JP2015176129A - Zoom lens and image capturing system having the same - Google Patents

Zoom lens and image capturing system having the same Download PDF

Info

Publication number
JP2015176129A
JP2015176129A JP2014055017A JP2014055017A JP2015176129A JP 2015176129 A JP2015176129 A JP 2015176129A JP 2014055017 A JP2014055017 A JP 2014055017A JP 2014055017 A JP2014055017 A JP 2014055017A JP 2015176129 A JP2015176129 A JP 2015176129A
Authority
JP
Japan
Prior art keywords
lens group
lens
zoom
refractive power
focal length
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014055017A
Other languages
Japanese (ja)
Other versions
JP6306911B2 (en
Inventor
正和 小平
Masakazu Kodaira
正和 小平
吉見 隆大
Takatomo Yoshimi
隆大 吉見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2014055017A priority Critical patent/JP6306911B2/en
Publication of JP2015176129A publication Critical patent/JP2015176129A/en
Application granted granted Critical
Publication of JP6306911B2 publication Critical patent/JP6306911B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lenses (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a zoom lens for high-resolution use, which offers superior optical performance by suppressing variation of field curvature.SOLUTION: A zoom lens includes, in order from the object side, a positive first lens group that does not move for zooming, and a negative second group that moves along an optical axis while zooming, where the first lens group comprises, in order from the object side, a negative eleventh lens group that does not move for focusing, a positive twelfth lens group that moves along the optical axis while adjusting focus, and a positive thirteenth lens group that does not move for focusing. An aspherical surface is placed in a plane that satisfies 0.4≤|(hz-hw)/hw|, where hw is defined as an incident height, in the thirteenth lens group, of a ray having the highest incident height of all off-axis rays at a maximum image height when focused at infinity at the wide-angle end, and hz is defined as an incident height, in the thirteenth lens group, of a ray having the highest incident height of all the off-axis rays at a maximum image height when focused at infinity at a focal length of (focal length at the wide-angle end)×(zoom ratio).

Description

本発明はズームレンズに関し、特に、放送用テレビカメラ、ビデオカメラ、デジタルスチルカメラ、銀塩写真用カメラ等に好適なズームレンズ及びそれを有する撮像装置に関するものである。   The present invention relates to a zoom lens, and more particularly to a zoom lens suitable for a broadcast television camera, a video camera, a digital still camera, a silver salt photographic camera, and the like and an imaging apparatus having the same.

近年、テレビカメラ、デジタルカメラ、ビデオカメラ等の撮像装置の分野では、高精細・高解像な映像の実現が求められている。   In recent years, in the field of imaging devices such as a TV camera, a digital camera, and a video camera, it has been required to realize a high-definition and high-resolution video.

上記問題を解決するための手段として、ズームレンズについて、ワイドからテレにわたりズームによる諸収差の更なる抑制が必要となっており、従来よりレンズ群のパワー配置や非球面を適切に設定することでその抑制を図ってきた。   As a means to solve the above problems, it is necessary for zoom lenses to further suppress various aberrations due to zooming from wide to telephoto, and by appropriately setting the power arrangement and aspherical surface of the lens group conventionally, We have tried to suppress it.

特許文献1では、大口径、広画角、高ズーム比で高精細・高解像力な映像を有するという課題に対するアイデアである。ズーミングの際に不動で正の屈折力のレンズ群に非球面を有し、非球面の配置箇所と所定の非球面量を規定している。   Patent Document 1 is an idea for the problem of having a high-definition and high-resolution video with a large aperture, a wide angle of view, and a high zoom ratio. The lens group that does not move during zooming and has a positive refractive power has an aspheric surface, and defines the location of the aspheric surface and a predetermined amount of aspheric surface.

特許5241166号公報Japanese Patent No. 5241166

特許文献1では、ワイド系レンズで顕著な課題となるズーミングに伴う歪曲収差の変動の抑制を大きな課題と捕らえている。解決手段としてズーミングの際に不動で正の屈折力のレンズ群に非球面を有し、非球面の配置箇所と所定の非球面量を規定することで歪曲収差の変動を抑制している。しかし、高精細・高解像な映像を有するためには、像面湾曲収差に起因する周辺解像力の高解像度化が必要であり、歪曲収差の変動の抑制のみでは目的は達成されない。特に近年より高周波領域かつ周辺像高までの高解像力化が望まれており、像面湾曲収差の抑制もより高いものが望まれている。そこで本発明では周辺解像力の高解像化のために像面湾曲収差を抑制することで、全ズーム領域、全像高領域にわたり高解像力を達成することが可能なズームレンズ及び撮影システムの提供を目的とする。   In patent document 1, suppression of the fluctuation | variation of the distortion aberration accompanying zooming which becomes a remarkable subject with a wide system lens is regarded as a big subject. As a solution, the lens group having a positive refractive power that does not move during zooming has an aspheric surface, and the variation in distortion is suppressed by defining the aspheric surface location and a predetermined amount of aspheric surface. However, in order to have a high-definition and high-resolution image, it is necessary to increase the resolution of the peripheral resolving power caused by the field curvature aberration, and the object cannot be achieved only by suppressing the fluctuation of distortion. In particular, higher resolution in the high frequency region and peripheral image height has been desired in recent years, and higher suppression of field curvature aberration is also desired. Accordingly, the present invention provides a zoom lens and an imaging system that can achieve high resolution over the entire zoom region and the entire image height region by suppressing field curvature aberration in order to increase the peripheral resolution. Objective.

上記目的を達成するために、本発明のズームレンズおよびそれを有する撮像装置は、ズーミングのためには移動しない正の屈折力の第1レンズ群と、ズーミングに際して光軸に沿って移動する負の屈折力からなる第2レンズ群とを有し、前記第1レンズ群は物体側より像側へ順に、フォーカシングのためには移動しない負の屈折力の第11レンズ群と、フォーカシングに際して光軸に沿って移動する正の屈折力の第12レンズ群と、フォーカシングのためには移動せず正の屈折力の第13レンズ群とを有しており、前記第1311ズ群中の広角端で無限遠合焦時での最大像高における軸外光束のうち最も入射高が高い光線の入射高をhwとし、(広角端の焦点距離)×(ズーム比)1/4の焦点距離で無限遠合焦時での最大像高における軸外光束のうち最も入射高が高い光線の前記第13レンズ群中への入射高をhzとするとき、
0.4≦|(hz-hw)/hw|
なる式を満足する面に非球面を配置することを特徴とする。
In order to achieve the above object, a zoom lens of the present invention and an image pickup apparatus having the same include a first lens unit having a positive refractive power that does not move for zooming, and a negative lens that moves along the optical axis during zooming. A second lens unit having a refractive power, and the first lens unit in order from the object side to the image side has a negative refractive power, an eleventh lens unit that does not move for focusing, and an optical axis for focusing. A twelfth lens unit having a positive refractive power that moves along with a thirteenth lens unit having a positive refractive power that does not move for focusing, and is infinite at the wide-angle end in the thirteenth group. the incidence height of most incident height high light of off-axis light beam and hw at the maximum image height at the time of focus condition, (the focal length at the wide angle end) × infinity at a focal length of the (zoom ratio) 1/4 Off-axis luminous flux at maximum image height in focus When the hz the incidence height into the third lens group closest incident height high light Chi,
0.4 ≦ | (hz-hw) / hw |
An aspherical surface is arranged on a surface satisfying the following expression.

本発明の更なる目的又はその他の特徴は、以下、添付の図面を参照して説明される好ましい実施例等によって明らかにされる。   Further objects and other features of the present invention will be made clear by the preferred embodiments and the like described below with reference to the accompanying drawings.

本発明によれば、全ズーム領域、全像高領域にわたり高解像力を達成することが可能なズームレンズ及び撮影システムが可能となる。   According to the present invention, it is possible to provide a zoom lens and a photographing system that can achieve high resolution over the entire zoom region and the entire image height region.

本発明の数値実施例1のズームレンズの断面図である。It is sectional drawing of the zoom lens of Numerical Example 1 of this invention. 数値実施例1のズームレンズのワイド端における収差図である。FIG. 6 is an aberration diagram at the wide end of the zoom lens according to Numerical example 1; 数値実施例1のズームレンズのワイドミドルにおける収差図である。FIG. 4 is an aberration diagram at the wide middle of the zoom lens according to Numerical example 1; 数値実施例1のズームレンズのミドルにおける収差図である。FIG. 6 is an aberration diagram in the middle of the zoom lens according to Numerical example 1. 数値実施例1のズームレンズのテレミドルにおける収差図である。FIG. 3 is an aberration diagram in a tele middle of the zoom lens according to Numerical Example 1. 数値実施例1のズームレンズのテレ端における収差図である。FIG. 6 is an aberration diagram at the tele end of the zoom lens according to Numerical Example 1. 数値実施例2のズームレンズの断面図である。6 is a cross-sectional view of a zoom lens according to Numerical Example 2. FIG. 数値実施例2のズームレンズのワイド端における収差図である。6 is an aberration diagram at a wide end of a zoom lens according to Numerical Example 2. FIG. 数値実施例2のズームレンズのワイドミドルにおける収差図である。FIG. 9 is an aberration diagram for the wide middle of the zoom lens according to Numerical Example 2. 数値実施例2のズームレンズのミドルにおける収差図である。FIG. 10 is an aberration diagram in the middle of the zoom lens according to Numerical example 2. 数値実施例2のズームレンズのテレミドルにおける収差図である。FIG. 6 is an aberration diagram in a tele middle of the zoom lens according to Numerical Example 2. 数値実施例2のズームレンズのテレ端における収差図である。6 is an aberration diagram at a tele end of a zoom lens according to Numerical Example 2. FIG. 数値実施例3のズームレンズの断面図である。10 is a cross-sectional view of a zoom lens according to Numerical Example 3. FIG. 数値実施例3のズームレンズのワイド端における収差図である。10 is an aberration diagram at a wide end of a zoom lens according to Numerical example 3. FIG. 数値実施例3のズームレンズのワイドミドルにおける収差図である。FIG. 9 is an aberration diagram at a wide middle of the zoom lens according to Numerical example 3; 数値実施例3のズームレンズのミドルにおける収差図である。FIG. 10 is an aberration diagram in the middle of the zoom lens according to Numerical example 3; 数値実施例3のズームレンズのテレミドルにおける収差図である。FIG. 9 is an aberration diagram in a tele middle of the zoom lens according to Numerical example 3; 数値実施例3のズームレンズのテレ端における収差図である。10 is an aberration diagram at a tele end of a zoom lens according to Numerical Example 3. FIG. 収差係数の説明図である。It is explanatory drawing of an aberration coefficient. 収差係数の説明図である。It is explanatory drawing of an aberration coefficient.

本発明のズームレンズを添付の図面を参照しながら詳細に説明する。   The zoom lens of the present invention will be described in detail with reference to the accompanying drawings.

図1に本発明のズームレンズ(数値実施例1)の断面図を示す。本発明のズームレンズは、物体側から像側へ順に、ズーミングのためには移動しない正の屈折力の第1レンズ群、ズーミングに際して光軸に沿って移動する負の屈折力を有する第2レンズ群を有する。第1レンズ群は、物体側より像側へ順に、フォーカシングのためには移動しない負の屈折力の第11レンズ群、フォーカシングに際して光軸に沿って移動する正の屈折力の第12レンズ群、フォーカシングのためには移動しない正の屈折力の第13レンズ群から構成される。   FIG. 1 shows a cross-sectional view of a zoom lens (Numerical Example 1) of the present invention. The zoom lens of the present invention includes a first lens group having a positive refractive power that does not move for zooming in order from the object side to the image side, and a second lens having a negative refractive power that moves along the optical axis during zooming. Have a group. The first lens group includes, in order from the object side to the image side, an eleventh lens group having a negative refractive power that does not move for focusing, a twelfth lens group having a positive refractive power that moves along the optical axis during focusing, It is composed of a thirteenth lens unit having positive refractive power that does not move for focusing.

光学系全体としての像面湾曲の変動を適切に抑制するためには、3次収差係数を適切に設定する必要がある。ここで、半画角ωにおける縦収差としての子午像面湾曲ΔM、球欠像面湾曲ΔSと、収差係数III、IVとは次の関係にある。   In order to appropriately suppress the variation in field curvature as the entire optical system, it is necessary to appropriately set the third-order aberration coefficient. Here, meridional field curvature ΔM and spherical image field curvature ΔS as longitudinal aberrations at half angle of view ω and aberration coefficients III and IV have the following relationship.

Figure 2015176129
Figure 2015176129
IV = III + P (3)
Figure 2015176129
Figure 2015176129
IV = III + P (3)

一般的な正負負正の4群構成のズームレンズを例に、上記3次収差係数IIIのズーム変動の様子をワイド端基準にグラフ化すると図19となる。ここで、前玉はズーミングのためには移動しない正の屈折力を有する第1レンズ群、バリエーターはズーミングに際して移動する負の屈折力を有する第2レンズ群、コンペンセータはズーミングに際して移動する負の屈折力を有する第3レンズ群、リレーはズーミングのためには移動しない正の屈折力を有する第4レンズ群である。各レンズ群の3次収差係数IIIの合計を示したズーム変動の様子を図20に示す。図19と図20より、3次収差係数IIIの主要な発生要因は前玉とバリエーターであることがわかり、各レンズ群に起因する3次収差係数IIIを互いにキャンセルすることで全体のズーム変動を抑制している。また、3次収差係数IIIのズーム変動は、図20よりワイド端からワイドミドルにかけてピークを迎え、その後減少していることより、ワイドミドルの3次収差係数IIIの発生量を抑えるレンズ構成が全体のズーム変動を抑制するのに重要であることがわかる。また上記の近軸領域に加え、像高の高い箇所において発生する高次の像面湾曲収差の補正をする必要が生じる。   FIG. 19 is a graph showing the zoom variation of the third-order aberration coefficient III with reference to the wide end, taking a typical positive / negative / negative four-group zoom lens as an example. Here, the front lens is a first lens group having a positive refractive power that does not move for zooming, the variator is a second lens group having a negative refractive power that moves during zooming, and the compensator is a negative refraction that moves during zooming. The third lens group having power and the relay are fourth lens groups having positive refractive power that does not move for zooming. FIG. 20 shows how the zoom fluctuates, showing the total third-order aberration coefficient III of each lens group. 19 and 20, it can be seen that the main generation factors of the third-order aberration coefficient III are the front lens and the variator. By canceling out the third-order aberration coefficient III caused by each lens group, the entire zoom variation can be reduced. Suppressed. Further, since the zoom fluctuation of the third-order aberration coefficient III reaches a peak from the wide end to the wide middle from FIG. 20, and then decreases, the entire lens configuration that suppresses the generation amount of the third-order aberration coefficient III of the wide middle. It can be seen that this is important for suppressing zoom fluctuations. In addition to the paraxial region, it is necessary to correct higher-order field curvature aberrations that occur at high image heights.

上記の背景を元に、本発明のズームレンズは以下の条件式を満足することが望ましい。
0.4≦|(hz-hw)/hw| (4)
Based on the above background, it is desirable that the zoom lens of the present invention satisfies the following conditional expression.
0.4 ≦ | (hz-hw) / hw | (4)

条件式(4)は非球面の配置箇所について規定したものである。hzは、(広角端の焦点距離)×(ズーム比)1/4の焦点距離のズーム位置で無限遠合焦時での最大像高での軸外光束のうち最も入射高が高い光線の第13レンズ群中への入射高を示す。hwは第13レンズ群中の広角端で無限遠合焦時での最大像高での軸外光束の入射高を示す。hzとhwの差分が大きい箇所に非球面を配置することが好ましい。軸外光線がレンズを通過する変化が大きい箇所に非球面を配置することで、像高の高い箇所において発生する高次の像面湾曲収差の補正をすることが可能となる。 Conditional expression (4) defines the location of the aspheric surface. hz is (the focal length at the wide-angle end) x (zoom ratio), and the number of the off-axis light beam with the highest incident height among the off-axis luminous fluxes at the maximum image height at the zoom position with a focal length of 1/4 . The incident height into the 13 lens group is shown. hw represents the incident height of the off-axis light beam at the maximum image height at the wide-angle end in the thirteenth lens group at the time of focusing on infinity. It is preferable to arrange an aspheric surface at a location where the difference between hz and hw is large. By disposing an aspherical surface at a location where the change of off-axis rays passing through the lens is large, it is possible to correct higher-order field curvature aberrations that occur at locations where the image height is high.

条件式(4)のhzとhwの差分が小さくなると、条件式(4)の下限に達する。条件式(4)の下限の条件が満たされないと像高方向での像面湾曲を抑制することが困難となる。   When the difference between hz and hw in conditional expression (4) decreases, the lower limit of conditional expression (4) is reached. If the lower limit condition of conditional expression (4) is not satisfied, it will be difficult to suppress curvature of field in the image height direction.

更に本発明のズームレンズは以下の条件式(5)を満足することが望ましい。
0.4≦(R2+R1)/(R2-R1) ≦1.5 (5)
Furthermore, it is desirable that the zoom lens of the present invention satisfies the following conditional expression (5).
0.4 ≦ (R2 + R1) / (R2-R1) ≦ 1.5 (5)

条件式(5)は、ズームの変化に伴う像面湾曲の変動を抑制するための、非球面を有するレンズの近軸の曲率に関する条件を規定している。R1は非球面を有するレンズの物体側の近軸の曲率半径を示し、R2は非球面を有するレンズの像側の近軸の曲率半径を示す。ワイドミドルの3次収差係数IIIの発生量を抑えるには、R1面に凹のパワー面を有するレンズ形状若しくは、弱い凸のパワーを有するレンズ形状が望ましい。またR2面に凸のパワーを有するレンズ形状、かつ周辺に向かって凸のパワーが強くなる非球面を有することで、光線比率の高い所の光線を跳ね上げて収差を制御している。従って、非球面を有するレンズ形状は物体側に凸の曲率を有するレンズ形状となり、条件式(5)を満足するシェイプファクターの範囲となってくる。   Conditional expression (5) defines a condition relating to the paraxial curvature of a lens having an aspherical surface in order to suppress a variation in curvature of field due to a change in zoom. R1 represents a paraxial radius of curvature on the object side of a lens having an aspheric surface, and R2 represents a paraxial radius of curvature on the image side of a lens having an aspheric surface. In order to suppress the generation amount of the third-order aberration coefficient III of the wide middle, a lens shape having a concave power surface on the R1 surface or a lens shape having weak convex power is desirable. In addition, by having a lens shape with convex power on the R2 surface and an aspheric surface with convex power increasing toward the periphery, the aberration is controlled by jumping up light rays with a high ray ratio. Therefore, the lens shape having an aspherical surface becomes a lens shape having a convex curvature on the object side, and is in the shape factor range that satisfies the conditional expression (5).

条件式(5)の下限の条件が満たされないと、R1面が凹のパワーから強い凸のパワー面を有するレンズ形状と変化するため、3次収差係数IIIがプラスに発生しズーム時の像面変動が増加してしまう。   If the lower limit condition of the conditional expression (5) is not satisfied, the R1 surface changes from a concave power to a lens shape having a strong convex power surface. Fluctuations will increase.

条件式(5)の上限の条件が満たされないと、R2面の凸のパワーを有する面が強くなりすぎ、光線の下線を跳ね上げすぎるためワイドミドルで像面湾曲収差が大きくなるためズーム時の像面変動が増加してしまう。   If the condition of the upper limit of conditional expression (5) is not satisfied, the convex surface of the R2 surface will be too strong, and the underline of the light will jump up too much, so the field curvature aberration will increase at the wide middle. Image plane variation will increase.

更に以下の条件式(6)、(7)、(8)を満足することが望ましい。
0<|Δ10a/f1|<0.00200 (6)
0<|Δ9a/f1 |<0.00150 (7)
0<|Δ7a/f1 |<0.00070 (8)
Further, it is desirable that the following conditional expressions (6), (7), and (8) are satisfied.
0 <| Δ10a / f1 | <0.00200 (6)
0 <| Δ9a / f1 | <0.00150 (7)
0 <| Δ7a / f1 | <0.00070 (8)

条件式(6)〜(8)は、非球面量に関して規定したものである。Δ10a、Δ9a、Δ7aは、非球面形状のレンズ面AS13のレンズ有効径の10割、9割、7割における位置での非球面量を示す。f1は第1レンズ群の焦点距離を示す。非球面量とは、近軸位置の曲率Rにより形成される仮想面と非球面との、光軸方向における差(変異量)のことをいう。非球面量を適切に設定することで、ズームの変化に伴う像面湾曲の変動を抑制するための条件を規定している。周辺に向かって凸のパワーが強くなる非球面を有することで、光線比率の高い所の光線を跳ね上げて収差を制御している。   Conditional expressions (6) to (8) are defined for the aspheric amount. Δ10a, Δ9a, and Δ7a indicate aspheric amounts at positions at 100%, 90%, and 70% of the effective lens diameter of the aspherical lens surface AS13. f1 represents the focal length of the first lens group. The aspheric amount is a difference (variation amount) in the optical axis direction between the virtual surface formed by the curvature R of the paraxial position and the aspheric surface. By appropriately setting the aspheric amount, a condition for suppressing the fluctuation of the curvature of field due to the change in zoom is defined. By having an aspheric surface with a convex power that increases toward the periphery, the aberration is controlled by jumping up the light beam at a high light beam ratio.

条件式(6)〜(8)のΔ10a、Δ9a、Δ7aの値が小さくなると、式の下限に達する。式の下限の条件が満たされないと、非球面のパワーが無くなるため、光線比率の高い所の収差が制御できなくなる。   When the values of Δ10a, Δ9a, and Δ7a in conditional expressions (6) to (8) are reduced, the lower limit of the expression is reached. If the condition of the lower limit of the expression is not satisfied, the power of the aspherical surface is lost, so that aberration at a high light ratio cannot be controlled.

条件式(6)〜(8)のΔ10a、Δ9a、Δ7aの値が大きくなると、式の上限に達する。R2面の凸のパワーを有する面が強くなりすぎ、光線比率の高い所の光線を跳ね上げすぎるため、ワイドミドルにおける像面湾曲収差が大きくなるためズーム時の像面変動が増加してしまう。   When the values of Δ10a, Δ9a, and Δ7a in conditional expressions (6) to (8) are increased, the upper limit of the expression is reached. Since the surface having the convex power of the R2 surface becomes too strong and the light beam with a high light beam ratio is raised up too much, the field curvature aberration in the wide middle increases, and the image surface fluctuation during zooming increases.

更に以下の条件式(9)を満足することが望ましい。
1.2 <f13/f1<1.5 (9)
Further, it is desirable that the following conditional expression (9) is satisfied.
1.2 <f13 / f1 <1.5 (9)

条件式(9)は、ズーミングのためには移動しない第1レンズ群内のパワー配置に関して規定したものである。   Conditional expression (9) defines the power arrangement in the first lens group that does not move for zooming.

f13はズーミングのためには移動しない第1レンズ群内における第13レンズ群の焦点距離を示し、f1はズーミングのためには移動しない第1レンズ群の焦点距離を示す。非球面を配置する第13レンズ群の焦点距離を規定したものである。   f13 represents the focal length of the thirteenth lens group in the first lens group that does not move for zooming, and f1 represents the focal length of the first lens group that does not move for zooming. This defines the focal length of the thirteenth lens group on which the aspherical surface is arranged.

条件式(9)のf1が大きくなり、f13が小さくなると、式の下限に達する。式の下限の条件が満たされないとf13のパワーが強くなり、第13レンズ群に非球面を使用したとしても像高の高い箇所において発生する高次の像面湾曲収差の補正をすることが困難となる。   When f1 in conditional expression (9) increases and f13 decreases, the lower limit of the expression is reached. If the condition of the lower limit of the expression is not satisfied, the power of f13 becomes strong, and even if an aspherical surface is used for the thirteenth lens group, it is difficult to correct higher-order field curvature aberration that occurs at a high image height. It becomes.

条件式(9)のf1が小さくなり、f13が大きくなると、式の上限に達する。式の上限の条件が満たされないと像面湾曲収差の変動は抑えられるが、第1レンズ群の主点を像側に押し出すことが困難になるため、第1レンズ群のガラス外径が大型化してしまう。   When f1 in conditional expression (9) decreases and f13 increases, the upper limit of the expression is reached. If the condition of the upper limit of the expression is not satisfied, the fluctuation of the field curvature aberration is suppressed, but it becomes difficult to push the principal point of the first lens group to the image side, so that the glass outer diameter of the first lens group becomes large. End up.

尚、各実施例において更に好ましくは前述した各条件式の数値範囲を次の如く設定するのが良い。
0.5≦(R2+R1)/(R2-R1) ≦1.2 (5A)
0.00008<|Δ10a/f1|<0.00190 (6A)
0.00004<|Δ9a/f1 |<0.00130 (7A)
0.00002<|Δ7a/f1 |<0.00060 (8A)
In each embodiment, it is more preferable to set the numerical ranges of the conditional expressions described above as follows.
0.5 ≦ (R2 + R1) / (R2-R1) ≦ 1.2 (5A)
0.00008 <| Δ10a / f1 | <0.00190 (6A)
0.00004 <| Δ9a / f1 | <0.00130 (7A)
0.00002 <| Δ7a / f1 | <0.00060 (8A)

このように本発明により、高い光学性能を有する撮像装置を実現している。   As described above, according to the present invention, an image pickup apparatus having high optical performance is realized.

図1は本発明の実施例1としての数値実施例1の広角端、無限遠合焦時におけるレンズ断面図である。本発明のズームレンズは、物体側から像側へ順に、ズーミングのためには移動しない正の屈折力の第1レンズ群、ズーミングに際して光軸に沿って移動する負の屈折力を有する第2レンズ群、ズーミングに際して光軸に沿って移動する負の屈折力を有する第3レンズ群、開口絞り、不動の正の屈折力を有する第4レンズ群から構成される。第1レンズ群は、物体側より像側へ順に、フォーカシングのためには移動しない負の屈折力の第11レンズ群、フォーカシングに際して光軸に沿って移動する正の屈折力の第12レンズ群、フォーカシングのためには移動しない正の屈折力の第13レンズ群から構成される。第13レンズ群の最も像側の面である第20面は、像側に凸の非球面で構成されている。IPは、ズームレンズが接続される撮像装置の撮像面であり、レンズからの被写体光を受光する。   FIG. 1 is a lens cross-sectional view of a first numerical embodiment as a first embodiment of the present invention at the wide-angle end and in infinity focusing. The zoom lens of the present invention includes a first lens group having a positive refractive power that does not move for zooming in order from the object side to the image side, and a second lens having a negative refractive power that moves along the optical axis during zooming. And a third lens group having a negative refractive power that moves along the optical axis during zooming, an aperture stop, and a fourth lens group having a fixed positive refractive power. The first lens group includes, in order from the object side to the image side, an eleventh lens group having a negative refractive power that does not move for focusing, a twelfth lens group having a positive refractive power that moves along the optical axis during focusing, It is composed of a thirteenth lens unit having positive refractive power that does not move for focusing. The twentieth surface which is the most image-side surface of the thirteenth lens group is composed of an aspheric surface convex toward the image side. IP is an imaging surface of an imaging device to which a zoom lens is connected, and receives subject light from the lens.

図2〜6に、数値実施例1のワイド端、ワイドミドル、ミドル、テレミドル、テレ端における収差図を示す。収差図において、球面収差は、g線とe線を示している。非点収差はe線のメリディオナル像面(meri)とe線のサジタル像面(sagi)を示している。倍率色収差はg線を表している。FnoはFナンバー、ωは半画角である。すべての収差図において、球面収差は0.1mm、非点収差は0.1mm、歪曲は5%、倍率色収差は、0.025mmのスケールで描かれている。以下の実施例(数値実施例)の収差図においても同様に記載する。   2 to 6 show aberration diagrams of the numerical example 1 at the wide end, the wide middle, the middle, the tele middle, and the tele end. In the aberration diagrams, spherical aberration indicates g-line and e-line. Astigmatism indicates the e-line meridional image plane (meri) and the e-line sagittal image plane (sagi). The lateral chromatic aberration represents the g-line. Fno is the F number, and ω is the half angle of view. In all aberration diagrams, the spherical aberration is drawn on a scale of 0.1 mm, the astigmatism is 0.1 mm, the distortion is 5%, and the lateral chromatic aberration is drawn on a scale of 0.025 mm. The same applies to aberration diagrams of the following examples (numerical examples).

本実施例の各条件式対応値を表1に示す。本数値実施例はいずれの条件式も満足している。非球面を第13レンズ群の最も物体側に配置することで、像面湾曲の変動を抑制し、全ズーム領域及び全像高領域わたり高い光学性能を得ている。   Table 1 shows values corresponding to the conditional expressions of this example. This numerical example satisfies all the conditional expressions. By arranging the aspherical surface on the most object side of the thirteenth lens group, fluctuations in field curvature are suppressed, and high optical performance is obtained over the entire zoom region and the entire image height region.

図7は本発明の実施例2としての数値実施例2の広角端、無限遠合焦時におけるレンズ断面図である。本発明のズームレンズは、物体側から像側へ順に、ズーミングのためには移動しない正の屈折力の第1レンズ群、ズーミングに際して光軸に沿って移動する負の屈折力を有する第2レンズ群、ズーミングに際して光軸に沿って移動する負の屈折力を有する第3レンズ群、開口絞り、不動の正の屈折力を有する第4レンズ群から構成される。第1レンズ群は、物体側より像側へ順に、フォーカシングのためには移動しない負の屈折力の第11レンズ群、フォーカシングに際して光軸に沿って移動する正の屈折力の第12レンズ群、フォーカシングのためには移動しない正の屈折力の第13レンズ群から構成される。第13レンズ群の最も像側の面である第20面は、像側に凸の非球面で構成されている。IPは、ズームレンズが接続される撮像装置の撮像面であり、レンズからの被写体光を受光する。   FIG. 7 is a lens cross-sectional view of the second numerical embodiment as the second embodiment of the present invention at the wide-angle end and infinity focusing. The zoom lens of the present invention includes a first lens group having a positive refractive power that does not move for zooming in order from the object side to the image side, and a second lens having a negative refractive power that moves along the optical axis during zooming. And a third lens group having a negative refractive power that moves along the optical axis during zooming, an aperture stop, and a fourth lens group having a fixed positive refractive power. The first lens group includes, in order from the object side to the image side, an eleventh lens group having a negative refractive power that does not move for focusing, a twelfth lens group having a positive refractive power that moves along the optical axis during focusing, It is composed of a thirteenth lens unit having positive refractive power that does not move for focusing. The twentieth surface which is the most image-side surface of the thirteenth lens group is composed of an aspheric surface convex toward the image side. IP is an imaging surface of an imaging device to which a zoom lens is connected, and receives subject light from the lens.

図8〜12に、数値実施例2のワイド端、ワイドミドル、ミドル、テレミドル、テレ端における収差図を示す。収差図において、球面収差は、g線とe線を示している。非点収差はe線のメリディオナル像面(meri)とe線のサジタル像面(sagi)を示している。倍率色収差はg線をあらわしている。FnoはFナンバー、ωは半画角である。すべての収差図において、球面収差は0.1mm、非点収差は0.1mm、歪曲は5%、倍率色収差は、0.025mmのスケールで描かれている。以下の実施例(数値実施例)の収差図においても同様に記載する。   8 to 12 show aberration diagrams of the numerical example 2 at the wide end, the wide middle, the middle, the tele middle, and the tele end. In the aberration diagrams, spherical aberration indicates g-line and e-line. Astigmatism indicates the e-line meridional image plane (meri) and the e-line sagittal image plane (sagi). The lateral chromatic aberration represents the g-line. Fno is the F number, and ω is the half angle of view. In all aberration diagrams, the spherical aberration is drawn on a scale of 0.1 mm, the astigmatism is 0.1 mm, the distortion is 5%, and the lateral chromatic aberration is drawn on a scale of 0.025 mm. The same applies to aberration diagrams of the following examples (numerical examples).

本実施例の各条件式対応値を表1に示す。本数値実施例はいずれの条件式も満足している。非球面を第13レンズ群の最も物体側に配置することで、像面湾曲の変動を抑制し、全ズーム領域及び全像高領域わたり高い光学性能を得ている。   Table 1 shows values corresponding to the conditional expressions of this example. This numerical example satisfies all the conditional expressions. By arranging the aspherical surface on the most object side of the thirteenth lens group, fluctuations in field curvature are suppressed, and high optical performance is obtained over the entire zoom region and the entire image height region.

図13は本発明の実施例3としての数値実施例3の広角端、無限遠合焦時におけるレンズ断面図である。本発明のズームレンズは、物体側から像側へ順に、ズーミングのためには移動しない正の屈折力の第1レンズ群、ズーミングに際して光軸に沿って移動する負の屈折力を有する第2レンズ群、ズーミングに際して光軸に沿って移動する負の屈折力を有する第3レンズ群、開口絞り、不動の正の屈折力を有する第4レンズ群から構成される。第1レンズ群は、物体側より像側へ順に、フォーカシングのためには移動しない負の屈折力の第11レンズ群、フォーカシングに際して光軸に沿って移動する正の屈折力の第12レンズ群、フォーカシングのためには移動しない正の屈折力の第13レンズ群から構成される。第13レンズ群の最も像側の面である第20面は、像側に凸の非球面で構成されている。IPは、ズームレンズが接続される撮像装置の撮像面であり、レンズからの被写体光を受光する。   13 is a lens cross-sectional view of Numerical Example 3 as Example 3 of the present invention at the time of focusing on the wide angle end at infinity. The zoom lens of the present invention includes a first lens group having a positive refractive power that does not move for zooming in order from the object side to the image side, and a second lens having a negative refractive power that moves along the optical axis during zooming. And a third lens group having a negative refractive power that moves along the optical axis during zooming, an aperture stop, and a fourth lens group having a fixed positive refractive power. The first lens group includes, in order from the object side to the image side, an eleventh lens group having a negative refractive power that does not move for focusing, a twelfth lens group having a positive refractive power that moves along the optical axis during focusing, It is composed of a thirteenth lens unit having positive refractive power that does not move for focusing. The twentieth surface which is the most image-side surface of the thirteenth lens group is composed of an aspheric surface convex toward the image side. IP is an imaging surface of an imaging device to which a zoom lens is connected, and receives subject light from the lens.

図14〜18に、数値実施例3のワイド端、ワイドミドル、ミドル、テレミドル、テレ端における収差図を示す。収差図において、球面収差は、g線とe線を示している。非点収差はe線のメリディオナル像面(meri)とe線のサジタル像面(sagi)を示している。倍率色収差はg線をあらわしている。FnoはFナンバー、ωは半画角である。すべての収差図において、球面収差は0.1mm、非点収差は0.1mm、歪曲は5%、倍率色収差は、0.025mmのスケールで描かれている。以下の実施例(数値実施例)の収差図においても同様に記載する。   14 to 18 show aberration diagrams of the numerical example 3 at the wide end, the wide middle, the middle, the tele middle, and the tele end. In the aberration diagrams, spherical aberration indicates g-line and e-line. Astigmatism indicates the e-line meridional image plane (meri) and the e-line sagittal image plane (sagi). The lateral chromatic aberration represents the g-line. Fno is the F number, and ω is the half angle of view. In all aberration diagrams, the spherical aberration is drawn on a scale of 0.1 mm, the astigmatism is 0.1 mm, the distortion is 5%, and the lateral chromatic aberration is drawn on a scale of 0.025 mm. The same applies to aberration diagrams of the following examples (numerical examples).

本実施例の各条件式対応値を表1に示す。本数値実施例はいずれの条件式も満足している。非球面を第13レンズ群の最も物体側に配置することで、像面湾曲の変動を抑制し、全ズーム領域及び全像高領域わたり高い光学性能を得ている。   Table 1 shows values corresponding to the conditional expressions of this example. This numerical example satisfies all the conditional expressions. By arranging the aspherical surface on the most object side of the thirteenth lens group, fluctuations in field curvature are suppressed, and high optical performance is obtained over the entire zoom region and the entire image height region.

以下に本発明の実施例1〜3に対応する数値実施例1〜3を示す。各数値実施例において、iは物体側からの面の順序を示し、riは物体側より第i番目の面の曲率半径、diは物体側より第i番目と第i+1番目の間隔、Ni、νiは第i番目の光学部材の屈折率とアッベ数である。   Numerical examples 1 to 3 corresponding to the first to third embodiments of the present invention will be shown below. In each numerical example, i indicates the order of the surfaces from the object side, ri is the radius of curvature of the i-th surface from the object side, di is the i-th and i + 1-th distance from the object side, Ni, νi Are the refractive index and Abbe number of the i-th optical member.

非球面形状は光軸方向にX軸、光軸と垂直方向にH軸、光の進行方向を正とし、Rを近軸曲率半径、kを円錐常数、A3、A4、A5、A6、A7、A8、A9、A10、A11、A12をそれぞれ非球面係数としたとき、次式で表している。   The aspherical shape is the X axis in the optical axis direction, the H axis in the direction perpendicular to the optical axis, the light traveling direction is positive, R is the paraxial radius of curvature, k is the cone constant, A3, A4, A5, A6, A7, When A8, A9, A10, A11, and A12 are aspheric coefficients, they are expressed by the following equations.

Figure 2015176129
で表される。又、例えば「e−Z」は「×10−Z」を意味する。*印は非球面であることを示している。
Figure 2015176129
It is represented by For example, “e-Z” means “× 10 −Z ”. * Indicates an aspherical surface.

(数値実施例1)
単位 mm

面データ
面番号 r d nd vd 有効径
1* 752.294 4.50 1.77250 49.6 121.31
2 63.511 26.19 98.06
3 -490.402 4.20 1.64000 60.1 97.92
4 193.418 5.01 97.20
5 145.210 11.33 1.80809 22.8 99.06
6 516.533 2.29 98.57
7 173.548 15.98 1.51633 64.1 99.53
8* -196.815 0.20 99.13
9 14042.950 3.70 1.80100 35.0 98.19
10 198.163 0.20 97.33
11 153.660 13.05 1.43387 95.1 97.91
12 -1082.767 11.37 97.84
13 243.883 8.73 1.49700 81.5 99.71
14 -733.683 0.20 99.69
15 244.352 3.50 1.72047 34.7 99.12
16 82.362 1.25 96.05
17 85.579 27.83 1.43387 95.1 96.66
18 -154.171 0.20 96.87
19 -1641.737 11.92 1.60311 60.6 95.14
20* -135.846 (可変) 94.63
21 67.534 2.00 1.77250 49.6 43.86
22 35.976 10.18 39.43
23 -59.293 2.00 1.49700 81.5 38.50
24 54.905 8.06 36.26
25 -70.198 4.65 1.72047 34.7 36.10
26 -43.070 0.47 36.65
27 -43.504 2.00 1.49700 81.5 36.44
28 -340.748 0.20 36.82
29 81.034 4.62 1.72047 34.7 36.97
30 341.378 (可変) 36.47
31 -73.845 1.70 1.77250 49.6 31.84
32 112.748 4.65 1.84666 23.8 33.20
33 -1586.973 (可変) 34.09
34(絞り) ∞ 2.70 35.58
35 -226.947 6.43 1.71300 53.9 36.53
36 -86.983 0.20 38.28
37 205.859 5.02 1.64000 60.1 39.17
38 -177.049 0.20 39.44
39 106.141 6.97 1.64000 60.1 39.45
40 -86.904 1.94 1.74950 35.3 39.02
41 450.495 26.17 38.54
42 75.511 5.71 1.64000 60.1 35.16
43 126.738 17.92 34.67
44 44.752 6.14 1.43875 94.9 34.90
45 -1078.024 1.70 1.80518 25.4 34.30
46 50.165 10.55 33.41
47 248.583 10.26 1.43875 94.9 35.36
48 -37.457 3.48 1.88300 40.8 35.96
49 224.759 6.66 1.43875 94.9 39.00
50 -73.394 1.50 40.51
51 559.515 7.37 1.80809 22.8 42.83
52 -59.503 10.17 43.47
53 48.471 12.08 1.43875 94.9 39.23
54 -68.962 1.70 1.88300 40.8 36.94
55 183.464 50.00 36.04
像面 ∞

非球面データ
第1面
K = 0.00000e+000 A 4= 2.33351e-007 A 6=-2.06681e-011 A 8= 1.52545e-014 A10=-8.43522e-018 A12= 2.63997e-021 A14=-4.38396e-025 A16= 3.01673e-029

第8面
K = 0.00000e+000 A 4= 3.68191e-007 A 6=-3.85000e-012 A 8=-6.02829e-015 A10= 5.72690e-018 A12=-3.19557e-021 A14= 9.04723e-025 A16=-1.05854e-028

第20面
K = 0.00000e+000 A 4=-2.27364e-008 A 6= 1.48020e-011 A 8=-2.34931e-015

各種データ
ズーム比 5.50

焦点距離 20.00 30.60 60.00 80.00 110.00
Fナンバー 2.90 2.90 2.90 2.90 2.90
画角 35.18 24.74 13.22 10.00 7.30
像高 14.10 14.10 14.10 14.10 14.10
レンズ全長 484.09 484.09 484.09 484.09 484.09
BF 50.00 50.00 50.00 50.00 50.00

d20 1.31 30.93 65.67 76.97 87.39
d30 92.75 59.02 21.34 11.51 5.76
d33 2.99 7.09 10.03 8.56 3.89
d55 50.00 50.00 50.00 50.00 50.00

入射瞳位置 75.47 97.73 145.50 170.91 201.88
射出瞳位置 -350.00 -350.00 -350.00 -350.00 -350.00
前側主点位置 94.47 125.99 196.50 234.91 281.63
後側主点位置 30.00 19.40 -10.00 -30.00 -60.00

ズームレンズ群データ
群 始面 焦点距離 レンズ構成長 前側主点位置 後側主点位置
1 1 93.25 151.65 94.59 62.30
2 21 -44.13 34.18 4.38 -25.41
3 31 -108.14 6.35 -0.27 -3.75
4 34 75.55 144.87 56.29 -129.14

単レンズデータ
レンズ 始面 焦点距離
1 1 -89.62
2 3 -215.36
3 5 244.06
4 7 180.61
5 9 -249.28
6 11 310.36
7 13 368.31
8 15 -172.84
9 17 131.13
10 19 243.87
11 21 -102.01
12 23 -56.86
13 25 143.31
14 27 -100.28
15 29 145.40
16 31 -57.26
17 32 123.27
18 35 193.24
19 37 148.90
20 39 75.43
21 40 -96.40
22 42 278.59
23 44 97.85
24 45 -58.95
25 47 74.83
26 48 -35.93
27 49 126.65
28 51 66.23
29 53 66.81
30 54 -56.26
(Numerical example 1)
Unit mm

Surface data surface number rd nd vd Effective diameter
1 * 752.294 4.50 1.77250 49.6 121.31
2 63.511 26.19 98.06
3 -490.402 4.20 1.64000 60.1 97.92
4 193.418 5.01 97.20
5 145.210 11.33 1.80809 22.8 99.06
6 516.533 2.29 98.57
7 173.548 15.98 1.51633 64.1 99.53
8 * -196.815 0.20 99.13
9 14042.950 3.70 1.80 100 35.0 98.19
10 198.163 0.20 97.33
11 153.660 13.05 1.43387 95.1 97.91
12 -1082.767 11.37 97.84
13 243.883 8.73 1.49700 81.5 99.71
14 -733.683 0.20 99.69
15 244.352 3.50 1.72047 34.7 99.12
16 82.362 1.25 96.05
17 85.579 27.83 1.43387 95.1 96.66
18 -154.171 0.20 96.87
19 -1641.737 11.92 1.60311 60.6 95.14
20 * -135.846 (variable) 94.63
21 67.534 2.00 1.77250 49.6 43.86
22 35.976 10.18 39.43
23 -59.293 2.00 1.49700 81.5 38.50
24 54.905 8.06 36.26
25 -70.198 4.65 1.72047 34.7 36.10
26 -43.070 0.47 36.65
27 -43.504 2.00 1.49700 81.5 36.44
28 -340.748 0.20 36.82
29 81.034 4.62 1.72047 34.7 36.97
30 341.378 (variable) 36.47
31 -73.845 1.70 1.77250 49.6 31.84
32 112.748 4.65 1.84666 23.8 33.20
33 -1586.973 (variable) 34.09
34 (Aperture) ∞ 2.70 35.58
35 -226.947 6.43 1.71300 53.9 36.53
36 -86.983 0.20 38.28
37 205.859 5.02 1.64000 60.1 39.17
38 -177.049 0.20 39.44
39 106.141 6.97 1.64000 60.1 39.45
40 -86.904 1.94 1.74950 35.3 39.02
41 450.495 26.17 38.54
42 75.511 5.71 1.64000 60.1 35.16
43 126.738 17.92 34.67
44 44.752 6.14 1.43875 94.9 34.90
45 -1078.024 1.70 1.80518 25.4 34.30
46 50.165 10.55 33.41
47 248.583 10.26 1.43875 94.9 35.36
48 -37.457 3.48 1.88300 40.8 35.96
49 224.759 6.66 1.43875 94.9 39.00
50 -73.394 1.50 40.51
51 559.515 7.37 1.80809 22.8 42.83
52 -59.503 10.17 43.47
53 48.471 12.08 1.43875 94.9 39.23
54 -68.962 1.70 1.88300 40.8 36.94
55 183.464 50.00 36.04
Image plane ∞

Aspheric data 1st surface
K = 0.00000e + 000 A 4 = 2.33351e-007 A 6 = -2.06681e-011 A 8 = 1.52545e-014 A10 = -8.43522e-018 A12 = 2.63997e-021 A14 = -4.38396e-025 A16 = 3.01673e-029

8th page
K = 0.00000e + 000 A 4 = 3.68191e-007 A 6 = -3.85000e-012 A 8 = -6.02829e-015 A10 = 5.72690e-018 A12 = -3.19557e-021 A14 = 9.04723e-025 A16 = -1.05854e-028

20th page
K = 0.00000e + 000 A 4 = -2.27364e-008 A 6 = 1.48020e-011 A 8 = -2.34931e-015

Various data Zoom ratio 5.50

Focal length 20.00 30.60 60.00 80.00 110.00
F number 2.90 2.90 2.90 2.90 2.90
Angle of view 35.18 24.74 13.22 10.00 7.30
Image height 14.10 14.10 14.10 14.10 14.10
Total lens length 484.09 484.09 484.09 484.09 484.09
BF 50.00 50.00 50.00 50.00 50.00

d20 1.31 30.93 65.67 76.97 87.39
d30 92.75 59.02 21.34 11.51 5.76
d33 2.99 7.09 10.03 8.56 3.89
d55 50.00 50.00 50.00 50.00 50.00

Entrance pupil position 75.47 97.73 145.50 170.91 201.88
Exit pupil position -350.00 -350.00 -350.00 -350.00 -350.00
Front principal point position 94.47 125.99 196.50 234.91 281.63
Rear principal point position 30.00 19.40 -10.00 -30.00 -60.00

Zoom lens group data group Start surface Focal length Lens configuration length Front principal point position Rear principal point position
1 1 93.25 151.65 94.59 62.30
2 21 -44.13 34.18 4.38 -25.41
3 31 -108.14 6.35 -0.27 -3.75
4 34 75.55 144.87 56.29 -129.14

Single lens Data lens Start surface Focal length
1 1 -89.62
2 3 -215.36
3 5 244.06
4 7 180.61
5 9 -249.28
6 11 310.36
7 13 368.31
8 15 -172.84
9 17 131.13
10 19 243.87
11 21 -102.01
12 23 -56.86
13 25 143.31
14 27 -100.28
15 29 145.40
16 31 -57.26
17 32 123.27
18 35 193.24
19 37 148.90
20 39 75.43
21 40 -96.40
22 42 278.59
23 44 97.85
24 45 -58.95
25 47 74.83
26 48 -35.93
27 49 126.65
28 51 66.23
29 53 66.81
30 54 -56.26

(数値実施例2)
単位 mm

単位 mm

面データ
面番号 r d nd vd 有効径
1* 759.798 4.50 1.77250 49.6 121.41
2 64.237 26.06 98.41
3 -480.503 4.20 1.64000 60.1 98.26
4 190.326 5.01 97.45
5 145.425 10.72 1.80809 22.8 99.26
6 514.275 2.29 98.89
7 171.119 15.81 1.51633 64.1 99.82
8* -191.954 0.20 99.44
9 12038.559 3.70 1.80100 35.0 98.49
10 200.227 0.22 97.58
11 156.237 12.81 1.43387 95.1 98.12
12 -1166.129 11.37 98.02
13 262.130 9.12 1.49700 81.5 99.42
14 -639.723 0.20 99.40
15 246.019 3.50 1.72047 34.7 98.74
16 82.387 1.30 95.64
17 85.853 27.61 1.43387 95.1 96.23
18 -152.828 0.20 96.40
19 -3025.997 11.00 1.60311 60.6 94.52
20* -143.890 (可変) 94.05
21 67.155 2.00 1.77250 49.6 43.86
22 35.999 9.93 39.44
23 -59.484 2.00 1.49700 81.5 38.74
24 54.710 8.13 36.46
25 -70.069 4.65 1.72047 34.7 36.29
26 -43.212 0.48 36.84
27 -43.631 2.00 1.49700 81.5 36.63
28 -319.714 0.20 37.02
29 81.247 4.63 1.72047 34.7 37.16
30 333.832 (可変) 36.66
31 -72.940 1.70 1.77250 49.6 31.85
32 111.792 4.98 1.84666 23.8 33.23
33 -1719.170 (可変) 34.21
34(絞り) ∞ 2.70 35.52
35 -225.372 6.43 1.71300 53.9 36.48
36 -86.235 0.20 38.24
37 206.375 4.93 1.64000 60.1 39.15
38 -174.678 0.20 39.41
39 106.895 6.95 1.64000 60.1 39.43
40 -86.274 1.94 1.74950 35.3 39.01
41 465.648 26.43 38.54
42 75.805 5.71 1.64000 60.1 35.18
43 127.875 17.94 34.70
44 44.809 6.15 1.43875 94.9 34.96
45 -1335.473 1.70 1.80518 25.4 34.35
46 49.906 10.85 33.46
47 249.693 10.28 1.43875 94.9 35.51
48 -37.721 3.09 1.88300 40.8 36.12
49 220.881 6.66 1.43875 94.9 39.04
50 -73.238 1.50 40.55
51 506.378 7.39 1.80809 22.8 42.90
52 -59.995 10.07 43.54
53 47.737 12.10 1.43875 94.9 39.31
54 -70.987 1.70 1.88300 40.8 36.99
55 169.872 50.00 36.05
像面 ∞

非球面データ
第1面
K = 0.00000e+000 A 4= 2.30589e-007 A 6=-2.40018e-011 A 8= 1.67825e-014 A10=-8.69772e-018 A12= 2.61844e-021 A14=-4.24529e-025 A16= 2.87750e-029

第8面
K = 0.00000e+000 A 4= 3.75014e-007 A 6=-6.20332e-012 A 8=-6.02754e-015 A10= 5.80082e-018 A12=-3.07366e-021 A14= 8.40675e-025 A16=-9.64279e-029

第20面
K = 0.00000e+000 A 4=-5.05167e-008 A 6= 1.69201e-011 A 8=-2.91123e-015

各種データ
ズーム比 5.00

焦点距離 20.00 30.00 60.00 80.00 100.00
Fナンバー 2.90 2.90 2.90 2.90 2.90
画角 35.18 25.17 13.22 10.00 8.03
像高 14.10 14.10 14.10 14.10 14.10
レンズ全長 482.97 482.97 482.97 482.97 482.97
BF 50.00 50.00 50.00 50.00 50.00

d20 1.31 30.10 66.64 78.16 85.85
d30 93.61 60.91 21.07 10.83 5.83
d33 2.60 6.51 9.81 8.53 5.83
d55 50.00 50.00 50.00 50.00 50.00

入射瞳位置 75.59 97.03 146.56 172.16 193.75
射出瞳位置 -350.00 -350.00 -350.00 -350.00 -350.00
前側主点位置 94.59 124.78 197.56 236.16 268.75
後側主点位置 30.00 20.00 -10.00 -30.00 -50.00

ズームレンズ群データ
群 始面 焦点距離 レンズ構成長 前側主点位置 後側主点位置
1 1 95.15 149.84 94.99 62.64
2 21 -44.32 34.02 4.27 -25.38
3 31 -106.23 6.68 -0.26 -3.91
4 34 75.25 144.92 56.11 -129.47

単レンズデータ
レンズ 始面 焦点距離
1 1 -90.66
2 3 -211.65
3 5 245.15
4 7 177.20
5 9 -252.52
6 11 317.69
7 13 374.29
8 15 -172.31
9 17 130.98
10 19 249.15
11 21 -102.85
12 23 -56.84
13 25 144.87
14 27 -101.61
15 29 146.90
16 31 -56.64
17 32 122.92
18 35 191.36
19 37 147.98
20 39 75.36
21 40 -96.32
22 42 277.81
23 44 98.70
24 45 -59.17
25 47 75.33
26 48 -36.07
27 49 125.91
28 51 66.09
29 53 66.98
30 54 -56.18
(Numerical example 2)
Unit mm

Unit mm

Surface data surface number rd nd vd Effective diameter
1 * 759.798 4.50 1.77250 49.6 121.41
2 64.237 26.06 98.41
3 -480.503 4.20 1.64000 60.1 98.26
4 190.326 5.01 97.45
5 145.425 10.72 1.80809 22.8 99.26
6 514.275 2.29 98.89
7 171.119 15.81 1.51633 64.1 99.82
8 * -191.954 0.20 99.44
9 12038.559 3.70 1.80 100 35.0 98.49
10 200.227 0.22 97.58
11 156.237 12.81 1.43387 95.1 98.12
12 -1166.129 11.37 98.02
13 262.130 9.12 1.49700 81.5 99.42
14 -639.723 0.20 99.40
15 246.019 3.50 1.72047 34.7 98.74
16 82.387 1.30 95.64
17 85.853 27.61 1.43387 95.1 96.23
18 -152.828 0.20 96.40
19 -3025.997 11.00 1.60311 60.6 94.52
20 * -143.890 (variable) 94.05
21 67.155 2.00 1.77250 49.6 43.86
22 35.999 9.93 39.44
23 -59.484 2.00 1.49700 81.5 38.74
24 54.710 8.13 36.46
25 -70.069 4.65 1.72047 34.7 36.29
26 -43.212 0.48 36.84
27 -43.631 2.00 1.49700 81.5 36.63
28 -319.714 0.20 37.02
29 81.247 4.63 1.72047 34.7 37.16
30 333.832 (variable) 36.66
31 -72.940 1.70 1.77250 49.6 31.85
32 111.792 4.98 1.84666 23.8 33.23
33 -1719.170 (variable) 34.21
34 (Aperture) ∞ 2.70 35.52
35 -225.372 6.43 1.71300 53.9 36.48
36 -86.235 0.20 38.24
37 206.375 4.93 1.64000 60.1 39.15
38 -174.678 0.20 39.41
39 106.895 6.95 1.64000 60.1 39.43
40 -86.274 1.94 1.74950 35.3 39.01
41 465.648 26.43 38.54
42 75.805 5.71 1.64000 60.1 35.18
43 127.875 17.94 34.70
44 44.809 6.15 1.43875 94.9 34.96
45 -1335.473 1.70 1.80518 25.4 34.35
46 49.906 10.85 33.46
47 249.693 10.28 1.43875 94.9 35.51
48 -37.721 3.09 1.88300 40.8 36.12
49 220.881 6.66 1.43875 94.9 39.04
50 -73.238 1.50 40.55
51 506.378 7.39 1.80809 22.8 42.90
52 -59.995 10.07 43.54
53 47.737 12.10 1.43875 94.9 39.31
54 -70.987 1.70 1.88300 40.8 36.99
55 169.872 50.00 36.05
Image plane ∞

Aspheric data 1st surface
K = 0.00000e + 000 A 4 = 2.30589e-007 A 6 = -2.40018e-011 A 8 = 1.67825e-014 A10 = -8.69772e-018 A12 = 2.61844e-021 A14 = -4.24529e-025 A16 = 2.87750e-029

8th page
K = 0.00000e + 000 A 4 = 3.75014e-007 A 6 = -6.20332e-012 A 8 = -6.02754e-015 A10 = 5.80082e-018 A12 = -3.07366e-021 A14 = 8.40675e-025 A16 = -9.64279e-029

20th page
K = 0.00000e + 000 A 4 = -5.05167e-008 A 6 = 1.69201e-011 A 8 = -2.91123e-015

Various data Zoom ratio 5.00

Focal length 20.00 30.00 60.00 80.00 100.00
F number 2.90 2.90 2.90 2.90 2.90
Angle of view 35.18 25.17 13.22 10.00 8.03
Image height 14.10 14.10 14.10 14.10 14.10
Total lens length 482.97 482.97 482.97 482.97 482.97
BF 50.00 50.00 50.00 50.00 50.00

d20 1.31 30.10 66.64 78.16 85.85
d30 93.61 60.91 21.07 10.83 5.83
d33 2.60 6.51 9.81 8.53 5.83
d55 50.00 50.00 50.00 50.00 50.00

Entrance pupil position 75.59 97.03 146.56 172.16 193.75
Exit pupil position -350.00 -350.00 -350.00 -350.00 -350.00
Front principal point position 94.59 124.78 197.56 236.16 268.75
Rear principal point position 30.00 20.00 -10.00 -30.00 -50.00

Zoom lens group data group Start surface Focal length Lens configuration length Front principal point position Rear principal point position
1 1 95.15 149.84 94.99 62.64
2 21 -44.32 34.02 4.27 -25.38
3 31 -106.23 6.68 -0.26 -3.91
4 34 75.25 144.92 56.11 -129.47

Single lens Data lens Start surface Focal length
1 1 -90.66
2 3 -211.65
3 5 245.15
4 7 177.20
5 9 -252.52
6 11 317.69
7 13 374.29
8 15 -172.31
9 17 130.98
10 19 249.15
11 21 -102.85
12 23 -56.84
13 25 144.87
14 27 -101.61
15 29 146.90
16 31 -56.64
17 32 122.92
18 35 191.36
19 37 147.98
20 39 75.36
21 40 -96.32
22 42 277.81
23 44 98.70
24 45 -59.17
25 47 75.33
26 48 -36.07
27 49 125.91
28 51 66.09
29 53 66.98
30 54 -56.18

(数値実施例3)
単位 mm
単位 mm

面データ
面番号 r d nd vd 有効径
1* 751.481 4.50 1.77250 49.6 121.45
2 64.821 26.12 98.70
3 -446.740 4.20 1.64000 60.1 98.55
4 192.458 5.01 97.83
5 144.021 11.44 1.80809 22.8 99.75
6 504.179 2.29 99.08
7 165.539 16.00 1.51633 64.1 99.83
8* -195.283 0.20 99.36
9 -13116.161 3.70 1.80100 35.0 98.12
10 201.947 0.20 97.10
11 155.194 12.80 1.43387 95.1 97.56
12 -1179.811 11.37 97.41
13 281.571 8.73 1.49700 81.5 97.95
14 -836.188 0.20 97.92
15 279.504 3.50 1.72047 34.7 97.48
16 82.906 1.14 94.78
17 85.987 26.36 1.43387 95.1 95.37
18 -171.505 0.20 95.71
19 646.446 13.58 1.60311 60.6 94.34
20* -147.956 (可変) 93.71
21 67.440 2.00 1.77250 49.6 44.65
22 35.956 11.25 40.09
23 -59.538 2.00 1.49700 81.5 38.40
24 54.869 8.03 36.16
25 -70.113 4.66 1.72047 34.7 36.00
26 -43.077 0.45 36.54
27 -43.726 2.00 1.49700 81.5 36.32
28 -324.008 0.20 36.68
29 80.274 4.60 1.72047 34.7 36.80
30 315.216 (可変) 36.29
31 -71.817 1.70 1.77250 49.6 31.36
32 108.237 6.49 1.84666 23.8 32.74
33 -1846.165 (可変) 34.13
34(絞り) ∞ 2.70 35.37
35 -214.816 6.38 1.71300 53.9 36.32
36 -85.985 0.20 38.09
37 214.729 4.89 1.64000 60.1 39.00
38 -175.768 0.20 39.29
39 108.093 6.93 1.64000 60.1 39.34
40 -86.156 1.94 1.74950 35.3 38.96
41 528.086 26.12 38.53
42 75.979 5.71 1.64000 60.1 35.43
43 133.299 19.03 34.97
44 44.343 6.18 1.43875 94.9 35.22
45 -2577.883 1.70 1.80518 25.4 34.60
46 49.542 11.72 33.68
47 236.927 10.36 1.43875 94.9 35.88
48 -38.049 2.49 1.88300 40.8 36.46
49 212.088 6.66 1.43875 94.9 39.17
50 -73.479 1.50 40.65
51 423.208 7.44 1.80809 22.8 43.02
52 -60.790 8.90 43.63
53 47.240 12.15 1.43875 94.9 39.46
54 -71.391 1.70 1.88300 40.8 37.09
55 156.638 50.00 36.08
像面 ∞

非球面データ
第1面
K = 0.00000e+000 A 4= 2.15837e-007 A 6=-2.21879e-011 A 8= 1.60760e-014 A10=-8.40883e-018 A12= 2.51760e-021 A14=-4.04871e-025 A16= 2.72394e-029

第8面
K = 0.00000e+000 A 4= 3.66492e-007 A 6=-7.27269e-012 A 8=-6.20752e-015 A10= 5.73971e-018 A12=-2.91394e-021 A14= 7.58172e-025 A16=-8.24526e-029

第20面
K = 0.00000e+000 A 4=-5.69317e-008 A 6= 1.62642e-011 A 8=-2.58046e-015

各種データ
ズーム比 5.00

焦点距離 20.00 30.00 60.00 80.00 100.00
Fナンバー 2.90 2.90 2.90 2.90 2.90
画角 35.18 25.17 13.22 10.00 8.03
像高 14.10 14.10 14.10 14.10 14.10
レンズ全長 483.95 483.95 483.95 483.95 483.95
BF 50.00 50.00 50.00 50.00 50.00

d20 1.31 29.36 64.96 76.16 83.62
d30 90.37 58.58 20.15 10.45 5.85
d33 2.45 6.18 9.02 7.52 4.66
d55 50.00 50.00 50.00 50.00 50.00

入射瞳位置 76.07 97.09 145.81 171.07 192.42
射出瞳位置 -350.00 -350.00 -350.00 -350.00 -350.00
前側主点位置 95.07 124.84 196.81 235.07 267.42
後側主点位置 30.00 20.00 -10.00 -30.00 -50.00

ズームレンズ群データ
群 始面 焦点距離 レンズ構成長 前側主点位置 後側主点位置
1 1 92.70 151.54 94.70 61.94
2 21 -44.01 35.20 4.94 -25.82
3 31 -104.30 8.19 -0.29 -4.76
4 34 74.98 144.90 55.98 -129.00

単レンズデータ
レンズ 始面 焦点距離
1 1 -91.65
2 3 -208.80
3 5 243.47
4 7 175.53
5 9 -246.59
6 11 316.24
7 13 423.69
8 15 -163.71
9 17 135.89
10 19 200.14
11 21 -102.06
12 23 -56.95
13 25 143.60
14 27 -101.65
15 29 147.26
16 31 -55.39
17 32 119.76
18 35 196.14
19 37 151.16
20 39 75.67
21 40 -98.04
22 42 264.67
23 44 99.18
24 45 -59.80
25 47 75.40
26 48 -36.16
27 49 124.96
28 51 65.56
29 53 66.72
30 54 -55.02
(Numerical Example 3)
Unit mm
Unit mm

Surface data surface number rd nd vd Effective diameter
1 * 751.481 4.50 1.77250 49.6 121.45
2 64.821 26.12 98.70
3 -446.740 4.20 1.64000 60.1 98.55
4 192.458 5.01 97.83
5 144.021 11.44 1.80809 22.8 99.75
6 504.179 2.29 99.08
7 165.539 16.00 1.51633 64.1 99.83
8 * -195.283 0.20 99.36
9 -13116.161 3.70 1.80 100 35.0 98.12
10 201.947 0.20 97.10
11 155.194 12.80 1.43387 95.1 97.56
12 -1179.811 11.37 97.41
13 281.571 8.73 1.49700 81.5 97.95
14 -836.188 0.20 97.92
15 279.504 3.50 1.72047 34.7 97.48
16 82.906 1.14 94.78
17 85.987 26.36 1.43387 95.1 95.37
18 -171.505 0.20 95.71
19 646.446 13.58 1.60311 60.6 94.34
20 * -147.956 (variable) 93.71
21 67.440 2.00 1.77250 49.6 44.65
22 35.956 11.25 40.09
23 -59.538 2.00 1.49700 81.5 38.40
24 54.869 8.03 36.16
25 -70.113 4.66 1.72047 34.7 36.00
26 -43.077 0.45 36.54
27 -43.726 2.00 1.49700 81.5 36.32
28 -324.008 0.20 36.68
29 80.274 4.60 1.72047 34.7 36.80
30 315.216 (variable) 36.29
31 -71.817 1.70 1.77250 49.6 31.36
32 108.237 6.49 1.84666 23.8 32.74
33 -1846.165 (variable) 34.13
34 (Aperture) ∞ 2.70 35.37
35 -214.816 6.38 1.71300 53.9 36.32
36 -85.985 0.20 38.09
37 214.729 4.89 1.64000 60.1 39.00
38 -175.768 0.20 39.29
39 108.093 6.93 1.64000 60.1 39.34
40 -86.156 1.94 1.74950 35.3 38.96
41 528.086 26.12 38.53
42 75.979 5.71 1.64000 60.1 35.43
43 133.299 19.03 34.97
44 44.343 6.18 1.43875 94.9 35.22
45 -2577.883 1.70 1.80518 25.4 34.60
46 49.542 11.72 33.68
47 236.927 10.36 1.43875 94.9 35.88
48 -38.049 2.49 1.88300 40.8 36.46
49 212.088 6.66 1.43875 94.9 39.17
50 -73.479 1.50 40.65
51 423.208 7.44 1.80809 22.8 43.02
52 -60.790 8.90 43.63
53 47.240 12.15 1.43875 94.9 39.46
54 -71.391 1.70 1.88300 40.8 37.09
55 156.638 50.00 36.08
Image plane ∞

Aspheric data 1st surface
K = 0.00000e + 000 A 4 = 2.15837e-007 A 6 = -2.21879e-011 A 8 = 1.60760e-014 A10 = -8.40883e-018 A12 = 2.51760e-021 A14 = -4.04871e-025 A16 = 2.72394e-029

8th page
K = 0.00000e + 000 A 4 = 3.66492e-007 A 6 = -7.27269e-012 A 8 = -6.20752e-015 A10 = 5.73971e-018 A12 = -2.91394e-021 A14 = 7.58172e-025 A16 = -8.24526e-029

20th page
K = 0.00000e + 000 A 4 = -5.69317e-008 A 6 = 1.62642e-011 A 8 = -2.58046e-015

Various data Zoom ratio 5.00

Focal length 20.00 30.00 60.00 80.00 100.00
F number 2.90 2.90 2.90 2.90 2.90
Angle of view 35.18 25.17 13.22 10.00 8.03
Image height 14.10 14.10 14.10 14.10 14.10
Total lens length 483.95 483.95 483.95 483.95 483.95
BF 50.00 50.00 50.00 50.00 50.00

d20 1.31 29.36 64.96 76.16 83.62
d30 90.37 58.58 20.15 10.45 5.85
d33 2.45 6.18 9.02 7.52 4.66
d55 50.00 50.00 50.00 50.00 50.00

Entrance pupil position 76.07 97.09 145.81 171.07 192.42
Exit pupil position -350.00 -350.00 -350.00 -350.00 -350.00
Front principal point position 95.07 124.84 196.81 235.07 267.42
Rear principal point position 30.00 20.00 -10.00 -30.00 -50.00

Zoom lens group data group Start surface Focal length Lens configuration length Front principal point position Rear principal point position
1 1 92.70 151.54 94.70 61.94
2 21 -44.01 35.20 4.94 -25.82
3 31 -104.30 8.19 -0.29 -4.76
4 34 74.98 144.90 55.98 -129.00

Single lens Data lens Start surface Focal length
1 1 -91.65
2 3 -208.80
3 5 243.47
4 7 175.53
5 9 -246.59
6 11 316.24
7 13 423.69
8 15 -163.71
9 17 135.89
10 19 200.14
11 21 -102.06
12 23 -56.95
13 25 143.60
14 27 -101.65
15 29 147.26
16 31 -55.39
17 32 119.76
18 35 196.14
19 37 151.16
20 39 75.67
21 40 -98.04
22 42 264.67
23 44 99.18
24 45 -59.80
25 47 75.40
26 48 -36.16
27 49 124.96
28 51 65.56
29 53 66.72
30 54 -55.02

Figure 2015176129
Figure 2015176129

SP:開口絞り
IP:撮像面
SP: Aperture stop IP: Imaging surface

Claims (6)

物体側より像側へ順に、ズーミングのためには移動しない正の屈折力の第1レンズ群と、ズーミングに際して光軸に沿って移動する負の屈折力からなる第2レンズ群とを有し、
前記第1レンズ群は物体側より像側へ順に、フォーカシングのためには移動しない負の屈折力の第11レンズ群と、フォーカシングに際して光軸に沿って移動する正の屈折力の第12レンズ群と、フォーカシングのためには移動せず正の屈折力の第13レンズ群とを有しており、
前記第13レンズ群中の広角端で無限遠合焦時での最大像高における軸外光束のうち最も入射高が高い光線の入射高をhwとし、(広角端の焦点距離)×(ズーム比)1/4の焦点距離で無限遠合焦時での最大像高における軸外光束のうち最も入射高が高い光線の前記第13レンズ群中への入射高をhzとするとき、
0.4≦|(hz-hw)/hw|
なる式を満足する面に非球面を配置することを特徴とするズームレンズ。
In order from the object side to the image side, a first lens group having a positive refractive power that does not move for zooming, and a second lens group having a negative refractive power that moves along the optical axis during zooming,
The first lens group has, in order from the object side to the image side, an eleventh lens group having a negative refractive power that does not move for focusing, and a twelfth lens group having a positive refractive power that moves along the optical axis during focusing. And a thirteenth lens unit having positive refractive power without moving for focusing,
In the thirteenth lens group, the incident height of the light beam with the highest incident height among the off-axis light beams at the maximum image height at the infinite distance at the wide-angle end is defined as hw, and (focal length at the wide-angle end) × (zoom ratio) ) When the incident height into the thirteenth lens group of the light beam having the highest incident height among the off-axis light fluxes at the maximum image height when focusing at infinity at a focal length of 1/4 is hz,
0.4 ≦ | (hz-hw) / hw |
A zoom lens characterized in that an aspherical surface is arranged on a surface satisfying the following formula.
前記第13レンズ群の最も像側の面は像側に凸であることを特徴とする請求項1に記載のズームレンズ。   2. The zoom lens according to claim 1, wherein the most image side surface of the thirteenth lens group is convex toward the image side. 前記第13レンズ群の最も像側の面は非球面であることを特徴とする請求項2に記載のズームレンズ。   The zoom lens according to claim 2, wherein the most image side surface of the thirteenth lens group is an aspherical surface. 前記非球面を有するレンズの物体側の曲率半径をR1、像側の曲率半径をR2としたとき、
0.4 ≦ (R2+R1)/(R2-R1) ≦ 1.5
なる条件を満足することを特徴とする請求項3に記載のズームレンズ。
When the radius of curvature of the object side of the lens having an aspheric surface is R1, and the radius of curvature of the image side is R2,
0.4 ≤ (R2 + R1) / (R2-R1) ≤ 1.5
The zoom lens according to claim 3, wherein the following condition is satisfied.
前記非球面のレンズ面はレンズ有効径の10割、9割、7割における非球面量をそれぞれΔ10a、Δ9a、Δ7a、前記第1レンズ群の焦点距離をf1とするとき、
0<|Δ10a/f1|<0.00200
0<|Δ9a/f1 |<0.00150
0<|Δ7a/f1 |<0.00070
なる条件を満たすことを特徴とする請求項4に記載のズームレンズ。
When the aspheric lens surface is 10%, 90%, and 70% of the effective diameter of the lens, the amount of aspheric surface is Δ10a, Δ9a, Δ7a, and the focal length of the first lens group is f1,
0 <| Δ10a / f1 | <0.00200
0 <| Δ9a / f1 | <0.00150
0 <| Δ7a / f1 | <0.00070
The zoom lens according to claim 4, wherein the following condition is satisfied.
前記第1レンズ群の焦点距離をf1、前記第13レンズ群の焦点距離をf13としたとき、
1.2<f13/f1<1.5
なる条件を満たすことを特徴とする請求項5に記載のズームレンズ。
When the focal length of the first lens group is f1, and the focal length of the thirteenth lens group is f13,
1.2 <f13 / f1 <1.5
The zoom lens according to claim 5, wherein the following condition is satisfied.
JP2014055017A 2014-03-18 2014-03-18 Zoom lens and photographing system having the same Active JP6306911B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014055017A JP6306911B2 (en) 2014-03-18 2014-03-18 Zoom lens and photographing system having the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014055017A JP6306911B2 (en) 2014-03-18 2014-03-18 Zoom lens and photographing system having the same

Publications (2)

Publication Number Publication Date
JP2015176129A true JP2015176129A (en) 2015-10-05
JP6306911B2 JP6306911B2 (en) 2018-04-04

Family

ID=54255344

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014055017A Active JP6306911B2 (en) 2014-03-18 2014-03-18 Zoom lens and photographing system having the same

Country Status (1)

Country Link
JP (1) JP6306911B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017130480A1 (en) * 2016-01-27 2017-08-03 富士フイルム株式会社 Zoom lens and imaging device
WO2017130478A1 (en) * 2016-01-27 2017-08-03 富士フイルム株式会社 Zoom lens and imaging device
CN111021208A (en) * 2019-11-26 2020-04-17 东南大学 Road surface ultrathin layer flatness control system and control method based on absolute elevation
CN108780213B (en) * 2016-03-16 2020-10-23 富士胶片株式会社 Zoom lens and imaging device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1130749A (en) * 1997-07-11 1999-02-02 Canon Inc Zoom lens
JP2000321496A (en) * 1999-05-10 2000-11-24 Canon Inc Zoom lens
JP2001021804A (en) * 1999-07-06 2001-01-26 Canon Inc Zoom lens
WO2013153793A1 (en) * 2012-04-09 2013-10-17 富士フイルム株式会社 Zoom lens and imaging device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1130749A (en) * 1997-07-11 1999-02-02 Canon Inc Zoom lens
JP2000321496A (en) * 1999-05-10 2000-11-24 Canon Inc Zoom lens
JP2001021804A (en) * 1999-07-06 2001-01-26 Canon Inc Zoom lens
WO2013153793A1 (en) * 2012-04-09 2013-10-17 富士フイルム株式会社 Zoom lens and imaging device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017130480A1 (en) * 2016-01-27 2017-08-03 富士フイルム株式会社 Zoom lens and imaging device
WO2017130478A1 (en) * 2016-01-27 2017-08-03 富士フイルム株式会社 Zoom lens and imaging device
JPWO2017130480A1 (en) * 2016-01-27 2018-09-27 富士フイルム株式会社 Zoom lens and imaging device
JPWO2017130478A1 (en) * 2016-01-27 2018-11-08 富士フイルム株式会社 Zoom lens and imaging device
US10620399B2 (en) 2016-01-27 2020-04-14 Fujifilm Corporation Zoom lens and imaging apparatus
US10642008B2 (en) 2016-01-27 2020-05-05 Fujifilm Corporation Zoom lens and imaging apparatus
CN108780213B (en) * 2016-03-16 2020-10-23 富士胶片株式会社 Zoom lens and imaging device
CN111021208A (en) * 2019-11-26 2020-04-17 东南大学 Road surface ultrathin layer flatness control system and control method based on absolute elevation
CN111021208B (en) * 2019-11-26 2021-07-09 东南大学 Road surface ultrathin layer flatness control method of road surface ultrathin layer flatness control system based on absolute elevation

Also Published As

Publication number Publication date
JP6306911B2 (en) 2018-04-04

Similar Documents

Publication Publication Date Title
JP5241281B2 (en) Zoom lens and imaging apparatus having the same
JP5713763B2 (en) Optical system and optical apparatus having the same
JP6034656B2 (en) Zoom lens and imaging apparatus having the same
JPWO2015146067A1 (en) Zoom lens system, interchangeable lens device, and camera system
US11243384B2 (en) Zoom lens and image pickup apparatus including the same
KR20180101269A (en) Zoom lens and image pickup apparatus including same
JP2013190741A (en) Zoom lens and image capturing device having the same
US10670834B2 (en) Zoom lens and image pickup apparatus
JP2009223008A5 (en)
JP2011075975A (en) Zoom lens and imaging apparatus having the same
US10663703B2 (en) Zoom lens and image pickup apparatus
JP2013088737A (en) Zoom lens and imaging device having the same
US20200132974A1 (en) Zoom lens and image pickup apparatus
JP2013050519A (en) Zoom lens and imaging apparatus including the same
JP2015118304A (en) Zoom lens system
JP2018097240A (en) Optical system, optical instrument and imaging apparatus
JP2015212726A (en) Zoom lens and imaging apparatus including the same
JP2012013817A (en) Zoom lens and imaging device provided with the same
JP6306911B2 (en) Zoom lens and photographing system having the same
JP6164894B2 (en) Zoom lens and imaging apparatus having the same
JP2019191307A (en) Zoom lens and image capturing device having the same
JP2016014819A (en) Zoom lens and imaging device having the same
JP2021184030A (en) Single focus lens and imaging apparatus
JP2011164517A (en) Zoom lens and image pickup device having the same
JP2014202806A5 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171130

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20171214

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20180126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180309

R151 Written notification of patent or utility model registration

Ref document number: 6306911

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151