JP2015175830A - Measurement method of surface characteristic of reinforced glass - Google Patents

Measurement method of surface characteristic of reinforced glass Download PDF

Info

Publication number
JP2015175830A
JP2015175830A JP2014054913A JP2014054913A JP2015175830A JP 2015175830 A JP2015175830 A JP 2015175830A JP 2014054913 A JP2014054913 A JP 2014054913A JP 2014054913 A JP2014054913 A JP 2014054913A JP 2015175830 A JP2015175830 A JP 2015175830A
Authority
JP
Japan
Prior art keywords
speed
sample
measured
lsscw
lsaw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014054913A
Other languages
Japanese (ja)
Other versions
JP6372795B2 (en
Inventor
淳一 櫛引
Junichi Kushibiki
淳一 櫛引
元孝 荒川
Mototaka Arakawa
元孝 荒川
雄二 大橋
Yuji Ohashi
雄二 大橋
邦子 川口
Kuniko Kawaguchi
邦子 川口
宣生 竹田
Nobuo Takeda
宣生 竹田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Original Assignee
Tohoku University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC filed Critical Tohoku University NUC
Priority to JP2014054913A priority Critical patent/JP6372795B2/en
Publication of JP2015175830A publication Critical patent/JP2015175830A/en
Application granted granted Critical
Publication of JP6372795B2 publication Critical patent/JP6372795B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

PROBLEM TO BE SOLVED: To allow a surface characteristic of reinforced glass to be measured by an ultrasonic material characteristic analysis device.SOLUTION: Reinforcing processing is performed under mutually-different conditions on a plurality of reinforced glass samples for calibration curve creation manufactured in the same process as reinforced glass to be measured. Surface stress and stress layer depth are measured. An LSAW speed and an LSSCW speed are measured by an ultrasonic material characteristic analysis device. Relations between the surface stress and the stress layer depth and the LSAW speed and the LSSCW speed are obtained as an approximate line form. The LSAW speed or the LSSCW speed of the reinforced glass sample to be measured is measured, and the surface stress and the stress layer depth are calculated by using the approximate line form from a measured sound speed.

Description

本発明は、超音波材料特性解析装置により測定される漏洩弾性波およびバルク波の伝搬特性、特に位相速度を用いた強化ガラスの表面特性の測定方法に関する。   The present invention relates to a propagation characteristic of leaky elastic waves and bulk waves measured by an ultrasonic material characteristic analyzer, and more particularly to a method for measuring surface characteristics of tempered glass using phase velocity.

強化ガラスは、基板表面に圧縮応力を加え、破壊に対する耐性を高めたガラスであり、従来、自動車、高速鉄道、建築物などの窓ガラス、時計、食器、家具などに利用されてきた。強化ガラスは、軟化点付近まで加熱した後、エアブローなどで急冷し作製される風冷強化ガラス(物理強化ガラス)と溶融塩(代表的には、KNO3)中でNa+イオンからK+イオンへイオン交換を行うことにより作製される化学強化ガラスに大別される。 Tempered glass is a glass in which compressive stress is applied to the surface of a substrate to improve resistance to breakage, and has been conventionally used for window glass, watches, tableware, furniture, etc. for automobiles, high-speed railways, and buildings. Tempered glass is heated to near the softening point and then rapidly cooled by air blow, etc., and is produced by air-cooled tempered glass (physically tempered glass) and molten salt (typically KNO 3 ), from Na + ions to K + ions. It is divided roughly into chemically strengthened glass produced by ion exchange.

最近では、スマートフォンやタブレット端末用として、カバーガラスの薄型化が要求され、強化ガラスには薄型かつ高信頼性なものが要求されている。強化処理の不備は大事故を招く可能性があることから、信頼性が高く高精度な評価技術が要求されている。   Recently, thinning of cover glass is required for smartphones and tablet terminals, and tempered glass is required to be thin and highly reliable. Since incomplete reinforcement processing can lead to major accidents, reliable and highly accurate evaluation technology is required.

強化ガラスに対して評価すべきパラメータは、表面応力(CS)ならびに応力層深さ(DOL)である。化学強化ガラスに対するこれらのパラメータは、基板の化学組成比、強化塩の濃度、および強化処理条件(温度および時間)に依存する。物理強化ガラスの場合には、応力層深さは基板の厚さの約1/6となることから、評価すべきパラメータはCSのみとなる。このCSは、基板の化学組成比および強化処理条件(処理温度および風圧)に依存する。   Parameters to be evaluated for tempered glass are surface stress (CS) as well as stress layer depth (DOL). These parameters for chemically strengthened glass depend on the chemical composition ratio of the substrate, the concentration of strengthening salt, and the strengthening process conditions (temperature and time). In the case of physically strengthened glass, the stress layer depth is about 1/6 of the thickness of the substrate, so the only parameter to be evaluated is CS. This CS depends on the chemical composition ratio of the substrate and the strengthening processing conditions (processing temperature and wind pressure).

強化ガラスの表面応力の評価は、インデンテーション法、曲げ強度試験法などの機械的な方法、光ウェーブガイド効果を利用した方法「特許文献1」、バイアスコープ法、散乱光光弾性法などの光学法により行われてきた。しかしながら、インデンテーション法や曲げ強度試験法は破壊的であり、品質管理に使用できない。一方、光学法は非破壊であるが、屈折率や光弾性定数を別途求めておかなければならない。さらに、光ウェーブガイド効果を利用した方法は、表面の屈折率が高い場合(化学強化ガラスならびにフロートガラスの錫面)にしか適用できない、バイアスコープ法や散乱光光弾性法は、化学強化ガラスには適用できないという問題点がある。   Evaluation of the surface stress of tempered glass includes mechanical methods such as an indentation method and a bending strength test method, a method “Patent Document 1” using the optical waveguide effect, an optical method such as a bias corp method and a scattered light photoelasticity method. Has been done by law. However, the indentation method and the bending strength test method are destructive and cannot be used for quality control. On the other hand, the optical method is nondestructive, but the refractive index and photoelastic constant must be obtained separately. Furthermore, the method using the optical waveguide effect can be applied only to the case where the refractive index of the surface is high (the tin surface of chemically strengthened glass and float glass). There is a problem that cannot be applied.

特開昭53−136886号公報JP-A-53-136886

本発明は、上記従来技術の問題を解決し、超音波材料特性解析装置により測定される漏洩弾性波特性により強化ガラスの表面応力及び応力層深さを含む表面特性を非破壊的に測定する方法を提供することを課題とする。   The present invention solves the above-mentioned problems of the prior art, and measures non-destructively the surface characteristics of the tempered glass including the surface stress and the stress layer depth by the leaky elastic wave characteristics measured by the ultrasonic material characteristic analyzer. It is an object to provide a method.

この発明による強化ガラスの表面特性を測定する方法は、
(1-A) 強化ガラスからなる被測定用試料の漏洩弾性表面波(LSAW)速度又は漏洩擬似縦波(LSSCW)速度を測定する工程と、
(1-B) 測定したLSAW速度又はLSSCW速度から、被測定用試料と同一工程で作製された検量線作成用ガラス試料に対して予め作成したLSAW速度またはLSSCW速度と、表面応力(CS)および応力層深さ(DOL)との間の関係を表す検量線を用いて、CS及びDOLを含む表面特性を求める工程と、
を含む。
The method for measuring the surface properties of the tempered glass according to the present invention is as follows.
(1-A) measuring a leaky surface acoustic wave (LSAW) velocity or a leaky pseudo longitudinal wave (LSSCW) velocity of a sample to be measured made of tempered glass;
(1-B) From the measured LSAW speed or LSSCW speed, the LSAW speed or LSSCW speed created in advance for the calibration curve creation glass sample produced in the same process as the sample to be measured, the surface stress (CS) and Using a calibration curve representing the relationship between the stress layer depth (DOL), determining the surface characteristics including CS and DOL,
including.

本発明によれば、非破壊・非接触、かつ従来法よりも一桁以上高い精度で表面応力ならびに応力層深さの測定が可能であり、生産ラインの中で、製品となる素材の表面応力ならびに応力層深さの測定が可能であり、被測定試料の表面応力ならびに応力層深さの面内分布を測定することが可能な強化ガラスの表面応力ならびに応力層深さの測定方法を提供することができる。   According to the present invention, it is possible to measure surface stress and stress layer depth with non-destructive and non-contact and with an accuracy one digit higher than that of the conventional method. And a method for measuring the surface stress and stress layer depth of tempered glass capable of measuring the surface stress of the sample to be measured and the in-plane distribution of the stress layer depth. be able to.

アルミノ珪酸ガラスに対して、Aは処理時間と光学法により求めた表面応力および応力層深さとの関係を示す図、Bは処理時間とLSAW速度およびLSSCW速度との関係を示す図、CはLSAW速度変化およびLSSCW速度変化と光学法により求めた応力層深さとの間の関係を示す図。For aluminosilicate glass, A shows the relationship between the processing time and the surface stress and stress layer depth determined by the optical method, B shows the relationship between the processing time and the LSAW speed and LSSCW speed, and C shows the LSAW The figure which shows the relationship between the stress layer depth calculated | required with the speed change and the LSSCW speed change, and the optical method. 強化ガラス試料の断面図。Sectional drawing of a tempered glass sample. アルミノ珪酸ガラスに対して、AはLSAW速度の周波数特性を示す図、BはLSSCW速度の周波数特性を示す図。A is a diagram showing frequency characteristics of LSAW speed, and B is a diagram showing frequency characteristics of LSSCW speed, with respect to aluminosilicate glass. アルミノ珪酸ガラスに対する縦波音速、横波音速、密度、および弾性定数c11、c44を表す表1。Table 1 showing longitudinal wave velocity, shear wave velocity, density, and elastic constants c 11 and c 44 for aluminosilicate glass. ソーダライムガラスに対して、Aは風圧と光学法により求めた表面応力との関係を示す図、Bは風圧とLSAW速度の関係を示す図、Cは風圧とLSSCW速度の関係を示す図、DはLSAW速度変化およびLSSCW速度変化と光学法により求めた表面応力との関係を示す図。For soda lime glass, A is a diagram showing the relationship between wind pressure and surface stress determined by optical method, B is a diagram showing the relationship between wind pressure and LSAW velocity, C is a diagram showing the relationship between wind pressure and LSSCW velocity, D FIG. 4 is a graph showing the relationship between the LSAW speed change and the LSSCW speed change and the surface stress obtained by the optical method. 硼珪酸ガラスに対して、Aは風圧と光学法により求めた表面応力との関係を示す図、Bは風圧とLSAW速度の関係を示す図、Cは風圧とLSSCW速度の関係を示す図、DはLSAW速度変化およびLSSCW速度変化と光学法により求めた表面応力との関係を示す図。For borosilicate glass, A is a diagram showing the relationship between wind pressure and surface stress obtained by optical method, B is a diagram showing the relationship between wind pressure and LSAW velocity, C is a diagram showing the relationship between wind pressure and LSSCW velocity, D FIG. 4 is a graph showing the relationship between the LSAW speed change and the LSSCW speed change and the surface stress obtained by the optical method. 物理強化ガラスに対する漏洩弾性波速度の表面応力に対する感度と分解能を示す表2。Table 2 shows the sensitivity and resolution to surface stress of leaky elastic wave velocity for physically strengthened glass. 本発明による強化ガラスの表面特性を求める手順を示すフローチャートである。It is a flowchart which shows the procedure which calculates | requires the surface characteristic of the tempered glass by this invention.

[化学強化ガラス]
化学強化ガラス試料として、アルミノ珪酸ガラスを5枚用意した。試料の大きさは50mm×50mmであり、試料の厚さは0.7mmである。4枚の試料に対して、425℃のKNO3中で、それぞれ0.5h、1h、3h、8hの強化処理を行った。また、1枚の試料に対しては強化処理を行わなかった(未強化試料)。また、通常の強化処理を行った市販のアルミノ珪酸ガラス(試料H)、およびその未強化試料(試料N)も用意した。試料の大きさは100mm×50mmであり、試料の厚さは0.7mmである。試料Nと同じロットの別の試料(40mm×30mm、試料の厚さは0.7mm)に対して、蛍光X線分析法により化学組成比を分析した結果、SiO2が68.7wt%、Al2O3が15.5wt%、Na2O3が11.8wt%、MgOが3.3wt%、SnOが0.4wt%となった。
[Chemical tempered glass]
Five aluminosilicate glasses were prepared as chemically strengthened glass samples. The sample size is 50 mm × 50 mm, and the sample thickness is 0.7 mm. Four samples were strengthened in KNO 3 at 425 ° C. for 0.5 h, 1 h, 3 h, and 8 h, respectively. Further, no strengthening treatment was performed on one sample (unreinforced sample). Moreover, the commercially available aluminosilicate glass (sample H) which performed the normal reinforcement | strengthening process, and the unstrengthened sample (sample N) were also prepared. The sample size is 100 mm × 50 mm, and the sample thickness is 0.7 mm. The chemical composition ratio of another sample (40 mm x 30 mm, sample thickness 0.7 mm) in the same lot as sample N was analyzed by X-ray fluorescence analysis. As a result, SiO 2 was 68.7 wt%, Al 2 O 3 was 15.5 wt%, Na 2 O 3 was 11.8 wt%, MgO was 3.3 wt%, and SnO was 0.4 wt%.

強化処理を行った試料に対して、表面応力計(FSM-6000LE、折原製作所)により表面応力と応力層深さを測定した。測定結果を図1Aに示す。処理時間が長くなるに従い、応力層は深くなった。一方、3時間よりも処理時間が長くなると、表面応力は小さくなった。これは、処理時間が長くなると応力緩和が生じるためである。   The surface stress and the stress layer depth were measured with a surface stress meter (FSM-6000LE, Orihara Seisakusho) for the sample subjected to the strengthening treatment. The measurement results are shown in FIG. 1A. As the processing time increased, the stress layer became deeper. On the other hand, when the treatment time was longer than 3 hours, the surface stress was reduced. This is because stress relaxation occurs as the treatment time increases.

次に、直線集束ビーム超音波材料解析(LFB-UMC)システムにより、超音波周波数を225MHzとして、LSAW速度、LSSCW速度の測定を行った。LSAW速度、LSSCW速度の測定原理・方法は、「参考文献1」と「参考文献2」に詳しい。LSAWやLSSCWは弾性表面波であり、深さ方向の分解能は1波長程度である。超音波周波数が225MHzのとき、LSAW、LSSCWの波長は、それぞれ14μm、26μmである。LSAWやLSSCWの波長は、図1Aに示した応力層深さと同じオーダーであることから、強化ガラス基板は図2のように深さxの圧縮応力層を有する層状構造試料として取り扱うことができる。   Next, the LSAW velocity and LSSCW velocity were measured using a linear focused beam ultrasonic material analysis (LFB-UMC) system with an ultrasonic frequency of 225 MHz. The measurement principle and method of LSAW speed and LSSCW speed are detailed in “Reference 1” and “Reference 2”. LSAW and LSSCW are surface acoustic waves, and the resolution in the depth direction is about one wavelength. When the ultrasonic frequency is 225 MHz, the wavelengths of LSAW and LSSCW are 14 μm and 26 μm, respectively. Since the wavelengths of LSAW and LSSCW are in the same order as the stress layer depth shown in FIG. 1A, the tempered glass substrate can be handled as a layered structure sample having a compressive stress layer of depth x as shown in FIG.

図1Bに、処理時間とLSAW速度およびLSSCW速度との間の関係を示す。強化処理を行うことにより、LSAW速度、LSSCW速度は、未処理基板のそれらよりも大きくなった。強化層の弾性定数が未強化層のそれよりも大きいためである。   FIG. 1B shows the relationship between processing time and LSAW and LSSCW rates. By performing the strengthening process, the LSAW speed and the LSSCW speed became higher than those of the untreated substrate. This is because the elastic constant of the reinforced layer is larger than that of the unreinforced layer.

各試料に対して強化ガラス試料に対するLSAW速度やLSSCW速度の測定値と未処理基板に対する測定値との差分を求め、それらと応力層深さとの間の関係を求めた結果を図1Cに示す。約1波長以内に相当するデータとして、LSAW速度に対しては未処理基板と0.5h、LSSCW速度に対しては未処理基板、0.5h,1h,3hの試料を用いて、近似直線を引いた。近似直線の傾きより、LSAW速度、LSSCW速度の応力層深さに対する感度は、それぞれ0.46μm/(m/s)、0.18μm/(m/s)である。LSAW速度、LSSCW速度の測定再現性は、±2σ(σ:標準偏差)でそれぞれ±0.25m/s以内、±2.9m/s以内である。このため、LSAW速度、LSSCW速度の応力層深さに対する分解能は、それぞれ±0.11μm、±0.52μmとなる。   For each sample, the difference between the measured value of the LSAW speed or LSSCW speed for the tempered glass sample and the measured value for the untreated substrate was determined, and the result of determining the relationship between them and the stress layer depth is shown in FIG. 1C. As data corresponding to about one wavelength, an approximate straight line was drawn using the untreated substrate and 0.5h for the LSAW speed, and the untreated substrate and 0.5h, 1h, and 3h samples for the LSSCW speed. . From the slope of the approximate line, the sensitivity of the LSAW velocity and LSSCW velocity to the stress layer depth is 0.46 μm / (m / s) and 0.18 μm / (m / s), respectively. The measurement reproducibility of LSAW speed and LSSCW speed is within ± 0.25 m / s and ± 2.9 m / s, respectively, with ± 2σ (σ: standard deviation). Therefore, the resolution of the LSAW speed and the LSSCW speed with respect to the stress layer depth is ± 0.11 μm and ± 0.52 μm, respectively.

図1Cでは、ほぼ1波長の領域までは、速度変化と応力層深さの関係は線形であるが、応力層がそれよりも深くなると近似直線から離れた。これは、LSAWやLSSCWの波長よりも応力層が深くなると、LSAWやLSSCWの存在領域が応力層部のみとなり、速度変化が飽和するためである。より深い圧縮応力層の深さを評価するためには、測定の超音波周波数を225MHzよりも低くし、波長を長くすればよい。   In FIG. 1C, the relationship between the speed change and the stress layer depth is linear up to the region of approximately one wavelength, but it deviates from the approximate line when the stress layer becomes deeper than that. This is because when the stress layer becomes deeper than the wavelength of LSAW or LSSCW, the region where LSAW or LSSCW exists becomes only the stress layer portion, and the speed change is saturated. In order to evaluate the depth of the deeper compressive stress layer, the ultrasonic frequency of measurement should be set lower than 225 MHz and the wavelength increased.

次に、LSAW速度とLSSCW速度を100MHzから300MHzまで5MHzおきに周波数を変えながら測定を行った。LSAW速度およびLSSCW速度に対して、それぞれ未処理基板に対する測定値との差分を、それぞれ図3A、図3Bに示す。   Next, the LSAW speed and LSSCW speed were measured while changing the frequency every 5 MHz from 100 MHz to 300 MHz. Differences between the LSAW speed and the LSSCW speed from the measured values for the untreated substrates are shown in FIGS. 3A and 3B, respectively.

LSAW速度の結果を見ると、0.5h,1h処理した試料は周波数が高くなるに従い、速度は大きくなり、3h,8h処理した試料は速度が小さくなった。100MHz、300MHzのLSAWの波長は、それぞれ32μm、11μmである。周波数が高くなるに従い、波長が短くなることから、より表面の特性を反映する。すなわち、表面応力層の深さ方向の弾性率分布が均一ではなく、0.5h、1h処理した試料は、表面から深くなるほど弾性率が低くなり、3h,8h処理した試料は、表面応力層内において表面から深くなるほど弾性率が高くなっていると考えられる。   Looking at the results of the LSAW speed, as the frequency increased, the sample treated with 0.5 h and 1 h increased in speed, and the sample treated with 3 h and 8 h decreased in speed. The wavelengths of 100 MHz and 300 MHz LSAW are 32 μm and 11 μm, respectively. As the frequency becomes higher, the wavelength becomes shorter, which reflects more surface characteristics. That is, the elastic modulus distribution in the depth direction of the surface stress layer is not uniform, and the sample treated with 0.5 h for 1 h has a lower elastic modulus as it gets deeper from the surface, and the sample treated with 3 h, 8 h It is considered that the elastic modulus increases as the depth from the surface increases.

LSSCW速度の結果を見ると、すべての試料で、周波数が高くなるに従い、速度が大きくなった。100MHz、300MHzのLSSCWの波長は、それぞれ58μm、19μmである。LSSCWは、LSAWと比べて波長が長く、水中と基板の両方にエネルギーを放射しながら伝搬するため、LSAWよりも表面集中率が低い。また、LSAWの粒子変位は基板に垂直な成分、LSSCWの粒子変位は伝搬方向に平行な成分が主であり、それぞれ横波、縦波に近い。これらの原因により、LSSCW速度の周波数特性の傾向は、LSAW速度のそれとは異なった。   Looking at the LSSCW speed results, the speed increased with increasing frequency in all samples. The wavelengths of LSSCW at 100 MHz and 300 MHz are 58 μm and 19 μm, respectively. Since LSSCW has a longer wavelength than LSAW and propagates while radiating energy to both water and the substrate, the surface concentration rate is lower than LSAW. The LSAW particle displacement is mainly a component perpendicular to the substrate, and the LSSCW particle displacement is mainly a component parallel to the propagation direction, which is close to a transverse wave and a longitudinal wave, respectively. For these reasons, the trend of frequency characteristics of LSSCW speed is different from that of LSAW speed.

音速の変化は、弾性定数と密度の変化に起因する。その要因について検討するために、試料Hと試料Nに対して、バルク音響特性の測定により評価を行った。図2に示すような試料モデルにおいては、バルク波(縦波・横波)音速測定は試料の厚さ方向、密度は試料全体に対して行うことから、強化ガラス試料に対しては、厚さ2xの圧縮応力層と厚さh-2xの未強化層を合わせた測定値が得られる。光ウェーブガイド効果を用いた表面応力計(FSM-6000LE、折原製作所)により評価した結果、試料Hに対する圧縮応力は762MPa、応力層深さは49μmとなった。   The change in sound speed is due to the change in elastic constant and density. In order to examine the cause, the sample H and the sample N were evaluated by measuring the bulk acoustic characteristics. In the sample model as shown in FIG. 2, the bulk wave (longitudinal wave / transverse wave) sound velocity measurement is performed in the thickness direction of the sample and the density is performed on the entire sample. The measured value is obtained by combining the compressive stress layer and the unreinforced layer of thickness h-2x. As a result of evaluation by a surface stress meter (FSM-6000LE, Orihara Seisakusho) using the optical waveguide effect, the compressive stress to the sample H was 762 MPa, and the stress layer depth was 49 μm.

LFB-UMCシステムの超音波デバイスを、LFBデバイスから平面デバイスに交換し、基板厚さ方向に縦波音速Vlと横波音速Vsの測定を行った。測定方法は「参考文献3」に詳しい。また、およびアルキメデスの原理に基づき密度ρの測定を行った「参考文献4」。弾性定数c11、c44は、それぞれ以下の式(1)、式(2)より求めた。
c11=ρVl 2 (1)
c44=ρVs 2 (2)
The ultrasonic device of the LFB-UMC system was changed from an LFB device to a planar device, and longitudinal wave velocity V l and transverse wave velocity V s were measured in the substrate thickness direction. The measurement method is detailed in “Reference 3”. Also, “Reference 4” in which density ρ was measured based on Archimedes' principle. The elastic constants c 11 and c 44 were obtained from the following formulas (1) and (2), respectively.
c 11 = ρV l 2 (1)
c 44 = ρV s 2 (2)

測定結果を図4の表1に示す。未強化試料、強化試料ともこの周波数帯で速度分散を示すため、225MHzの値を示した。強化試料のVl、Vs、ρ、c11、c44は、未強化試料のそれらよりも、それぞれ0.55%、0.40%、0.16%、1.3%、1.0%大きくなった。 The measurement results are shown in Table 1 in FIG. A value of 225 MHz was indicated for both the unreinforced sample and the reinforced sample, which showed velocity dispersion in this frequency band. V l , V s , ρ, c 11 , and c 44 of the reinforced sample were 0.55%, 0.40%, 0.16%, 1.3%, and 1.0% larger than those of the unreinforced sample, respectively.

図2のモデルに基づき、圧縮応力層を単一層、応力層深さを光学法による測定値、試料Hと試料Nの音響特性の差が強化層のみによるものと仮定する。試料の厚さをh、応力層深さをxとし、未強化試料の密度をρN、強化試料の密度をρH、圧縮応力層の密度をρCとする。強化試料は、厚さ2xの強化層と厚さ(h-2x)の未強化層を足し合わせたものとして表せることから、式(3)が得られる。 Based on the model of FIG. 2, it is assumed that the compressive stress layer is a single layer, the stress layer depth is a measured value by an optical method, and the difference in acoustic characteristics between the sample H and the sample N is due to only the enhancement layer. The thickness of the sample is h, the stress layer depth is x, the density of the unreinforced sample is ρ N , the density of the reinforced sample is ρ H , and the density of the compressive stress layer is ρ C. Since the reinforced sample can be expressed as a combination of the reinforced layer having a thickness of 2x and the unreinforced layer having a thickness (h-2x), Equation (3) is obtained.

式(3)を変形することにより式(4)が得られ、未強化試料と強化試料に対する測定から圧縮応力層の密度ρCを抽出することができる。 By transforming Equation (3), Equation (4) is obtained, and the density ρ C of the compressive stress layer can be extracted from the measurements on the unreinforced sample and the reinforced sample.

縦波音速、横波音速に対しても、未強化試料の音速をVN、強化試料の音速をVH、強化層の音速をVCとすると、同様に以下の式(5)から、強化層の音速VCを抽出できる。 Similarly, for longitudinal wave velocity and shear wave velocity, the sound velocity of the unreinforced sample is V N , the sound velocity of the reinforced sample is V H , and the sound velocity of the enhancement layer is V C. the speed of sound V C be extracted of.

さらに、強化層の弾性定数をcCとすると、以下の式(6)から、強化層の弾性定数cCを求めることができる。
cCCVC 2 (6)
Furthermore, if the elastic constant of the reinforcing layer is c C , the elastic constant c C of the reinforcing layer can be obtained from the following equation (6).
c C = ρ C V C 2 (6)

強化層の圧縮応力層のVl、Vs、ρ、c11、c44を見積もった結果を図4の表1に併せて示す。Vl、Vs、ρ、c11、c44の変化は、それぞれ+3.9%、+2.8%、+1.2%、+9.1%、+6.9%となった。c11、c44の変化はρの変化に比べ、それぞれ7.8倍、5.9倍大きい。このため、強化処理による表面応力層の音速変化は、主に弾性定数の変化によるものであることがわかる。 The results of estimating V 1 , V s , ρ, c 11 , and c 44 of the compressive stress layer of the reinforcing layer are also shown in Table 1 of FIG. The changes in V l , V s , ρ, c 11 , and c 44 were + 3.9%, + 2.8%, + 1.2%, + 9.1%, and + 6.9%, respectively. The changes in c 11 and c 44 are 7.8 times and 5.9 times larger than the change in ρ, respectively. For this reason, it can be seen that the change in the sound velocity of the surface stress layer due to the strengthening treatment is mainly due to the change in the elastic constant.

[物理強化ガラス]
物理強化ガラス試料として、ソーダライムガラスと硼珪酸ガラスをそれぞれ4枚、3枚用意した。ソーダライムガラスは、試料の大きさが150mm×150mm、厚さが3.7mmであり、硼珪酸ガラスは、試料の大きさが200mm×200mm、厚さが3.7mmである。3枚のソーダライムガラスに対して、650℃で4分間保持したあと、それぞれ150mmAq、300mmAq, 450mmAqの風圧で急冷した。2枚の硼珪酸ガラスに対して、670℃で4分間保持したあと、それぞれ0.7kg/cm2、1.4kg/cm2の風圧で急冷した。ソーダライムガラスと硼珪酸ガラス、それぞれ1枚の試料に対しては、強化処理を行わなかった(未強化試料)。また、別の未強化試料に対して、蛍光X線分析法により化学組成比を分析した結果、ソーダライムガラスに対しては、SiO2が75.5wt%、Al2O3が1.7wt%、Na2O3が9.1wt%、MgOが3.2wt%、CaOが8.9wt%、K2Oが1.3wt%、BaOが0.1wt%となり、硼珪酸ガラスに対しては、SiO2が83.9wt%、B2O3が10.6wt%、Al2O3が2.4wt%、Na2O3が2.4wt%、K2Oが0.6wt%となった。
[Physical tempered glass]
Four and three soda lime glasses and borosilicate glasses were prepared as physically strengthened glass samples, respectively. The soda lime glass has a sample size of 150 mm × 150 mm and a thickness of 3.7 mm, and the borosilicate glass has a sample size of 200 mm × 200 mm and a thickness of 3.7 mm. The three soda lime glasses were held at 650 ° C. for 4 minutes and then rapidly cooled with a wind pressure of 150 mmAq, 300 mmAq, and 450 mmAq, respectively. Against two borosilicate glass, after holding for 4 minutes at 670 ° C., respectively 0.7 kg / cm 2, and quenched with wind pressure of 1.4 kg / cm 2. The soda-lime glass and the borosilicate glass were each subjected to no tempering treatment (unreinforced sample). As a result of analyzing the chemical composition ratio of another unreinforced sample by fluorescent X-ray analysis, it was found that for soda lime glass, SiO 2 was 75.5 wt%, Al 2 O 3 was 1.7 wt%, Na 2 O 3 is 9.1 wt%, MgO is 3.2 wt%, CaO is 8.9wt%, K 2 O is 1.3 wt%, BaO is next 0.1 wt%, relative to the borosilicate glass, SiO 2 is 83.9wt%, B 2 O 3 was 10.6 wt%, Al 2 O 3 was 2.4 wt%, Na 2 O 3 was 2.4 wt%, and K 2 O was 0.6 wt%.

物理強化ガラスの表面応力層の深さは、基板の約1/6となることから、これらの試料の表面応力層深さは約0.6mmである。この値は、これらのガラスに対する225MHzのときのLSAWやLSSCWの波長よりも十分に大きいことから、強化層をバルク基板とみなして計測を行うことが可能である。   Since the depth of the surface stress layer of the physically strengthened glass is about 1/6 of the substrate, the surface stress layer depth of these samples is about 0.6 mm. Since this value is sufficiently larger than the wavelength of LSAW or LSSCW at 225 MHz for these glasses, it is possible to measure the reinforcing layer as a bulk substrate.

ソーダライムガラスに対しては、錫面である裏面に対して表面応力計(FSM-6000LE)により表面応力を測定した。硼珪酸ガラスに対しては、表面応力計による測定ができなかったため、ガラス断面応力計(SCALP-04、Glasstress, Ltd.)により、試料両面に対して表面応力の測定を行った。測定結果を図5A、図6Aに示す。どちらのガラスも風圧が高いほど、表面応力が高くなった。   For soda lime glass, the surface stress was measured with a surface stress meter (FSM-6000LE) on the back surface, which is the tin surface. Since borosilicate glass could not be measured with a surface stress meter, surface stress was measured on both sides of the sample with a glass cross-sectional stress meter (SCALP-04, Glasstress, Ltd.). The measurement results are shown in FIGS. 5A and 6A. In both glasses, the higher the wind pressure, the higher the surface stress.

各試料に対して、超音波周波数を225MHzとして、LSAW速度とLSSCW速度の測定を行った。ソーダライムガラスに対する測定結果を図5B、図5Cに、硼珪酸ガラスに対する測定結果を図6B、図6Cに示す。どちらの試料とも両方のモードに対して、風圧が高いほど速度は低下した。   The LSAW speed and LSSCW speed were measured for each sample at an ultrasonic frequency of 225 MHz. The measurement results for soda lime glass are shown in FIGS. 5B and 5C, and the measurement results for borosilicate glass are shown in FIGS. 6B and 6C. In both samples, the velocity decreased with increasing wind pressure for both modes.

ソーダライムガラスは、フロート法により作製されており、フロートバス内で溶かした原料を溶融金属であるSn上に浮かべ成型が行われる。このため、試料表面近傍において、表面(空気に接する面)はNaやCaの濃度が低下し、裏面(溶融金属に接する面)はSnの濃度が高くなる「参考文献5」。このため、両ガラスとも、表面よりも裏面のほうが、LSAW速度およびLSSCW速度が小さくなった。   Soda lime glass is produced by a float process, and a raw material melted in a float bath is floated on Sn, which is a molten metal. For this reason, in the vicinity of the sample surface, the concentration of Na and Ca on the surface (surface in contact with air) decreases, and the concentration of Sn on the back surface (surface in contact with molten metal) increases (Reference 5). For this reason, in both glasses, the LSAW speed and the LSSCW speed were lower on the back surface than on the front surface.

LSAW速度、LSSCW速度の未処理基板に対する値との差と表面応力との間の関係を図5D、図6Dに示す。速度差が小さくなるほど、表面応力が高くなった。   FIG. 5D and FIG. 6D show the relationship between the difference between the LSAW speed and the value of the LSSCW speed for the untreated substrate and the surface stress. The smaller the speed difference, the higher the surface stress.

LSAW速度とLSSCW速度の表面応力に対する感度と分解能を図7の表2に示す。LSAW速度を用いた場合、本手法の分解能はソーダライムガラスに対して±0.8MPa以内、硼珪酸ガラスに対して±0.5MPa以内となった。光学法による表面応力の分解能は±20MPaである。このため、本手法の分解能は光学法に比べ25倍以上高い。   Table 2 in FIG. 7 shows the sensitivity and resolution of the LSAW speed and LSSCW speed with respect to the surface stress. When the LSAW speed was used, the resolution of this method was within ± 0.8 MPa for soda-lime glass and within ± 0.5 MPa for borosilicate glass. The resolution of surface stress by optical method is ± 20MPa. For this reason, the resolution of this method is more than 25 times higher than the optical method.

[表面特性を求めるフローチャート]
以上のように説明した第1および第2実施例に基づいて、この発明による強化ガラスの表面特性を求めるための基本的な処理手順を図8に示すフローチャートを参照にして以下に説明する。
ステップS1:被測定用試料と同一工程で作製された複数の検量線作成用ガラス試料に対し、それぞれ異なる条件で強化処理を行う。
ステップS2:ステップS1で得られた試料に対して、CSおよびDOLと、LSAW速度又はLSSCW速度を測定する。
ステップS3:ステップS2の測定結果より、LSAW速度又はLSSCW速度と、CSおよびDOLとの間の関係、すなわち検量線を求める。
ステップS4:被測定用試料に対して、LSAW速度またはLSSCW速度を測定する。
ステップS5:ステップS4で得られたLSAW速度またはLSSCW速度を、ステップS3で求めた検量線に代入してCSおよびDOLを求める。
[Flow chart for obtaining surface characteristics]
Based on the first and second embodiments described above, the basic processing procedure for determining the surface characteristics of the tempered glass according to the present invention will be described below with reference to the flowchart shown in FIG.
Step S1: Reinforcing treatment is performed under different conditions for a plurality of calibration curve creating glass samples prepared in the same process as the sample to be measured.
Step S2: CS and DOL and LSAW speed or LSSCW speed are measured for the sample obtained in step S1.
Step S3: A relationship between the LSAW speed or the LSSCW speed and CS and DOL, that is, a calibration curve is obtained from the measurement result of step S2.
Step S4: The LSAW speed or LSSCW speed is measured for the sample to be measured.
Step S5: The LSAW speed or LSSCW speed obtained in step S4 is substituted into the calibration curve obtained in step S3 to obtain CS and DOL.

被測定用試料と同一工程で作製された検量線作成用試料に対して、近似直線式が予め得られている場合には、ステップS4、S5からCSおよびDOLを求めることが可能である。   If an approximate linear equation is obtained in advance for a calibration curve creation sample prepared in the same process as the sample to be measured, CS and DOL can be obtained from steps S4 and S5.

本発明を用いることにより、強化ガラスの表面応力、応力層深さ、およびそれらの分布を非破壊・非接触、かつ従来法よりも高精度に求めることが可能である。ガラス製造業者が利用することにより、作製したガラスの表面応力、応力層深さ、およびそれらの分布の評価、ならびにガラス作製プロセスの評価を行うことが可能である。化学強化処理を行うと、強化塩のK+イオン濃度は低下し、Na+イオン濃度が増加するため、同じ処理温度、処理時間としても、強化後のガラスの特性は異なる。強化処理前のガラスの全数検査やサンプリング検査、強化処理後のガラスの全数検査およびサンプリング検査に用いることが可能である。この評価結果を用いることにより、所望の特性を有するように、強化処理条件を制御したガラス作製プロセス条件の改善に用いることができる。また、本評価法により品質管理を行いながら、強化ガラスの製造を行うことも可能である。また、ガラスユーザーが用いることにより、受け入れ試料の品質管理、選別に用いることが可能である。 By using the present invention, it is possible to obtain the surface stress, the stress layer depth, and their distribution of the tempered glass in a non-destructive / non-contact manner and with higher accuracy than the conventional method. By utilizing the glass manufacturer, it is possible to evaluate the surface stress, the stress layer depth and the distribution of the produced glass, and the glass production process. When the chemical strengthening treatment is performed, the K + ion concentration of the strengthening salt decreases and the Na + ion concentration increases. Therefore, the characteristics of the glass after strengthening are different even at the same treatment temperature and treatment time. It can be used for 100% inspection and sampling inspection of glass before the tempering treatment, 100% inspection and sampling inspection of glass after tempering treatment. By using this evaluation result, it can be used to improve the glass production process conditions in which the tempering treatment conditions are controlled so as to have desired characteristics. Moreover, it is also possible to manufacture tempered glass while performing quality control by this evaluation method. In addition, when used by a glass user, it can be used for quality control and sorting of received samples.

1 強化ガラス基板
2 圧縮応力層
1 Tempered glass substrate 2 Compressive stress layer

[参考文献1]
J. Kushibiki and N. Chubachi, "Material characterization by line-focus-beam acoustic microscope," IEEE Trans. Sonics Ultrason., Vol. SU-32, pp. 189-212 (1985).
[参考文献2]
J. Kushibiki, Y. Ono, Y. Ohashi, and M. Arakawa, "Development of the line-focus-beam ultrasonic material characterization system," IEEE Trans. Ultrason., Ferroelect., Freq. Contr., Vol. 49, pp. 99-113 (2002).
[参考文献3]
J. Kushibiki, and M. Arakawa, "Diffraction effects on bulk-wave ultrasonic velocity and attenuation measurements," J. Acoust. Soc. Am., Vol. 108, pp. 564-573 (2000).
[参考文献4]
H. A. Bowman, R. M. Schoonover, and M. W. Jones, “Procedure for high precision density determinations by hydrostatic weighing,” J. Res. Natl. Bur. Stand., Vol. 71C, pp. 179-198 (1967).
[参考文献5]
大和田, 角田, "ガラスの洗浄技術," NEW GLASS, Vol. 23, pp. 7-20 (2008).
[Reference 1]
J. Kushibiki and N. Chubachi, "Material characterization by line-focus-beam acoustic microscope," IEEE Trans. Sonics Ultrason., Vol. SU-32, pp. 189-212 (1985).
[Reference 2]
J. Kushibiki, Y. Ono, Y. Ohashi, and M. Arakawa, "Development of the line-focus-beam ultrasonic material characterization system," IEEE Trans. Ultrason., Ferroelect., Freq. Contr., Vol. 49, pp. 99-113 (2002).
[Reference 3]
J. Kushibiki, and M. Arakawa, "Diffraction effects on bulk-wave ultrasonic velocity and attenuation measurements," J. Acoust. Soc. Am., Vol. 108, pp. 564-573 (2000).
[Reference 4]
HA Bowman, RM Schoonover, and MW Jones, “Procedure for high precision density determinations by hydrostatic weighing,” J. Res. Natl. Bur. Stand., Vol. 71C, pp. 179-198 (1967).
[Reference 5]
Owada, Kakuda, "Glass Cleaning Technology," NEW GLASS, Vol. 23, pp. 7-20 (2008).

Claims (5)

強化ガラスの表面特性の測定方法であり、
(1-A) 強化ガラスからなる被測定用試料の漏洩弾性表面波(LSAW)速度又は漏洩擬似縦波(LSSCW)速度を測定する工程と、
(1-B) 測定したLSAW速度又はLSSCW速度から、被測定用試料と同一工程で作製された検量線作成用ガラス試料に対して予め作成したLSAW速度またはLSSCW速度と、表面応力(CS)および応力層深さ(DOL)との間の関係を表す検量線を用いて、CS及びDOLを含む表面特性を求める工程と、
を含む強化ガラスの表面特性の測定方法。
It is a method for measuring the surface characteristics of tempered glass,
(1-A) measuring a leaky surface acoustic wave (LSAW) velocity or a leaky pseudo longitudinal wave (LSSCW) velocity of a sample to be measured made of tempered glass;
(1-B) From the measured LSAW speed or LSSCW speed, the LSAW speed or LSSCW speed created in advance for the calibration curve creation glass sample produced in the same process as the sample to be measured, the surface stress (CS) and Using a calibration curve representing the relationship between the stress layer depth (DOL), determining the surface characteristics including CS and DOL,
Method for measuring surface characteristics of tempered glass including
請求項1記載の強化ガラスの表面特性の測定方法は更に、
(2-A) 被測定用試料と同一工程で作製された複数の検量線作成用ガラス試料に対し、それぞれ異なる条件で強化処理を行う工程と、
(2-B) 前記工程(2-A)で得られた試料に対して、表面応力(CS)および応力層深さ(DOL)と、漏洩弾性表面波(LSAW)速度又は漏洩擬似縦波(LSSCW)速度を測定する工程と、
(2-C) 前記工程(2-B)で得られた結果より、LSAW速度又はLSSCW速度と、CSおよびDOLとの間の前記関係を表す検量線を求める工程と、
を含む強化ガラスの表面特性の測定方法。
The method for measuring surface characteristics of tempered glass according to claim 1 further comprises:
(2-A) A step of performing a strengthening process under different conditions for a plurality of calibration curve preparation glass samples prepared in the same process as the sample to be measured;
(2-B) For the sample obtained in the step (2-A), surface stress (CS) and stress layer depth (DOL), leakage surface acoustic wave (LSAW) velocity or leakage pseudo longitudinal wave ( LSSCW) measuring the speed,
(2-C) From the result obtained in the step (2-B), obtaining a calibration curve representing the relationship between the LSAW speed or LSSCW speed and CS and DOL;
Method for measuring surface characteristics of tempered glass including
請求項1又は2に記載の強化ガラスの表面特性の測定方法において、前記工程(1-A)は、LSAW速度又はLSSCW速度の測定を前記被測定用試料の表面上の2点以上で測定を行うことにより、表面応力及び応力層深さの面内分布を求める工程を含む強化ガラスの表面特性の測定方法。   3. The method for measuring surface characteristics of tempered glass according to claim 1 or 2, wherein the step (1-A) is performed by measuring LSAW speed or LSSCW speed at two or more points on the surface of the sample to be measured. A method for measuring the surface characteristics of tempered glass, comprising a step of obtaining an in-plane distribution of surface stress and stress layer depth by performing. 請求項1又は2記載の強化ガラスの表面特性の測定方法において、前記工程(1-A)は更に前記被測定用試料のLSAW速度またはLSSCW速度の周波数特性の測定する工程と、測定した周波数特性から圧縮応力層の表面特性の深さ方向分布を求める工程を含む強化ガラスの表面特性の測定方法。   3. The method of measuring surface characteristics of tempered glass according to claim 1 or 2, wherein the step (1-A) further comprises a step of measuring the frequency characteristics of the LSAW speed or LSSCW speed of the sample to be measured, and the measured frequency characteristics. A method for measuring the surface characteristics of tempered glass, including the step of obtaining the depth direction distribution of the surface characteristics of the compressive stress layer. 請求項1乃至4のいずれか記載の強化ガラスの表面特性の測定方法において更に、未強化ガラス基板試料と強化ガラス基板試料を用意し、両方のガラス基板試料に対して、基板に垂直な方向に伝搬するバルク波の音速、試料の密度を測定する工程と、測定したバルク波の音速と、密度と、前記被測定用試料の圧縮応力層の厚さから前記強化層の弾性定数を計算で求める工程とを含む強化ガラスの表面特性の測定方法。   5. The method for measuring surface characteristics of tempered glass according to claim 1, further comprising preparing an untempered glass substrate sample and a tempered glass substrate sample, wherein both the glass substrate samples are oriented in a direction perpendicular to the substrate. The elastic constant of the reinforcing layer is calculated by calculating the sound velocity of the propagating bulk wave and the density of the sample, the sound velocity and density of the measured bulk wave, and the thickness of the compressive stress layer of the sample to be measured. A method for measuring surface characteristics of tempered glass including a process.
JP2014054913A 2014-03-18 2014-03-18 Method for measuring surface properties of tempered glass Active JP6372795B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014054913A JP6372795B2 (en) 2014-03-18 2014-03-18 Method for measuring surface properties of tempered glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014054913A JP6372795B2 (en) 2014-03-18 2014-03-18 Method for measuring surface properties of tempered glass

Publications (2)

Publication Number Publication Date
JP2015175830A true JP2015175830A (en) 2015-10-05
JP6372795B2 JP6372795B2 (en) 2018-08-15

Family

ID=54255126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014054913A Active JP6372795B2 (en) 2014-03-18 2014-03-18 Method for measuring surface properties of tempered glass

Country Status (1)

Country Link
JP (1) JP6372795B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021061614A (en) * 2016-04-05 2021-04-15 Agc株式会社 Translucent opening member
US11035730B2 (en) 2018-10-31 2021-06-15 Corning Incorporated Systems and methods for characterizing high-scatter glass-based samples using light-scattering polarimetry

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4503708A (en) * 1983-02-07 1985-03-12 Board Of Trustees Of The Leland Stanford Junior University Reflection acoustic microscope for precision differential phase imaging
WO2012002493A1 (en) * 2010-06-30 2012-01-05 国立大学法人東北大学 Method for measuring the fictive temperature of optical glass

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4503708A (en) * 1983-02-07 1985-03-12 Board Of Trustees Of The Leland Stanford Junior University Reflection acoustic microscope for precision differential phase imaging
WO2012002493A1 (en) * 2010-06-30 2012-01-05 国立大学法人東北大学 Method for measuring the fictive temperature of optical glass

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ケマス アフマド ザイニ トシン: "超音波顕微鏡による表面改質ガラスの非破壊評価と接合体の残留応力測定に関する研究", 北海道大学 学位論文, JPN6017049144, 25 March 1998 (1998-03-25), pages P.707−708 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021061614A (en) * 2016-04-05 2021-04-15 Agc株式会社 Translucent opening member
JP7067601B2 (en) 2016-04-05 2022-05-16 Agc株式会社 Translucent opening member
US11035730B2 (en) 2018-10-31 2021-06-15 Corning Incorporated Systems and methods for characterizing high-scatter glass-based samples using light-scattering polarimetry

Also Published As

Publication number Publication date
JP6372795B2 (en) 2018-08-15

Similar Documents

Publication Publication Date Title
JP7182841B2 (en) Shatter- and scratch-resistant glass articles
JP7241787B2 (en) Glasses and glass-ceramics with metal oxide concentration gradients
JP2021020849A (en) Strengthened glass with ultra-deep depth of compression
CN106604903A (en) Strengthened glass with deep depth of compression
JP2017527513A5 (en)
JP2017527513A (en) Tempered glass with deep compression
Goodman et al. The mechanical properties of float glass surfaces measured by nanoindentation and acoustic microscopy
Wang et al. Structure and mechanical response of chemically strengthened aluminosilicate glass under different post-annealing conditions
JP6372795B2 (en) Method for measuring surface properties of tempered glass
Sun et al. A study on ion‐exchanged, soda‐lime glass’s residual stress relationship with K+/Na+ concentration
KR20190018701A (en) Silicate articles and methods of strengthening them
JP7439645B2 (en) Manufacturing method and management method for chemically strengthened glass
Hödemann et al. Measurement of stress build‐up of ion exchange strengthened lithium aluminosilicate glass
Arakawa et al. A novel method of evaluating surface properties of tempered glasses by the ultrasonic microspectroscopy technology
Güzel et al. Ion-exchange diffusion kinetics and compressive stress analysis of float soda lime silicate glasses
JP2022093268A (en) Method for estimating stress properties of tempered glass and method for making model for estimation of stress properties
JP2022181169A (en) Inference method, quality control method, chemically strengthened glass, inference program, storage medium, inference device, and chemically strengthened glass manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180626

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180709

R150 Certificate of patent or registration of utility model

Ref document number: 6372795

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250