JP2015178435A - curing method - Google Patents

curing method Download PDF

Info

Publication number
JP2015178435A
JP2015178435A JP2014056961A JP2014056961A JP2015178435A JP 2015178435 A JP2015178435 A JP 2015178435A JP 2014056961 A JP2014056961 A JP 2014056961A JP 2014056961 A JP2014056961 A JP 2014056961A JP 2015178435 A JP2015178435 A JP 2015178435A
Authority
JP
Japan
Prior art keywords
curing
heating
aggregate
strength
cement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014056961A
Other languages
Japanese (ja)
Other versions
JP6376433B2 (en
Inventor
高山 和久
Kazuhisa Takayama
和久 高山
佐々木 徹
Toru Sasaki
徹 佐々木
幸子 林口
Sachiko Hayashiguchi
幸子 林口
哲夫 小林
Tetsuo Kobayashi
哲夫 小林
裕明 鈴木
Hiroaki Suzuki
裕明 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Osaka Cement Co Ltd
Original Assignee
Sumitomo Osaka Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Osaka Cement Co Ltd filed Critical Sumitomo Osaka Cement Co Ltd
Priority to JP2014056961A priority Critical patent/JP6376433B2/en
Publication of JP2015178435A publication Critical patent/JP2015178435A/en
Application granted granted Critical
Publication of JP6376433B2 publication Critical patent/JP6376433B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a curing method capable of suppressing intensity rise due to aging, in a cured body which is formed by curing of a mixed object which is obtained by mixing ultra rapid curing cement, aggregate and water.SOLUTION: Provided is the curing method of a mixed object formed by mixing ultra rapid curing cement, aggregate and water. The method comprises a heating step for heating the mixed object since immediately after formation of the mixed object until passage of 180 minutes.

Description

本発明は、超速硬セメントと骨材と水とが混練されてなる混練物の養生方法に関し、特に、経時的な強度の上昇を抑制するものである。   The present invention relates to a method for curing a kneaded product obtained by kneading superfast cement, aggregate and water, and particularly suppresses an increase in strength over time.

セメントと骨材と水とが混練されてなる混練物を硬化させて硬化体を形成する際に、該硬化体において、早期に所定の強度を発現させることが要求される場合がある。例えば、コンクリート橋や鋼橋(具体的には、自動車等の車輪の荷重が繰返し直接作用すると共に、静定荷重でなく動的荷重が作用することになるジョイント部分等)の補修や、舗装道路の補修において車両の通行止めを伴う場合等には、渋滞の発生による社会活動の停滞を招く虞があるため、早期に硬化して所定の設計基準強度を満たすように設計されたコンクリートが使用されている。   When a kneaded product obtained by kneading cement, aggregate, and water is cured to form a cured body, the cured body may be required to express a predetermined strength at an early stage. For example, repairing concrete bridges and steel bridges (specifically, joints where wheel loads such as automobiles are directly and repeatedly subjected to dynamic loads instead of static loads) and paved roads If the vehicle is closed for repairs, etc., there is a risk of stagnation of social activities due to the occurrence of traffic jams, so concrete designed to harden quickly and meet the specified design standard strength is used. Yes.

斯かるコンクリートとしては、超速硬セメントと骨材と水とが混練されてなる混練物が硬化することで形成されるもの(以下、超速硬コンクリートとも記す)が知られている。該超速硬コンクリートは、極若材齢において急速に所定の設計基準強度を発現するものであると共に、その後においても経時的に強度が上昇するものである。このように、高強度になった超速硬コンクリートは、耐荷性能や耐久性において、何ら問題を生じるものではないが、施工後、超速硬コンクリートを解体・除去する必要が生じた場合(例えば、補修したジョイント部分を再度補修、交換したりする場合)、強度が高くなり過ぎて、騒音・振動が大きくなり,周辺環境や住民に及ぼす悪影響が大きい。   As such concrete, there is known a concrete formed by curing a kneaded product obtained by kneading super fast hard cement, aggregate and water (hereinafter also referred to as super fast hard concrete). The super-hard hard concrete rapidly develops a predetermined design standard strength at an extremely young age, and also increases in strength over time thereafter. In this way, high-strength super fast hard concrete does not cause any problems in load-carrying performance and durability. However, if it is necessary to dismantle and remove super fast hard concrete after construction (for example, repair) If the joint part is repaired or replaced again), the strength becomes too high, noise and vibration increase, and the adverse effects on the surrounding environment and residents are great.

斯かる問題を解消するべく、以下のような提案がなされている。例えば、上記のような超速硬コンクリートに代えて、ポリマーコンクリートやレジンコンクリートを使用することが提案されているが、斯かるコンクリートは、比較的費用が高く、しかも、上記のような騒音や振動を大きく減じることは困難である。また、他の提案としては、超速硬コンクリートに使用される骨材として、軽量骨材を用いることで、超速硬コンクリートの引張り強度を低減し、上記のような騒音や振動を低減する方法が提案されている(特許文献1参照)。   In order to solve such problems, the following proposals have been made. For example, it has been proposed to use polymer concrete or resin concrete in place of the super fast hard concrete as described above. However, such concrete is relatively expensive, and noise and vibration as described above are also required. It is difficult to reduce greatly. In addition, as another proposal, a lightweight aggregate is used as an aggregate used for super-fast hard concrete, thereby reducing the tensile strength of super-fast hard concrete and reducing noise and vibration as described above. (See Patent Document 1).

特開2013−155093号公報JP 2013-155093 A

しかしながら、上記のように軽量骨材を用いる場合、軽量骨材中の水分量によって混練物の流動性(フレッシュ性状)に変化が生じるため、コンクリートの性状を安定させるために軽量骨材の水分管理、例えば、軽量骨材から水分が蒸発したり滴り落ちたりしないように軽量骨材をコンテナバック等に入れて厳重に保管する等を行う必要がある。   However, when lightweight aggregates are used as described above, the fluidity (fresh properties) of the kneaded material changes depending on the amount of moisture in the lightweight aggregates, so moisture management of the lightweight aggregates is necessary to stabilize the properties of the concrete. For example, it is necessary to store the light aggregate in a container bag or the like so as to prevent moisture from evaporating or dripping from the light aggregate.

そこで、本発明は、超速硬セメントと骨材と水とが混練されてなる混練物が硬化することで形成される硬化体において、経時的な強度の上昇を抑制することができる養生方法を提供することを課題とする。   Therefore, the present invention provides a curing method capable of suppressing an increase in strength over time in a cured body formed by curing a kneaded product obtained by kneading superfast cement, aggregate and water. The task is to do.

本発明に係る養生方法は、超速硬セメントと骨材と水とが混練されて形成される混練物の養生方法であって、前記混練物を形成した直後から180分を経過するまでの間に、混練物を加熱する加熱工程を備えることを特徴とする。   The curing method according to the present invention is a curing method for a kneaded product formed by kneading super fast hard cement, aggregate, and water, and immediately after the kneaded product is formed until 180 minutes have elapsed. And a heating step of heating the kneaded product.

斯かる構成によれば、超速硬セメントを用いることで、混練物が早期に硬化すると共に、所定の強度を発現するため、所定強度の硬化体を迅速に得ることができる。また、混練物を形成した直後から120分以内に混練物の加熱を開始して、混練物を形成した直後から180分を経過するまで加熱状態を保持することで、混練物が硬化する過程で内部にクラックが形成されたりするため、加熱を行わない場合に比べて、硬化体の長期強度(例えば、材齢7日以降の圧縮強度)を低減することができる。   According to such a configuration, by using the ultrafast cement, the kneaded material is hardened at an early stage and exhibits a predetermined strength, so that a hardened body having a predetermined strength can be obtained quickly. In the process of curing the kneaded material, heating of the kneaded material is started within 120 minutes immediately after forming the kneaded material, and the heated state is maintained until 180 minutes have elapsed from immediately after forming the kneaded material. Since cracks are formed inside, the long-term strength of the cured product (for example, compressive strength after 7 days of age) can be reduced as compared with the case where heating is not performed.

前記加熱工程における混練物の加熱温度は、40℃以上120℃以下であることが好ましい。   The heating temperature of the kneaded product in the heating step is preferably 40 ° C. or higher and 120 ° C. or lower.

斯かる構成によれば、加熱工程における加熱温度を上記の範囲とすることで、硬化体の長期強度が低下し過ぎてしまうのを防止することができる。つまり、上記の範囲に加熱温度を調節することで、長期強度を調節することができる。   According to such a structure, it can prevent that the long-term intensity | strength of a hardening body falls too much by making heating temperature in a heating process into said range. That is, the long-term strength can be adjusted by adjusting the heating temperature within the above range.

形成された直後の混練物を加熱することなく養生する前置き工程を更に備えており、該前置き工程の後に前記加熱工程が行われることが好ましい。   It is preferable to further include a pre-treatment step for curing the kneaded material immediately after being formed without heating, and the heating step is preferably performed after the pre-treatment step.

斯かる構成によれば、前置き工程を行うことで、混練物が硬化するまでに加熱工程を行う時間が減少するため、硬化体の長期強度が低下し過ぎてしまうのを防止することができる。つまり、前置き工程を行うことで、硬化体の長期強度を調節することができる。   According to such a configuration, since the time for performing the heating process before the kneaded product is cured is reduced by performing the preliminary process, it is possible to prevent the long-term strength of the cured body from being excessively decreased. In other words, the long-term strength of the cured body can be adjusted by performing the preliminary step.

水/セメント比が30%以上45%以下であることが好ましい。   The water / cement ratio is preferably 30% or more and 45% or less.

以上のように、本発明によれば、超速硬セメントと骨材と水とが混練されてなる混練物が硬化することで形成される硬化体において、経時的な強度の上昇を抑制することができる。   As described above, according to the present invention, it is possible to suppress an increase in strength over time in a cured body formed by curing a kneaded material obtained by kneading superfast cement, aggregate, and water. it can.

以下、本発明について説明する。   The present invention will be described below.

本願発明に係る養生方法は、超速硬セメントと骨材と水とが混練されて形成される混練物を硬化させる際に用いられる。具体的には、混練物を所定時間内に加熱する加熱工程を備えるものである。   The curing method according to the present invention is used when curing a kneaded material formed by kneading a super fast cement, aggregate and water. Specifically, a heating step of heating the kneaded material within a predetermined time is provided.

超速硬セメントとしては、カルシウムアルミネートを含有するものが挙げられる。好ましくは、カルシウムアルミネートを20質量%以上60質量%以下、ポルトランドセメントを20質量%以上70質量%以下、II型無水石膏を0.5質量%以上30質量%以下、消石灰を2質量%以上10質量%以下、炭酸リチウムを0.1質量%以上3.0質量%以下含有するものが挙げられる。また、SO3 /AL23 のモル比が1.4以上0.8以下であり、前記炭酸リチウムの平均粒径が10μm以下でかつ結晶度指数が半値幅で0.20以上であるものが挙げられる。更に、超速硬セメントとしては、材齢3時間の圧縮強度(JIS R 5201「セメントの物理試験方法」に基づくもの、又は、JSCE−G505「円柱供試体を用いたモルタルまたはセメントペーストの圧縮試験方法(案)」に基づくもの)が20N/mm2 以上となるものを用いることが好ましい。 Examples of the ultrafast cement include those containing calcium aluminate. Preferably, calcium aluminate is 20% by mass to 60% by mass, Portland cement is 20% by mass to 70% by mass, type II anhydrous gypsum is 0.5% by mass to 30% by mass, and slaked lime is 2% by mass or more. What contains 10 mass% or less and lithium carbonate 0.1 mass% or more and 3.0 mass% or less is mentioned. Further, the molar ratio of SO 3 / AL 2 O 3 is 1.4 or more and 0.8 or less, the average particle size of the lithium carbonate is 10 μm or less, and the crystallinity index is 0.20 or more in half width. Is mentioned. Furthermore, as the ultra-fast cement, the compressive strength at the age of 3 hours (based on JIS R 5201 “Physical test method of cement”, or JIS-G505 “Compression test method of mortar or cement paste using cylindrical specimens” It is preferable to use a material based on (Draft) ”of 20 N / mm 2 or more.

骨材としては、細骨材および/又は粗骨材を用いることができる。細骨材としては、特に限定されるものではないが、例えば、砂を用いることが好ましい。一方、粗骨材としては、川砂利、砕石、水砕スラグ、再生骨材等以外に、珪石質、粘土質、ジルコン質、ハイアルミナ質、炭化珪素質、黒鉛質、クロム質、クロマグ質、マグネシア質等の耐火骨材を用いることが好ましい。また、上記細骨材および粗骨材は、単独で用いてもよく、2種以上を併用してもよい。   As the aggregate, fine aggregate and / or coarse aggregate can be used. Although it does not specifically limit as a fine aggregate, For example, it is preferable to use sand. On the other hand, as coarse aggregate, in addition to river gravel, crushed stone, granulated slag, recycled aggregate, etc., siliceous, clay, zircon, high alumina, silicon carbide, graphite, chrome, chromic, It is preferable to use a fireproof aggregate such as magnesia. Moreover, the said fine aggregate and coarse aggregate may be used independently, and may use 2 or more types together.

また、骨材として細骨材のみを用いる場合、細骨材は、超速硬セメント100質量部に対して、75質量部以上300質量部以下であることが好ましく、100質量部以上300質量部以下であることがより好ましい。また、骨材として細骨材および粗骨材を用いる場合、超速硬セメント100質量部に対して、細骨材が130質量部以上250質量部以下であることが好ましく、155質量部以上230質量部以下であることがより好ましく、粗骨材が130質量部以上300質量部以下であることが好ましく、150質量部以上260質量部以下であることがより好ましい。   Further, when only the fine aggregate is used as the aggregate, the fine aggregate is preferably 75 parts by mass or more and 300 parts by mass or less, and 100 parts by mass or more and 300 parts by mass or less with respect to 100 parts by mass of the ultrafast cement. It is more preferable that Further, when using fine aggregate and coarse aggregate as the aggregate, the fine aggregate is preferably 130 parts by mass or more and 250 parts by mass or less with respect to 100 parts by mass of the super fast cement, and 155 parts by mass or more and 230 parts by mass. The coarse aggregate is more preferably 130 parts by mass or more and 300 parts by mass or less, and more preferably 150 parts by mass or more and 260 parts by mass or less.

上記のような超速硬セメントおよび骨材を水と混練して混練物を形成する際の水/セメント比としては、特に限定されるものではないが、所望する流動性(フレッシュ性状)および形成される硬化体の圧縮強度に応じて適宜設定されることが好ましく、具体的には、30%以上45%以下であることが好ましく、32%以上40%以下であることがより好ましい。なお、混練物中には、各種の混和剤や混和材が含有されてもよい。該混和剤としては、高性能減水剤、AE剤、AE減水剤、高性能AE減水剤等が挙げられる。前記高性能減水剤としては、ナフタレンスルホン酸ホルムアルデヒド縮合物等が挙げられる。該混和材としては、膨張材や高炉スラグ微粉末、フライアッシュ、シリカフューム等の粉末混和材に加え、補強繊維等が挙げられる。前記補強繊維としては、鋼繊維、ポリプロピレン繊維、炭素繊維、アラミド繊維、ガラス繊維等が挙げられる。   The water / cement ratio when the kneaded material is kneaded with the ultrafast cement and aggregate as described above is not particularly limited, but the desired fluidity (fresh property) and formed are formed. It is preferably set as appropriate according to the compression strength of the cured product. Specifically, it is preferably 30% or more and 45% or less, and more preferably 32% or more and 40% or less. The kneaded product may contain various admixtures and admixtures. Examples of the admixture include high performance water reducing agents, AE agents, AE water reducing agents, high performance AE water reducing agents and the like. Examples of the high-performance water reducing agent include naphthalenesulfonic acid formaldehyde condensate. Examples of the admixture include reinforcing fibers and the like in addition to powder admixtures such as expansion material, blast furnace slag fine powder, fly ash, and silica fume. Examples of the reinforcing fiber include steel fiber, polypropylene fiber, carbon fiber, aramid fiber, and glass fiber.

本願発明に係る養生方法では、上記のような超速硬セメントと骨材と水とが混練されて形成される混練物を養生する際に、混練物を加熱する加熱工程が行われる。具体的には、該加熱工程では、混練物が形成された直後から180分経過するまでの間に、混練物が所定の温度に加熱される。加熱工程の温度としては、40℃以上120℃以下であることが好ましく、60℃以上100℃以下であることがより好ましい。加熱工程の時間としては、特に限定されるものではなく、例えば、混練物を形成した直後を0分として、180分間であってもよく、混練物を形成した直後から後述する前置き工程を所定時間行い、その後、180分が経過するまでの時間であってもよい。   In the curing method according to the present invention, a heating step of heating the kneaded material is performed when curing the kneaded material formed by kneading the super-hard cement, the aggregate, and water as described above. Specifically, in the heating step, the kneaded material is heated to a predetermined temperature immediately after the kneaded material is formed and until 180 minutes have elapsed. As temperature of a heating process, it is preferable that it is 40 to 120 degreeC, and it is more preferable that it is 60 to 100 degreeC. The time for the heating step is not particularly limited. For example, the time immediately after forming the kneaded product may be 180 minutes, and may be 180 minutes. It may be a time until 180 minutes elapses after that.

混練物を加熱する手段としては、特に限定されるものではなく、混練物の施工状態に応じて適宜選択することができる。例えば、ロードヒーターやジェットヒーター、加温シート等を用いることができる。ロードヒーターやジェットヒーターのような加熱手段を用いて混練物を加熱する際には、不燃性の保温シートで混練物を覆った状態で加熱してもよく、混練物を加熱した後に混練物を保温シートで覆うようにしてもよい。   The means for heating the kneaded product is not particularly limited, and can be appropriately selected according to the construction state of the kneaded product. For example, a load heater, a jet heater, a heating sheet, or the like can be used. When the kneaded product is heated using a heating means such as a load heater or a jet heater, the kneaded product may be heated in a state where the kneaded product is covered with a non-combustible heat insulating sheet. You may make it cover with a heat insulating sheet.

また、本発明の養生方法では、加熱工程が行われる前に、形成された直後の混練物を加熱することなく(具体的には、常温で)養生する前置き工程を更に備えてもよい。該前置き工程の時間としては、加熱工程の時間との合計が180分となるように調節されることが好ましい。具体的には、前置き工程の時間としては、混練物を形成した直後を0分として、30分以上120分以下であることが好ましく、30分以上60分以下であることがより好ましい。   In addition, the curing method of the present invention may further include a pre-curing step for curing the kneaded material immediately after being formed without heating (specifically, at room temperature) before the heating step is performed. The time for the preliminary step is preferably adjusted so that the total time with the heating step is 180 minutes. Specifically, the time for the pre-treatment step is preferably 30 minutes or more and 120 minutes or less, more preferably 30 minutes or more and 60 minutes or less, with 0 minute immediately after forming the kneaded product.

また、本発明の養生方法では、加熱工程の温度や前置き工程の時間(即ち、加熱工程の時間)の少なくとも一方を調節することで、混練物が硬化して形成される硬化体の長期強度(例えば、材齢7日以降の圧縮強度)が所望する強度に調節するようにしてもよい。   In the curing method of the present invention, by adjusting at least one of the temperature of the heating step and the time of the pre-treatment step (that is, the time of the heating step), the long-term strength of the cured body formed by curing the kneaded product ( For example, the compressive strength after 7 days of age) may be adjusted to a desired strength.

以上のように、本発明に係る養生方法によれば、超速硬セメントと骨材と水とが混練されてなる混練物が硬化することで形成される硬化体において、経時的な強度の上昇を抑制することができる。   As described above, according to the curing method according to the present invention, in a cured body formed by curing a kneaded material obtained by kneading ultrafast cement, aggregate, and water, the strength with time increases. Can be suppressed.

即ち、超速硬セメントを用いることで、混練物が早期に硬化すると共に、所定の強度を発現するため、所定強度の硬化体を迅速に得ることができる。また、混練物を形成した直後から120分以内に混練物の加熱を開始して、混練物を形成した直後から180分を経過するまで加熱状態を保持することで、混練物が硬化する過程で内部にクラックが形成されたりするため、加熱を行わない場合に比べて、硬化体の長期強度(例えば、材齢7日以降の圧縮強度)を低減することができる。   That is, by using the ultrafast cement, the kneaded material hardens early and develops a predetermined strength, so that a hardened body with a predetermined strength can be obtained quickly. In the process of curing the kneaded material, heating of the kneaded material is started within 120 minutes immediately after forming the kneaded material, and the heated state is maintained until 180 minutes have elapsed from immediately after forming the kneaded material. Since cracks are formed inside, the long-term strength of the cured product (for example, compressive strength after 7 days of age) can be reduced as compared with the case where heating is not performed.

また、加熱工程における加熱温度を上記の範囲とすることで、硬化体の長期強度が低下し過ぎてしまうのを防止することができる。つまり、上記の範囲に加熱温度を調節することで、長期強度を調節することができる。   Moreover, it can prevent that the long-term intensity | strength of a hardening body falls too much by making heating temperature in a heating process into said range. That is, the long-term strength can be adjusted by adjusting the heating temperature within the above range.

また、前置き工程を行うことで、混練物が硬化するまでに加熱工程を行う時間が減少するため、硬化体の長期強度が低下し過ぎてしまうのを防止することができる。つまり、前置き工程を行うことで、硬化体の長期強度を調節することができる。   Moreover, since the time for performing the heating step before the kneaded product is cured is reduced by performing the preliminary step, it is possible to prevent the long-term strength of the cured body from being excessively lowered. In other words, the long-term strength of the cured body can be adjusted by performing the preliminary step.

なお、本発明に係る養生方法は、上記実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の変更が可能である。また、上記した複数の実施形態の構成や方法等を任意に採用して組み合わせてもよく(1つの実施形態に係る構成や方法等を他の実施形態に係る構成や方法等に適用してもよく)、さらに、下記する各種の変更例に係る構成や方法等を任意に選択して、上記した実施形態に係る構成や方法等に採用してもよいことは勿論である。   The curing method according to the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the gist of the present invention. Further, the configurations and methods of the plurality of embodiments described above may be arbitrarily adopted and combined (even if the configurations and methods according to one embodiment are applied to the configurations and methods according to other embodiments). Of course, it is of course possible to arbitrarily select configurations, methods, and the like according to various modifications described below and employ them in the configurations, methods, and the like according to the above-described embodiments.

以下、本発明の実施例について説明する。   Examples of the present invention will be described below.

1.使用材料
(1)超速硬セメント:マイルドジェットスーパーセメント(住友大阪セメント社製 密度2.98g/cm3
(2)細骨材:川砂(岐阜県揖斐川産 密度2.60g/cm3 F.M.=2.15)
(3)高性能減水剤:マイティー150(花王社製)
1. Materials used (1) Super-hard cement: Mild jet super cement (Sumitomo Osaka Cement, density 2.98 g / cm 3 )
(2) Fine aggregate: river sand (density 2.60 g / cm 3 FM from Yodogawa, Gifu Prefecture = 2.15)
(3) High performance water reducing agent: Mighty 150 (manufactured by Kao Corporation)

2.配合と養生条件
上記の使用材料を用いて、下記表1に示す配合で混練物を作製し、下記表2に示す養生条件(実施例1〜24)で、混練物の養生を行い、硬化体を得た。なお、混練物の養生は、φ5×10cmの鋼製型枠に混練物を入れた状態で行った。養生の際には、コンクリート打ち込み面の乾燥を防ぐため、サランラップ等の耐熱性のシートでコンクリート打ち込み面を覆った。混練物の加熱は、あらかじめ槽内が設定温度に保たれた熱風循環式乾燥器(谷藤機械工業社製TG−112)を用いた。
前置き工程は、20℃の恒温槽内に混練物を配置し、所定時間、養生することで行われた。前置き工程の時間は、混練物を作製した直後(0分とする)から起算した時間である。加熱工程を終了した時間(加熱を止めた時間)は、各養生条件とも共通で、混練物を作製した直後から180分を経過した時である。つまり、加熱工程は、前置き工程が0分のとき(つまり、前置き工程を行わない場合)には、混練物を作製した直後から180分間行われ、前置き工程が行われた場合には、前置き工程の時間が経過した直後から180分迄行われた。
なお、加熱工程を行わない場合を比較例とした。具体的には、作製された直後の混練物を20℃の恒温槽内に180分間養生する養生条件を比較例した。
2. Formulation and curing conditions Using the above-mentioned materials, a kneaded material was prepared with the formulation shown in Table 1 below, and the kneaded material was cured under the curing conditions (Examples 1 to 24) shown in Table 2 below, and a cured body. Got. The kneaded product was cured in a state where the kneaded product was put in a steel mold having a diameter of 5 × 10 cm. During curing, the concrete placement surface was covered with a heat-resistant sheet such as saran wrap to prevent drying of the concrete placement surface. The kneaded product was heated by using a hot air circulation dryer (TG-112 manufactured by Tanifuji Machinery Co., Ltd.) in which the inside of the tank was previously maintained at a set temperature.
The preliminary step was performed by placing the kneaded material in a constant temperature bath at 20 ° C. and curing for a predetermined time. The time for the pre-treatment step is a time calculated from immediately after the kneaded material is produced (0 minutes). The time when the heating step is completed (time when heating is stopped) is common to all curing conditions, and is when 180 minutes have passed since the kneaded material was produced. That is, the heating process is performed for 180 minutes immediately after the kneaded material is produced when the pre-process is 0 minutes (that is, when the pre-process is not performed), and when the pre-process is performed, the pre-process is performed. Was performed for 180 minutes immediately after the elapse of time.
In addition, the case where a heating process was not performed was made into the comparative example. Specifically, the curing conditions for curing the kneaded material immediately after being prepared in a constant temperature bath at 20 ° C. for 180 minutes were compared.

各実施例および比較例の養生条件で得られた硬化体に対して、20℃の環境下で、JSCE−G505「円柱供試体を用いたモルタルまたはセメントペーストの圧縮試験方法(案)」に規定する方法で圧縮強度を測定した。測定結果は、下記表2に示す。   Specified in JSCE-G505 “Compression test method of mortar or cement paste using cylindrical specimen (draft)” in the environment of 20 ° C. for the cured bodies obtained under the curing conditions of each Example and Comparative Example. Compressive strength was measured by the following method. The measurement results are shown in Table 2 below.

Figure 2015178435
Figure 2015178435

Figure 2015178435
Figure 2015178435

<まとめ>
表2を見ると、比較例よりも各実施例の方が長期強度(材齢7日以降の各圧縮強度)が低いことが認められる。つまり、混練物を養生する際に、加熱工程を行うことで、長期強度が必要以上に高くなるのを防止することができる。特に、加熱工程の温度が100℃以下であることで、材齢3時間の強度を早期に高く(例えば、圧縮強度を20N/mm2 以上に)することができる。更に、前置き工程を行わない場合、又は、前置き工程を30分行う場合には、加熱工程の温度が80℃以上100℃以下であることで、長期強度が比較例の長期強度よりも更に低くすることができる。また、前置き工程を60分行う場合には、加熱工程の温度が100℃程度であることで、長期強度が比較例の長期強度よりも更に低くすることができる。
<Summary>
When Table 2 is seen, it is recognized that each Example has lower long-term strength (compressive strength after 7 days of age) than the comparative example. That is, when curing the kneaded product, it is possible to prevent the long-term strength from becoming higher than necessary by performing the heating step. In particular, when the temperature in the heating step is 100 ° C. or less, the strength at the age of 3 hours can be increased early (for example, the compressive strength is 20 N / mm 2 or more). Furthermore, when not performing a pre-process, or when performing a pre-process for 30 minutes, long-term intensity | strength is made still lower than the long-term intensity | strength of a comparative example because the temperature of a heating process is 80 degreeC or more and 100 degrees C or less. be able to. Moreover, when performing a preparatory process for 60 minutes, long-term intensity | strength can be made still lower than the long-term intensity | strength of a comparative example because the temperature of a heating process is about 100 degreeC.

Claims (4)

超速硬セメントと骨材と水とが混練されて形成される混練物の養生方法であって、
前記混練物を形成した直後から180分を経過するまでの間に、混練物を加熱する加熱工程を備えることを特徴とする養生方法。
A curing method for a kneaded product formed by kneading super-hard cement, aggregate and water,
A curing method comprising a heating step of heating the kneaded material immediately after the kneaded material is formed and before 180 minutes have elapsed.
前記加熱工程における混練物の加熱温度は、40℃以上120℃以下であることを特徴とする請求項1に記載の養生方法。   The curing method according to claim 1, wherein the heating temperature of the kneaded material in the heating step is 40 ° C. or higher and 120 ° C. or lower. 水/セメント比が30%以上45%以下であることを特徴とする請求項1又は2に記載の養生方法。   The curing method according to claim 1 or 2, wherein the water / cement ratio is 30% or more and 45% or less. 形成された直後の混練物を加熱することなく養生する前置き工程を更に備えており、該前置き工程の後に前記加熱工程が行われることを特徴とする請求項1乃至3の何れか一項に記載の養生方法。   4. The method according to claim 1, further comprising a pretreatment step for curing the kneaded material immediately after being formed without heating, wherein the heating step is performed after the pretreatment step. Curing method.
JP2014056961A 2014-03-19 2014-03-19 Curing method Active JP6376433B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014056961A JP6376433B2 (en) 2014-03-19 2014-03-19 Curing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014056961A JP6376433B2 (en) 2014-03-19 2014-03-19 Curing method

Publications (2)

Publication Number Publication Date
JP2015178435A true JP2015178435A (en) 2015-10-08
JP6376433B2 JP6376433B2 (en) 2018-08-22

Family

ID=54262782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014056961A Active JP6376433B2 (en) 2014-03-19 2014-03-19 Curing method

Country Status (1)

Country Link
JP (1) JP6376433B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1190918A (en) * 1997-09-22 1999-04-06 Denki Kagaku Kogyo Kk Manufacture of concrete product
JP2007091580A (en) * 2005-09-01 2007-04-12 Sumitomo Osaka Cement Co Ltd Ultrarapid hardening cement composition and dispersant for ultrarapid hardening cement composition

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1190918A (en) * 1997-09-22 1999-04-06 Denki Kagaku Kogyo Kk Manufacture of concrete product
JP2007091580A (en) * 2005-09-01 2007-04-12 Sumitomo Osaka Cement Co Ltd Ultrarapid hardening cement composition and dispersant for ultrarapid hardening cement composition

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
内川 浩: "加熱養生における超速硬セメントの水和", セメント技術年報, vol. XXIX, JPN6018002211, 1975, JP, pages 61 - 66, ISSN: 0003726194 *

Also Published As

Publication number Publication date
JP6376433B2 (en) 2018-08-22

Similar Documents

Publication Publication Date Title
Modarres et al. Mechanical properties of roller compacted concrete containing rice husk ash with original and recycled asphalt pavement material
Zhang et al. Development of metakaolin–fly ash based geopolymers for fire resistance applications
KR100873391B1 (en) Quick-hardening concrete composite, manufacturing method thereof and repairing method for concrete pavement using the concrete composite
Liu et al. Residual stress-strain relationship for thermal insulation concrete with recycled aggregate after high temperature exposure
KR101708357B1 (en) Highly-functional and quick-hardening cement concrete composition and repairing method for road pavement therewith
KR101506913B1 (en) Mortar composition for reinforcement
KR101514741B1 (en) Cement concrete composition and manufacture method of concrete block using the said
Zhu et al. Mechanical performance of concrete combined with a novel high strength organic fiber
KR101352536B1 (en) A rapid hardening concrete composition using the eco-friendly cycling silica sand and repairing method of concrete pavement using the same
KR101363860B1 (en) A super high early strength concrete composition using the eco-friendly cycling silica sand and repairing method of concrete pavement using the same
JP2017114734A (en) Super quick hardening cement mortar
KR101613879B1 (en) High strength mortar composition and manufacturing method using the same
Lam Heat resistant mortar using Portland cement and waste clay bricks
JP2012233331A (en) Binder for pavement material, pavement material, and application method of the pavement material
JP6376433B2 (en) Curing method
Salas et al. Recycled polyamide mortars modified with non-ionic surfactant: physical and mechanical strength after durability tests
JP5069073B2 (en) Manufacturing method of cement concrete pipe using cement for centrifugal force forming and its cement concrete pipe
Al-Haydari et al. Stress–strain behavior of sustainable polyester concrete with different types of recycled aggregate
KR101788839B1 (en) Ultra rapid hardening mortar composition for repairing and method of manufacturing the same
JP6591729B2 (en) Concrete production method
KR102017954B1 (en) Self-healing sulfur polymer composites using binary cement and superabsorbent polymer
CN111056757B (en) Quick-hardening cement prepared from waste residues and preparation method thereof
JP2009227558A (en) Self-restorable high strength hydration hardened material
KR20160148736A (en) Lightweight high-strength sulfur concrete with recycled rubber powder
JP6300734B2 (en) Method for producing high-strength cement admixture and concrete product

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180629

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180712

R150 Certificate of patent or registration of utility model

Ref document number: 6376433

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150