JP2015182068A - mixer - Google Patents

mixer Download PDF

Info

Publication number
JP2015182068A
JP2015182068A JP2014064028A JP2014064028A JP2015182068A JP 2015182068 A JP2015182068 A JP 2015182068A JP 2014064028 A JP2014064028 A JP 2014064028A JP 2014064028 A JP2014064028 A JP 2014064028A JP 2015182068 A JP2015182068 A JP 2015182068A
Authority
JP
Japan
Prior art keywords
mixer
granular material
granule
main body
space factor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014064028A
Other languages
Japanese (ja)
Other versions
JP6229570B2 (en
Inventor
政樹 増井
Masaki Masui
政樹 増井
誠二 岡本
Seiji Okamoto
誠二 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2014064028A priority Critical patent/JP6229570B2/en
Publication of JP2015182068A publication Critical patent/JP2015182068A/en
Application granted granted Critical
Publication of JP6229570B2 publication Critical patent/JP6229570B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Glanulating (AREA)
  • Accessories For Mixers (AREA)
  • Mixers Of The Rotary Stirring Type (AREA)
  • Coke Industry (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a new and improved mixer capable of restraining staying of a granule, while maintaining a space factor of the granule in the mixer in a predetermined value or more.SOLUTION: For solving the problem, according to a certain viewpoint of the present invention, a mixer is provided with a mixer body for carrying while agitating a granule in the lateral direction, a gate part provided on a downstream side end surface of the mixer body, maintaining a space factor of the granule in the mixer body in a predetermined value or more and capable of discharging the granule from above an upper end part and one or a plurality of through-holes provided upward from the lower end of the gate part so as to cut out and discharging the granule to an external part of the mixer body, and a height and a width of the respective through-holes are larger than 2.5 times of a maximum pseudo particle diameter of the granule, and the total cross-sectional area of the whole through-holes is smaller than the cross-sectional area in the downstream side end surface of a space factor part of the granule.

Description

本発明は、混合機に関する。   The present invention relates to a mixer.

粉粒体を混練しつつ横方向に移動させる装置として、例えば特許文献1〜3に開示される混練機が知られている。特許文献1に開示された技術では、混練機内を混合ゾーンと造粒ゾーンとに区分し、混合ゾーンと造粒ゾーンとの境界に仕切壁が設けられる。また、仕切壁には開口面積の調整が可能な通過孔が設けられる。特許文献1に開示された技術では、通過孔の開口面積を調整することで、粉粒体の混合ゾーン内での滞留時間等を調整する。   As a device for moving the powder body in the lateral direction while kneading, for example, a kneader disclosed in Patent Documents 1 to 3 is known. In the technique disclosed in Patent Document 1, the inside of the kneader is divided into a mixing zone and a granulation zone, and a partition wall is provided at the boundary between the mixing zone and the granulation zone. The partition wall is provided with a through hole whose opening area can be adjusted. In the technique disclosed in Patent Document 1, the residence time of the granular material in the mixing zone is adjusted by adjusting the opening area of the passage hole.

特許文献2に開示された技術では、混練機内を複数のゾーンに区分し、各ゾーンの境界に仕切り板が設けられる。仕切り板には、各ゾーンでの占積率(充填率)を調整するための貫通孔が設けられる。特許文献3に開示された技術では、混練機内での粉粒体の占積率を調整するための可動堰が設けられる。   In the technique disclosed in Patent Document 2, the inside of the kneader is divided into a plurality of zones, and a partition plate is provided at the boundary of each zone. The partition plate is provided with through holes for adjusting the space factor (filling rate) in each zone. In the technique disclosed in Patent Document 3, a movable weir is provided for adjusting the space factor of the granular material in the kneader.

特開2002−153744号公報JP 2002-153744 A 特開2011−235258号公報JP 2011-235258 A 特開平9−313910号公報Japanese Patent Laid-Open No. 9-313910

ところで、混練機内の粉粒体の占積率を所定値以上に調整する技術として、混練機の先端に堰部(例えば堰板)を設ける技術が提案されている。この技術では、堰板の上端部に粉粒体の排出口が形成される。混練機は、排出口付近の粉粒体を排出口まで持ち上げることで粉粒体を排出口から排出する。したがって、この技術では、混練機はオーバーフロー型となる。   By the way, as a technique for adjusting the space factor of the granular material in the kneader to a predetermined value or more, a technique of providing a weir part (for example, a weir plate) at the tip of the kneader has been proposed. In this technique, a discharge port for the granular material is formed at the upper end portion of the barrier plate. The kneading machine discharges the powder particles from the discharge port by lifting the powder particles near the discharge port to the discharge port. Therefore, with this technique, the kneader becomes an overflow type.

この技術では、粉粒体の占積率が所定値以上に調整される(言い換えれば、粉粒体の粉面レベルが所定レベル以上に調整される)ので、粉粒体の混合不良等を抑制することができる。例えば混練機が微粉炭とバインダ(例えばタール)とを混練することで微粉炭の造粒物(擬似粒子)を作製する場合、混練機は微粉炭とバインダとを十分に混練することができるので、造粒物の品質(歩留等)を向上することができる。特に微粉炭の単位時間あたりの投入量(投入速度)が小さい場合、バインダの分散不足が生じやすいが、占積率を高くすることで、このような分散不足が抑制される。   In this technology, the space factor of the granular material is adjusted to a predetermined value or higher (in other words, the powder surface level of the granular material is adjusted to a predetermined level or higher), so that mixing failure of the granular material is suppressed. can do. For example, when a kneading machine produces a granulated product (pseudo particles) of pulverized coal by kneading pulverized coal and a binder (for example, tar), the kneader can sufficiently knead the pulverized coal and the binder. The quality (yield, etc.) of the granulated product can be improved. In particular, when the input amount (input speed) of pulverized coal is small, insufficient dispersion of the binder is likely to occur, but such insufficient dispersion is suppressed by increasing the space factor.

しかし、このような混練機には、粉粒体が混練機の稼働直後から混練機内で大塊化し、混練機内に滞留してしまうという問題があった。特に混練機が戻し羽根を有する場合、粉粒体の大塊(粒子径50〜150mm程度の粉粒体)は、混練機の先端のみならず、中間部分周辺にも滞留してしまう場合があった。混練機内に大塊が滞留してしまうと、混練機を連続操業することができない。一方、特許文献1〜3は、混練機の先端に堰部を設けるものではないので、この問題を何ら解決することができなかった。   However, such a kneader has a problem that the powder particles are agglomerated in the kneader immediately after the kneader is operated and stay in the kneader. In particular, when the kneader has a return blade, a large lump of powder (powder having a particle diameter of about 50 to 150 mm) may stay not only at the tip of the kneader but also around the middle portion. It was. If large lumps stay in the kneader, the kneader cannot be operated continuously. On the other hand, since Patent Documents 1 to 3 do not provide a weir at the tip of the kneader, this problem cannot be solved at all.

そこで、本発明は、上記問題に鑑みてなされたものであり、本発明の目的とするところは、混合機内での粉粒体の占積率を所定値以上に維持しつつ、粉粒体の滞留を抑制することが可能な、新規かつ改良された混合機を提供することにある。   Then, this invention is made | formed in view of the said problem, and the place made into the objective of this invention is maintaining the space factor of the granular material in a mixer more than predetermined value, and of a granular material. It is an object of the present invention to provide a new and improved mixer capable of suppressing stagnation.

上記課題を解決するために、本発明のある観点によれば、粉粒体を撹拌しつつ横方向に搬送する混合機本体と、混合機本体の下流側端面に設けられ、混合機本体内の粉粒体の占積率を所定値以上に維持するとともに、上方から粉粒体の排出が可能な堰部と、堰部の下端から上方に切り欠くように設けられ、粉粒体を混合機本体の外部に排出する1または複数の貫通穴と、を備え、各貫通孔の高さ及び幅は、粉粒体の最大擬似粒子径の2.5倍より大きく、全貫通孔の総断面積は、粉粒体の占積部分の下流側端面における断面積よりも小さいことを特徴とする、混合機が提供される。   In order to solve the above problems, according to an aspect of the present invention, a mixer main body that conveys powder particles in a lateral direction while stirring, and a downstream end face of the mixer main body, While maintaining the space factor of the granular material above a predetermined value, the weir is capable of discharging the granular material from above, and is provided so as to be cut out upward from the lower end of the weir part. One or a plurality of through holes to be discharged to the outside of the main body, and the height and width of each through hole is larger than 2.5 times the maximum pseudo particle diameter of the granular material, and the total cross-sectional area of all the through holes Is smaller than the cross-sectional area at the downstream end face of the occupied portion of the granular material.

ここで、混合機本体内にバインダを投入するバインダ投入部を備えていてもよい。   Here, you may provide the binder injection | throwing-in part which inputs a binder in the mixer main body.

また、粉粒体は微粉炭であってもよい。   The granular material may be pulverized coal.

以上説明したように本発明によれば、上記寸法条件を満たす貫通孔が堰部に形成されるので、混合機内での粉粒体の占積率を所定値以上に維持しつつ、粉粒体の滞留を抑制することができる。   As described above, according to the present invention, since the through hole satisfying the above dimensional condition is formed in the weir part, the granular material while maintaining the space factor of the granular material in the mixer at a predetermined value or more. Can be suppressed.

本発明の実施形態に係る混合機の構成を示す側断面図である。It is a sectional side view which shows the structure of the mixer which concerns on embodiment of this invention. 同実施形態にかかる混合機の構成を示す平断面図である。It is a plane sectional view showing the composition of the mixer concerning the embodiment. 混合機の下流側端面の構成を示す側面図である。It is a side view which shows the structure of the downstream end surface of a mixer.

以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。   Exemplary embodiments of the present invention will be described below in detail with reference to the accompanying drawings. In addition, in this specification and drawing, about the component which has the substantially same function structure, duplication description is abbreviate | omitted by attaching | subjecting the same code | symbol.

<1.混合機の全体構成>
まず、図1〜図3にもとづいて、本発明の実施形態に係る混合機の全体構成について説明する。
<1. Overall configuration of mixer>
First, based on FIGS. 1-3, the whole structure of the mixer which concerns on embodiment of this invention is demonstrated.

図1及び図3に示すように、混合機は、混合機本体10と、堰部60と、排出口65と、ホッパ70と、貫通孔80とを備える。   As shown in FIGS. 1 and 3, the mixer includes a mixer main body 10, a weir portion 60, a discharge port 65, a hopper 70, and a through hole 80.

ホッパ70は、混合機本体10の上流側端面20a側の上端部に設けられ、混合機本体10に粉粒体Xを供給する。ここで、粉粒体Xの種類は特に問わず、従来の混合機本体によって搬送されうるものであればどのようなものであってもよい。粉粒体Xは複数種類の原料の混合物であってもよく、単一種類の原料であってもよい。粉粒体Xは例えば微粉炭である。微粉炭の粒子径は例えば0.5mm以下であってもよい。   The hopper 70 is provided at the upper end of the mixer main body 10 on the upstream end face 20 a side, and supplies the powder X to the mixer main body 10. Here, the type of the powder X is not particularly limited, and may be any as long as it can be transported by the conventional mixer main body. The powder X may be a mixture of a plurality of types of raw materials or a single type of raw materials. The granular material X is pulverized coal, for example. The particle diameter of pulverized coal may be 0.5 mm or less, for example.

混合機本体10は、概略的には、ホッパ70から供給された粉粒体X及びバインダ投入口21から投入されたバインダを混練しつつ横方向に搬送する。そして、混合機本体10は、堰部60近傍の粉粒体Xを堰部60の上方に設けられた排出口65からオーバーフローさせる(溢れ出させる)ことによって、粉粒体Xを排出する。ここで、横方向は、鉛直方向以外の方向を意味する。横方向は例えば図1に示すように水平方向(矢印Y1方向)であるが、水平方向から鉛直方向に傾いていてもよい。   The mixer main body 10 schematically conveys the powder X supplied from the hopper 70 and the binder supplied from the binder inlet 21 in the lateral direction while kneading. And the mixer main body 10 discharges | emits the granular material X by making the granular material X of the dam part 60 vicinity overflow from the discharge port 65 provided above the dam part 60 (overflow). Here, the horizontal direction means a direction other than the vertical direction. The horizontal direction is the horizontal direction (arrow Y1 direction) as shown in FIG. 1, for example, but may be inclined from the horizontal direction to the vertical direction.

混合機本体10は、具体的には、ハウジング20と、バインダ投入部21と、混合部30と、駆動装置40とを備える。ハウジング20は、筒形状となっており、混合部30を内蔵する。すなわち、ハウジング20は、混合機本体10の外壁となるものである。ハウジング20の上流側端面20aは閉塞されており、下流側端面20bは後述する堰部60によって一部閉塞されている。   Specifically, the mixer main body 10 includes a housing 20, a binder charging unit 21, a mixing unit 30, and a driving device 40. The housing 20 has a cylindrical shape and incorporates a mixing unit 30. That is, the housing 20 becomes an outer wall of the mixer main body 10. The upstream end face 20a of the housing 20 is closed, and the downstream end face 20b is partially closed by a dam 60 described later.

バインダ投入部21は、混合機本体10内、具体的にはハウジング20内にバインダを投入するものである。バインダ投入部21は無くてもよい。混合機がバインダ投入部21を有する場合、混合機は混練機とも称される。バインダの種類は混合機の用途によって任意に選択されればよい。例えば混合機が微粉炭を混練する混練機となる場合、バインダはタールとなる。混合機は、微粉炭とタールとを混練することで微粉炭の造粒物(擬似粒子)を作製し、微粉炭の造粒物を排出口65から排出する。微粉炭の造粒物は、塊成機によって塊成されることで塊成炭とされうる。なお、混合機がバインダ投入口21を有しない場合、混合機は、粉粒体Xを混合しつつ横方向に搬送することとなる。   The binder loading unit 21 is for loading the binder into the mixer main body 10, specifically, into the housing 20. The binder charging unit 21 may not be provided. When the mixer has a binder charging part 21, the mixer is also referred to as a kneader. The kind of binder should just be selected arbitrarily by the use of a mixer. For example, when the mixer is a kneader for kneading pulverized coal, the binder is tar. The mixer produces a granulated product (pseudo particles) of pulverized coal by kneading pulverized coal and tar, and discharges the granulated product of pulverized coal from the discharge port 65. The granulated product of pulverized coal can be agglomerated by being agglomerated by an agglomerator. In addition, when a mixer does not have the binder insertion port 21, a mixer will convey the granule X in a horizontal direction, mixing.

混合部30は、軸体31と、羽根部32とを備える。図2に示すように、本実施形態では、ハウジング20内に2本の混合部30が平行に配置されている。もちろん、混合部30の本数はこの例に限定されない。   The mixing unit 30 includes a shaft body 31 and a blade portion 32. As shown in FIG. 2, in this embodiment, two mixing portions 30 are arranged in parallel in the housing 20. Of course, the number of the mixing parts 30 is not limited to this example.

軸体31は、長尺な円柱形状となっており、ハウジング20の長さ方向と平行となるようにハウジング20内に配置される。軸体31は、駆動装置40から供給される駆動力によって矢印Y2方向に回転する。直線31aは軸体31の回転軸を示す。軸体31の先端部は堰部60を貫通して混合機本体10の外部に伸びており、後端部はハウジング20の上流側端面20aを貫通して外部に伸びている。そして、軸体31の後端部は駆動装置40に連結されている。   The shaft body 31 has a long cylindrical shape and is disposed in the housing 20 so as to be parallel to the length direction of the housing 20. The shaft body 31 is rotated in the arrow Y2 direction by the driving force supplied from the driving device 40. A straight line 31 a indicates the rotation axis of the shaft body 31. The front end portion of the shaft body 31 extends through the weir portion 60 to the outside of the mixer main body 10, and the rear end portion extends through the upstream end surface 20 a of the housing 20 to the outside. The rear end portion of the shaft body 31 is connected to the drive device 40.

羽根部32は、軸体31の周面にらせん状に設けられている。したがって、混合機はいわゆるスクリューコンベアとなっている。羽根部32は、軸体31と一体となって回転する。羽根部32は、軸体31と一体となって回転することによって、ハウジング20内の粉粒体Xをバインダと混練しつつ開口部50近傍まで搬送する(すなわち、矢印Y1方向に搬送する)。そして、混合部30は、開口部50近傍の粉粒体Xを堰部60の上方の排出口65からオーバーフローさせる。   The blade portion 32 is provided in a spiral shape on the peripheral surface of the shaft body 31. Therefore, the mixer is a so-called screw conveyor. The blade portion 32 rotates integrally with the shaft body 31. The blade portion 32 rotates integrally with the shaft body 31 to convey the powder X in the housing 20 to the vicinity of the opening 50 while being kneaded with the binder (that is, conveyed in the direction of arrow Y1). Then, the mixing unit 30 causes the powder X near the opening 50 to overflow from the discharge port 65 above the weir unit 60.

羽根部32は混合機の用途等によって様々な形態をとりうる。例えば混合機が粉粒体Xとバインダとを十分に混練する必要がある場合、羽根部32の一部は戻し羽根となる。戻し羽根は粉粒体Xを矢印Y1と逆方向に戻すものである。羽根部32は、戻し羽根を有する場合、粉粒体X1を混合機本体10内で往復させつつ、最終的には排出口65まで搬送する。これにより、粉粒体Xは混合機本体10内で十分に混練される。また、図1では、ホッパ70直下の羽根ピッチを他の領域の羽根ピッチよりも狭めているが、羽根ピッチはこの例に限定されない。例えば、羽根ピッチはハウジング20内の全領域で同じであってもよく、下流側端面20bに向けて徐々に広げていってもよい。また、羽根部32の形状はスクリュー形状に限られない。例えば、羽根部32はパドル形状であってもよい。この場合、羽根部32は、軸体31から放射状に伸びる。また、羽根部32がパドル形状となる場合、混合機本体10は、いわゆるパドル式ミキサーとなる。後述する実施例では、パドル式ミキサーを用いて本発明の効果を検証している。   The blade portion 32 can take various forms depending on the application of the mixer and the like. For example, when the mixer needs to sufficiently knead the powder X and the binder, a part of the blade portion 32 becomes a return blade. The return blade returns the granular material X in the direction opposite to the arrow Y1. When the blade portion 32 has a return blade, the blade portion 32 finally transports the granular material X1 to the discharge port 65 while reciprocating in the mixer main body 10. Thereby, the granular material X is sufficiently kneaded in the mixer main body 10. In FIG. 1, the blade pitch just below the hopper 70 is narrower than the blade pitch in other regions, but the blade pitch is not limited to this example. For example, the blade pitch may be the same in the entire region within the housing 20, or may gradually increase toward the downstream end surface 20b. Further, the shape of the blade portion 32 is not limited to the screw shape. For example, the blade portion 32 may have a paddle shape. In this case, the blade portion 32 extends radially from the shaft body 31. Moreover, when the blade | wing part 32 becomes a paddle shape, the mixer main body 10 becomes what is called a paddle type mixer. In the examples described later, the effect of the present invention is verified using a paddle type mixer.

堰部60は、混合機本体10の下流側端面20bに設けられる。堰部60は、下流側端面20bの大部分を閉塞することで、混合機本体10内の粉粒体Xの占積率を所定値以上に維持する。さらに、堰部60の上方には排出口65が形成されており、粉粒体Xは、排出口65から外部に排出される。ここで、占積率は、充填率とも称され、混合機本体10の中空部分(ハウジング20の中空部分のうち、混合部30によって閉められる部分を除外した部分)のうち、粉粒体Xが占める部分の割合を意味する。占積率は、堰部60の上端高さH(図3参照)、ホッパ70から混合機本体10に単位時間あたりに投入される粉粒体Xの投入量(すなわち投入速度)、混合部30の回転速度、混合機本体10の中空部分の体積、及び全貫通孔80の総断面積等によって変動しうる。したがって、混合機のユーザは、これらのパラメータを任意に調整することで、占積率を所望の値に調整することができる。ここで、堰部60の上端高さHは、図1及び図3に示すように、軸体31の回転軸(直線31a)から堰部60の上端面までの高さを意味する。   The weir unit 60 is provided on the downstream end surface 20 b of the mixer main body 10. The weir part 60 keeps the space factor of the granular material X in the mixer main body 10 at a predetermined value or more by closing most of the downstream end face 20b. Furthermore, a discharge port 65 is formed above the weir unit 60, and the granular material X is discharged from the discharge port 65 to the outside. Here, the space factor is also referred to as a filling rate. Of the hollow portion of the mixer main body 10 (the portion excluding the portion of the hollow portion of the housing 20 that is closed by the mixing portion 30), the powder X is It means the ratio of occupied part. The space factor is the upper end height H of the weir unit 60 (see FIG. 3), the input amount of the granular material X supplied from the hopper 70 to the mixer main body 10 per unit time (that is, the input speed), and the mixing unit 30. , The volume of the hollow portion of the mixer body 10, the total cross-sectional area of all the through holes 80, and the like. Therefore, the user of the mixer can adjust the space factor to a desired value by arbitrarily adjusting these parameters. Here, the upper end height H of the weir unit 60 means the height from the rotation axis (straight line 31 a) of the shaft body 31 to the upper end surface of the weir unit 60 as shown in FIGS. 1 and 3.

貫通孔80は、図3に示すように、堰部60の下端から上方に切り欠くように設けられる。具体的には、貫通孔80は、各混合部30に対向する位置にそれぞれ設けられる。より具体的には、貫通孔80は、羽根部32の最下点に対向する位置に設けられる。貫通孔80は、下流側端面20bの下端部に存在する粉粒体Xを外部に排出する。これにより、粉粒体Xの混合機本体10内での滞留を抑制することができる。もちろん、貫通孔80は、堰部60の下端から上方に切り欠くように設けられるのであれば、上記以外の箇所に設けられても良いが、上記の配置が最も好ましい。   As shown in FIG. 3, the through hole 80 is provided so as to be cut out upward from the lower end of the dam portion 60. Specifically, the through hole 80 is provided at a position facing each mixing unit 30. More specifically, the through hole 80 is provided at a position facing the lowest point of the blade portion 32. The through hole 80 discharges the granular material X present at the lower end of the downstream end face 20b to the outside. Thereby, the residence in the mixer main body 10 of the granular material X can be suppressed. Of course, as long as the through-hole 80 is provided so as to be cut out upward from the lower end of the weir part 60, it may be provided in a place other than the above, but the above arrangement is most preferable.

貫通孔80の断面は矩形となっている。貫通孔80の幅L1及び高さL2は、いずれも粉粒体Xの最大擬似粒子径の2.5倍よりも大きい。好ましくは、貫通孔80の幅L1及び高さL2は、いずれも粉粒体Xの最大擬似粒子径の3.0倍よりも大きい。ここで、排出口65、貫通孔80及び粉粒体Xの占積部分の断面は、混合機本体10の長さ方向に垂直な断面を意味する。また、幅L1は、貫通孔80の幅方向(図1の紙面に垂直な方向)の寸法であり、高さL2は貫通孔80の鉛直方向の寸法である。粉粒体Xの最大擬似粒子径は、混合機本体10から排出される粉粒体Xの造粒物(擬似粒子)のうち、最大のものの粒子径である。擬似粒子径は、例えば目開きの大きさが異なる篩を用いて測定される。例えば、目開きが0.3mmの篩を用意し、測定対象の造粒物をこの篩にかける。この篩に残留した造粒物は、擬似粒子径が0.3mmより大きく、篩から落ちた造粒物は擬似粒子径が0.3mm以下となる。他の粒子の粒子径も同様の方法で測定される。最大擬似粒子径は、混合機本体10を実際に操業することで確認すればよい。貫通孔80の幅L1及び高さL2が上記大きさを有することで、粉粒体X及びその造粒物が貫通孔80内で詰まりにくくなる。   The cross section of the through hole 80 is rectangular. The width L1 and the height L2 of the through-hole 80 are both larger than 2.5 times the maximum pseudo particle diameter of the granular material X. Preferably, the width L1 and the height L2 of the through-hole 80 are both larger than 3.0 times the maximum pseudo particle diameter of the granular material X. Here, the cross section of the occupied portion of the discharge port 65, the through hole 80 and the granular material X means a cross section perpendicular to the length direction of the mixer main body 10. The width L1 is a dimension in the width direction of the through hole 80 (a direction perpendicular to the paper surface of FIG. 1), and the height L2 is a dimension in the vertical direction of the through hole 80. The maximum pseudo particle size of the granular material X is the particle size of the largest of the granulated materials (pseudo particles) of the granular material X discharged from the mixer body 10. The pseudo particle size is measured using, for example, sieves having different mesh sizes. For example, a sieve having an aperture of 0.3 mm is prepared, and the granulated material to be measured is passed through this sieve. The granulated product remaining on the sieve has a pseudo particle diameter larger than 0.3 mm, and the granulated product dropped from the sieve has a pseudo particle diameter of 0.3 mm or less. The particle diameter of other particles is also measured by the same method. The maximum pseudo particle size may be confirmed by actually operating the mixer main body 10. Since the width L1 and the height L2 of the through hole 80 have the above-described sizes, the powder X and the granulated product are less likely to be clogged in the through hole 80.

また、全貫通孔80の総断面積は、粉粒体Xの占積部分の下流側端面20bでの断面積よりも小さい。ここで、粉粒体Xの下流側端面20bでの断面積は、例えば以下のように測定されればよい。すなわち、堰部60を外した状態で混合機本体10を駆動させる。そして、粉粒体Xの占積率がほぼ一定となったタイミングで混合機本体10を停止する。この時、粉粒体Xは下流側端面20bにも占積している。そして、粉粒体Xの占積部分の下流側端面20bでの断面積を測定する。したがって、粉粒体Xの占積部分の下流側端面20bでの断面積は、操業条件(例えば粉粒体Xの粒径分布、混合機本体10に単位時間あたりに投入される粉粒体Xの投入量等)に応じて変動しうる。このため、貫通孔80の総断面積は可変であってもよい。または、貫通孔80の総断面積が異なる複数種類の堰部60を用意しておき、操業条件に応じて堰部60を選択するようにしてもよい。   Moreover, the total cross-sectional area of all the through-holes 80 is smaller than the cross-sectional area in the downstream end surface 20b of the occupied part of the granular material X. FIG. Here, the cross-sectional area at the downstream end face 20b of the powder X may be measured as follows, for example. That is, the mixer main body 10 is driven with the dam portion 60 removed. And the mixer main body 10 is stopped at the timing when the space factor of the granular material X becomes substantially constant. At this time, the granular material X is also occupied on the downstream end face 20b. And the cross-sectional area in the downstream end surface 20b of the occupied part of the granular material X is measured. Therefore, the cross-sectional area at the downstream end face 20b of the occupied portion of the granular material X is the operating condition (for example, the particle size distribution of the granular material X, the granular material X charged into the mixer main body 10 per unit time). Depending on the amount of input etc.). For this reason, the total cross-sectional area of the through hole 80 may be variable. Alternatively, a plurality of types of dam portions 60 having different total cross-sectional areas of the through holes 80 may be prepared, and the dam portions 60 may be selected according to operating conditions.

なお、貫通孔80の断面形状は矩形に限られず、例えば円形であってもよい。この場合、断面の直径を最大擬似粒子径の2.5倍以上とし、かつ、総断面積を上記の条件をみたすように設定すればよい。また、各貫通孔80は同じ形状、大きさであることが好ましいが、必ずしも同じでなくても良い。   The cross-sectional shape of the through hole 80 is not limited to a rectangle, and may be a circle, for example. In this case, the diameter of the cross section may be 2.5 times or more of the maximum pseudo particle diameter, and the total cross sectional area may be set so as to satisfy the above conditions. Moreover, although it is preferable that each through-hole 80 is the same shape and magnitude | size, it does not necessarily need to be the same.

<2.混合機の動作>
次に、混合機の動作について説明する。混合機には、粉粒体X及びバインダが所定の投入速度で投入される一方、駆動装置40によって軸体31が駆動される。これにより、混合機内の粉粒体Xは、混合部30によって撹拌(混練)されつつ矢印Y1方向に移動する。粉粒体Xは、堰部60の近傍まで移動した後、混合部30によって持ち上げられ、排出口65から排出される。一方、堰部60によって粉粒体Xの占積率は所定値以上に維持される。また、一部の粉粒体Xは、貫通孔80から外部に排出される。これにより、粉粒体Xの混合機内での滞留が抑制され、ひいては、大塊の発生が抑制される。
<2. Operation of mixer>
Next, the operation of the mixer will be described. While the granular material X and the binder are charged into the mixer at a predetermined charging speed, the shaft body 31 is driven by the driving device 40. Thereby, the granular material X in the mixer moves in the arrow Y1 direction while being stirred (kneaded) by the mixing unit 30. After moving to the vicinity of the dam portion 60, the powder X is lifted by the mixing portion 30 and discharged from the discharge port 65. On the other hand, the space factor of the granular material X is maintained at a predetermined value or more by the weir part 60. Further, a part of the granular material X is discharged from the through hole 80 to the outside. Thereby, the residence in the mixer of the powder body X is suppressed and by extension, generation | occurrence | production of a large lump is suppressed.

(実施例1)
次に、本実施形態の実施例1について説明する。実施例1では、粉粒体Xは微粉炭(粒子径0.5mm以下)とし、バインダはタールとした。また、混合機は2軸パドル式ミキサー(軸体31を2本有するパドル式ミキサー)とした。また、羽根部32は戻し羽根付きのものを使用し、羽根部32の直径は880mmとした。また、混合機の機長は4600mmとした。
Example 1
Next, Example 1 of the present embodiment will be described. In Example 1, the granular material X was pulverized coal (particle diameter of 0.5 mm or less), and the binder was tar. The mixer was a two-shaft paddle mixer (a paddle mixer having two shaft bodies 31). Moreover, the blade | wing part 32 used the thing with a return blade | wing, and the diameter of the blade | wing part 32 was 880 mm. The length of the mixer was 4600 mm.

そして、堰部60を下流側端面20bに設置し、軸体31を27rpmで回転させた。一方、微粉炭を30t/hで混合機に投入し、タールを3t/h(微粉炭の10質量%)で混合機に投入した。そして、この時の占積率が55%となるように堰部60の上端高さHを240mmに調整した。   And the dam part 60 was installed in the downstream end surface 20b, and the shaft 31 was rotated at 27 rpm. On the other hand, pulverized coal was charged into the mixer at 30 t / h, and tar was charged into the mixer at 3 t / h (10% by mass of pulverized coal). And the upper end height H of the weir part 60 was adjusted to 240 mm so that the space factor at this time might be 55%.

ついで、堰部60を取り外し、同様の操業条件で混合機を駆動した。微粉炭の占積率がほぼ一定となったタイミングで混合機を停止し、微粉炭の占積部分の下流側端面20bにおける断面積を測定した。この結果、占積部分の断面積は0.1mであった。また、最大擬似粒子径は15mmであった。したがって、最大擬似粒子径の2.5倍は37.5mmとなる。 Next, the weir unit 60 was removed, and the mixer was driven under the same operating conditions. The mixer was stopped at the timing when the pulverized coal space factor became substantially constant, and the cross-sectional area at the downstream end face 20b of the occupied portion of the pulverized coal was measured. As a result, the cross-sectional area of the occupied portion was 0.1 m 2 . The maximum pseudo particle size was 15 mm. Therefore, 2.5 times the maximum pseudo particle size is 37.5 mm.

ついで、堰部60の下端部のうち、各混合部30の最下点に対向する位置から上方に切り欠くように幅300mm×高さ40mmの貫通孔80を設け、堰部60を再度混合機の下流側端面20bに設置した。したがって、全貫通孔80の総断面積は0.024mとなる。また、貫通孔80の高さは最大擬似粒子径の2.5倍より大きく、3倍未満となる。そして、上記と同様の操業条件で混合機を駆動した。この結果、1ヶ月連続して操業しても、大塊はほとんど堆積せず、占積率も上記の値を維持することができた。 Next, a through hole 80 having a width of 300 mm and a height of 40 mm is provided so as to cut out upward from a position facing the lowest point of each mixing unit 30 in the lower end portion of the weir unit 60, and the weir unit 60 is again mixed with the mixer. Installed on the downstream end face 20b. Therefore, the total cross-sectional area of all the through holes 80 is 0.024 m 2 . Further, the height of the through hole 80 is larger than 2.5 times the maximum pseudo particle diameter and smaller than 3 times. And the mixer was driven on the same operation conditions as the above. As a result, even if the operation was continued for one month, the mass was hardly deposited and the space factor was able to maintain the above value.

(実施例2)
各貫通孔80の寸法を幅300mm×高さ50mmとした他は、実施例1と同様の処理を行った。実施例2では、高さが最大擬似粒子径の3.0倍より大きい。この結果、1ヶ月連続して操業しても、大塊は全く堆積せず、占積率も上記の値を維持することができた。すなわち、実施例1よりも大塊の発生が抑制できた。この理由として、混合機の底部での微粉炭の滞留がなくなり、大塊の排出がより円滑化したためであると考えられる。
(Example 2)
The same processing as in Example 1 was performed except that the dimensions of each through hole 80 were set to be 300 mm in width and 50 mm in height. In Example 2, the height is greater than 3.0 times the maximum pseudo particle size. As a result, even if the operation was continued for one month, no large mass was deposited, and the space factor was able to maintain the above value. That is, it was possible to suppress the generation of large lumps than Example 1. The reason for this is considered to be that the pulverized coal does not stay at the bottom of the mixer, and the discharge of the large mass has become smoother.

(比較例1)
各貫通孔80の寸法を幅300mm×高さ30mmとした他は、実施例1と同様の処理を行った。比較例1では、操業開始から1日程度経過した際に貫通孔80が目詰まりを起こし、連続操業ができなかった。また、混合機内には大塊が多数滞留していた。
(Comparative Example 1)
The same processing as in Example 1 was performed except that the dimensions of each through-hole 80 were set to 300 mm width × 30 mm height. In Comparative Example 1, the through-hole 80 was clogged when about 1 day had elapsed from the start of operation, and continuous operation was not possible. In addition, many large lumps stayed in the mixer.

(比較例2)
各貫通孔80の寸法を幅300mm×高さ200mmとした他は、実施例1と同様の処理を行った。比較例2では、全貫通孔80の総断面積は0.12mとなる。比較例2では、占積率が上記の値を保てなかったので、連続操業ができなかった。
(Comparative Example 2)
The same processing as in Example 1 was performed except that the dimensions of each through hole 80 were set to be 300 mm in width and 200 mm in height. In Comparative Example 2, the total cross-sectional area of all the through holes 80 is 0.12 m 2 . In Comparative Example 2, since the space factor could not maintain the above value, continuous operation could not be performed.

(比較例3)
貫通孔80を設けなかった他は、実施例1と同様の処理を行った。比較例3では、操業開始から1日程度経過しただけで混合機内に大量の大塊が発生した。このため、連続操業ができなかった。
(Comparative Example 3)
The same processing as in Example 1 was performed except that the through hole 80 was not provided. In Comparative Example 3, a large amount of large lumps were generated in the mixer just after about 1 day had elapsed since the start of operation. For this reason, continuous operation was not possible.

実施例1、2及び比較例1〜3によれば、上記の寸法条件を満たす貫通孔80を堰部60に設けることにより、占積率を所定値以上に維持しつつ、粉粒体の滞留を抑制することができることがわかる。   According to Examples 1 and 2 and Comparative Examples 1 to 3, by providing the through hole 80 satisfying the above dimensional conditions in the weir part 60, the retention of the granular material while maintaining the space factor at a predetermined value or more. It can be seen that this can be suppressed.

以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。   The preferred embodiments of the present invention have been described in detail above with reference to the accompanying drawings, but the present invention is not limited to such examples. It is obvious that a person having ordinary knowledge in the technical field to which the present invention pertains can come up with various changes or modifications within the scope of the technical idea described in the claims. Of course, it is understood that these also belong to the technical scope of the present invention.

10 混合機本体
20 ハウジング
21 バインダ投入部
30 混合部
31 軸体
32 羽根部
40 駆動装置
60 堰部
65 排出口
70 ホッパ
80 貫通孔

DESCRIPTION OF SYMBOLS 10 Mixer main body 20 Housing 21 Binder insertion part 30 Mixing part 31 Shaft body 32 Blade | wing part 40 Drive device 60 Weir part 65 Outlet 70 Hopper 80 Through-hole

Claims (3)

粉粒体を撹拌しつつ横方向に搬送する混合機本体と、
前記混合機本体の下流側端面に設けられ、前記混合機本体内の前記粉粒体の占積率を所定値以上に維持するとともに、上方から前記粉粒体の排出が可能な堰部と、
前記堰部の下端から上方に切り欠くように設けられ、前記粉粒体を前記混合機本体の外部に排出する1または複数の貫通穴と、を備え、
各貫通孔の高さ及び幅は、前記粉粒体の最大擬似粒子径の2.5倍より大きく、全貫通孔の総断面積は、前記粉粒体の占積部分の前記下流側端面における断面積よりも小さいことを特徴とする、混合機。
A mixer main body for conveying powder particles in a lateral direction while stirring;
A dam part provided on the downstream end face of the mixer main body, maintaining a space factor of the granular material in the mixer main body at a predetermined value or more, and capable of discharging the granular material from above;
One or a plurality of through-holes provided so as to be cut out upward from the lower end of the weir part, and discharging the powder particles to the outside of the mixer main body,
The height and width of each through-hole is larger than 2.5 times the maximum pseudo particle diameter of the granular material, and the total cross-sectional area of all through-holes is at the downstream end face of the occupied portion of the granular material. A mixer characterized by being smaller than the cross-sectional area.
前記混合機本体内にバインダを投入するバインダ投入部を備えることを特徴とする、請求項1記載の混合機。   The mixer according to claim 1, further comprising a binder loading unit that loads the binder into the mixer body. 前記粉粒体は微粉炭であることを特徴とする、請求項1または2記載の混合機。

The mixer according to claim 1 or 2, wherein the granular material is pulverized coal.

JP2014064028A 2014-03-26 2014-03-26 Blender Active JP6229570B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014064028A JP6229570B2 (en) 2014-03-26 2014-03-26 Blender

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014064028A JP6229570B2 (en) 2014-03-26 2014-03-26 Blender

Publications (2)

Publication Number Publication Date
JP2015182068A true JP2015182068A (en) 2015-10-22
JP6229570B2 JP6229570B2 (en) 2017-11-15

Family

ID=54349253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014064028A Active JP6229570B2 (en) 2014-03-26 2014-03-26 Blender

Country Status (1)

Country Link
JP (1) JP6229570B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5413284A (en) * 1991-07-27 1995-05-09 Babcock Bsh Aktiengesellschaft Vormals Buttner-Schilde-Haas Method of and apparatus for treating plasterboard-production scrap
JPH09313910A (en) * 1996-05-29 1997-12-09 Shinwa Corp Kneading device
JPH1096590A (en) * 1996-09-24 1998-04-14 Mitsubishi Chem Corp Fluidized-bed dryer
JP2000328598A (en) * 1999-05-24 2000-11-28 Nakayama Iron Works Ltd Soil mixing and improving machine
JP2002316030A (en) * 2001-04-23 2002-10-29 Tsukasa Kogyo Kk Apparatus for mixing granular substance continuously
JP2006255557A (en) * 2005-03-16 2006-09-28 Hitachi Constr Mach Co Ltd Stirrer and method for treating soil and sand

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5413284A (en) * 1991-07-27 1995-05-09 Babcock Bsh Aktiengesellschaft Vormals Buttner-Schilde-Haas Method of and apparatus for treating plasterboard-production scrap
JPH09313910A (en) * 1996-05-29 1997-12-09 Shinwa Corp Kneading device
JPH1096590A (en) * 1996-09-24 1998-04-14 Mitsubishi Chem Corp Fluidized-bed dryer
JP2000328598A (en) * 1999-05-24 2000-11-28 Nakayama Iron Works Ltd Soil mixing and improving machine
JP2002316030A (en) * 2001-04-23 2002-10-29 Tsukasa Kogyo Kk Apparatus for mixing granular substance continuously
JP2006255557A (en) * 2005-03-16 2006-09-28 Hitachi Constr Mach Co Ltd Stirrer and method for treating soil and sand

Also Published As

Publication number Publication date
JP6229570B2 (en) 2017-11-15

Similar Documents

Publication Publication Date Title
RU2735761C2 (en) Mixer, system for application of construction material and method of making structure from construction material
JP5781977B2 (en) Powder feeder
JP2013039574A (en) Kneading apparatus
JP2013226493A (en) Supply device
JP6229570B2 (en) Blender
JP6892107B2 (en) Supply device and supply method of powder and granular material
KR20050029177A (en) Screw feeder capable of feeding fixed quantity of powder or particles
JP6255159B2 (en) Powder and granular quantity supply equipment
JP6714445B2 (en) Mixed material manufacturing apparatus and mixed material manufacturing method
KR20120060591A (en) raw material crush and gyro screener apparatus
JP2013049478A (en) Powder bridge prevention device and powder feeding device
CN206661011U (en) Flat mixer and its colter arrangement
JP6081150B2 (en) Kneading equipment
KR20140030415A (en) Screw feeder for small unity of powder
JP6227736B2 (en) Kneading equipment
CN107345746B (en) Drying device
JP5852369B2 (en) Powder feeder
JP2007297537A (en) Method for producing pseudo-granulated material
JP3209032U (en) Powder and particle conveyor
JP6758094B2 (en) Micro stable supply device for granules
CN202757121U (en) Stokehole screw feeder of biomass fluidized bed
CN104369279B (en) Continuous mixing mill
JP2009279558A (en) Mixing device
US20230158462A1 (en) Manufacturing apparatus
KR200384712Y1 (en) Screw feeder capable of feeding fixed quantity of powder or particles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170627

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170919

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171002

R151 Written notification of patent or utility model registration

Ref document number: 6229570

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350