JP2015179608A - Negative electrode active material for lithium ion secondary batteries, manufacturing method thereof, and lithium ion secondary battery arranged by use thereof - Google Patents

Negative electrode active material for lithium ion secondary batteries, manufacturing method thereof, and lithium ion secondary battery arranged by use thereof Download PDF

Info

Publication number
JP2015179608A
JP2015179608A JP2014056345A JP2014056345A JP2015179608A JP 2015179608 A JP2015179608 A JP 2015179608A JP 2014056345 A JP2014056345 A JP 2014056345A JP 2014056345 A JP2014056345 A JP 2014056345A JP 2015179608 A JP2015179608 A JP 2015179608A
Authority
JP
Japan
Prior art keywords
metal tin
negative electrode
active material
electrode active
tin particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014056345A
Other languages
Japanese (ja)
Other versions
JP6229563B2 (en
Inventor
宇野 貴博
Takahiro Uno
貴博 宇野
久芳 完治
Kanji Hisayoshi
完治 久芳
樋上 晃裕
Akihiro Higami
晃裕 樋上
洵子 磯村
Junko Isomura
洵子 磯村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2014056345A priority Critical patent/JP6229563B2/en
Publication of JP2015179608A publication Critical patent/JP2015179608A/en
Application granted granted Critical
Publication of JP6229563B2 publication Critical patent/JP6229563B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To enable the relaxation of a stress caused by the repetition of metal tin particles' volume expansion and shrinkage at charging and discharging, and to enhance a discharge capacity and cycle characteristics by allowing carbon nanofibers (CNF) binding broken metal tin particles to one another to ensure conducting paths even if the metal tin particles are broken owing to the repetition of metal tin particles' volume expansion and shrinkage.SOLUTION: A negative electrode active material 10 for lithium ion secondary batteries of the present invention comprises: metal tin particles 11; a carbon nanofiber 12, a part of which is located in the metal tin particles 11 and the rest of which is outside the metal tin particle 11; a carbon nanofiber 12 of which the whole is located in the metal tin particle 11; and a carbon nanofiber 12 of which the whole is located outside the metal tin particle 11. The content of the carbon nanofibers 12 is 1-20 mass% to 100 mass% of the metal tin particles. Further, the metal tin particles 11 have an average particle diameter of 5-150 nm.

Description

本発明は、高容量かつサイクル特性に優れたリチウムイオン二次電池用負極活物質と、この負極活物質を製造する方法と、上記負極活物質を用いたリチウムイオン二次電池に関するものである。   The present invention relates to a negative electrode active material for a lithium ion secondary battery having high capacity and excellent cycle characteristics, a method for producing the negative electrode active material, and a lithium ion secondary battery using the negative electrode active material.

近年、携帯電話やノート型パソコン等のポータブル電子機器の発達や、電気自動車の実用化等に伴い、小型軽量でかつ高容量の二次電池が必要とされるようになってきた。現在、この要求に応える高容量二次電池として、正極材料にLiCoO2等の含リチウム複合酸化物を用い、負極活物質に炭素系材料を用いたリチウムイオン電池が商品化されている。この炭素系材料を負極に使用した場合、その理論容量は372mAh/gと金属リチウムの約1/10の容量しかなく、また理論密度が2.2g/ccと低く、実際に負極シートとした場合には、更に密度が低下する。そのため、体積当たりでより高容量な材料を負極として利用することが電池の高容量化の面から望まれている。 In recent years, along with the development of portable electronic devices such as mobile phones and laptop computers, and the practical application of electric vehicles, secondary batteries with small size and light weight and high capacity have been required. Currently, lithium ion batteries using a lithium-containing composite oxide such as LiCoO 2 as a positive electrode material and a carbon-based material as a negative electrode active material are commercialized as high-capacity secondary batteries that meet this requirement. When this carbon material is used for the negative electrode, its theoretical capacity is 372 mAh / g, which is only about 1/10 the capacity of metallic lithium, and its theoretical density is as low as 2.2 g / cc. In addition, the density further decreases. For this reason, it is desired to use a material having a higher capacity per volume as the negative electrode from the viewpoint of increasing the capacity of the battery.

このため、リチウムと合金化することが知られているAl、Ge、Si、Sn、Zn、Pb等の金属又は半金属を負極活物質に用いた二次電池が検討されている。これらの材料は、高容量かつ高エネルギー密度であり、炭素系材料を用いた負極よりも多くのリチウムイオンを吸蔵、脱離できるため、これらの材料を使用することで高容量、高エネルギー密度な電池を作製することができると考えられている。例えば、純粋なスズは993mAh/gの高い理論容量を示すことが知られている。   For this reason, secondary batteries using metals or metalloids such as Al, Ge, Si, Sn, Zn, and Pb, which are known to be alloyed with lithium, as negative electrode active materials have been studied. These materials have a high capacity and a high energy density, and can absorb and desorb more lithium ions than a negative electrode using a carbon-based material. Therefore, by using these materials, a high capacity and a high energy density can be obtained. It is believed that a battery can be made. For example, pure tin is known to exhibit a high theoretical capacity of 993 mAh / g.

一方、平均粒径5μm〜40μmの粒子状の第1炭素材料と、平均直径10nm〜500nmの平面状のグラファイト網が複数積層され、グラファイト網がファイバの縦軸に対して実質的に垂直であるカーボンナノファイバ(CNF)を主成分とし、CNFに加えて、更に黒鉛構造を有する炭素微粉からなる粒子状凝集体を含む第2炭素材料をそれぞれ含む負極材料(負極活物質)が開示されている(例えば、特許文献1参照。)。この負極材料では、第2炭素材料に含まれるCNFが1000nm以上の長さと、10以上のアスペクト比を有する。更に第1炭素材料が98重量%〜70重量%の割合で構成され、第2炭素材料が2重量%〜30重量%の割合で構成され、第2炭素材料は第1炭素材料が形成する空隙に充填されており、第2炭素材料はCNFが80重量%〜99.5重量%粒子状凝集体が0.5重量%〜20重量%の割合である。   On the other hand, a plurality of particulate first carbon materials having an average particle diameter of 5 μm to 40 μm and a planar graphite network having an average diameter of 10 nm to 500 nm are stacked, and the graphite network is substantially perpendicular to the longitudinal axis of the fiber. Disclosed are negative electrode materials (negative electrode active materials) each including a second carbon material containing carbon nanofibers (CNF) as a main component and further including particulate aggregates made of carbon fine powder having a graphite structure in addition to CNF. (For example, refer to Patent Document 1). In this negative electrode material, CNF contained in the second carbon material has a length of 1000 nm or more and an aspect ratio of 10 or more. Further, the first carbon material is composed of 98 wt% to 70 wt%, the second carbon material is composed of 2 wt% to 30 wt%, and the second carbon material is a void formed by the first carbon material. The second carbon material has a CNF content of 80% to 99.5% by weight and a particulate aggregate content of 0.5% to 20% by weight.

このように構成された負極材料(負極活物質)では、平均粒径の大きな第1炭素材料とナノサイズの第2炭素材料をそれぞれ含む負極材料を用いて電池の電極を作製したので、第1炭素材料が形成する空隙に第2炭素材料が充填され、電極中の炭素材料の充填密度が効果的に向上する。また、第2炭素材料の主成分である1000nm以上の長さと、10以上のアスペクト比を有するCNFはグラファイト網のエッジ面が多く露出するため、このCNFを主成分とした第2炭素材料と、炭素材料である第1炭素材料とをそれぞれ含む負極材料を用いることによって、炭素材料のみを負極材料として用いた場合に比べて、充放電に伴うリチウムイオンの挿入、脱離反応がスムーズに進行し、高率充放電特性が向上する。また、第2炭素材料は従来より用いられてきた炭素材料に比べて、平均直径が小さい材料であるため、電池の電極を作製した場合、高密度での充電が可能となり、電池のエネルギー密度向上に繋がる。更に、本発明の負極材料は、第2炭素材料がCNFに加えて、更にCNFが粒子状に凝集した粒子状凝集体を含むことによって主成分であるCNF同士の接触が良好になり、高率充放電特性が更に向上する。   In the negative electrode material (negative electrode active material) configured as described above, the first electrode material having a large average particle diameter and the negative electrode material each including the nano-sized second carbon material were used. The void formed by the carbon material is filled with the second carbon material, and the packing density of the carbon material in the electrode is effectively improved. In addition, since CNF having a length of 1000 nm or more and an aspect ratio of 10 or more, which is the main component of the second carbon material, exposes many edge surfaces of the graphite network, the second carbon material containing CNF as a main component, By using negative electrode materials each including a first carbon material, which is a carbon material, lithium ion insertion and desorption reactions associated with charge / discharge proceed more smoothly than when only a carbon material is used as a negative electrode material. The high rate charge / discharge characteristics are improved. In addition, since the second carbon material is a material having a smaller average diameter than the conventionally used carbon material, when the battery electrode is manufactured, it is possible to charge the battery at a high density and to improve the energy density of the battery. It leads to. Furthermore, the negative electrode material of the present invention includes a particulate aggregate in which the second carbon material is further aggregated into CNF in addition to the CNF, so that the contact between the CNFs as the main components becomes good, and the high rate Charge / discharge characteristics are further improved.

特開2009−59713号公報(請求項1、段落[0013])JP 2009-59713 A (Claim 1, paragraph [0013])

しかし、上記従来の金属スズ(Sn)を含む負極活物質を用いたリチウムイオン二次電池や、上記従来の特許文献1に示された負極材料(負極活物質)を用いたリチウムイオン二次電池では、充放電の繰返しに伴う負極活物質中のSn粒子や炭素粒子の大きな体積変化により微粉化するため、上記粒子が集電板から剥離したり、或いは上記粒子と導電助剤との接触が失われてしまい、十分なサイクル特性を得ることができない問題点があった。また、上記従来の特許文献1に示された負極材料(負極活物質)を用いたリチウムイオン二次電池では、未だ放電容量が低い問題点があった。   However, a lithium ion secondary battery using a negative electrode active material containing the above-described conventional metal tin (Sn), or a lithium ion secondary battery using the negative electrode material (negative electrode active material) disclosed in Patent Document 1 above. Then, since the particles are pulverized by a large volume change of Sn particles and carbon particles in the negative electrode active material due to repeated charge and discharge, the particles are peeled off from the current collector plate, or contact between the particles and the conductive auxiliary agent occurs. There is a problem that it is lost and a sufficient cycle characteristic cannot be obtained. In addition, the lithium ion secondary battery using the negative electrode material (negative electrode active material) disclosed in the above-described conventional Patent Document 1 still has a problem of low discharge capacity.

本発明の第1の目的は、充放電時における金属スズ粒子の体積膨張及び収縮の繰返しによる応力を緩和でき、また金属スズ粒子の体積膨張及び収縮の繰返しにより割れが発生した場合でも、割れた金属スズ粒子同士を繋ぐカーボンナノファイバ(CNF)によって導電パスを確保でき、これにより放電容量及びサイクル特性を向上できる、リチウムイオン二次電池用負極活物質及びその製造方法並びに該負極活物質を用いたリチウムイオン二次電池を提供することにある。本発明の第2の目的は、湿式法で負極活物質を合成することにより、多大なイニシャルコストを必要とする特殊な装置類を不要にすることができる、リチウムイオン二次電池用負極活物質の製造方法を提供することにある。   The first object of the present invention is to relieve stress due to repeated volume expansion and contraction of metal tin particles during charging and discharging, and even when cracks occur due to repeated volume expansion and contraction of metal tin particles, Conductive path can be ensured by carbon nanofiber (CNF) connecting metal tin particles, thereby improving discharge capacity and cycle characteristics, and negative electrode active material for lithium ion secondary battery, method for producing the same, and use of the negative electrode active material It is to provide a lithium ion secondary battery. The second object of the present invention is to synthesize a negative electrode active material by a wet method, thereby making it possible to eliminate the need for special devices that require a large initial cost. It is in providing the manufacturing method of.

本発明の第1の観点は、金属スズ粒子と、この金属スズ粒子の内部に一部が位置しかつ金属スズ粒子の外部に残部が位置するカーボンナノファイバと、金属スズ粒子の内部に全部が位置するカーボンナノファイバと、金属スズ粒子の外部に全部が位置するカーボンナノファイバとを有し、カーボンナノファイバの含有割合が金属スズ粒子100質量%に対して1〜20質量%であり、金属スズ粒子の平均粒径が5〜150nmであるリチウムイオン二次電池用負極活物質である。   A first aspect of the present invention is a metal tin particle, a carbon nanofiber partly located inside the metal tin particle and the rest located outside the metal tin particle, and all inside the metal tin particle. The carbon nanofibers are located and the carbon nanofibers are entirely located outside the metal tin particles, and the content of the carbon nanofibers is 1 to 20% by mass with respect to 100% by mass of the metal tin particles. It is a negative electrode active material for lithium ion secondary batteries in which the average particle diameter of tin particles is 5 to 150 nm.

本発明の第2の観点は、スズイオン含有水溶液にカーボンナノファイバをアンモニア水に分散させた水溶液を混合することによりカーボンナノファイバ分散スズ水溶液を調製する工程と、カーボンナノファイバ分散スズ水溶液をスズイオンの酸化還元電位より低い電位を有する還元剤を含む還元剤水溶液に混合する工程とを含み、スズイオンをカーボンナノファイバの共存下で還元することにより負極活物質を作製するリチウムイオン二次電池用負極活物質の製造方法である。   The second aspect of the present invention includes a step of preparing a carbon nanofiber-dispersed tin aqueous solution by mixing an aqueous solution in which carbon nanofibers are dispersed in ammonia water with a tin ion-containing aqueous solution; A negative electrode active material for a lithium ion secondary battery, wherein a negative electrode active material is prepared by reducing tin ions in the presence of carbon nanofibers, and a step of mixing with a reducing agent aqueous solution containing a reducing agent having a potential lower than the oxidation-reduction potential. It is a manufacturing method of a substance.

本発明の第3の観点は、負極活物質を有する負極と、正極活物質を有する正極と、非水電解質とを備え、負極活物質が、金属スズ粒子と、この金属スズ粒子の内部に一部が位置しかつ金属スズ粒子の外部に残部が位置するカーボンナノファイバと、金属スズ粒子の内部に全部が位置するカーボンナノファイバと、金属スズ粒子の外部に全部が位置するカーボンナノファイバとを有し、カーボンナノファイバの含有割合が金属スズ粒子100質量%に対して1〜20質量%であり、金属スズ粒子の平均粒径が5〜150nmであるリチウムイオン二次電池である。   A third aspect of the present invention includes a negative electrode having a negative electrode active material, a positive electrode having a positive electrode active material, and a non-aqueous electrolyte, and the negative electrode active material has metal tin particles and one inside of the metal tin particles. A carbon nanofiber in which the portion is located and the remainder is located outside the metal tin particle, a carbon nanofiber that is entirely located inside the metal tin particle, and a carbon nanofiber that is located entirely outside the metal tin particle The lithium ion secondary battery has a carbon nanofiber content of 1 to 20% by mass with respect to 100% by mass of metal tin particles, and an average particle size of the metal tin particles of 5 to 150 nm.

本発明の第1の観点のリチウムイオン二次電池用負極活物質では、金属スズ粒子をナノ化することにより、この負極活物質を用いたリチウムイオン二次電池の充放電時に、金属スズ粒子が体積膨張及び収縮を繰返しても、このときに発生する応力を緩和できる。また、複数のカーボンナノファイバ(CNF)が、金属スズ粒子の内部に一部が位置しかつ金属スズ粒子の外部に残部が位置するCNFと、金属スズ粒子の内部に全部が位置するCNFと、金属スズ粒子の外部に全部が位置するCNFとからなるので、金属スズ粒子の体積膨張及び収縮の繰り返しにより割れが発生した場合でも、この割れた金属スズ粒子同士を繋ぐCNFによって導電パスが確保できる。この結果、スズ(Sn)本来の性能を引き出すことができ、従来の黒鉛構造の炭素材料を用いた負極活物質よりも、リチウムイオン二次電池の放電容量及びサイクル特性を向上できる。   In the negative electrode active material for a lithium ion secondary battery according to the first aspect of the present invention, the metal tin particles are nano-sized so that the metal tin particles are not charged during charging / discharging of the lithium ion secondary battery using the negative electrode active material. Even if the volume expansion and contraction are repeated, the stress generated at this time can be relaxed. Further, a plurality of carbon nanofibers (CNF), CNF partially located inside the metal tin particles and the remainder located outside the metal tin particles, CNF entirely located inside the metal tin particles, Since it consists of CNF that is entirely located outside the metal tin particles, even if cracks occur due to repeated volume expansion and contraction of the metal tin particles, a conductive path can be secured by the CNF that connects the broken metal tin particles. . As a result, the original performance of tin (Sn) can be extracted, and the discharge capacity and cycle characteristics of the lithium ion secondary battery can be improved as compared with the negative electrode active material using a conventional carbon material having a graphite structure.

本発明の第2の観点のリチウムイオン二次電池用負極活物質の製造方法では、湿式法で負極活物質を合成したので、多大なイニシャルコストを必要とするスパッタリング装置等の特殊な装置類を不要にすることができる。   In the method for producing a negative electrode active material for a lithium ion secondary battery according to the second aspect of the present invention, since the negative electrode active material is synthesized by a wet method, special devices such as a sputtering device that requires a large initial cost are used. It can be made unnecessary.

本発明の第3の観点のリチウムイオン二次電池は、上記第1の観点の負極活物質を用いたリチウムイオン二次電池であるので、上記と同様に、金属スズ粒子をナノ化することにより、リチウムイオン二次電池の充放電時に、金属スズ粒子が体積膨張及び収縮を繰返しても、このときに発生する応力を緩和できる。また、複数のカーボンナノファイバ(CNF)が、金属スズ粒子の内部に一部が位置しかつ金属スズ粒子の外部に残部が位置するCNFと、金属スズ粒子の内部に全部が位置するCNFと、金属スズ粒子の外部に全部が位置するCNFとからなるので、金属スズ粒子の体積膨張及び収縮の繰り返しにより割れが発生した場合でも、この割れた金属スズ粒子同士を繋ぐCNFによって導電パスが確保できる。この結果、スズ(Sn)本来の性能を引き出すことができ、従来の黒鉛構造の炭素材料を用いた負極活物質よりも、リチウムイオン二次電池の放電容量及びサイクル特性を向上できる。   Since the lithium ion secondary battery according to the third aspect of the present invention is a lithium ion secondary battery using the negative electrode active material according to the first aspect, the metal tin particles are nanosized in the same manner as described above. Even when the metal tin particles repeat volume expansion and contraction during charging and discharging of the lithium ion secondary battery, the stress generated at this time can be relieved. Further, a plurality of carbon nanofibers (CNF), CNF partially located inside the metal tin particles and the remainder located outside the metal tin particles, CNF entirely located inside the metal tin particles, Since it consists of CNF that is entirely located outside the metal tin particles, even if cracks occur due to repeated volume expansion and contraction of the metal tin particles, a conductive path can be secured by the CNF that connects the broken metal tin particles. . As a result, the original performance of tin (Sn) can be extracted, and the discharge capacity and cycle characteristics of the lithium ion secondary battery can be improved as compared with the negative electrode active material using a conventional carbon material having a graphite structure.

本発明実施形態のリチウムイオン二次電池用負極活物質の模式図である。It is a schematic diagram of the negative electrode active material for lithium ion secondary batteries of this invention embodiment.

次に本発明を実施するための形態を図面に基づいて説明する。図1に示すように、本発明の負極活物質10は、金属スズ粒子11と、この金属スズ粒子11の内部に一部が位置しかつ金属スズ粒子11の外部に残部が位置するカーボンナノファイバ(以下、CNFという)12と、金属スズ粒子11の内部に全部が位置するCNF12と、金属スズ粒子11の外部に全部が位置するCNF12とを有する。ここで、CNF12が金属スズ粒子11の内部に一部が位置しかつ金属スズ粒子11の外部に残部が位置する構造とは、CNF12の中央が金属スズ粒子11内に位置しかつCNF12の両端が金属スズ粒子11の外部に位置する構造(貫通構造)と、CNF12の一端が金属スズ粒子11内に位置しかつCNF12の他端が金属スズ粒子11の外部に位置する構造(突き刺し構造)とを含む構造をいう。またCNF12が金属スズ粒子11の内部に全部が位置する構造とは、CNF12が金属スズ粒子11に内包された構造(内包構造)をいう。更にCNF12が金属スズ粒子11の外部に全部が位置する構造とは、CNF12全てが金属スズ粒子11の外部に、この金属スズ粒子11から離れた状態又は金属スズ粒子11に接触した状態で位置する構造(外部位置構造)をいう。   Next, an embodiment for carrying out the present invention will be described with reference to the drawings. As shown in FIG. 1, the negative electrode active material 10 of the present invention includes metal tin particles 11, and carbon nanofibers in which a part is located inside the metal tin particles 11 and the remainder is located outside the metal tin particles 11. (Hereinafter referred to as CNF) 12, CNF 12 that is entirely located inside the metal tin particle 11, and CNF 12 that is located entirely outside the metal tin particle 11. Here, the structure in which the CNF 12 is partially located inside the metal tin particle 11 and the rest is located outside the metal tin particle 11 is that the center of the CNF 12 is located inside the metal tin particle 11 and both ends of the CNF 12 are A structure (penetrating structure) located outside the metal tin particles 11 and a structure (piercing structure) where one end of the CNF 12 is located inside the metal tin particles 11 and the other end of the CNF 12 is located outside the metal tin particles 11. Refers to the structure containing. Further, the structure in which the CNF 12 is entirely located inside the metal tin particles 11 refers to a structure in which the CNF 12 is included in the metal tin particles 11 (encapsulation structure). Further, the structure in which the CNF 12 is entirely located outside the metal tin particle 11 is the entire CNF 12 located outside the metal tin particle 11 in a state of being separated from or contacting the metal tin particle 11. Structure (external position structure).

上記CNF12の含有割合は、金属スズ粒子11を100質量%とするとき1〜20質量%、好ましくは1〜10質量%である。また金属スズ粒子11の平均粒径は、5〜150nm、好ましくは6〜20nmである。ここで、CNF12の含有割合を1〜20質量%の範囲内に限定したのは、1質量%未満では、金属スズ粒子11の体積膨張及び収縮の繰返しによる割れが発生した場合、この割れた金属スズ粒子11同士を繋ぐ役割をするCNF12の量が極めて少ない状態となり、サイクル特性が低下してしまい、20質量%を超えると、サイクル特性は良好であるけれども、1回目の放電容量が小さくなってしまうからである。また、金属スズ粒子11の平均粒径を5〜150nmの範囲内に限定したのは、5nm未満では、負極電極の作製時にスラリー塗工が困難になり、150nmを超えると、充放電時の金属スズ粒子の体積膨張及び収縮の繰返しにより金属スズ粒子が割れてサイクル特性が低下してしまうからである。なお、上記金属スズ粒子11の平均粒径は、粒度分布測定装置(堀場製作所製LA−950)を用いて測定した粒径であり、体積基準平均粒径である。   The content ratio of the CNF 12 is 1 to 20% by mass, preferably 1 to 10% by mass when the metal tin particles 11 are 100% by mass. Moreover, the average particle diameter of the metal tin particle 11 is 5-150 nm, Preferably it is 6-20 nm. Here, the content ratio of CNF12 is limited to the range of 1 to 20% by mass, and if it is less than 1% by mass, when cracks due to repeated volume expansion and contraction of the metal tin particles 11 occur, this cracked metal When the amount of CNF 12 that plays a role of connecting the tin particles 11 is extremely small and the cycle characteristics are deteriorated, and it exceeds 20% by mass, the cycle characteristics are good, but the first discharge capacity is reduced. Because it ends up. Moreover, the average particle diameter of the metal tin particles 11 is limited to the range of 5 to 150 nm. If the thickness is less than 5 nm, slurry coating becomes difficult when the negative electrode is produced. This is because the metal tin particles break due to repeated volume expansion and contraction of the tin particles, and the cycle characteristics are deteriorated. In addition, the average particle diameter of the metal tin particles 11 is a particle diameter measured using a particle size distribution measuring apparatus (LA-950 manufactured by Horiba, Ltd.), and is a volume-based average particle diameter.

一方、CNF12の平均直径及び平均長さは、それぞれ10〜20nm及び130〜190nmであることが好ましい。ここで、CNF12の平均直径を10〜20nmの範囲内に限定したのは、10nm未満では電子伝導時の抵抗が大きくなってしまい、20nmを超えると電子伝導に重要な負極活物質との有効接触点の数が少なくなってしまうからである。また、CNF12の平均長さを130〜190nmの範囲内に限定したのは、130nm未満では導電パスの繋がりを確保できなくなり、190nmを超えると負極活物質と有効に接触していないCNF12の部分が多くなるからである。なお、上記CNF12の平均直径及び平均長さは、透過型電子顕微鏡装置(日本電子(株)製のJEM−2010F)を用いて目測した値であり、任意の視野から任意に選んだ100サンプルの直径と長さを目測し平均した値である。   On the other hand, it is preferable that the average diameter and average length of CNF12 are 10-20 nm and 130-190 nm, respectively. Here, the average diameter of CNF12 is limited to the range of 10 to 20 nm because the resistance during electron conduction is increased below 10 nm, and when it exceeds 20 nm, effective contact with the negative electrode active material important for electron conduction is achieved. This is because the number of points is reduced. Further, the average length of CNF 12 is limited to the range of 130 to 190 nm because if it is less than 130 nm, it becomes impossible to secure the connection of the conductive path. Because it will increase. The average diameter and average length of the CNF 12 are values measured using a transmission electron microscope apparatus (JEM-2010F manufactured by JEOL Ltd.), and 100 samples arbitrarily selected from an arbitrary field of view. It is a value obtained by measuring the diameter and length.

このように構成された負極活物質10の製造方法を説明する。予め、スズイオン含有水溶液を調製しておく。具体的には、イオン交換水に分散剤及び塩化スズ(II)(SnCl2)を加えて撹拌溶解し、濃度35質量%の塩酸を加えてpHを0.7〜1.3の範囲内に調整することにより、スズイオン含有水溶液を調製しておく。ここで、上記分散剤としては、ポリビニルピロリドン、ポリアクリル酸、水溶性セルロース等が挙げられる。また、スズイオンの酸化還元電位より低い電位を有する還元剤を含む還元剤水溶液を調製しておく。具体的には、イオン交換水に、上記還元剤を加えて撹拌溶解することにより、還元剤水溶液を調製しておく。ここで、上記還元剤としては、水素化ホウ素ナトリウム(NaBH4)、水素化ホウ素カリウム、ヒドラジン等が挙げられる。 A method for manufacturing the negative electrode active material 10 configured as described above will be described. A tin ion-containing aqueous solution is prepared in advance. Specifically, a dispersant and tin (II) chloride (SnCl 2 ) are added to ion-exchanged water and dissolved by stirring, and hydrochloric acid with a concentration of 35% by mass is added to bring the pH within a range of 0.7 to 1.3. By adjusting, a tin ion-containing aqueous solution is prepared. Here, examples of the dispersant include polyvinyl pyrrolidone, polyacrylic acid, and water-soluble cellulose. Moreover, the reducing agent aqueous solution containing the reducing agent which has a potential lower than the oxidation-reduction potential of tin ion is prepared. Specifically, an aqueous reducing agent solution is prepared by adding the reducing agent to ion-exchanged water and dissolving with stirring. Here, examples of the reducing agent include sodium borohydride (NaBH 4 ), potassium borohydride, hydrazine and the like.

先ず、上記スズイオン含有水溶液に、CNFをアンモニア水に分散させた水溶液を混合することにより、CNF分散スズ水溶液を調製する。次いで、上記CNF分散スズ水溶液を上記還元剤水溶液に混合し、10〜60分間撹拌混合する。そして、この混合液を熱風乾燥機で40〜60℃の温度に10〜24時間保持することにより乾固する。これによりスズイオンがCNFの共存下で還元される。次に、得られた乾固物をミル解砕した後に、この解砕物にイオン交換水を加えて撹拌洗浄する工程と、この撹拌洗浄物を遠心分離により固液分離する工程と、この固液分離された上液を除去する工程とを数回繰返すことにより、含有されている塩を除去する。更にこの塩が除去された沈降物を真空乾燥する。これにより金属スズ粒子11と、この金属スズ粒子11に対して、貫通構造、突き刺し構造、内包構造及び外部位置構造を呈するCNF12とを有する粒子状の負極活物質10が得られる。このように負極活物質を湿式法で合成したので、多大なイニシャルコストを必要とするスパッタリング装置等の特殊な装置類を不要にすることができる。なお、上記粒子状の負極活物質10の平均粒径は、上記金属スズ粒子11の平均粒径と略同一である。   First, a CNF-dispersed tin aqueous solution is prepared by mixing an aqueous solution in which CNF is dispersed in ammonia water with the tin ion-containing aqueous solution. Next, the CNF-dispersed tin aqueous solution is mixed with the reducing agent aqueous solution and stirred and mixed for 10 to 60 minutes. And this liquid mixture is solidified by hold | maintaining at the temperature of 40-60 degreeC for 10 to 24 hours with a hot air dryer. Thereby, tin ions are reduced in the presence of CNF. Next, after milling the obtained dried solid product, a step of adding ion-exchanged water to the crushed product and stirring and washing, a step of solid-liquid separation of the stirred and washed product by centrifugation, The contained salt is removed by repeating the step of removing the separated upper solution several times. Further, the precipitate from which the salt has been removed is vacuum-dried. As a result, a particulate negative electrode active material 10 having metal tin particles 11 and CNFs 12 exhibiting a penetrating structure, a piercing structure, an inclusion structure, and an external position structure with respect to the metal tin particles 11 is obtained. As described above, since the negative electrode active material is synthesized by a wet method, special devices such as a sputtering device that requires a large initial cost can be eliminated. The average particle diameter of the particulate negative electrode active material 10 is substantially the same as the average particle diameter of the metal tin particles 11.

このように製造された粒子状の負極活物質10を用いた負極の製造方法を説明する。先ず、粒子状の負極活物質10に、導電助剤、結着剤及び溶媒を混練装置にて混合しスラリーを調製する。ここで、導電助剤としては、アセチレンブラック、ケッチェンブラック等のカーボンブラック、VGCF(Vaper-Grown Carbon Fiver)、或いは銅やチタン等のリチウムと合金化し難い金属粉末等が挙げられ、結着剤としては、ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン(PTFE)、エチレン−プロピレン−ジエン共重合体(EPDM)、スチレン−ブタジエンゴム(SBR)等が挙げられ、溶媒としては、n−メチルピロリジノン(NMP)、水等が挙げられる。また、混練装置としては、あわとり練太郎(シンキー社製のミキサの商品名)、シェイカーミル、ホモジナイザ、プラネタリミキサー等が挙げられる。次に上記スラリーをアプリケータ等により銅箔に活物質密度が5mg/cm2となるように塗布し、乾燥し、更に圧延した後に、所定の寸法に切断することにより、負極が得られる。 A negative electrode manufacturing method using the particulate negative electrode active material 10 manufactured in this way will be described. First, a conductive auxiliary agent, a binder and a solvent are mixed with the particulate negative electrode active material 10 by a kneading apparatus to prepare a slurry. Here, examples of the conductive assistant include carbon black such as acetylene black and ketjen black, VGCF (Vaper-Grown Carbon Fiver), or metal powder that is difficult to alloy with lithium such as copper and titanium, and the like. Examples thereof include polyvinylidene fluoride (PVdF), polytetrafluoroethylene (PTFE), ethylene-propylene-diene copolymer (EPDM), styrene-butadiene rubber (SBR), and the solvent includes n-methylpyrrolidinone. (NMP), water and the like. Examples of the kneading apparatus include Awatori Nertaro (trade name of a mixer manufactured by Sinky), a shaker mill, a homogenizer, and a planetary mixer. Next, the slurry is applied to a copper foil with an applicator or the like so that the active material density is 5 mg / cm 2 , dried, further rolled, and then cut into a predetermined size to obtain a negative electrode.

続いて、リチウムイオン二次電池の製造方法を説明する。このリチウムイオン二次電池は、負極活物質10を有する負極と、正極活物質を有する正極と、非水電解質とを備える。先ず、負極活物質10及び負極を上述の方法で作製する。次いで、正極活物質をバインダ及び導電助剤と所定の割合で混合して正極スラリーを調製し、この正極スラリーを正極集電体上に、ドクターブレード法などの手法により塗布し乾燥することにより正極を作製する。ここで、正極活物質としては、LiCoO2、LiNiO2、LiMn24等が挙げられ、導電助剤としては、アセチレンブラック、ケッチェンブラックなどのカーボンブラック、VGCF、黒鉛等が挙げられ、バインダとしては、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)、エチレン−プロピレン−ジエン共重合体(EPDM)等が挙げられる。正極集電体としては、アルミニウム箔、ステンレス鋼箔、ニッケル箔等が挙げられる。 Then, the manufacturing method of a lithium ion secondary battery is demonstrated. This lithium ion secondary battery includes a negative electrode having a negative electrode active material 10, a positive electrode having a positive electrode active material, and a non-aqueous electrolyte. First, the negative electrode active material 10 and the negative electrode are produced by the method described above. Next, a positive electrode active material is mixed with a binder and a conductive additive at a predetermined ratio to prepare a positive electrode slurry, and this positive electrode slurry is applied onto a positive electrode current collector by a technique such as a doctor blade method and dried. Is made. Here, examples of the positive electrode active material include LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , and examples of the conductive assistant include carbon black such as acetylene black and ketjen black, VGCF, graphite, and the like. Examples thereof include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), and an ethylene-propylene-diene copolymer (EPDM). Examples of the positive electrode current collector include aluminum foil, stainless steel foil, and nickel foil.

次に、負極とセパレータと正極を、正極と負極の活物質面をそれぞれ対向させた状態で積層し、積層体を形成する。セパレータは、合成樹脂製不織布、ポリエチレン多孔質フィルム、ポリプロピレン多孔質フィルム等により形成される。そして、上記積層体の正極側裏面及び負極側裏面にそれぞれメッシュ材の一端を接続し、袋状に作製したアルミラミネート材にメッシュ材の他端がはみ出るように積層体を装填する。更に、ラミネート材の開口部から非水電解液を加え、真空引きしながら、ラミネート材の開口部を熱融着させることより、リチウムイオン二次電池が得られる。正極側裏面に接続したメッシュ材としてはアルミメッシュ材が、負極側裏面に接続したメッシュ材としてはニッケルメッシュ材が使用される。なお、上記非水電解質には、非水溶媒に電解質を溶解させたものが使用される。非水溶媒としては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)等の環状カーボネートや、ジメチルカーボネート(DMC)、メチルエチルカーボネート(MEC)、ジエチルカーボネート(DEC)等の鎖状カーボネートが例示される。また、上記電解質としては、過塩素酸リチウム(LiClO4)、六フッ化リン酸リチウム(LiPF6)、ほうフッ化リチウム(LiBF4)、六フッ化ヒ素リチウム(LiAsF6)、トリフルオロメタスルホン酸リチウム(LiCF3SO3)、ビストリフルオロメチルスルフォニルイミドリチウム[LiN(CF3SO22]等のリチウム塩が挙げられる。 Next, the negative electrode, the separator, and the positive electrode are stacked with the active material surfaces of the positive electrode and the negative electrode facing each other to form a stacked body. The separator is formed of a synthetic resin nonwoven fabric, a polyethylene porous film, a polypropylene porous film, or the like. Then, one end of the mesh material is connected to each of the positive electrode-side back surface and the negative electrode-side back surface of the laminate, and the laminate is loaded so that the other end of the mesh material protrudes into the bag-shaped aluminum laminate material. Furthermore, a lithium ion secondary battery can be obtained by adding a non-aqueous electrolyte from the opening of the laminate and thermally fusing the opening of the laminate while evacuating. An aluminum mesh material is used as the mesh material connected to the back surface on the positive electrode side, and a nickel mesh material is used as the mesh material connected to the back surface on the negative electrode side. As the non-aqueous electrolyte, an electrolyte dissolved in a non-aqueous solvent is used. Examples of the non-aqueous solvent include cyclic carbonates such as ethylene carbonate (EC) and propylene carbonate (PC), and chain carbonates such as dimethyl carbonate (DMC), methyl ethyl carbonate (MEC), and diethyl carbonate (DEC). . Examples of the electrolyte include lithium perchlorate (LiClO 4 ), lithium hexafluorophosphate (LiPF 6 ), lithium borofluoride (LiBF 4 ), lithium arsenic hexafluoride (LiAsF 6 ), and trifluorometasulfone. Examples thereof include lithium salts such as lithium acid lithium (LiCF 3 SO 3 ) and bistrifluoromethylsulfonylimide lithium [LiN (CF 3 SO 2 ) 2 ].

このように製造されたリチウムイオン二次電池は、上記負極活物質10を用いたリチウムイオン二次電池であるので、金属スズ粒子11をナノ化することにより、リチウムイオン二次電池の充放電時に、金属スズ粒子11が体積膨張及び収縮を繰返しても、このときに発生する応力を緩和できる。また、複数のCNF12が、貫通構造のCNF12と、突き刺し構造のCNF12と、内包構造のCNF12と、外部位置構造のCNF12とからなるので、金属スズ粒子11の体積膨張及び収縮の繰り返しにより割れが発生した場合でも、この割れた金属スズ粒子11同士を繋ぐCNF12によって導電パスが確保できる。この結果、スズ(Sn)本来の性能を引き出すことができ、従来の黒鉛構造の炭素材料を用いた負極活物質よりも、リチウムイオン二次電池の放電容量及びサイクル特性を向上できる。   Since the lithium ion secondary battery manufactured in this way is a lithium ion secondary battery using the negative electrode active material 10, the metal tin particles 11 are nanosized so that the lithium ion secondary battery can be charged and discharged. Even if the metal tin particle 11 repeats volume expansion and contraction, the stress generated at this time can be relaxed. In addition, since a plurality of CNFs 12 are composed of a CNF 12 having a penetrating structure, a CNF 12 having a piercing structure, a CNF 12 having an inclusion structure, and a CNF 12 having an external position structure, cracking occurs due to repeated volume expansion and contraction of the metal tin particles 11. Even in this case, a conductive path can be secured by the CNF 12 that connects the broken metal tin particles 11 to each other. As a result, the original performance of tin (Sn) can be extracted, and the discharge capacity and cycle characteristics of the lithium ion secondary battery can be improved as compared with the negative electrode active material using a conventional carbon material having a graphite structure.

次に本発明の実施例を比較例とともに詳しく説明する。   Next, examples of the present invention will be described in detail together with comparative examples.

<実施例1>
予め、イオン交換水に、ポリビニルピロリドン(分散剤)及び塩化スズ(II)(SnCl2)を加えて撹拌溶解し、濃度35質量%の塩酸を加えてpHを1.0に調整することにより、スズイオン含有水溶液を調製しておいた。また、イオン交換水に、スズイオンの酸化還元電位より低い電位を有する還元剤として水素化ホウ素ナトリウム(NaBH4)を加えて撹拌溶解することにより、還元剤水溶液を調製しておいた。
<Example 1>
By previously adding polyvinylpyrrolidone (dispersing agent) and tin (II) chloride (SnCl 2 ) to ion-exchanged water and dissolving by stirring, and adding hydrochloric acid with a concentration of 35% by mass to adjust the pH to 1.0, A tin ion-containing aqueous solution was prepared. In addition, a reducing agent aqueous solution was prepared by adding sodium borohydride (NaBH 4 ) as a reducing agent having a potential lower than the oxidation-reduction potential of tin ions to ion-exchanged water and dissolving with stirring.

先ず、上記スズイオン含有水溶液に、CNFをアンモニア水に分散させた水溶液を混合することにより、CNF分散スズ水溶液を調製した。次いで、上記CNF分散スズ水溶液を上記還元剤水溶液に混合し、30分間撹拌混合した。そして、この混合液を熱風乾燥機で50℃の温度に12時間保持することにより乾固した。これによりスズイオンがCNFの共存下で還元された。次に、得られた乾固物をミル解砕した後に、この解砕物にイオン交換水を加えて撹拌洗浄する工程と、この撹拌洗浄物を遠心分離により固液分離する工程と、この固液分離された上液を除去する工程とを数回繰返すことにより、含有されている塩を除去した。更にこの塩が除去された沈降物を真空乾燥した。これにより金属スズ粒子と、この金属スズ粒子11に対して、貫通構造、突き刺し構造、内包構造及び外部位置構造を呈するCNFとを有する平均粒径10nmの粒子状の負極活物質が得られた。この負極活物質を実施例1とした。なお、CNFの含有割合は、金属スズ粒子100質量%に対して2質量%であった。このCNFの含有割合はガス定量分析により決定した。   First, the CNF dispersion | distribution tin aqueous solution was prepared by mixing the aqueous solution which disperse | distributed CNF in ammonia water with the said tin ion containing aqueous solution. Next, the CNF-dispersed tin aqueous solution was mixed with the reducing agent aqueous solution and mixed with stirring for 30 minutes. And this liquid mixture was dried by hold | maintaining at the temperature of 50 degreeC with a hot air dryer for 12 hours. As a result, tin ions were reduced in the presence of CNF. Next, after milling the obtained dried solid product, a step of adding ion-exchanged water to the crushed product and stirring and washing, a step of solid-liquid separation of the stirred and washed product by centrifugation, The salt contained was removed by repeating the step of removing the separated upper solution several times. Further, the precipitate from which the salt was removed was vacuum-dried. As a result, a particulate negative electrode active material having an average particle diameter of 10 nm having metal tin particles and CNF having a penetrating structure, a piercing structure, an inclusion structure, and an external position structure with respect to the metal tin particles 11 was obtained. This negative electrode active material was designated as Example 1. In addition, the content rate of CNF was 2 mass% with respect to 100 mass% of metal tin particles. The content ratio of CNF was determined by gas quantitative analysis.

<実施例2>
CNFの含有割合を金属スズ粒子100質量%に対して1質量%としたこと以外は、実施例1と同様にして負極活物質を作製した。
<Example 2>
A negative electrode active material was produced in the same manner as in Example 1 except that the content ratio of CNF was 1% by mass with respect to 100% by mass of the metal tin particles.

<実施例3>
CNFの含有割合を金属スズ粒子100質量%に対して5質量%としたこと以外は、実施例1と同様にして負極活物質を作製した。
<Example 3>
A negative electrode active material was produced in the same manner as in Example 1 except that the content ratio of CNF was 5% by mass with respect to 100% by mass of the metal tin particles.

<実施例4>
CNF含有割合を金属スズ粒子100質量%に対して10質量%としたこと以外は、実施例1と同様にして負極活物質を作製した。
<Example 4>
A negative electrode active material was produced in the same manner as in Example 1 except that the CNF content was 10% by mass with respect to 100% by mass of the metal tin particles.

<実施例5>
CNF含有割合を金属スズ粒子100質量%に対して15質量%としたこと以外は、実施例1と同様にして負極活物質を作製した。
<Example 5>
A negative electrode active material was produced in the same manner as in Example 1 except that the CNF content ratio was 15% by mass with respect to 100% by mass of the metal tin particles.

<実施例6>
CNF含有割合を金属スズ粒子100質量%に対して20質量%としたこと以外は、実施例1と同様にして負極活物質を作製した。
<Example 6>
A negative electrode active material was produced in the same manner as in Example 1 except that the CNF content ratio was 20% by mass with respect to 100% by mass of the metal tin particles.

<比較例1>
CNF含有割合を金属スズ粒子100質量%に対して0.5質量%としたこと以外は、実施例1と同様にして負極活物質を作製した。
<Comparative Example 1>
A negative electrode active material was produced in the same manner as in Example 1 except that the CNF content was 0.5% by mass with respect to 100% by mass of the metal tin particles.

<比較例2>
CNF含有割合を金属スズ粒子100質量%に対して30質量%としたこと以外は、実施例1と同様にして負極活物質を作製した。
<Comparative Example 2>
A negative electrode active material was produced in the same manner as in Example 1 except that the CNF content was 30% by mass with respect to 100% by mass of the metal tin particles.

<比較例3>
金属スズ粒子を合成した後で、この金属スズ粒子にCNFを混合したこと以外は、実施例1と同様にして負極活物質を作製した。
<Comparative Example 3>
After synthesizing the metal tin particles, a negative electrode active material was prepared in the same manner as in Example 1 except that CNF was mixed with the metal tin particles.

<比較試験1及び評価>
実施例1〜6及び比較例1〜3の負極活物質を用いて負極を作製し、これらの負極を用いて半電池を組んで充放電試験を行い、1回目放電容量、50回目(51サイクル目)の寿命特性、及び50回目(51サイクル目)のクーロン効率をそれぞれ測定した。具体的には、負極を次のようにして作製した。先ず、負極活物質4gに、アセチレンブラック(導電助剤)0.5gと、ポリフッ化ビニリデン(結着剤)0.5gと、n−メチルピロリジノン(溶媒)5gとをあわとり練太郎(シンキー社製のミキサの商品名)にて混合しスラリーを調製した。次に、このスラリーをアプリケータで銅箔に活物質密度が5mg/cm2となるように塗布し、乾燥した。更にこの塗膜を乾燥した銅箔を圧延した後に、縦及び横がそれぞれ3cmである正方形状に切断して、負極を作製した。また、半電池の対極及び参照極として、リチウム金属(Li)をそれぞれ用い、電解液として、1M濃度で六フッ化リン酸リチウム(LiPF6)を溶解した炭酸エチレン(EC:エチレンカーボネート)と炭酸ジエチル(DEC:ジエチルカーボネート)の等体積溶媒を用いた。
<Comparative test 1 and evaluation>
Negative electrodes were prepared using the negative electrode active materials of Examples 1 to 6 and Comparative Examples 1 to 3, and half-cells were assembled using these negative electrodes to perform a charge / discharge test. First discharge capacity, 50th cycle (51 cycles) Eye) life characteristics and 50th (51st cycle) Coulomb efficiency were measured. Specifically, the negative electrode was produced as follows. First, 0.5 g of acetylene black (conducting aid), 0.5 g of polyvinylidene fluoride (binder), and 5 g of n-methylpyrrolidinone (solvent) were added to 4 g of the negative electrode active material. (Product name of manufactured mixer) to prepare a slurry. Next, this slurry was applied to a copper foil with an applicator so that the active material density was 5 mg / cm 2 and dried. Furthermore, after rolling the copper foil which dried this coating film, it cut | disconnected in the square shape whose length and width are 3 cm each, and produced the negative electrode. In addition, lithium metal (Li) is used as the counter electrode and the reference electrode of the half-cell, and ethylene carbonate (EC: ethylene carbonate) and carbonic acid in which lithium hexafluorophosphate (LiPF 6 ) is dissolved at a concentration of 1 M as the electrolytic solution. An equal volume solvent of diethyl (DEC: diethyl carbonate) was used.

一方、半電池の充電は、電圧が5mVになるまで0.5mA/cm2の定電流を流して実施し、その後、電流が0.01mA/cm2になるまで5mVの一定電圧を印加して実施した。更に、半電池の放電は、電圧が1Vになるまで0.5mA/cm2の定電流を流して実施した。上記充電と放電を各1回実施した状態を1サイクルとし、50サイクルまでの充放電試験を行い、1サイクル目を活性化工程とし、2サイクル目をサイクル試験の1回目と定義して、1回目の負極活物質1g当りの放電容量と、50回目(51サイクル目のサイクル試験後)放電容量の1回目放電容量に対する割合である寿命特性と、50回目放電容量の50回目充電容量に対する割合であるクーロン効率とをそれぞれ測定した。これらの結果を、CNF含有割合と負極活物質の構造とともに、表1に示す。 On the other hand, the half-cell is charged by applying a constant current of 0.5 mA / cm 2 until the voltage reaches 5 mV, and then applying a constant voltage of 5 mV until the current reaches 0.01 mA / cm 2. Carried out. Further, the half-cell was discharged by flowing a constant current of 0.5 mA / cm 2 until the voltage reached 1V. A state in which the above charging and discharging are performed once is defined as one cycle, a charge / discharge test up to 50 cycles is performed, the first cycle is defined as an activation step, and the second cycle is defined as the first cycle test. The discharge capacity per gram of the negative electrode active material for the first time, the life characteristic that is the ratio of the 50th (after the 51st cycle test) discharge capacity to the first discharge capacity, and the ratio of the 50th discharge capacity to the 50th charge capacity Each coulomb efficiency was measured. These results are shown in Table 1 together with the CNF content ratio and the structure of the negative electrode active material.

なお、表1の負極活物質の構造において、『A』は、CNFの一部が金属スズ粒子の内部に位置しかつCNFの残部が金属スズ粒子の外部に位置する構造のうち、CNFが金属スズ粒子を貫通した構造(貫通構造)を示す。また、表1の負極活物質の構造において、『B』は、CNFの一部が金属スズ粒子の内部に位置しかつCNFの残部が金属スズ粒子の外部に位置する構造のうち、CNFが金属スズ粒子に突き刺さった構造(突き刺し構造)を示す。また、表1の負極活物質の構造において、『C』はCNFの全部が金属スズ粒子の内部に位置する構造、即ちCNFが金属スズ粒子内に内包された構造(内包構造)を示す。更に、表1の負極活物質の構造において、『D』はCNFの全部が金属スズ粒子の外部に位置する構造(外部位置構造)を示す。   In the structure of the negative electrode active material in Table 1, “A” indicates that CNF is a metal in a structure in which a part of CNF is located inside the metal tin particles and the rest of the CNF is located outside the metal tin particles. A structure penetrating tin particles (penetrating structure) is shown. In the structure of the negative electrode active material in Table 1, “B” indicates that CNF is a metal in a structure in which a part of CNF is located inside the metal tin particles and the rest of the CNF is located outside the metal tin particles. The structure (piercing structure) pierced into the tin particle is shown. In the structure of the negative electrode active material in Table 1, “C” indicates a structure in which all of CNF is located inside the metal tin particles, that is, a structure in which CNF is included in the metal tin particles (encapsulation structure). Further, in the structure of the negative electrode active material in Table 1, “D” indicates a structure in which all of CNF is located outside the metal tin particles (external position structure).

Figure 2015179608
Figure 2015179608

表1から明らかなように、CNF含有割合が0.5質量%と少ない比較例1では、1回目放電容量が563mAh/gと大きかったけれども、寿命特性が87%と若干低く、クーロン効率が97.9%と低かった。また、CNF含有割合が30.0質量%と多い比較例2では、寿命特性が91%と高く、クーロン効率が99.2%と高かったけれども、1回目放電容量が396mAh/gと小さかった。これらに対し、CNF含有割合が1.0〜20.0質量%と適切な範囲内にある実施例1〜6では、1回目放電容量が453〜561mAh/gと大きくなり、寿命特性が88〜91%と高くなり、クーロン効率が98.2〜99.2%と高くなった。   As is apparent from Table 1, in Comparative Example 1 having a low CNF content ratio of 0.5% by mass, the first discharge capacity was as large as 563 mAh / g, but the life characteristics were slightly low at 87% and the Coulomb efficiency was 97%. It was as low as 9%. Further, in Comparative Example 2 where the CNF content ratio was as large as 30.0% by mass, the life characteristics were as high as 91% and the Coulomb efficiency was as high as 99.2%, but the first discharge capacity was as small as 396 mAh / g. In contrast, in Examples 1 to 6 in which the CNF content ratio is within an appropriate range of 1.0 to 20.0 mass%, the first discharge capacity is increased to 453 to 561 mAh / g, and the life characteristics are 88 to 88%. The coulombic efficiency was as high as 98.2 to 99.2%.

一方、CNFの含有割合が2.0質量%であり、負極活物質がCNFの全部が金属スズ粒子の外部に位置する構造(D:外部位置構造)である比較例3では、1回目放電容量が553mAh/gと大きかったけれども、寿命特性が85%と低く、クーロン効率が94.6%と低かった。これに対し、CNFの含有割合が2.0質量%であり、負極活物質が、CNFが金属スズ粒子を貫通した構造(A:貫通構造)と、CNFが金属スズ粒子に突き刺さった構造(B:突き刺し構造)と、CNFが金属スズ粒子内に内包された構造(C:内包構造)と、CNFの全部が金属スズ粒子の外部に位置する構造(D:外部位置構造)とを有する実施例1では、1回目放電容量が555mAh/gと大きくなり、寿命特性が89%と高くなり、クーロン効率が98.8%と高くなった。   On the other hand, in Comparative Example 3 in which the content ratio of CNF is 2.0 mass% and the negative electrode active material has a structure in which all of CNF is located outside the metal tin particles (D: external position structure), the first discharge capacity Was 553 mAh / g, but the life characteristics were as low as 85% and the coulomb efficiency was as low as 94.6%. On the other hand, the content ratio of CNF is 2.0% by mass, and the negative electrode active material has a structure in which CNF penetrates metal tin particles (A: penetration structure) and a structure in which CNF penetrates metal tin particles (B : Piercing structure), a structure in which CNF is included in metal tin particles (C: inclusion structure), and a structure in which all of CNF is located outside the metal tin particles (D: external position structure). In No. 1, the first discharge capacity increased to 555 mAh / g, the life characteristics increased to 89%, and the coulomb efficiency increased to 98.8%.

<実施例7>
平均粒径が5nmになるように、スズイオン含有水溶液と還元剤水溶液の混ぜ方を調整することにより、負極活物質(金属スズ粒子)を作製したこと以外は、実施例1と同様にして負極活物質を作製した。
<Example 7>
The negative electrode active material was prepared in the same manner as in Example 1 except that the negative electrode active material (metal tin particles) was prepared by adjusting the mixing method of the tin ion-containing aqueous solution and the reducing agent aqueous solution so that the average particle size was 5 nm. The material was made.

<実施例8>
平均粒径が6nmになるように、スズイオン含有水溶液と還元剤水溶液の混ぜ方を調整することにより、負極活物質(金属スズ粒子)を作製したこと以外は、実施例1と同様にして負極活物質を作製した。
<Example 8>
The negative electrode active material was prepared in the same manner as in Example 1 except that the negative electrode active material (metal tin particles) was prepared by adjusting the mixing method of the tin ion-containing aqueous solution and the reducing agent aqueous solution so that the average particle size was 6 nm. The material was made.

<実施例9>
平均粒径が20nmになるように、スズイオン含有水溶液と還元剤水溶液の混ぜ方を調整することにより、負極活物質(金属スズ粒子)を作製したこと以外は、実施例1と同様にして負極活物質を作製した。
<Example 9>
The negative electrode active material was prepared in the same manner as in Example 1 except that the negative electrode active material (metal tin particles) was prepared by adjusting the mixing method of the tin ion-containing aqueous solution and the reducing agent aqueous solution so that the average particle size was 20 nm. The material was made.

<実施例10>
平均粒径が150nmになるように、スズイオン含有水溶液と還元剤水溶液の混ぜ方を調整することにより、負極活物質(金属スズ粒子)を作製したこと以外は、実施例1と同様にして負極活物質を作製した。
<Example 10>
The negative electrode active material was prepared in the same manner as in Example 1 except that the negative electrode active material (metal tin particles) was prepared by adjusting the mixing method of the tin ion-containing aqueous solution and the reducing agent aqueous solution so that the average particle size was 150 nm. The material was made.

<比較例4>
平均粒径が3nmになるように、スズイオン含有水溶液と還元剤水溶液の混ぜ方を調整することにより、負極活物質(金属スズ粒子)を作製したこと以外は、実施例1と同様にして負極活物質を作製した。
<Comparative Example 4>
The negative electrode active material was prepared in the same manner as in Example 1 except that the negative electrode active material (metal tin particles) was prepared by adjusting the mixing method of the tin ion-containing aqueous solution and the reducing agent aqueous solution so that the average particle size was 3 nm. The material was made.

<比較例5>
平均粒径が160nmになるように、スズイオン含有水溶液と還元剤水溶液の混ぜ方を調整することにより、負極活物質(金属スズ粒子)を作製したこと以外は、実施例1と同様にして負極活物質を作製した。
<Comparative Example 5>
The negative electrode active material was prepared in the same manner as in Example 1 except that the negative electrode active material (metal tin particles) was prepared by adjusting the mixing method of the tin ion-containing aqueous solution and the reducing agent aqueous solution so that the average particle size was 160 nm. The material was made.

<比較試験2及び評価>
実施例7〜10、比較例4及び比較例5の負極活物質を用いて、上記比較試験1と同様に、1回目放電容量、寿命特性及びクーロン効率をそれぞれ測定した。これらの結果を、金属スズ粒子の平均粒径とともに、表2に示す。
<Comparative test 2 and evaluation>
Using the negative electrode active materials of Examples 7 to 10, Comparative Example 4 and Comparative Example 5, the first discharge capacity, the life characteristics and the Coulomb efficiency were measured in the same manner as in Comparative Test 1 above. These results are shown in Table 2 together with the average particle diameter of the metal tin particles.

Figure 2015179608
Figure 2015179608

表2から明らかなように、金属スズ粒子の粒径が3nmと小さい比較例4では、寿命特性が88%と高かったけれども、1回目の放電容量が434mAh/gとかなり小さくなり、金属スズ粒子の粒径が160nmと大きい比較例5では、1回目の放電容量が550mAh/gと比較的小さくなり、寿命特性も79%と比較的低くなったのに対し、金属スズ粒子の粒径が3〜150nmと適正な範囲の実施例7〜10では、1回目の放電容量が553〜557mAh/gと大きくなり、寿命特性も80〜91%と高くなった。ここで、寿命特性は、金属スズ粒子の粒径が大きくなると、電池サイクルが進むに従って負極活物質の割れが進行し、電子導電パスが切れてしまうために小さくなる。また、クーロン効率も、寿命特性と同様に、金属スズ粒子の粒径が大きくなると、電池サイクルが進むに従って負極活物質の割れが進行し、割れによる負極活物質の新鮮面にSEI(Solid Electrolyte Interphase)などが形成されるために小さくなる。更に、比較例4の1回目の放電容量が434mAh/gとかなり小さくなったのは、電池作製時における電極スラリー塗工が極めて困難であったため、適正に電池を作製できなかったためである。   As apparent from Table 2, in Comparative Example 4 in which the particle size of the metal tin particles is as small as 3 nm, the life characteristics were as high as 88%, but the first discharge capacity was considerably small as 434 mAh / g, and the metal tin particles In Comparative Example 5 in which the particle diameter of the metal tin was as large as 160 nm, the discharge capacity at the first time was relatively small at 550 mAh / g and the life characteristics were relatively low at 79%, whereas the particle diameter of the metal tin particles was 3 In Examples 7 to 10 in an appropriate range of ˜150 nm, the first discharge capacity was increased to 553 to 557 mAh / g, and the life characteristics were increased to 80 to 91%. Here, when the particle size of the metal tin particles is increased, the life characteristics are reduced because the cracking of the negative electrode active material proceeds as the battery cycle progresses, and the electronic conductive path is cut off. Similarly to the life characteristics, the Coulomb efficiency increases as the particle size of the metal tin particles increases, the cracking of the negative electrode active material proceeds as the battery cycle progresses, and SEI (Solid Electrolyte Interphase) ) And the like are formed and thus become smaller. Furthermore, the reason why the first discharge capacity of Comparative Example 4 was as small as 434 mAh / g was that it was extremely difficult to apply the electrode slurry at the time of battery preparation, and thus the battery could not be manufactured properly.

本発明の負極活物質は、リチウムイオン二次電池の負極材料等に利用できる。   The negative electrode active material of the present invention can be used as a negative electrode material for lithium ion secondary batteries.

10 リチウムイオン二次電池用負極活物質
11 金属スズ粒子
12 カーボンナノファイバ(CNF)
10 Negative electrode active material for lithium ion secondary battery 11 Metal tin particle 12 Carbon nanofiber (CNF)

Claims (3)

金属スズ粒子と、この金属スズ粒子の内部に一部が位置しかつ前記金属スズ粒子の外部に残部が位置するカーボンナノファイバと、前記金属スズ粒子の内部に全部が位置するカーボンナノファイバと、前記金属スズ粒子の外部に全部が位置するカーボンナノファイバとを有し、
前記カーボンナノファイバの含有割合が前記金属スズ粒子100質量%に対して1〜20質量%であり、前記金属スズ粒子の平均粒径が5〜150nmであるリチウムイオン二次電池用負極活物質。
A metal tin particle, a carbon nanofiber partially located inside the metal tin particle and a remainder located outside the metal tin particle, a carbon nanofiber entirely located inside the metal tin particle, Carbon nanofibers that are all located outside the metal tin particles,
The negative electrode active material for lithium ion secondary batteries whose content rate of the said carbon nanofiber is 1-20 mass% with respect to 100 mass% of said metal tin particles, and whose average particle diameter of the said metal tin particle is 5-150 nm.
スズイオン含有水溶液にカーボンナノファイバをアンモニア水に分散させた水溶液を混合することによりカーボンナノファイバ分散スズ水溶液を調製する工程と、
前記カーボンナノファイバ分散スズ水溶液を前記スズイオンの酸化還元電位より低い電位を有する還元剤を含む還元剤水溶液に混合する工程と
を含み、
前記スズイオンを前記カーボンナノファイバの共存下で還元することにより負極活物質を作製するリチウムイオン二次電池用負極活物質の製造方法。
Preparing a carbon nanofiber-dispersed tin aqueous solution by mixing an aqueous solution in which carbon nanofibers are dispersed in ammonia water with a tin ion-containing aqueous solution;
Mixing the carbon nanofiber-dispersed tin aqueous solution with a reducing agent aqueous solution containing a reducing agent having a potential lower than the oxidation-reduction potential of the tin ions,
The manufacturing method of the negative electrode active material for lithium ion secondary batteries which produces a negative electrode active material by reducing the said tin ion in coexistence of the said carbon nanofiber.
負極活物質を有する負極と、正極活物質を有する正極と、非水電解質とを備え、
前記負極活物質が、金属スズ粒子と、この金属スズ粒子の内部に一部が位置しかつ前記金属スズ粒子の外部に残部が位置するカーボンナノファイバと、前記金属スズ粒子の内部に全部が位置するカーボンナノファイバと、前記金属スズ粒子の外部に全部が位置するカーボンナノファイバとを有し、
前記カーボンナノファイバの含有割合が前記金属スズ粒子100質量%に対して1〜20質量%であり、前記金属スズ粒子の平均粒径が5〜150nmであるリチウムイオン二次電池。
A negative electrode having a negative electrode active material, a positive electrode having a positive electrode active material, and a non-aqueous electrolyte,
The negative electrode active material is composed of metal tin particles, carbon nanofibers that are partly located inside the metal tin particles and the rest located outside the metal tin particles, and all located inside the metal tin particles. Carbon nanofibers, and carbon nanofibers that are entirely located outside the metal tin particles,
The lithium ion secondary battery whose content rate of the said carbon nanofiber is 1-20 mass% with respect to 100 mass% of the said metal tin particles, and whose average particle diameter of the said metal tin particle is 5-150 nm.
JP2014056345A 2014-03-19 2014-03-19 Negative electrode active material for lithium ion secondary battery and lithium ion secondary battery using the negative electrode active material Expired - Fee Related JP6229563B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014056345A JP6229563B2 (en) 2014-03-19 2014-03-19 Negative electrode active material for lithium ion secondary battery and lithium ion secondary battery using the negative electrode active material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014056345A JP6229563B2 (en) 2014-03-19 2014-03-19 Negative electrode active material for lithium ion secondary battery and lithium ion secondary battery using the negative electrode active material

Publications (2)

Publication Number Publication Date
JP2015179608A true JP2015179608A (en) 2015-10-08
JP6229563B2 JP6229563B2 (en) 2017-11-15

Family

ID=54263530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014056345A Expired - Fee Related JP6229563B2 (en) 2014-03-19 2014-03-19 Negative electrode active material for lithium ion secondary battery and lithium ion secondary battery using the negative electrode active material

Country Status (1)

Country Link
JP (1) JP6229563B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105355875A (en) * 2015-11-05 2016-02-24 盐城工学院 Tungsten oxide nanowire wound composite material, preparation method and application
JP2018012812A (en) * 2016-07-22 2018-01-25 トッパン・フォームズ株式会社 Cold insulation tool
WO2020091345A1 (en) * 2018-10-29 2020-05-07 주식회사 엘지화학 Anode active material and lithium secondary battery comprising same
WO2020105975A1 (en) * 2018-11-19 2020-05-28 주식회사 엘지화학 Anode active material and lithium secondary battery comprising same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006221830A (en) * 2005-02-08 2006-08-24 Matsushita Electric Ind Co Ltd Cathode active material, its manufacturing method, and nonaqueous electrolytic solution secondary battery
JP2014038798A (en) * 2012-08-20 2014-02-27 Ulvac Japan Ltd Negative electrode structure of lithium ion secondary battery, and method of manufacturing the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006221830A (en) * 2005-02-08 2006-08-24 Matsushita Electric Ind Co Ltd Cathode active material, its manufacturing method, and nonaqueous electrolytic solution secondary battery
JP2014038798A (en) * 2012-08-20 2014-02-27 Ulvac Japan Ltd Negative electrode structure of lithium ion secondary battery, and method of manufacturing the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105355875A (en) * 2015-11-05 2016-02-24 盐城工学院 Tungsten oxide nanowire wound composite material, preparation method and application
JP2018012812A (en) * 2016-07-22 2018-01-25 トッパン・フォームズ株式会社 Cold insulation tool
WO2020091345A1 (en) * 2018-10-29 2020-05-07 주식회사 엘지화학 Anode active material and lithium secondary battery comprising same
CN113574701A (en) * 2018-10-29 2021-10-29 株式会社Lg新能源 Anode active material and lithium secondary battery including the same
US11862789B2 (en) 2018-10-29 2024-01-02 Lg Energy Solution, Ltd. Negative electrode active material and lithium secondary battery including the same
WO2020105975A1 (en) * 2018-11-19 2020-05-28 주식회사 엘지화학 Anode active material and lithium secondary battery comprising same
JP2022505652A (en) * 2018-11-19 2022-01-14 エルジー エナジー ソリューション リミテッド Negative electrode active material and lithium secondary battery containing it
JP7171122B2 (en) 2018-11-19 2022-11-15 エルジー エナジー ソリューション リミテッド Negative electrode active material and lithium secondary battery containing the same

Also Published As

Publication number Publication date
JP6229563B2 (en) 2017-11-15

Similar Documents

Publication Publication Date Title
JP5882516B2 (en) Lithium secondary battery
CN105742585A (en) Methods for forming porous materials
JP2007173134A (en) Material for electrode of lithium ion battery, slurry for forming electrode of lithium ion battery, and lithium ion battery
JP6421778B2 (en) Lithium ion secondary battery
JP2018511923A (en) Positive electrode active material including metal nanoparticles, positive electrode, and lithium-sulfur battery including the same
CN109904523B (en) Method for manufacturing sulfide solid-state battery
JP6229563B2 (en) Negative electrode active material for lithium ion secondary battery and lithium ion secondary battery using the negative electrode active material
JP3579280B2 (en) Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery provided with this negative electrode
WO2017002444A1 (en) Lithium secondary battery
US11075366B2 (en) Method for producing sulfide solid-state battery
JP2014053154A (en) Negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP5682411B2 (en) Negative electrode active material for lithium ion secondary battery, lithium ion secondary battery using the negative electrode active material, and method for producing the negative electrode active material
JP6844602B2 (en) electrode
JP6201843B2 (en) Method for producing negative electrode active material for lithium ion secondary battery
JP6766742B2 (en) Lithium ion secondary battery
JP4120439B2 (en) Lithium ion secondary battery
JP2013161689A (en) Secondary battery electrode and manufacturing method of the same
JP5827193B2 (en) Method for producing negative electrode for non-aqueous electrolyte secondary battery
JP2011134535A (en) Positive electrode for lithium secondary battery, and method for manufacturing the same
EP3121883A1 (en) Electrode for non-aqueous electrolyte secondary battery
JPH11312523A (en) Electrode for battery and nonaqueous electrolyte battery
JP6303710B2 (en) Method for producing negative electrode active material for lithium ion secondary battery
KR102623063B1 (en) A composite anode for lithium secondary battery and lithium secondary battery including thereof
JP2015179607A (en) Negative electrode active material for lithium ion secondary batteries, and lithium ion secondary battery arranged by use thereof
WO2023210232A1 (en) Lithium sulfur battery positive electrode, lithium sulfur battery, and charging/discharging method for same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170725

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170919

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171002

R150 Certificate of patent or registration of utility model

Ref document number: 6229563

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees