JP2015178941A - exhaust heat recovery boiler - Google Patents

exhaust heat recovery boiler Download PDF

Info

Publication number
JP2015178941A
JP2015178941A JP2014057334A JP2014057334A JP2015178941A JP 2015178941 A JP2015178941 A JP 2015178941A JP 2014057334 A JP2014057334 A JP 2014057334A JP 2014057334 A JP2014057334 A JP 2014057334A JP 2015178941 A JP2015178941 A JP 2015178941A
Authority
JP
Japan
Prior art keywords
exhaust gas
boiler body
boiler
duct
inlet duct
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014057334A
Other languages
Japanese (ja)
Other versions
JP6301690B2 (en
Inventor
高島 博史
Hiroshi Takashima
博史 高島
太希 菊池
Taiki Kikuchi
太希 菊池
光義 森
Mitsuyoshi Mori
光義 森
一喜 越智
Kazuyoshi Ochi
一喜 越智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SAMSON CO Ltd
Tokyo Gas Co Ltd
Original Assignee
SAMSON CO Ltd
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SAMSON CO Ltd, Tokyo Gas Co Ltd filed Critical SAMSON CO Ltd
Priority to JP2014057334A priority Critical patent/JP6301690B2/en
Publication of JP2015178941A publication Critical patent/JP2015178941A/en
Application granted granted Critical
Publication of JP6301690B2 publication Critical patent/JP6301690B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an exhaust heat recovery boiler capable of preventing degradation in the heat absorption efficiency of a boiler body since a flow of exhaust gas flowing in the boiler body is biased to a partial region.SOLUTION: An exhaust heat recovery boiler recovering heat from high-temperature exhaust gas and configured so that an inlet duct 3 is provided on a side portion of a boiler body 1, the exhaust gas is introduced from an exhaust gas inlet 5 provided in an upper portion of the inlet duct 3, and the exhaust gas is supplied to the boiler body 1 through an opening portion provided in a side portion of the inlet duct 3, comprises a shield plate 7 provided in the opening portion to the boiler body 1 and shielding part of the exhaust gas flowing from the inlet duct 3 to the boiler body 1, the shield plate 7 including holes through which the exhaust gas passes and a shield surface shielding a flow of the exhaust gas, and the shield plate 7 imposing restrictions on the flow of the exhaust gas flowing to a lower portion of the boiler body 1 after reaching a lower portion of the inlet duct 3.

Description

本発明は、ガスエンジンなどから排出された高温の排気ガスから熱を回収する排熱回収ボイラに関するものであり、より詳しくはボイラ本体の側部に入り口ダクトを設け、入口ダクトの上方より高温排ガスを導入し、ボイラ本体に設けている垂直水管に対して交差方向に高温排ガスを流すことによって加熱する構成としている排熱回収ボイラに関するものである。 The present invention relates to an exhaust heat recovery boiler that recovers heat from high-temperature exhaust gas discharged from a gas engine or the like, and more specifically, an inlet duct is provided on a side portion of the boiler body, and high-temperature exhaust gas is disposed above the inlet duct. The exhaust heat recovery boiler is configured to be heated by flowing high-temperature exhaust gas in a crossing direction with respect to a vertical water pipe provided in the boiler body.

ガスエンジンなどで燃焼を行って発電を行い、ガスエンジンなどから排出される排気ガスは排熱回収ボイラへ供給し、排熱回収ボイラで排気ガスから熱の回収を行うようにしたコージェネレーションが近年増加している。この場合の排熱回収ボイラは、特開2001−124301号公報に記載しているように、ボイラ本体の側部に入り口ダクトを設置しておき、入り口ダクトからボイラ本体へ排ガスを送るようにしている。 In recent years, cogeneration has been carried out, in which exhaust gas emitted from a gas engine or the like is generated by combustion in a gas engine or the like, supplied to an exhaust heat recovery boiler, and heat is recovered from the exhaust gas by an exhaust heat recovery boiler. It has increased. The exhaust heat recovery boiler in this case has an entrance duct installed on the side of the boiler body as described in JP 2001-124301 A, and exhaust gas is sent from the entrance duct to the boiler body. Yes.

入り口ダクトは上部に排ガス入り口を設けており、排気ガス入り口から下向きに排ガスを導入する。入り口ダクトと隣り合う位置にボイラ本体を設けており、入り口ダクトとボイラ本体は側面を開口してつなげておくことで、入り口ダクト内に入った排ガスは入り口ダクトの側面からボイラ本体の方へ流れる。排ガスの流れは入り口ダクト内を下向きに流れ、入り口ダクト内の底部まで達すると流れの方向を90度変化させ、ボイラ本体側へ向けて流れる。 The inlet duct is provided with an exhaust gas inlet at the top, and the exhaust gas is introduced downward from the exhaust gas inlet. A boiler body is provided at a position adjacent to the entrance duct. By connecting the entrance duct and the boiler body with the sides opened, the exhaust gas entering the entrance duct flows from the side of the entrance duct toward the boiler body. . The flow of the exhaust gas flows downward in the entrance duct, and when reaching the bottom of the entrance duct, the flow direction is changed by 90 degrees and flows toward the boiler body.

ボイラ本体部分では、上部に上部管寄せ、下部に下部管寄せを設けており、上下の管寄せ間に多数の垂直水管を設ける。排ガスは垂直水管を設けた部分を横向きに流れる。垂直水管に対して交差方向に排ガスを通すことにより、排ガスは垂直水管を加熱し、水管内の缶水を加熱して蒸気を発生する。ボイラ本体の入り口ダクトとは逆側の側面には出口ダクトを設けておき、ボイラ本体部分を通過した排ガスは出口ダクト内に入る。出口ダクトは上部に排ガス出口を設けているため、出口ダクト内に入った排ガスは、出口ダクト内で流れ方向を再び変更し、上向きの流れとなって出口ダクトから出ていく。 In the boiler body portion, an upper header is provided at the upper part and a lower header is provided at the lower part, and a number of vertical water pipes are provided between the upper and lower headers. Exhaust gas flows sideways through the part where the vertical water pipe is provided. By passing the exhaust gas in the crossing direction with respect to the vertical water pipe, the exhaust gas heats the vertical water pipe and heats the can water in the water pipe to generate steam. An outlet duct is provided on the side opposite to the inlet duct of the boiler body, and the exhaust gas that has passed through the boiler body portion enters the outlet duct. Since the outlet duct is provided with an exhaust gas outlet at the top, the exhaust gas that has entered the outlet duct changes its flow direction again in the outlet duct, and flows upward from the outlet duct.

この場合、ボイラ本体部分を流れる排ガスは、垂直水管の全体を均一に流れることが理想であり、排ガスの流れに片寄りが発生し、排ガス流れの多い部分と少ない部分ができると、熱の吸収効率が低下することになる。しかし図7に記載しているように、入り口ダクト3に入った排ガスは入り口ダクト内で下向きに流れ、多くの排ガスは入り口ダクトの底面まで達する。排ガスは入り口ダクトの底面に衝突した後にボイラ本体方向へ流れの向きを変えるため、ボイラ本体部分での排ガスは、流路の下方部に多く流れ、ボイラ本体部分の上方部では排ガスの流れは少なくなっていた。ボイラ本体部分において、排ガスの流量が少ないデッドスペース9ができると、熱の吸収量が低下することになっていた。 In this case, it is ideal that the exhaust gas flowing through the boiler body part should flow uniformly in the entire vertical water pipe. Efficiency will decrease. However, as described in FIG. 7, the exhaust gas that has entered the entrance duct 3 flows downward in the entrance duct, and most of the exhaust gas reaches the bottom surface of the entrance duct. Since the exhaust gas collides with the bottom surface of the inlet duct and changes the flow direction toward the boiler body, the exhaust gas in the boiler body part flows mostly in the lower part of the flow path, and the exhaust gas flow is less in the upper part of the boiler body part. It was. When the dead space 9 having a small exhaust gas flow rate is formed in the boiler body, the amount of heat absorbed is reduced.

特開2001−124301号公報JP 2001-124301 A

本発明が解決しようとする課題は、ボイラ本体の側部に入り口ダクトを設置し、入り口ダクトの上部に設けた排ガス入り口より導入した排ガスは、入り口ダクト内を下向きに流動させた後に、入り口ダクトの側面からボイラ本体側へと流し、ボイラ本体部分での排ガスは横方向に流すようにしている排熱回収ボイラにおいて、ボイラ本体部分を流れる排ガス流が一部領域に片寄り、ボイラ本体部分における熱の吸収効率が低下することを防止することのできる排熱回収ボイラを提供することにある。 The problem to be solved by the present invention is that an inlet duct is installed on the side of the boiler body, and the exhaust gas introduced from the exhaust gas inlet provided at the upper part of the inlet duct flows downward in the inlet duct, and then the inlet duct In the exhaust heat recovery boiler in which the exhaust gas flowing from the side of the boiler flows to the boiler body side and the exhaust gas in the boiler body portion flows in the lateral direction, the exhaust gas flow flowing through the boiler body portion is offset to a part of the region, An object of the present invention is to provide an exhaust heat recovery boiler that can prevent a decrease in heat absorption efficiency.

請求項1に記載の発明は、ガスエンジンなどから排出される高温の排気ガスからの熱回収を行う排熱回収ボイラであって、ボイラ本体部の側部に入り口ダクトを設け、入り口ダクトの上部に設けた排気ガス入り口より排気ガスの導入を行い、入り口ダクトの側部に設けている開口部を通してボイラ本体へ排気ガスを供給するようにしている排熱回収ボイラにおいて、前記のボイラ本体への開口部に、排気ガスを通す穴部と排ガスの流れを遮る遮蔽面を持っており、入り口ダクトからボイラ本体へ流れる排気ガスの一部を遮るようにしている遮蔽板を設けており、前記遮蔽板により入り口ダクトの下方部まで達した後にボイラ本体の下方部へ流れている排気ガス流に制限を加えるものであることを特徴とする。 The invention according to claim 1 is an exhaust heat recovery boiler that recovers heat from high-temperature exhaust gas discharged from a gas engine or the like, wherein an entrance duct is provided on a side portion of the boiler body, and an upper portion of the entrance duct In the exhaust heat recovery boiler that introduces exhaust gas from the exhaust gas inlet provided in the inlet duct and supplies the exhaust gas to the boiler body through the opening provided in the side part of the inlet duct, The opening has a hole through which exhaust gas passes and a shielding surface that blocks the flow of exhaust gas, and is provided with a shielding plate that blocks a part of the exhaust gas flowing from the inlet duct to the boiler body. The exhaust gas flow flowing to the lower part of the boiler body after reaching the lower part of the inlet duct by the plate is limited.

請求項2に記載の発明は、前記の排熱回収ボイラにおいて、前記の遮蔽板はボイラ本体への開口部の下方部分に設置し、開口部の上方部分には遮蔽板を設けないものとしており、前記遮蔽板は入り口ダクトの下方部まで達した後にボイラ本体の下方部へ流れている排気ガス流に制限を加えるものであって、そのことによりボイラ本体への開口部の上方部分を流れる排気ガスの流量を増加させるものであることを特徴とする。 In the invention according to claim 2, in the exhaust heat recovery boiler, the shielding plate is installed in a lower portion of the opening to the boiler body, and no shielding plate is provided in an upper portion of the opening. The shielding plate restricts the exhaust gas flow flowing to the lower part of the boiler body after reaching the lower part of the inlet duct, whereby the exhaust gas flowing through the upper part of the opening to the boiler body It is characterized by increasing the gas flow rate.

請求項3に記載の発明は、前記の排熱回収ボイラにおいて、前記の遮蔽板に設けている穴部は下方部分での開口率を上方部分での開口率よりも小さなものとしており、前記遮蔽板は入り口ダクトの下方部まで達した後にボイラ本体の下方部へ流れている排気ガス流に制限を加えるものであって、そのことによりボイラ本体への開口部の上方部分を流れる排気ガスの流量を増加させるものであることを特徴とする。 According to a third aspect of the present invention, in the exhaust heat recovery boiler, the hole provided in the shielding plate has an opening ratio in a lower portion smaller than an opening ratio in an upper portion, and the shielding The plate restricts the exhaust gas flow flowing to the lower part of the boiler body after reaching the lower part of the inlet duct, and thereby the flow rate of the exhaust gas flowing through the upper part of the opening to the boiler body It is characterized by increasing the value.

本発明を実施することにより、ボイラ本体部分を流れる排ガス流の片寄りをなくすことができ、ボイラ本体部分での熱吸収量を増加させることができる。 By practicing the present invention, it is possible to eliminate the deviation of the exhaust gas flow flowing through the boiler body part, and it is possible to increase the amount of heat absorption in the boiler body part.

本発明の第一の実施例における排ガスフローを示した説明図Explanatory drawing which showed the exhaust gas flow in 1st Example of this invention 図1の遮蔽板の正面図Front view of the shielding plate of FIG. 本発明の第二の実施例における排ガスフローを示した説明図Explanatory drawing which showed the exhaust gas flow in 2nd Example of this invention 図3の遮蔽板の正面図Front view of the shielding plate of FIG. 本発明の第三の実施例における排ガスフローを示した説明図Explanatory drawing which showed the exhaust gas flow in 3rd Example of this invention 図5の遮蔽板の正面図Front view of the shielding plate of FIG. 本発明を実施していない場合における排ガスフローを示した説明図Explanatory diagram showing the exhaust gas flow when the present invention is not implemented

本発明の一実施例を図面を用いて説明する。図1は本発明の第一の実施例における排ガスフローを示した断面説明図、図2は図1に記載している遮蔽板の正面図である。実施例のボイラは、ガスエンジンなどから排出されている高温の排気ガスから熱を回収して蒸気を発生する排熱回収ボイラである。ガスエンジン等において発電用の動力を得るために燃焼を行い、燃焼によって発生した高温排ガスは排熱回収ボイラへ供給し、ボイラの部分では高温排ガスから回収した熱を利用して蒸気を発生するコジェレーションシステムは、エネルギの有効活用が図れるために近年増加傾向にある。排熱回収ボイラの構成は大きく分けると、高温ガスの導入を行う入り口ダクト3、導入した高温ガスの熱によってボイラ水の加熱を行うボイラ本体1、ボイラ本体を通過した排ガスをボイラから取り出す出口ダクト4からなる。 An embodiment of the present invention will be described with reference to the drawings. FIG. 1 is an explanatory cross-sectional view showing the exhaust gas flow in the first embodiment of the present invention, and FIG. 2 is a front view of the shielding plate described in FIG. The boiler according to the embodiment is an exhaust heat recovery boiler that generates steam by recovering heat from high-temperature exhaust gas discharged from a gas engine or the like. In a gas engine or the like, combustion is performed to obtain power for power generation, and the high-temperature exhaust gas generated by the combustion is supplied to the exhaust heat recovery boiler, and the boiler part generates steam using the heat recovered from the high-temperature exhaust gas. In recent years, there has been an increase in the number of installation systems in order to effectively use energy. The configuration of the exhaust heat recovery boiler can be roughly divided into an inlet duct 3 that introduces high-temperature gas, a boiler body 1 that heats boiler water by the heat of the introduced high-temperature gas, and an outlet duct that extracts exhaust gas that has passed through the boiler body from the boiler. It consists of four.

ボイラ本体1には、上部に上部管寄せ、下部に下部管寄せを設け、上下の管寄せ間に多数の垂直水管8を設置している。垂直水管8の外側表面には、熱吸収用のフィンを多数設けることで伝熱面積を拡大している。出口ダクト4には、ボイラ本体部分での熱交換を終えた後の排気ガスとボイラ給水の間で熱交換を行う給水予熱装置2を設けている。入り口ダクト3は、上部に排気ガス入り口5を持ち、入り口ダクト3の側面で接しているボイラ本体1との間は開口するようにしている。入り口ダクト3とボイラ本体1をつなぐ部分には、ボイラ本体1の垂直水管8とは平行となるように立てて設置している遮蔽板7を置いている。遮蔽板7には多数のパンチング穴10を開けており、排気ガスはパンチング穴10を通しても流れるが、パンチング穴以外の部分は遮蔽面となっているために排気ガスの流れは制限されることになる。 The boiler body 1 is provided with an upper header at the upper part and a lower header at the lower part, and a number of vertical water pipes 8 are installed between the upper and lower headers. On the outer surface of the vertical water pipe 8, the heat transfer area is expanded by providing a large number of heat absorbing fins. The outlet duct 4 is provided with a feed water preheating device 2 that performs heat exchange between the exhaust gas after the heat exchange in the boiler body and the boiler feed water. The inlet duct 3 has an exhaust gas inlet 5 in the upper part, and is open to the boiler body 1 that is in contact with the side surface of the inlet duct 3. At a portion connecting the entrance duct 3 and the boiler body 1, a shielding plate 7 is placed so as to stand parallel to the vertical water pipe 8 of the boiler body 1. A large number of punching holes 10 are formed in the shielding plate 7, and the exhaust gas flows through the punching holes 10, but the flow of exhaust gas is limited because the portions other than the punching holes are shielding surfaces. Become.

排気ガス入り口5から入り口ダクト3内に入った排気ガスは、入り口ダクト3内を下方へ向けて流れて入り口ダクト底部に向かう。入り口ダクトの底部に達した排気ガスは、流れの向きをボイラ本体の側に変更して流れる。しかし、入り口ダクト3とボイラ本体1との間の開口部には遮蔽板7を設けているため、入り口ダクト3の底部まで達した排ガス流がそのままボイラ本体の下方部へ流れるということはできない。図2に記載しているように、遮蔽板7にはパンチング穴10を開けているために、入り口ダクト3の下方部に達した排気ガスの一部は、遮蔽板7のパンチング穴10を通してボイラ本体1の側へ流れるが、流量は制限される。 The exhaust gas that has entered the inlet duct 3 from the exhaust gas inlet 5 flows downward in the inlet duct 3 toward the bottom of the inlet duct. Exhaust gas that has reached the bottom of the inlet duct flows by changing the flow direction to the boiler body side. However, since the shielding plate 7 is provided at the opening between the inlet duct 3 and the boiler body 1, the exhaust gas flow reaching the bottom of the inlet duct 3 cannot flow directly to the lower part of the boiler body. As shown in FIG. 2, since the punching hole 10 is formed in the shielding plate 7, a part of the exhaust gas reaching the lower part of the entrance duct 3 passes through the punching hole 10 of the shielding plate 7. Although it flows to the main body 1 side, the flow rate is limited.

入り口ダクト3内に入った排気ガス流は下方へ向けて流れるが、遮蔽板7を設けたことによって、入り口ダクト3の下方部に達した排気ガスの一部は、入り口ダクトの下方部で滞留することになる。入り口ダクト3の下方部では、供給されてきた排気ガスの逃げ場が制限されているために圧力が上昇して圧力上昇域11ができる。入り口ダクト3の下方部で圧力が上昇すると、入り口ダクト3の下方部へ向かう排ガス量も減少する。入り口ダクト3の底部まで流れる排気ガス量が減少すると、その分は入り口ダクト3の上方部からボイラ本体1へ向かうことになるため、ボイラ本体1の上方部に流れる排気ガス量が増加する。そのため、ボイラ本体1の部分では、下方部を流れる排気ガス量が減少し、上方部に流れる排気ガス量が増加する。このようにしてボイラ本体1部分での場所ごとの排気ガス流量を調節することで、ボイラ本体1では排気ガス流の均一化が図れ、ボイラ本体での熱の吸収量を増加することができる。 Although the exhaust gas flow that has entered the entrance duct 3 flows downward, a part of the exhaust gas that has reached the lower part of the entrance duct 3 is retained in the lower part of the entrance duct by providing the shielding plate 7. Will do. In the lower part of the entrance duct 3, the pressure rises and a pressure rise region 11 is formed because the escape space of the supplied exhaust gas is restricted. When the pressure rises in the lower part of the inlet duct 3, the amount of exhaust gas directed to the lower part of the inlet duct 3 also decreases. When the amount of exhaust gas flowing to the bottom of the entrance duct 3 decreases, the amount of the exhaust gas flows from the upper part of the entrance duct 3 to the boiler body 1, so that the amount of exhaust gas flowing to the upper part of the boiler body 1 increases. Therefore, in the boiler body 1, the amount of exhaust gas flowing through the lower part decreases and the amount of exhaust gas flowing through the upper part increases. By adjusting the exhaust gas flow rate for each place in the boiler body 1 in this manner, the exhaust gas flow can be made uniform in the boiler body 1 and the amount of heat absorbed in the boiler body can be increased.

ボイラ本体1で垂直水管8の加熱を行うことで温度の低下した排気ガスは、ボイラ本体1の下流側に設けている出口ダクト4へ送り、出口ダクト4の排気ガス出口6からボイラ外へ排出する。出口ダクト4には給水予熱装置2を設けており、排気ガス通路内に水平方向に延びる給水予熱管を多数設置している。給水予熱管は排気ガス流とは交差するように設置しており、給水予熱管の外側表面には熱吸収用のフィンを多数設けることで伝熱面積を拡大している。多数の給水予熱管は、連結することによって長い流路を形成しており、給水予熱管内にボイラ給水を通すと、ボイラ給水は排気ガスの熱を吸収することで温度が上昇する。給水予熱装置2で温度を上昇させたボイラ用水は、ボイラ本体1に供給する。 The exhaust gas whose temperature has been lowered by heating the vertical water pipe 8 in the boiler body 1 is sent to the outlet duct 4 provided on the downstream side of the boiler body 1 and discharged from the exhaust gas outlet 6 of the outlet duct 4 to the outside of the boiler. To do. The outlet duct 4 is provided with a feed water preheating device 2, and a number of feed water preheating pipes extending in the horizontal direction are installed in the exhaust gas passage. The feed water preheating pipe is installed so as to intersect the exhaust gas flow, and the heat transfer area is expanded by providing a large number of heat absorbing fins on the outer surface of the feed water preheating pipe. A large number of feed water preheating pipes are connected to form a long flow path. When boiler feed water is passed through the feed water preheating pipe, the temperature of the boiler feed water rises by absorbing the heat of the exhaust gas. The boiler water whose temperature has been raised by the feed water preheating device 2 is supplied to the boiler body 1.

図7に記載しているように、遮蔽板7がない場合には、入り口ダクト3内を下方に流れてくる排気ガスは、入り口ダクト3の底部で流れの向きを変更し、多くの排気ガスはボイラ本体1の下方部へ流れていた。そのため、ボイラ本体1の上方部で排気ガスの流れが少なくなるデッドスペース9ができ、その部分では熱吸収量が少なくなっていた。遮蔽板7を設けてボイラ本体部分を流す排気ガスの流れを均一化することで、ボイラ本体での熱吸収効率を向上させることができる。 As shown in FIG. 7, when there is no shielding plate 7, the exhaust gas flowing downward in the inlet duct 3 changes the flow direction at the bottom of the inlet duct 3, and a lot of exhaust gas. Was flowing to the lower part of the boiler body 1. Therefore, a dead space 9 in which the exhaust gas flow is reduced in the upper portion of the boiler body 1 is formed, and the heat absorption amount is reduced in that portion. By providing the shielding plate 7 and making the flow of exhaust gas flowing through the boiler body part uniform, the heat absorption efficiency in the boiler body can be improved.

図3及び図4は、第二の実施例に関するものである。第二の実施例は前記の実施例から遮蔽板7を変更している。この実施例での遮蔽板7は、下部では入り口ダクトの底面と接しているが、上部は天井面からは離れており、入り口ダクト3とボイラ本体1をつなぐ開口部で下方部のみをふさいでいる。 3 and 4 relate to the second embodiment. In the second embodiment, the shielding plate 7 is changed from the above embodiment. The shielding plate 7 in this embodiment is in contact with the bottom surface of the entrance duct in the lower part, but the upper part is separated from the ceiling surface, and only the lower part is blocked by the opening that connects the entrance duct 3 and the boiler body 1. Yes.

この場合でも基本的には前記の実施例と同様であり、入り口ダクト3の下方部からボイラ本体1の下方部へ向かう排気ガス流は遮蔽板7があるために流量は制限される。遮蔽板7を、入り口ダクト3とボイラ本体1の間をつなぐ開口部の下端から中程まで設置していると、入り口ダクト3の下方部からボイラ本体1の下方部へ流れる排気ガス量が減少する。そして、入り口ダクト3の下方部では圧力が上昇するため、入り口ダクト3の下方部へ向かう排ガス量も減少する。第二の実施例では遮蔽板7はボイラ本体1との開口部の下方部に設置しており、上方部には設置していないため、開口部の上方を抜ける排気ガス流は抵抗を受けることなく流れる。 Even in this case, it is basically the same as in the above embodiment, and the flow rate of the exhaust gas flow from the lower part of the inlet duct 3 to the lower part of the boiler body 1 is limited because of the shielding plate 7. If the shielding plate 7 is installed from the lower end of the opening connecting the entrance duct 3 and the boiler body 1 to the middle, the amount of exhaust gas flowing from the lower part of the entrance duct 3 to the lower part of the boiler body 1 is reduced. To do. And since a pressure rises in the lower part of the entrance duct 3, the amount of exhaust gas toward the lower part of the entrance duct 3 also decreases. In the second embodiment, the shielding plate 7 is installed in the lower part of the opening with the boiler body 1 and is not installed in the upper part, so that the exhaust gas flow passing over the opening receives resistance. It flows without.

この場合も遮蔽板7を設置している入り口ダクトの下方部では圧力上昇域11ができるため、遮蔽板7を設けていない場合に比べて、入り口ダクト3の下方部へ入る排気ガス量が減少して、入り口ダクト3の上方部からボイラ本体1の方へ流れる排気ガス量が増加する。そして、ボイラ本体1の底部に流れる排気ガス量は減少し、ボイラ本体1の上方部に流れる排気ガス量は増加する。このことにより、ボイラ本体1での排気ガスの流れを均一化することができ、ボイラ本体1での熱吸収量を増加することができる。 Also in this case, since a pressure increase region 11 is formed in the lower part of the entrance duct where the shielding plate 7 is installed, the amount of exhaust gas entering the lower part of the entrance duct 3 is reduced as compared with the case where the shielding plate 7 is not provided. Thus, the amount of exhaust gas flowing from the upper part of the inlet duct 3 toward the boiler body 1 increases. And the exhaust gas amount which flows into the bottom part of the boiler main body 1 decreases, and the exhaust gas amount which flows into the upper part of the boiler main body 1 increases. Thereby, the flow of the exhaust gas in the boiler body 1 can be made uniform, and the heat absorption amount in the boiler body 1 can be increased.

図5及び図6は、第三の実施例に関するものである。第三の実施例も前記の実施例から遮蔽板7を変更している。この実施例での遮蔽板7は、入り口ダクト3とボイラ本体1をつなぐ開口部の全体にわたるものとしている。そしてこの遮蔽板7のパンチング穴10は、遮蔽板7の上方部と下方部で異ならせており、上方部は径の大きなものとし、下方部では上方部よりも径を小さくしている。そのため遮蔽板7での開口率は、下方部では小さくなり、上方部では大きくなっている。入り口ダクト3からボイラ本体1へ向かう排気ガスのうち、ボイラ本体1の下方部に入る排気ガス量は、遮蔽板7に設けているパンチング穴10の大きさや数によって調節することができる。入り口ダクトの下方部でのパンチング穴10による開口率が多くなればボイラ本体1の下方部へ流れる排気ガス量が多くなり、開口率が少なくなればボイラ本体1の下方部へ流れる排気ガス量は少なくなる。 5 and 6 relate to the third embodiment. The third embodiment also changes the shielding plate 7 from the previous embodiment. The shielding plate 7 in this embodiment covers the entire opening that connects the inlet duct 3 and the boiler body 1. The punching hole 10 of the shielding plate 7 is different between the upper portion and the lower portion of the shielding plate 7, and the upper portion has a larger diameter, and the lower portion has a smaller diameter than the upper portion. Therefore, the aperture ratio in the shielding plate 7 is small in the lower part and large in the upper part. The amount of exhaust gas entering the lower part of the boiler body 1 out of the exhaust gas directed from the entrance duct 3 to the boiler body 1 can be adjusted by the size and number of punching holes 10 provided in the shielding plate 7. If the opening ratio by the punching hole 10 at the lower part of the entrance duct increases, the amount of exhaust gas flowing to the lower part of the boiler body 1 increases, and if the opening ratio decreases, the amount of exhaust gas flowing to the lower part of the boiler body 1 becomes Less.

この場合でも基本的には前記の実施例と同様であり、入り口ダクト3の下方部からボイラ本体1の下方部へ向かう排気ガス流は、パンチング穴10を通る必要があるために流量は制限される。遮蔽板7によって入り口ダクト3の下方部からボイラ本体1の下方部へ流れる排気ガス量が減少すると、入り口ダクト3の下方部では圧力が上昇して圧力上昇域11ができ、入り口ダクト3の下方部へ向かう排ガス量も減少する。そして第三の実施例では、遮蔽板7はボイラ本体1との開口部の上方部まで設置しているが、上方部のパンチング穴10は下方部よりも径を大きくしているため、上方部のパンチング穴10を抜ける排気ガス流は抜けやすくなっている。そのため、遮蔽板7を設けていない場合に比べて、ボイラ本体1の下方部に流れる排気ガス量は減少し、ボイラ本体1の上方部に流れる排気ガス量は増加する。 Even in this case, it is basically the same as in the above embodiment, and the exhaust gas flow from the lower part of the inlet duct 3 to the lower part of the boiler body 1 needs to pass through the punching hole 10, so that the flow rate is limited. The When the amount of exhaust gas flowing from the lower part of the inlet duct 3 to the lower part of the boiler body 1 is reduced by the shielding plate 7, the pressure rises in the lower part of the inlet duct 3 to form a pressure increase region 11. The amount of exhaust gas going to the section also decreases. And in 3rd Example, although the shielding board 7 is installed to the upper part of the opening part with the boiler main body 1, since the punching hole 10 of an upper part is larger in diameter than a lower part, it is upper part. The exhaust gas flow through the punching hole 10 is easy to escape. Therefore, compared with the case where the shielding plate 7 is not provided, the amount of exhaust gas flowing in the lower part of the boiler body 1 is reduced, and the amount of exhaust gas flowing in the upper part of the boiler body 1 is increased.

この場合もボイラ本体1での排気ガスの流れを均一化することにより、ボイラ本体1での熱吸収量を増加することができる。そしてボイラ本体1へ供給する排気ガス量の上下での割合は、パンチング穴10の径や個数によって調節することができ、適正な開口率とすることによって排気ガスの流れ量を調節することができる。また開口率の調節は、小さな連続穴ではなく、大きく切り欠いた大きな径の穴で行うようにしてもよい。 In this case as well, the heat absorption amount in the boiler body 1 can be increased by making the flow of exhaust gas in the boiler body 1 uniform. The upper and lower ratios of the amount of exhaust gas supplied to the boiler body 1 can be adjusted by the diameter and number of punching holes 10, and the flow rate of exhaust gas can be adjusted by setting an appropriate opening ratio. . Further, the adjustment of the aperture ratio may be performed not with a small continuous hole but with a large-diameter hole that is largely cut out.

なお、本発明は以上説明した実施例に限定されるものではなく、多くの変形が本発明の技術的思想内で当分野において通常の知識を有する者により可能である。 The present invention is not limited to the embodiments described above, and many modifications can be made by those having ordinary knowledge in the art within the technical idea of the present invention.

1 ボイラ本体
2 給水予熱装置
3 入り口ダクト
4 出口ダクト
5 排気ガス入り口
6 排気ガス出口
7 遮蔽板
8 垂直水管
9 デッドスペース
10 パンチング穴
11 圧力上昇域








1 Boiler body
2 Water supply preheating device 3 Inlet duct 4 Outlet duct 5 Exhaust gas inlet 6 Exhaust gas outlet 7 Shield plate 8 Vertical water pipe 9 Dead space 10 Punching hole 11 Pressure rise area








Claims (3)

ガスエンジンなどから排出される高温の排気ガスからの熱回収を行う排熱回収ボイラであって、ボイラ本体部の側部に入り口ダクトを設け、入り口ダクトの上部に設けた排気ガス入り口より排気ガスの導入を行い、入り口ダクトの側部に設けている開口部を通してボイラ本体へ排気ガスを供給するようにしている排熱回収ボイラにおいて、
前記のボイラ本体への開口部に、排気ガスを通す穴部と排ガスの流れを遮る遮蔽面を持っており、入り口ダクトからボイラ本体へ流れる排気ガスの一部を遮るようにしている遮蔽板を設けており、
前記遮蔽板により入り口ダクトの下方部まで達した後にボイラ本体の下方部へ流れている排気ガス流に制限を加えるものであることを特徴とする排熱回収ボイラ。
An exhaust heat recovery boiler that recovers heat from high-temperature exhaust gas discharged from a gas engine or the like, wherein an exhaust duct is provided at the side of the boiler body, and the exhaust gas is provided at the upper portion of the entrance duct. In the exhaust heat recovery boiler that supplies exhaust gas to the boiler body through the opening provided on the side of the entrance duct,
The opening to the boiler body has a hole through which exhaust gas passes and a shielding surface that blocks the flow of exhaust gas, and a shielding plate that blocks a part of the exhaust gas flowing from the inlet duct to the boiler body. Provided,
An exhaust heat recovery boiler characterized by limiting the exhaust gas flow flowing to the lower part of the boiler body after reaching the lower part of the inlet duct by the shielding plate.
請求項1に記載の排熱回収ボイラにおいて、前記の遮蔽板はボイラ本体への開口部の下方部分に設置し、開口部の上方部分には遮蔽板を設けないものとしており、
前記遮蔽板は入り口ダクトの下方部まで達した後にボイラ本体の下方部へ流れている排気ガス流に制限を加えるものであって、そのことによりボイラ本体への開口部の上方部分を流れる排気ガスの流量を増加させるものであることを特徴とする排熱回収ボイラ。
In the exhaust heat recovery boiler according to claim 1, the shielding plate is installed in a lower portion of the opening to the boiler body, and a shielding plate is not provided in an upper portion of the opening.
The shielding plate restricts the exhaust gas flow flowing to the lower part of the boiler body after reaching the lower part of the inlet duct, and thereby the exhaust gas flowing through the upper part of the opening to the boiler body An exhaust heat recovery boiler characterized in that the flow rate of the exhaust gas is increased.
請求項1に記載の排熱回収ボイラにおいて、前記の遮蔽板に設けている穴部は下方部分での開口率を上方部分での開口率よりも小さなものとしており、
前記遮蔽板は入り口ダクトの下方部まで達した後にボイラ本体の下方部へ流れている排気ガス流に制限を加えるものであって、そのことによりボイラ本体への開口部の上方部分を流れる排気ガスの流量を増加させるものであることを特徴とする排熱回収ボイラ。



In the exhaust heat recovery boiler according to claim 1, the hole provided in the shielding plate has an opening ratio in the lower part smaller than an opening ratio in the upper part,
The shielding plate restricts the exhaust gas flow flowing to the lower part of the boiler body after reaching the lower part of the inlet duct, and thereby the exhaust gas flowing through the upper part of the opening to the boiler body An exhaust heat recovery boiler characterized in that the flow rate of the exhaust gas is increased.



JP2014057334A 2014-03-20 2014-03-20 Waste heat recovery boiler Active JP6301690B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014057334A JP6301690B2 (en) 2014-03-20 2014-03-20 Waste heat recovery boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014057334A JP6301690B2 (en) 2014-03-20 2014-03-20 Waste heat recovery boiler

Publications (2)

Publication Number Publication Date
JP2015178941A true JP2015178941A (en) 2015-10-08
JP6301690B2 JP6301690B2 (en) 2018-03-28

Family

ID=54263102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014057334A Active JP6301690B2 (en) 2014-03-20 2014-03-20 Waste heat recovery boiler

Country Status (1)

Country Link
JP (1) JP6301690B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7090492B2 (en) 2018-06-29 2022-06-24 三菱重工業株式会社 Exhaust heat recovery boiler

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62185391U (en) * 1986-05-19 1987-11-25
JPS62185392U (en) * 1986-05-19 1987-11-25
JPH01127029A (en) * 1987-11-12 1989-05-19 Babcock Hitachi Kk Denitridation apparatus
JPH066901U (en) * 1992-06-17 1994-01-28 石川島播磨重工業株式会社 Gas uneven flow prevention device for exhaust heat recovery boiler
JPH074601A (en) * 1993-06-17 1995-01-10 Miura Co Ltd Exhaust gas inlet and outlet structure of exhaust gas boiler
JPH1057770A (en) * 1996-08-26 1998-03-03 Babcock Hitachi Kk Flue gas denitrification device
JP2003074335A (en) * 2001-06-22 2003-03-12 Komatsu Ltd Exhaust emission control device of internal combustion engine
JP2005140370A (en) * 2003-11-05 2005-06-02 Toshiba Corp Exhaust heat recovery boiler
US20070044475A1 (en) * 2005-08-23 2007-03-01 Stefan Leser Exhaust gas guide of a gas turbine and method for mixing the exhaust gas of the gas turbine
US20070062175A1 (en) * 2005-09-06 2007-03-22 Quan Yuan Flexible flow control device for cogeneration ducting applications

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62185391U (en) * 1986-05-19 1987-11-25
JPS62185392U (en) * 1986-05-19 1987-11-25
JPH01127029A (en) * 1987-11-12 1989-05-19 Babcock Hitachi Kk Denitridation apparatus
JPH066901U (en) * 1992-06-17 1994-01-28 石川島播磨重工業株式会社 Gas uneven flow prevention device for exhaust heat recovery boiler
JPH074601A (en) * 1993-06-17 1995-01-10 Miura Co Ltd Exhaust gas inlet and outlet structure of exhaust gas boiler
JPH1057770A (en) * 1996-08-26 1998-03-03 Babcock Hitachi Kk Flue gas denitrification device
JP2003074335A (en) * 2001-06-22 2003-03-12 Komatsu Ltd Exhaust emission control device of internal combustion engine
JP2005140370A (en) * 2003-11-05 2005-06-02 Toshiba Corp Exhaust heat recovery boiler
US20070044475A1 (en) * 2005-08-23 2007-03-01 Stefan Leser Exhaust gas guide of a gas turbine and method for mixing the exhaust gas of the gas turbine
US20070062175A1 (en) * 2005-09-06 2007-03-22 Quan Yuan Flexible flow control device for cogeneration ducting applications

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7090492B2 (en) 2018-06-29 2022-06-24 三菱重工業株式会社 Exhaust heat recovery boiler

Also Published As

Publication number Publication date
JP6301690B2 (en) 2018-03-28

Similar Documents

Publication Publication Date Title
JP5589530B2 (en) Water heater
JP6301690B2 (en) Waste heat recovery boiler
KR101757982B1 (en) Hot water storage type heat exchanger having scale inhibiting structure by decreasing temperature
JP6356999B2 (en) Waste heat recovery boiler
JP6289251B2 (en) Waste heat recovery boiler
KR101287693B1 (en) Hybrid Boiler
KR101326939B1 (en) Stovepipe for heat recovery
JP5835844B2 (en) Boiler for preheating water supply
CN205137408U (en) Exhaust -heat boiler receives hot side
TWI558957B (en) Gas water heater and heat exchanger thereof
FI3249293T3 (en) Hot water boiler
JP6151146B2 (en) Heat exchanger in water heater, and water heater
CN205690900U (en) A kind of residual neat recovering system based on thermo-electric generation
JP6362351B2 (en) Boiler with feed water preheater
CN205383901U (en) Combustor heat balance control system that looses
CN111878996A (en) Boiler capable of being preheated quickly
CN202692178U (en) Waste-heat-recovery energy saving device
JP5174703B2 (en) Multi-pipe once-through boiler
FI125463B (en) Arrangement and method of recovery boiler
TWI644065B (en) Gas water heater and heat exchanger thereof
TWI596305B (en) Heat exchanger device of gas heater and operation method thereof
JP2006234252A (en) Can body structure for multitube type once-through boiler
CN103409803A (en) Flow homogenizing plate used for crystalline silicon diffusion and crystalline silicon diffusion technology furnace comprising same
JP6589719B2 (en) Air-cooled condenser
RU2578361C1 (en) External condensation boiler

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180301

R150 Certificate of patent or registration of utility model

Ref document number: 6301690

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150