energizing time.

つぎに、各値の下限値および上限値について説明する。  Next, the lower limit value and the upper limit value of each value will be described.

溶着前の空隙幅Cに対する拡径部Dの比Hが、2〜8であることが望ましい。  The ratio H of the enlarged diameter portion D to the gap width C before welding is desirably 2-8.

比Hが2未満であると、空隙長さDが過小となるので、空隙幅Cの縮小や空気の急膨張が形成されても、噴出力を十分に確保することができない。したがって、冷気の吸入が不十分で冷却不足となり、鋼板部品8の溶け込み深さが過大、すなわち過剰溶融となり、溶接強度に不足を来すことになる。  If the ratio H is less than 2, the gap length D becomes too small, so even if the gap width C is reduced or the air is rapidly expanded, the jet power cannot be sufficiently secured. Accordingly, the intake of cold air is insufficient and cooling becomes insufficient, and the penetration depth of the steel plate part 8 becomes excessive, that is, excessive melting occurs, resulting in insufficient welding strength.

また、この比Hが8を超えると、空隙長さDが過長であるとともに空隙幅C1が過小となるため、電着塗装などの塗料液が空隙19内に空気を封じ込めやすくなり、錆発生の問題が残る。そして、空隙長さDが過長であるとともに空隙幅C1が過小となるため、吸入空気が空隙19の奥まで到達することが緩慢になり、冷却不足になり過剰溶融側へ転じることとなる。いわゆる溶融熱が籠もった状態になる。よって、溶接強度不足の方向に向かうことになる。また、空隙長さDが過長であるとともに空隙幅C1が過小となるため、拡径部下面、鋼板部品表面、主溶融部外周面、溶融部露出面などからの放熱が不十分となる。  On the other hand, when the ratio H exceeds 8, the gap length D is excessive and the gap width C1 is too small, so that coating liquid such as electrodeposition coating can easily contain air in the gap 19 and rust is generated. The problem remains. Since the gap length D is excessive and the gap width C1 is too small, the intake air slowly reaches the back of the gap 19 and becomes insufficiently cooled and turns to the excessive melting side. The so-called melting heat becomes muddy. Therefore, it will go in the direction of insufficient welding strength. In addition, since the gap length D is excessive and the gap width C1 is too small, heat radiation from the lower surface of the enlarged diameter portion, the steel plate component surface, the outer peripheral surface of the main fusion portion, the exposed portion of the fusion portion, and the like becomes insufficient.

溶着前の空隙幅Cが、0.8〜1.6mmであることが望ましい。  It is desirable that the gap width C before welding is 0.8 to 1.6 mm.

溶着前の空隙幅Cが0.8mm未満であると、溶着前の空隙19の容積が少なすぎるため、十分な空気膨張が確保できない。したがって、強い噴流がえられない。また、空隙幅Cが1.6mmを超えると、空気膨張はえられるが、溶着前の空隙19の容積が大きすぎるため、膨張量が不足し、やはり強い噴流圧力がえられないこととなる。  If the gap width C before welding is less than 0.8 mm, the volume of the gap 19 before welding is too small, so that sufficient air expansion cannot be ensured. Therefore, a strong jet cannot be obtained. If the gap width C exceeds 1.6 mm, air expansion is obtained, but the volume of the gap 19 before welding is too large, so that the amount of expansion is insufficient, and a strong jet pressure cannot be obtained.

図5から明らかなように、比Hが3.7の場合には、T1が0.32mm、T2が0.27mmであり、比Hが6場合には、T1が0.51mm、T2が0.46mmである。このようにして比Hを順次変更して求められたT1、T2の値を結ぶことによって、図5の相関線T1、T2が形成されている。  As is clear from FIG. 5, when the ratio H is 3.7, T1 is 0.32 mm and T2 is 0.27 mm, and when the ratio H is 6, T1 is 0.51 mm and T2 is 0. .46 mm. Correlation lines T1 and T2 in FIG. 5 are formed by connecting the values of T1 and T2 obtained by sequentially changing the ratio H in this way.

比H=3.7におけるT1=0.32mm、T2=0.27mmを、加圧力、電流値、通電時間などの溶接条件を上述の範囲内で変えることにより、比Hは3.7のままでT1=0.38mm、T2=0.34mmに変換することができる。  When T1 = 0.32 mm and T2 = 0.27 mm in the ratio H = 3.7 are changed within the above-mentioned range by changing the welding conditions such as the applied pressure, the current value, and the energizing time, the ratio H remains 3.7. Can be converted to T1 = 0.38 mm and T2 = 0.34 mm.

つぎに、評価テストの結果について説明する。  Next, the results of the evaluation test will be described.

溶接条件を前述の通り、加圧力2900N、溶接電流値12000A、通電時間9サイクルの下で、空隙幅Cに対する空隙長さDの比Hが1となるボルト1を鋼板部品8に溶接した場合、T1は0.10mm、T2は0.04mmであり、このような値では、十分な溶接強度がえられないことが確認された。一方、比Hが3.7や6.0の場合には、上述のようなT1、T2の値が得られた。  As described above, when the bolt 1 having a ratio H of the gap length D to the gap width C of 1 is welded to the steel plate part 8 under a pressurizing force of 2900 N, a welding current value of 12000 A, and an energization time of 9 cycles, T1 was 0.10 mm, and T2 was 0.04 mm. With such values, it was confirmed that sufficient welding strength could not be obtained. On the other hand, when the ratio H was 3.7 or 6.0, the values of T1 and T2 as described above were obtained.

このように、H=1では過剰溶融であり、H=3.7やH=6.0では適正溶融であることが認められる。  As described above, it is recognized that H = 1 is excessive melting, and H = 3.7 and H = 6.0 are proper melting.

また、前述の溶接条件の下で、H=3.7になるボルトを溶接して、10個の溶接サンプルを作製し、各T1、T2を測定したところ、T1=0.30〜0.35mm、T2=0.25〜0.29mmであった。さらに、H=6.0になるボルトを溶接して、10個の溶接サンプルを作製し、各T1、T2を測定したところ、T1=0.49〜0.55mm、T2=0.41〜0.49mmであった。いずれのサンプルもT1、T2は適正値の範囲になっていることが確かめられた。  In addition, under the above-described welding conditions, bolts with H = 3.7 were welded to prepare 10 weld samples, and each T1 and T2 were measured. T1 = 0.30 to 0.35 mm T2 = 0.25 to 0.29 mm. Furthermore, bolts with H = 6.0 were welded to prepare 10 weld samples, and T1 and T2 were measured. T1 = 0.49 to 0.55 mm, T2 = 0.41 to 0 .49 mm. In any sample, it was confirmed that T1 and T2 were within the range of appropriate values.

このような比Hが3.7や6.0とされた溶接済み鋼板部品を、図6に示すように、鋼板部品8を治具(図示していない)で固定し、ボルト1を軸方向に引っ張るテストの結果、母材17と溶融箇所14が剪断状態で鋼板部品8から破断し、円形の抜け穴8Bとなっていることが認められる。この破断は、上記引っ張り力が3000〜3500Nの範囲で発生しており、例えば、自動車のダッシュパネルに配線クランプ固定用ボルトを溶接したものにおいて十分な溶接強度である、と判定される。  As shown in FIG. 6, the steel plate component 8 is fixed with a jig (not shown), and the bolt 1 is axially fixed to the welded steel plate component having such a ratio H of 3.7 or 6.0. As a result of the pulling test, it is recognized that the base material 17 and the melted portion 14 are broken from the steel plate part 8 in a sheared state to form a circular through hole 8B. This rupture occurs in the range of 3000 to 3500 N, and for example, it is determined that the welding strength is sufficient in a case where a wiring clamp fixing bolt is welded to a dash panel of an automobile.

また、軸部2を傾ける反復曲げテストを行った結果、溶融箇所14と組織変化部分15の境界部分や、組織変化部分15自体あるいは組織変化部分15と母材との境界部分からの割れは発生しなかった。このようなサイズのボルト1をきわめて薄い厚さ0.65mmの鋼板部品8に溶接した場合の溶接強度として十分であると判定される。  In addition, as a result of the repeated bending test in which the shaft portion 2 is tilted, cracks are generated from the boundary portion between the melted portion 14 and the structure change portion 15, the structure change portion 15 itself, or the boundary portion between the structure change portion 15 and the base material. I did not. It is determined that the welding strength is sufficient when the bolt 1 having such a size is welded to the steel plate part 8 having a very thin thickness of 0.65 mm.

上記実施例1においては、初期溶融部4Aの形状は、テーパ部6と頂部7を有する円錐形であるが、これに換えて球形とすることができる。球形の場合、頂部7に相当する箇所が鋼板部品8に加圧されて、この加圧部分から溶融が開始される。それ以外の溶着過程は、円錐形のものと同じである。  In the first embodiment, the shape of the initial melting portion 4A is a conical shape having the taper portion 6 and the apex portion 7, but may be a spherical shape instead. In the case of a spherical shape, a portion corresponding to the top portion 7 is pressed against the steel plate part 8, and melting is started from this pressed portion. The other welding processes are the same as those of the conical shape.

以上に説明した実施例1の作用効果は、つぎのとおりである。  The operational effects of the first embodiment described above are as follows.

溶着用突起4は、端面に外周側が低くなる小さな傾斜角のテーパ部6を有する初期溶融部4Aと、この初期溶融部4Aに連なる主溶融部4Bから形成されているので、初期溶融部4Aの体積部分の溶融と同時進行的に鋼板部品8の表面が溶融を開始する。この初期溶融部4Aの溶融にともなって拡径部3と鋼板部品8の間に形成される空隙19の空隙幅Cが縮小される。この空隙幅Cの縮小と同時に、初期溶融部4Aの溶融に引き続いて主溶融部4Bの一部への溶融が進行する。しかし、鋼板部品8に対する溶着用突起4の溶着は、実質的には初期溶融部4A全域の溶融で十分に達成されるので、主溶融部4Bの溶融はきわめてわずかな量とされるか、または初期溶融部4Aだけの溶融とされる。したがって、主溶融部4Bが溶融しても、溶接完了後において、空隙幅C1は、主溶融部4Bの高さ寸法とほぼ同じになる。なお、拡径部3と鋼板部品8の間に形成される空隙19は、直径方向に所定の長さを有する環状の空間、言い換えるとドーナツ型の空間とされている。  Since the welding protrusion 4 is formed of an initial melting portion 4A having a tapered portion 6 with a small inclination angle whose outer peripheral side is lowered on the end surface, and a main melting portion 4B connected to the initial melting portion 4A, Simultaneously with the melting of the volume portion, the surface of the steel plate part 8 starts to melt. With the melting of the initial melting portion 4A, the gap width C of the gap 19 formed between the enlarged diameter portion 3 and the steel plate part 8 is reduced. Simultaneously with the reduction of the gap width C, the melting of a part of the main melting part 4B proceeds following the melting of the initial melting part 4A. However, since the welding of the welding protrusion 4 to the steel plate part 8 is substantially achieved by the melting of the entire area of the initial melting portion 4A, the melting of the main melting portion 4B is extremely small, or Only the initial melting part 4A is melted. Therefore, even if the main melted part 4B is melted, the gap width C1 is substantially the same as the height dimension of the main melted part 4B after the completion of welding. The gap 19 formed between the enlarged diameter portion 3 and the steel plate part 8 is an annular space having a predetermined length in the diameter direction, in other words, a donut-shaped space.

可動電極9の加圧力は、例えば、2900Nであるため、前記溶融が開始されると、静止していた可動電極9は溶融量に応じた電極進出距離を高速で進出する。これにともなって拡径部3も高速で進出して空隙幅Cの縮小がなされるので、空隙19の片側が外気に開放されていても、空隙19内の空気は瞬間的に圧縮された状態になり、この圧縮と同時に上記溶融熱で空気が急膨張をする。つまり、圧縮された空気が急加熱を受けることにより、膨張速度が一層高められた急膨張が形成される。この圧縮と急加熱でえられた高圧空気により、空隙19内の空気が高速で空隙19外へ噴出する。このように急速噴出がなされるので、それと同時に、空隙19内が希薄になって空隙19内の圧力が急激に低下し、この圧力低下によって、冷気である外気が空隙19内に吸入される。  Since the applied pressure of the movable electrode 9 is 2900 N, for example, when the melting is started, the movable electrode 9 that has been stationary advances at an electrode advance distance corresponding to the amount of fusion at a high speed. Along with this, the enlarged diameter portion 3 also advances at a high speed and the gap width C is reduced, so that the air in the gap 19 is instantaneously compressed even if one side of the gap 19 is open to the outside air. At the same time as this compression, the air rapidly expands due to the heat of fusion. That is, when the compressed air is subjected to rapid heating, rapid expansion with a further increased expansion speed is formed. The high-pressure air obtained by this compression and rapid heating causes the air in the gap 19 to be ejected out of the gap 19 at a high speed. Since rapid ejection is performed in this manner, at the same time, the inside of the gap 19 becomes lean and the pressure in the gap 19 rapidly decreases. Due to this pressure drop, cool air is sucked into the gap 19.

上述のように、空隙19内の空気が急速に空隙19外へ噴出するときには、噴流が鋼板部品8の表面に沿った方向、すなわち矢線20で示した方向となる。このような噴流であるから、外気は鋼板部品8の表面から離隔した方向、すなわち矢線21で示す方向から空隙19内に吸入される。空気の噴流が鋼板部品8の表面に沿った方向となるのは、コアンダ効果のような現象が生じているため、と考えられる。  As described above, when the air in the gap 19 rapidly jets out of the gap 19, the jet flows in the direction along the surface of the steel plate part 8, that is, the direction indicated by the arrow 20. Since it is such a jet, the outside air is sucked into the gap 19 from the direction separated from the surface of the steel plate part 8, that is, the direction indicated by the arrow line 21. The reason why the air jet flows in the direction along the surface of the steel plate part 8 is considered to be due to a phenomenon such as the Coanda effect.

このような冷気の吸入は、溶融部14が凝固しきらない液相状態の段階でなされるので、溶融が過度に進行することが抑制される。そして、冷気が前記溶融で加熱されている拡径部3の下面、鋼板部品8の表面、主溶融部4Bの外周面、溶融部14の露出面などに接触した状態になるので、これらの加熱部分が良好に冷却される。そして、初期溶融部4Aの溶融に引き続いた主溶融部4Bの溶融量は、前述のようにきわめて微量かまたは溶融なしなので、溶融前の主溶融部4Bの高さはほとんど変わることなく存置される。このため、溶接完了後において、空隙幅C1は、主溶融部4Bの高さ寸法とほぼ同じ状態になる。空隙幅C1がこのような空間幅とされているので、拡径部下面、鋼板部品表面、主溶融部外周面、溶融部露出面などからの放熱が良好に継続する。  Such cold air is sucked in a liquid phase where the melted portion 14 cannot be solidified, and therefore, excessive melting is suppressed. And since cold air will be in the state which contacted the lower surface of the enlarged diameter part 3 heated by the said fusion | melting, the surface of the steel plate component 8, the outer peripheral surface of the main fusion | melting part 4B, the exposed surface of the fusion | melting part 14, etc., these heating The part is cooled well. And since the amount of melting of the main melting part 4B subsequent to the melting of the initial melting part 4A is very small as described above or not melted, the height of the main melting part 4B before melting is left almost unchanged. . For this reason, after the welding is completed, the gap width C1 is substantially the same as the height dimension of the main melting portion 4B. Since the gap width C1 is such a space width, the heat radiation from the lower surface of the enlarged diameter portion, the steel plate component surface, the outer peripheral surface of the main melting portion, the exposed surface of the melting portion, etc. continues favorably.

上述の冷気吸入によって溶融熱が奪われるので、溶融が過剰に進行することが抑制され、板厚0.65mmの薄い鋼板部品8の過剰溶融が回避できる。つまり、溶融部14とその近傍の組織変化部分15が板厚全域にわたって形成されることがなく、溶融部14近傍の組織変化部分15と鋼板表面との間に溶融していない母材部分17が存置される。したがって、この母材部分17が鋼板部品8としての強度を維持する機能を果たし、ボルト1の溶接接合強度が十分に確保できる。また、組織変化部分15と母材部分17の境界面積が広い領域にわたって確保できるので、この境界面積部分の接合強度を高く保つことができ、ボルト1に曲げ方向の外力が作用しても、容易に割れなどが発生することがない。  Since the heat of fusion is deprived by the cold air suction described above, excessive progress of melting is suppressed, and excessive melting of the thin steel plate part 8 having a thickness of 0.65 mm can be avoided. That is, the molten portion 14 and the structure changing portion 15 in the vicinity thereof are not formed over the entire plate thickness, and the base material portion 17 that is not melted between the structure changing portion 15 in the vicinity of the melting portion 14 and the steel plate surface is formed. Remained. Therefore, the base material portion 17 fulfills the function of maintaining the strength as the steel plate part 8, and the weld joint strength of the bolt 1 can be sufficiently secured. In addition, since the boundary area between the structure change portion 15 and the base material portion 17 can be secured over a wide region, the bonding strength of this boundary area portion can be kept high, and even if an external force in the bending direction acts on the bolt 1. No cracks occur.

なお、吸入された冷気が、拡径部下面、鋼板部品表面、主溶融部外周面、溶融部露出面などの残留熱で再び加熱されると、吸入空気は膨張し、空隙19外へ排出され、これにともなう圧力低下で冷気が再び吸入されるもの、と考えられる。  When the sucked cold air is heated again with residual heat such as the lower surface of the enlarged diameter portion, the steel plate part surface, the outer peripheral surface of the main melting portion, the exposed surface of the melting portion, etc., the intake air expands and is discharged out of the gap 19. It is considered that cold air is sucked again due to the pressure drop accompanying this.

溶接完了後において、空隙幅C1は、主溶融部の高さ寸法とほぼ同じとされている。空隙幅C1が狭すぎると、塗料液の粘性によってこの空隙19における塗料液の流動性がえられないので、空隙19に停滞している空気が排出されることなく、塗料液で封じ込められることとなる。この封入空気が原因となって錆が発生する、という問題がある。あるいは、空隙19の長さDが過剰になった場合も、空隙の奥まで塗料液が入りきらず、同様な問題が発生する。  After the welding is completed, the gap width C1 is substantially the same as the height dimension of the main melted part. If the gap width C1 is too narrow, the fluidity of the coating liquid in the gap 19 cannot be obtained due to the viscosity of the coating liquid, so that the air stagnating in the gap 19 is not exhausted and is contained in the coating liquid. Become. There is a problem that rust is generated due to the enclosed air. Or when the length D of the space | gap 19 becomes excess, a coating liquid does not enter into the back of a space | gap, and the same problem generate | occur | produces.

しかし、本発明のように、溶接完了後の空隙幅C1が主溶融部4Bの高さ寸法とほぼ同じとされているので、拡径部3と鋼板部品8の間に、塗料液によって気泡が封入されることのない大きさの空隙19が存置され、上記錆発生の問題が解消される。すなわち、空隙幅C1が十分な空間として確保できるため、この空隙19への塗料液の流入が積極的に行われる。このような流動によって、空隙19内の空気が排出され、塗料液は空隙19を形成する拡径部下面、鋼板部品表面、主溶融部外周面、溶融部露出面などに付着し、気泡が封入されることがなく、前述のような錆発生の問題が解消される。  However, as in the present invention, since the gap width C1 after completion of welding is substantially the same as the height dimension of the main melted part 4B, bubbles are generated between the enlarged diameter part 3 and the steel plate part 8 by the paint liquid. A gap 19 having a size that is not sealed is left, and the problem of rust generation is solved. That is, since the gap width C1 can be secured as a sufficient space, the coating liquid is actively introduced into the gap 19. By such a flow, the air in the gap 19 is discharged, and the coating liquid adheres to the lower surface of the enlarged diameter part, the surface of the steel plate part, the outer peripheral surface of the main melting part, the exposed surface of the melting part, etc. This eliminates the problem of rust generation as described above.

上記塗装は、通常、電着塗装による下塗りであり、比較的低い濃度(通常、固形分5〜10%)の水性塗料浴中に、ボルト1が溶接された鋼板部品8あるいは自動車の車体などを電極として浸し、他方、浴槽を対極として両電極間に直流電流を印加して電流を通じ、ボルト1や鋼板部品8に膜厚が20〜30μの皮膜を均一に析出させる。水性塗料の粘性は、固形分の含有量が上記の値であることから非常に低く設定されており、製品の隙間や空洞部分のいたるところに気泡を巻き込むことなく流入するので、前記拡径部3と鋼板部品8間の空隙19内への流入が淀みなくなされる。  The above coating is usually an undercoating by electrodeposition coating, and a steel plate part 8 or a car body of an automobile, etc., to which bolts 1 are welded in a relatively low concentration (usually 5 to 10% solids) aqueous paint bath. The film is immersed as an electrode, and on the other hand, a direct current is applied between both electrodes with the bath as a counter electrode, and a film having a thickness of 20 to 30 μm is uniformly deposited on the bolt 1 and the steel plate part 8 through the current. The viscosity of the water-based paint is set to be very low because the solid content is the above value, and it flows without entraining air bubbles in the gaps and cavities of the product. 3 and the steel plate part 8 are allowed to flow into the gap 19 without stagnation.

空隙幅Cに対する拡径部3の直径方向で見た空隙長さDの比Hが、2〜8である。  The ratio H of the gap length D seen in the diameter direction of the enlarged diameter portion 3 with respect to the gap width C is 2-8.

上記のように、空隙幅Cに対する拡径部3の直径方向で見た空隙長さDの比Hが、2〜8に設定されていることにより、空隙19の最も奥まった箇所に主溶融部4Bの外周面が位置し、そこから外周側に向かって細長い空間が形成されることになる。したがって、空隙幅Cが縮小されることと、空気の熱膨張が急激であることが相乗して、前述のような急速な空気噴出が形成される。  As described above, the ratio H of the gap length D seen in the diameter direction of the enlarged diameter portion 3 with respect to the gap width C is set to 2 to 8, so that the main melted portion is located at the deepest part of the gap 19. The outer peripheral surface of 4B is located, and an elongate space is formed from there to the outer peripheral side. Therefore, the rapid air ejection as described above is formed in synergy with the reduction of the gap width C and the rapid thermal expansion of the air.

溶着前の空隙幅Cは、0.8〜1.6mmである。  The gap width C before welding is 0.8 to 1.6 mm.

溶着前の空隙幅Cが、0.8〜1.6mmであるから、空隙幅Cの縮小と空気急膨張が同時発生的に形成され、強い空気噴射がえられる。このような現象は、空隙19の容積や、空気の粘性、空隙幅Cの大小などが関係しているものと考えられる。空隙幅Cが0.8〜1.6mmに設定されていることにより、これらの要素が良好に関係していると考えられる。  Since the gap width C before welding is 0.8 to 1.6 mm, the reduction of the gap width C and the rapid air expansion are formed simultaneously, and strong air injection is obtained. Such a phenomenon is considered to be related to the volume of the gap 19, the viscosity of the air, the size of the gap width C, and the like. It is considered that these elements are well related because the gap width C is set to 0.8 to 1.6 mm.

さらに、溶接完了後の空隙幅C1は主溶融部4Bの高さとほぼ同じとされている。したがって、空隙19内へ塗料液が空気を排出しながら流入して前述の電着塗装が施されると、きわめて良好な塗膜が空隙内面全体にわたって均一に析出される。  Furthermore, the gap width C1 after completion of welding is substantially the same as the height of the main melted part 4B. Therefore, when the coating liquid flows into the gap 19 while discharging air and the above-described electrodeposition coating is performed, a very good coating film is uniformly deposited over the entire inner surface of the gap.

鋼板部品8の板厚は、0.6mm〜1.0mmである。  The plate thickness of the steel plate component 8 is 0.6 mm to 1.0 mm.

上記のように、板厚が0.6mm〜1.0mmであっても、前述の冷却作用により、過度な溶融深さにならず、良好な溶接強度がえられる。  As described above, even if the plate thickness is 0.6 mm to 1.0 mm, the above-described cooling action does not result in an excessive melting depth, and good welding strength can be obtained.

実施例2は、初期溶融部4Aだけを溶融させて、溶着後の空隙幅C1を主溶融部4Bの高さと同じ値にするものである。初期溶融部4Aだけを溶融するためには、前述の溶接条件、すなわち加圧力、電流値、通電時間などを選択する。それ以外の構成は、先の実施例1と同じである。なお、このような構成においては、機能面から初期溶融部は、例えば「溶融部」、主溶融部は「基台部」と呼称するのが適当である。  In Example 2, only the initial melting part 4A is melted, and the gap width C1 after welding is set to the same value as the height of the main melting part 4B. In order to melt only the initial melting portion 4A, the above-described welding conditions, that is, the applied pressure, the current value, the energization time, and the like are selected. Other configurations are the same as those of the first embodiment. In such a configuration, it is appropriate that the initial melting part is called, for example, “melting part” and the main melting part is called “base part” in terms of function.

このような構成により、溶接完了後の空隙幅C1を主溶融部4Bの高さと同じにすることができて、空隙幅C1を適正値として均一に確保することができる。それ以外の作用効果は、先の実施例1と同じである。  With such a configuration, the gap width C1 after completion of welding can be made the same as the height of the main melted portion 4B, and the gap width C1 can be ensured uniformly as an appropriate value. Other functions and effects are the same as those of the first embodiment.

上述のように、本発明の方法によれば、拡径部と鋼板部品の間に形成された空隙内に外部の冷気を吸入し、溶着局部の冷却を促進して、鋼板部品の過剰溶融を防止するプロジェクションボルトの溶接方法である。したがって、ボルトを薄板に対して良好な状態で電気抵抗溶接をすることができ、自動車の車体溶接工程や、家庭電化製品の板金溶接工程などの広い産業分野で利用できる。  As described above, according to the method of the present invention, external cold air is sucked into the gap formed between the enlarged diameter portion and the steel plate part, and the cooling of the welded local part is promoted, so that the steel plate part is excessively melted. This is a method for preventing projection bolt welding. Therefore, it is possible to perform electric resistance welding with a bolt in a good state on a thin plate, and it can be used in a wide range of industrial fields such as a car body welding process for automobiles and a sheet metal welding process for household appliances.

1 プロジェクションボルト
2 軸部
3 拡径部
4 溶着用突起
4A 初期溶融部
4B 主溶融部
6 テーパ部
7 頂部
8 鋼板部品
8B 抜け穴
14 溶融箇所、溶融部
15 組織変化部分、熱影響部
16 非溶融部
17 母材、母材部分
19 空隙
C 溶着前の空隙幅
C1 溶接完了後の空隙幅
D 空隙長さ
H 空隙幅Cに対する空隙長さDの比
T1 非溶融部の厚さ寸法
T2 母材、母材部分の厚さ寸法
DESCRIPTION OF SYMBOLS 1 Projection bolt 2 Shaft part 3 Expanded part 4 Welding protrusion 4A Initial fusion part 4B Main fusion part 6 Taper part 7 Top part 8 Steel plate part 8B Through hole 14 Melting part, melting part 15 Structure change part, Heat-affected part 16 Non-melting part 17 Base material, base material portion 19 Cavity C Cavity width C1 before welding Cavity width D after completion of welding D Cavity length H Ratio of Cavity length D to Cavity width C T1 Thickness dimension T2 of base material, base material Material part thickness dimension

請求項1記載の発明は、雄ねじが形成された軸部と、この軸部と一体的に形成され軸部の直径よりも大径とされた円形の拡径部と、端面に外周側が低くなる傾斜角のテーパ部を有する初期溶融部とこの初期溶融部に連なる主溶融部からなるとともに前記軸部とは反対側の拡径部中央に配置されている円形の溶着用突起によって形成されたプロジェクションボルトを、一対の電極間で前記溶着用突起を鋼板部品に加圧した状態で、当該鋼板部品に電気抵抗溶接で溶接するものであり、
前記初期溶融部が鋼板部品に加圧された状態で溶接電流が通電されて初期溶融部が溶融を開始することにより、前記拡径部と鋼板部品の間に形成される空隙の空隙幅を縮小し、この縮小と同時に、前記空隙内の空気を前記溶融の熱で急膨張させて空隙外へ急速に排出し、この排出によって生じる空隙内の圧力低下により、外部の冷気を空隙内に吸入し、
前記空隙幅に対する前記拡径部の直径方向で見た空隙長さの比が、2〜8とされ、
溶接完了後において、前記空隙幅は、前記主溶融部の高さ寸法と同じとされることを特徴とするプロジェクションボルトの溶接方法である。
According to the first aspect of the present invention, a shaft portion in which a male screw is formed, a circular enlarged diameter portion formed integrally with the shaft portion and having a diameter larger than the diameter of the shaft portion, and an outer peripheral side of the end surface are lowered. A projection formed by a circular welding protrusion, which is composed of an initial melted portion having a taper portion with an inclination angle and a main melted portion connected to the initial melted portion and arranged at the center of the enlarged diameter portion on the opposite side to the shaft portion. The bolt is welded to the steel plate part by electric resistance welding in a state where the welding protrusion is pressed between the pair of electrodes to the steel plate part.
When the initial melted portion is pressed against the steel plate part, a welding current is applied and the initial melted portion starts melting, thereby reducing the gap width of the gap formed between the enlarged diameter portion and the steel plate part. Simultaneously with this reduction, the air in the gap is rapidly expanded by the heat of melting and rapidly discharged out of the gap, and due to the pressure drop in the gap caused by this discharge, external cold air is sucked into the gap. ,
The ratio of the gap length seen in the diameter direction of the enlarged diameter portion to the gap width is 2 to 8,
The welding bolt welding method according to claim 1, wherein after the completion of welding, the gap width is the same as a height dimension of the main melted portion.

前記空隙幅に対する前記拡径部の直径方向で見た空隙長さの比が、2〜8である。 The ratio of the gap length viewed in the diameter direction of the enlarged diameter portion to the gap width is 2 to 8.

請求項2記載の発明は、前記溶着前の空隙幅が、0.8〜1.6mmである請求項1記載のプロジェクションボルトの溶接方法である。 A second aspect of the present invention is the projection bolt welding method according to the first aspect, wherein the gap width before the welding is 0.8 to 1.6 mm.

請求項3記載の発明は、前記鋼板部品の板厚が、0.6mm〜1.0mmである請求項1または請求項2記載のプロジェクションボルトの溶接方法である。 A third aspect of the present invention is the projection bolt welding method according to the first or second aspect, wherein the thickness of the steel sheet component is 0.6 mm to 1.0 mm.

Claims (4)

雄ねじが形成された軸部と、この軸部と一体的に形成され軸部の直径よりも大径とされた円形の拡径部と、端面に外周側が低くなる小さな傾斜角のテーパ部を有する初期溶融部とこの初期溶融部に連なる主溶融部からなるとともに前記軸部とは反対側の拡径部中央に配置されている円形の溶着用突起によって形成されたプロジェクションボルトを、一対の電極間で前記溶着用突起を鋼板部品に加圧した状態で、当該鋼板部品に電気抵抗溶接で溶接するものであり、
前記初期溶融部が鋼板部品に加圧された状態で溶接電流が通電されて初期溶融部が溶融を開始することにより、前記拡径部と鋼板部品の間に形成される空隙の空隙幅を縮小し、この縮小と同時に、前記空隙内の空気を前記溶融の熱で急膨張させて空隙外へ急速に排出し、この排出によって生じる空隙内の圧力低下により、外部の冷気を空隙内に吸入し、
溶接完了後において、前記空隙幅は、前記主溶融部の高さ寸法とほぼ同じとされることを特徴とするプロジェクションボルトの溶接方法。
A shaft portion in which a male screw is formed, a circular enlarged portion formed integrally with the shaft portion and having a diameter larger than the diameter of the shaft portion, and a taper portion having a small inclination angle with a lower outer peripheral side on the end face A projection bolt formed by a circular welding protrusion, which is composed of an initial melting portion and a main melting portion continuous to the initial melting portion and is disposed at the center of the enlarged diameter portion opposite to the shaft portion, is connected between a pair of electrodes. In the state where the welding protrusion is pressed on the steel plate part, the steel plate part is welded by electric resistance welding,
When the initial melted portion is pressed against the steel plate part, a welding current is applied and the initial melted portion starts melting, thereby reducing the gap width of the gap formed between the enlarged diameter portion and the steel plate part. Simultaneously with this reduction, the air in the gap is rapidly expanded by the heat of melting and rapidly discharged out of the gap, and due to the pressure drop in the gap caused by this discharge, external cold air is sucked into the gap. ,
The welding bolt welding method according to claim 1, wherein the gap width is substantially the same as a height dimension of the main melted portion after welding is completed.
前記空隙幅に対する前記拡径部の直径方向で見た空隙長さの比が、2〜8である請求項1記載のプロジェクションボルトの溶接方法。  The projection bolt welding method according to claim 1, wherein a ratio of a gap length viewed in a diameter direction of the enlarged diameter portion to the gap width is 2 to 8. 8. 前記溶着前の空隙幅が、0.8〜1.6mmである請求項1または請求項2記載のプロジェクションボルトの溶接方法。  The method for welding projection bolts according to claim 1 or 2, wherein the gap width before welding is 0.8 to 1.6 mm. 前記鋼板部品の板厚が、0.6mm〜1.0mmである請求項1〜請求項3のいずれかに記載のプロジェクションボルトの溶接方法。  The method for welding projection bolts according to any one of claims 1 to 3, wherein a thickness of the steel sheet component is 0.6 mm to 1.0 mm.
JP2014079744A 2014-03-22 2014-03-22 Projection bolt welding method Active JP5645041B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014079744A JP5645041B1 (en) 2014-03-22 2014-03-22 Projection bolt welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014079744A JP5645041B1 (en) 2014-03-22 2014-03-22 Projection bolt welding method

Publications (2)

Publication Number Publication Date
JP5645041B1 JP5645041B1 (en) 2014-12-24
JP2015182135A true JP2015182135A (en) 2015-10-22

Family

ID=52139213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014079744A Active JP5645041B1 (en) 2014-03-22 2014-03-22 Projection bolt welding method

Country Status (1)

Country Link
JP (1) JP5645041B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017109250A (en) * 2014-04-17 2017-06-22 日本精工株式会社 Resistance welding device, resistance welding method, and shape of projection for projection welding

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017109250A (en) * 2014-04-17 2017-06-22 日本精工株式会社 Resistance welding device, resistance welding method, and shape of projection for projection welding

Also Published As

Publication number Publication date
JP5645041B1 (en) 2014-12-24

Similar Documents

Publication Publication Date Title
JP6350334B2 (en) Joining method and composite rolled material manufacturing method
Masoudian et al. Microstructure and mechanical properties of friction stir weld of dissimilar AZ31-O magnesium alloy to 6061-T6 aluminum alloy
Li et al. Fracture mechanism of refill friction stir spot-welded 2024-T4 aluminum alloy
US8502105B2 (en) Joining method of dissimilar metal plates and dissimilar metal joined body
Liu et al. Friction stir welding characteristics of 2219-T6 aluminum alloy assisted by external non-rotational shoulder
WO2015001872A1 (en) Projection bolt welding method
Ji et al. Microstructures and mechanical properties of 7N01-T4 aluminum alloy joints by active-passive filling friction stir repairing
CN110520238B (en) Linear friction engagement method
Ji et al. Investigation of vertical compensation friction stir-welded 7N01-T4 aluminum alloy
Zhang et al. Development of friction stir spot brazing (FSSB)
JP2008045726A (en) Projection bolt for circular cross-section member, and its welding method
CN114206535B (en) Method for solid phase bonding of dissimilar materials and solid phase bonded structure of dissimilar materials
US20230125406A1 (en) Method and device for joining elements to components
Liu et al. Mechanical properties and their relations to microstructural characteristics of high-speed friction stir-welded AA6005A-T6 aluminum hollow extrusions
JP5645041B1 (en) Projection bolt welding method
Saju et al. Friction stir forming of dissimilar grade aluminum alloys: Influence of tool rotational speed on the joint evolution, mechanical performance, and failure modes
JP5532466B1 (en) Projection bolt welding method to thin steel plate
Yue et al. Friction stir butt welding thin aluminum alloy sheets
Niu et al. Passive filling friction stir repairing AZ31-B magnesium alloy by external stationary shoulder
US20080041922A1 (en) Hybrid Resistance/Ultrasonic Welding System and Method
JP4296512B2 (en) Projection welding bolt and welding method thereof
JP4521639B2 (en) Projection bolt for circular section member and its welding method
JP5477605B1 (en) Projection bolt welding method
JP7433663B2 (en) Dissimilar material solid phase joining method, dissimilar material solid phase joining structure, and dissimilar material solid phase joining device
JP2004114146A (en) Press-fitting joining structure and method

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141007

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141021

R150 Certificate of patent or registration of utility model

Ref document number: 5645041

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250