JP2015175039A - Thick hot rolled steel sheet and production method thereof - Google Patents

Thick hot rolled steel sheet and production method thereof Download PDF

Info

Publication number
JP2015175039A
JP2015175039A JP2014053255A JP2014053255A JP2015175039A JP 2015175039 A JP2015175039 A JP 2015175039A JP 2014053255 A JP2014053255 A JP 2014053255A JP 2014053255 A JP2014053255 A JP 2014053255A JP 2015175039 A JP2015175039 A JP 2015175039A
Authority
JP
Japan
Prior art keywords
less
steel sheet
rolled steel
hot
thick
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014053255A
Other languages
Japanese (ja)
Other versions
JP6123713B2 (en
Inventor
友彰 柴田
Tomoaki Shibata
友彰 柴田
聡太 後藤
Sota Goto
聡太 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2014053255A priority Critical patent/JP6123713B2/en
Publication of JP2015175039A publication Critical patent/JP2015175039A/en
Application granted granted Critical
Publication of JP6123713B2 publication Critical patent/JP6123713B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a thick hot rolled steel sheet suitable as a raw material for a X80 class electric resistance welded steel tube or a raw material for X80 class spiral steel tube, excellent in strength and toughness and having low yield elongation, and to provide a production method of the thick hot rolled steel sheet.SOLUTION: There is provided the thick hot rolled steel sheet having a composition containing C, Nb, V and Ti and having structure in which a percentage of deposited Nb is 5% or more and less than 35% based on total added Nb amount, a volume fraction of bainitic ferrite in a sheet thickness center position is 95% or more and a volume fraction of tempered martensite and/or tempered bainite at sheet thickness surface layer 1 mm position is 95% or more. The above composition and structure provides the thick hot rolled steel sheet with excellent toughness and such low yield elongation that yield elongation in a tensile test in a hot rolled steel sheet longitudinal direction is 0.1% to 3.0%.

Description

本発明は、地震などによって受ける圧縮荷重に対し、優れた耐座屈性能を示すAPI規格X80級電縫鋼管またはスパイラル鋼管の素材として好適な、高強度、高靭性であり且つ降伏伸びを低位に抑制した厚肉熱延鋼板およびその製造方法に関する。本厚肉熱延鋼板により製造された鋼管は、パイプライン、油井管および土木・建築用などに用いることができる。なお、本発明において厚肉熱延鋼板とは、板厚12mm以上30mm以下の熱延鋼板(熱延鋼帯)を意味する。   The present invention is a high strength, high toughness and low yield elongation suitable as a material of API standard X80 class ERW steel pipe or spiral steel pipe that shows excellent buckling resistance against compressive load caused by earthquakes, etc. The present invention relates to a suppressed thick hot-rolled steel sheet and a method for producing the same. The steel pipe manufactured from this thick hot-rolled steel sheet can be used for pipelines, oil well pipes, civil engineering and construction. In the present invention, the thick hot-rolled steel sheet means a hot-rolled steel sheet (hot-rolled steel strip) having a thickness of 12 mm to 30 mm.

近年のエネルギー需要の高まりに対し、パイプラインや油井管の需要は高まっており、高効率輸送のために、高強度(特にAPI規格X80級)かつ厚肉鋼管(板厚12mm以上)が要求されるようになってきた。この要求に対し、従来、厚板を素材とするUOE鋼管が主に使用されている。しかし、最近では、パイプラインの施工コストの低減やUOE鋼管の供給能力不足などのために、鋼管の素材コスト低減の要求も強く、UOE鋼管よりも生産性が高くより安価な、熱延鋼板を素材とした電縫鋼管やスパイラル鋼管が用いられるようになってきた。   In response to increasing energy demand in recent years, demand for pipelines and oil well pipes has increased, and high-strength (especially API standard X80 class) and thick-walled steel pipes (plate thickness of 12 mm or more) are required for highly efficient transportation. It has come to be. Conventionally, UOE steel pipes made of thick plates are mainly used to meet this requirement. However, recently, due to the reduction of pipeline construction costs and the lack of supply capacity of UOE steel pipes, there is a strong demand for reducing the material cost of steel pipes, and hot rolled steel sheets that are more productive and cheaper than UOE steel pipes are being used. ERW steel pipes and spiral steel pipes have been used as raw materials.

ここで、パイプラインは、例えば天然ガスの埋蔵量が豊富な寒冷地に敷設されることが多いため、ラインパイプ素材用鋼板には、高強度、厚肉であることは勿論のこと、低温靭性に優れることも要求される。
また、ラインパイプ等では、寒冷地における地盤の凍結・融解の繰り返しや、地震などの地殻変動による変形応力に対し、耐座屈性能を有することも要求される。したがって、ラインパイプ素材用鋼板には、耐座屈性能向上の観点から、圧延長手方向の降伏伸びが小さいことも必要となる。
Here, because pipelines are often laid in cold regions where natural gas reserves are abundant, for example, steel sheets for line pipe materials are not only high strength and thick, but also low temperature toughness. It is also required to be excellent.
Line pipes and the like are also required to have buckling resistance against deformation stress due to repeated freezing and thawing of the ground in cold regions and crustal movements such as earthquakes. Therefore, the steel sheet for a line pipe material also needs to have a small yield elongation in the rolling longitudinal direction from the viewpoint of improving the buckling resistance.

このような状況下、昨今、ラインパイプ用の熱延素材に関し、様々な技術が提案されている。
例えば特許文献1には、熱延鋼板の組成を、質量%で、C:0.02〜0.08%、Si:0.01〜0.50%、Mn:0.5〜1.8%、P:0.025%以下、S:0.005%以下、Al:0.005〜0.10%、Nb:0.01〜0.10%、Ti:0.001〜0.05%を含み、かつC、Ti、Nbを([%Ti]+([%Nb]/2))/[%C]<4を満足するように含み、残部Feおよび不可避的不純物からなる組成とし、熱延鋼板の組織を、鋼板表面から板厚方向に1mmの位置における主相であるフェライト相の平均結晶粒径と鋼板の板厚中央位置における主相であるフェライト相の平均結晶粒径との差ΔDが2μm以下で、かつ鋼板表面から板厚方向に1mmの位置における第二相の組織分率(体積%)と鋼板の板厚中央位置における第二相の組織分率(体積%)との差ΔVが2%以下である組織とし、さらに鋼板表面から板厚方向に1mmの位置におけるビッカース硬さHV1mmと鋼板の板厚中央位置におけるビッカース硬さHV1/2tとの差ΔHVを50ポイント以下とすることで、低温靭性に優れた厚肉高張力熱延鋼板とする技術が提案されている。
Under such circumstances, various techniques have recently been proposed for hot-rolling materials for line pipes.
For example, in Patent Document 1, the composition of a hot-rolled steel sheet is, in mass%, C: 0.02 to 0.08%, Si: 0.01 to 0.50%, Mn: 0.5 to 1.8%, P: 0.025% or less, S: 0.005% or less. , Al: 0.005 to 0.10%, Nb: 0.01 to 0.10%, Ti: 0.001 to 0.05%, and C, Ti, Nb ([% Ti] + ([% Nb] / 2)) / [% C The composition of the remaining Fe and unavoidable impurities is included so as to satisfy <4, and the structure of the hot-rolled steel sheet is the average crystal grain size of the ferrite phase that is the main phase at a position of 1 mm from the steel sheet surface in the sheet thickness direction. The difference between the average grain size of the ferrite phase, which is the main phase at the center of the plate thickness of the steel sheet, is less than 2μm, and the second phase structure fraction (volume%) at a position 1mm from the steel plate surface to the plate thickness direction. ) And the structure fraction (volume%) of the second phase at the center of the sheet thickness of the steel sheet is a structure where the ΔV is 2% or less, and the Vickers hardness H at a position of 1 mm from the steel sheet surface to the sheet thickness direction. There has been proposed a technology for producing a thick, high-tensile hot-rolled steel sheet with excellent low-temperature toughness by setting the difference ΔHV between V1mm and the Vickers hardness HV1 / 2t at the center position of the steel sheet thickness to 50 points or less.

特許文献2には、質量%で、C:0.05〜0.12%、Si:0.01〜0.50%、Mn:0.5〜2.0%、Mo:0.05〜0.50%、Al:0.01〜0.08%、残部Fe及び不可避的不純物からなる鋼片を準備し、圧延終了温度:(Ar3−10)〜(Ar3+80)℃で熱間圧延後、空冷し、鋼板とし、冷間成形により鋼管とした後、拡管率:0.5〜1.5%の拡管を行うことで、冷間加工による耐座屈性能に優れた鋼管を製造する技術が提案されている。また、本特許文献には、鋼板の応力−歪曲線の降伏伸びが2.0%以下の場合、造管による冷間加工と造管最終工程での拡管によって降伏伸びが容易に消失するため、鋼管の耐座屈性能が向上することが記載されている。   In Patent Document 2, in mass%, C: 0.05 to 0.12%, Si: 0.01 to 0.50%, Mn: 0.5 to 2.0%, Mo: 0.05 to 0.50%, Al: 0.01 to 0.08%, the balance Fe and inevitable A steel slab made of impurities is prepared, and after rolling at a rolling end temperature: (Ar3-10) to (Ar3 + 80) ° C., air-cooled to form a steel plate by cold forming, and then a pipe expansion ratio: 0.5 to 1.5 A technology has been proposed to produce steel pipes with excellent buckling resistance by cold working. In addition, in this patent document, when the yield elongation of the stress-strain curve of the steel sheet is 2.0% or less, the yield elongation easily disappears due to cold working by pipe forming and pipe expansion in the final pipe forming process. It is described that the buckling resistance is improved.

特許文献3には、重量%で、C:0.05〜0.15%、Mn:1.0〜2.0%を含み、かつCu:0.05〜0.30%、Ni:0.05〜0.30%、Cr:0.05〜0.30%、Mo:0.05〜0.30%、Nb:0.005〜0.10%、V:0.005〜0.10%、Ti:0.005〜0.10%の1種または2種以上を含有する鋼片を、1050〜1180℃に加熱し、熱間圧延した後、その鋼の成分で定まる(Ar3+40)〜(Ar3−80)℃の温度域から4℃/sec以上の冷却速度で冷却した鋼板を冷間成形し、その後端部を溶接することで、X80以上級の高強度と高靭性、耐震性に優れたラインパイプを製造する技術が提案されている。   Patent Document 3 includes, by weight, C: 0.05 to 0.15%, Mn: 1.0 to 2.0%, and Cu: 0.05 to 0.30%, Ni: 0.05 to 0.30%, Cr: 0.05 to 0.30%, Mo: A steel slab containing one or more of 0.05 to 0.30%, Nb: 0.005 to 0.10%, V: 0.005 to 0.10%, Ti: 0.005 to 0.10% is heated to 1050 to 1180 ° C and hot rolled. After that, the steel sheet cooled at a cooling rate of 4 ° C / sec or more from the temperature range of (Ar3 + 40) to (Ar3-80) ° C determined by the components of the steel is cold-formed, and then the end is welded. Techniques have been proposed for producing line pipes with high strength, toughness, and earthquake resistance of X80 or higher.

特開2010−196156号公報JP 2010-196156 A 特許第3937998号公報Japanese Patent No. 3937998 特開平9−202922号公報JP-A-9-202922

しかしながら、特許文献1で提案された技術では、鋼管の耐座屈性能について検討されていない。また、特許文献1で提案された技術では、その実施例が示すように、X80級の高強度鋼管を得るために、Cu、Ni、Mo、Crを多く添加している。これらの元素は希少金属であり、価格変動も大きな元素であることから、将来的な安定供給が難しいという難点がある。   However, in the technique proposed in Patent Document 1, the buckling resistance performance of the steel pipe has not been studied. Further, in the technique proposed in Patent Document 1, as shown in the examples, a large amount of Cu, Ni, Mo, and Cr is added to obtain an X80 grade high-strength steel pipe. Since these elements are rare metals and have large price fluctuations, there is a problem that it is difficult to provide a stable supply in the future.

一方、特許文献2で提案された技術では、鋼管の耐座屈性能について検討されている。しかしながら、特許文献2で提案された技術では、鋼管強度がX80に達していない。また、低降伏伸びとするのに希少元素であるMoの添加を必須としている。Moは、将来的にその確保が困難となった場合の代替元素が存在せず、希少金属の削減といった観点からも必須添加元素としては好ましくない。更に、耐座屈性能に優れた鋼管を得るために、拡管工程が必要であるとしており、製造能率が大幅に低下するといった問題もある。   On the other hand, in the technique proposed in Patent Document 2, the buckling resistance performance of a steel pipe is studied. However, with the technique proposed in Patent Document 2, the steel pipe strength does not reach X80. Moreover, addition of Mo, which is a rare element, is essential to achieve low yield elongation. Mo does not have an alternative element when it is difficult to secure it in the future, and it is not preferable as an essential additive element from the viewpoint of reducing rare metals. Furthermore, in order to obtain a steel pipe excellent in buckling resistance, it is said that a pipe expanding process is necessary, and there is a problem that the production efficiency is greatly reduced.

特許文献3で提案された技術においても、鋼管の耐座屈性能について検討されている。しかしながら、特許文献3で提案された技術では、C当量が高く、溶接金属を使用しない電縫鋼管として使用する場合には、溶接部靭性の劣化が起こり易い。また、その実施例が示すように、低降伏比とするためにNb含有量を抑制している。このようにNbの含有量が少ないと、オーステナイト粒径の粗大化に伴う靭性低下を防ぐ目的でスラブ加熱温度を1180℃以下と低くする必要があるため、圧延負荷が増大し、ロールおよび装置寿命が短くなるといった問題がある。   Also in the technique proposed in Patent Document 3, the buckling resistance performance of the steel pipe is studied. However, the technique proposed in Patent Document 3 has a high C equivalent, and when used as an ERW steel pipe that does not use a weld metal, the toughness of the welded portion tends to deteriorate. Further, as shown in the examples, the Nb content is suppressed in order to achieve a low yield ratio. If the Nb content is low, the slab heating temperature needs to be lowered to 1180 ° C or less in order to prevent toughness reduction associated with the coarsening of the austenite grain size, which increases the rolling load, roll and equipment life. There is a problem that becomes shorter.

本発明は、従来技術が抱える上記の問題を解決するものであり、X80級電縫鋼管用、スパイラル鋼管用の素材として必要となる高強度、高靭性および低降伏伸びを兼ね備えた厚肉熱延鋼板を、複雑な冷却技術や設備、希少元素を用いず、また製造効率を落とすことなく、安定的に製造するための技術を提供することを目的とする。   The present invention solves the above-mentioned problems of the prior art, and is a thick-walled hot-rolled steel that combines the high strength, high toughness, and low yield elongation required as materials for X80 class ERW steel pipes and spiral steel pipes. An object is to provide a technique for stably producing a steel sheet without using complicated cooling techniques and equipment, rare elements, and without reducing the production efficiency.

本発明者らは、鋼管の強度、靭性および降伏伸びにはその素材となる厚肉熱延鋼板の合金元素と熱延条件が大きく影響するとの知見をもとに、希少金属を低減したX80級鋼管用厚肉熱延鋼板の諸特性に及ぼす製造条件の影響について研究を行った。   Based on the knowledge that the alloy elements and hot-rolling conditions of the thick-walled hot-rolled steel sheet used as the raw material have a significant effect on the strength, toughness, and yield elongation of the steel pipe, the present inventors have reduced the rare metal content of the X80 class. The effects of manufacturing conditions on the properties of thick hot rolled steel sheets for steel pipes were studied.

まず、様々な組成の鋼塊を作製し、スラブ加熱温度、圧下率、冷却速度、巻取り温度等を変化させた熱延鋼板(板厚:12〜30mm)を作製した。作製した熱延コイルからサンプルを採取し、曲げ戻した後、全厚引張試験片を採取し、引張試験を行い、降伏伸び特性を測定した。そして、鋼組成および熱延条件と得られた熱延鋼板の降伏伸び特性に対し、重回帰分析を行った。しかしながら、鋼組成および熱延条件と、得られた熱延鋼板の降伏伸び特性との間に、有意な相関が得られなかった。   First, steel ingots having various compositions were prepared, and hot-rolled steel sheets (thickness: 12 to 30 mm) in which the slab heating temperature, the rolling reduction, the cooling rate, the winding temperature, and the like were changed were prepared. A sample was taken from the produced hot-rolled coil and bent back, and then a full-thickness tensile specimen was taken and subjected to a tensile test to measure the yield elongation characteristics. And the multiple regression analysis was performed with respect to the steel composition, hot-rolling conditions, and the yield elongation characteristic of the obtained hot-rolled steel sheet. However, no significant correlation was obtained between the steel composition and hot rolling conditions and the yield elongation characteristics of the obtained hot rolled steel sheet.

この問題に対し、本発明者らは、コイル曲げ戻し時の歪の影響により、バウシンガー効果が発現し、熱延鋼板の降伏伸び特性に変化を及ぼしたことで、鋼組成および熱延条件と降伏伸び特性との間に有意な相関関係が得られなかったことが原因であると考えた。   In response to this problem, the present inventors have developed a bauschinger effect due to the influence of strain at the time of coil bending back, and have changed the yield elongation characteristics of the hot-rolled steel sheet. The reason was that no significant correlation was obtained with the yield elongation characteristics.

降伏伸びに及ぼす製造条件の寄与を正確に把握できないことには、耐座屈性能に優れた電縫鋼管やスパイラル鋼管の素材として好適な、降伏伸びを低位に抑制した高強度、高靭性熱延鋼板を得ることができない。そこで、本発明者らは、コイル曲げ戻しをしない湾曲したままの熱延鋼板から、丸棒引張試験片を板厚中央位置、コイル長手方向から採取して引張試験を行うことを考案した。丸棒引張試験より得られた応力−歪曲線から降伏伸び長さを測定し、製造条件との相関について調査を行った。   The fact that the contribution of manufacturing conditions to yield elongation cannot be accurately grasped is that high strength and high toughness hot rolling with low yield elongation is suitable as a material for ERW and spiral steel pipes with excellent buckling resistance. A steel plate cannot be obtained. Therefore, the present inventors have devised that a tensile test is performed by collecting a round bar tensile test piece from the center position of the plate thickness and the coil longitudinal direction from a hot-rolled steel plate that is not bent back and is not bent. The yield elongation length was measured from the stress-strain curve obtained from the round bar tensile test, and the correlation with the production conditions was investigated.

ここで、注意すべき点は、降伏伸びの絶対値が試験片形状に依存するという点である。調査の結果、曲げ戻した熱延コイルから採取した全厚平板引張試験片の方が、曲げ戻さない熱延コイルから採取した丸棒引張試験片に比べ、低い降伏伸び値となることが明らかになった。   Here, it should be noted that the absolute value of yield elongation depends on the shape of the test piece. As a result of the investigation, it is clear that the full-thickness plate tensile test specimen collected from the unrolled hot rolled coil has a lower yield elongation value than the round bar tensile test specimen collected from the non-bent hot rolled coil. became.

これらの調査結果を踏まえ、本発明者らは、上記の如くコイル曲げ戻しをしない湾曲したままの熱延鋼板から採取した丸棒引張試験片を用いて引張試験を行い、得られた結果から重回帰分析により、熱延鋼板特性に対する製造条件(組成、熱延条件)および組織の影響度について評価を行い、コイル状の熱延鋼板を高強度、高靭性かつ低降伏伸びとするうえで有意となる製造条件を求めた。   Based on these investigation results, the present inventors conducted a tensile test using a round bar tensile specimen taken from a hot-rolled steel sheet that has not been bent back as described above. By regression analysis, the manufacturing conditions (composition, hot-rolling conditions) on the properties of hot-rolled steel sheets and the degree of influence of the structure are evaluated, and it is significant in making coiled hot-rolled steel sheets have high strength, high toughness and low yield elongation. The production conditions were determined.

次いで、上記で求めた製造条件にしたがい熱延鋼板(板厚:12〜30mm)を作製し、該熱延鋼板を素材として鋼管(電縫鋼管およびスパイラル鋼管)を作製した。そして、作製した鋼管を用いて耐座屈試験を行ったところ、所望の耐座屈性能を有する鋼管が得られた。   Subsequently, a hot-rolled steel sheet (sheet thickness: 12 to 30 mm) was produced according to the production conditions obtained above, and steel pipes (an electric-welded steel pipe and a spiral steel pipe) were produced using the hot-rolled steel sheet as a raw material. And when the buckling-proof test was done using the produced steel pipe, the steel pipe which has desired buckling-proof performance was obtained.

以上のように、本発明者らは、曲げ戻しをしない湾曲したままの熱延コイルから採取した引張試験片を用いて引張試験を行い、その試験結果に基づき熱延鋼板の組成や熱延条件および組織を特定することで、高強度、高靭性を維持したまま、熱延鋼板長手方向の降伏伸びを低位に抑制した熱延鋼板が得られ、これらの熱延鋼板を用いた鋼管は、耐座屈性能にも優れることを知見した。   As described above, the present inventors conducted a tensile test using a tensile test piece taken from a hot-rolled coil that is not bent back, and based on the test results, the composition of the hot-rolled steel sheet and the hot-rolling conditions By specifying the microstructure, it is possible to obtain hot-rolled steel sheets in which the yield elongation in the longitudinal direction of the hot-rolled steel sheet is suppressed to a low level while maintaining high strength and high toughness. It was found that the buckling performance was also excellent.

そして、更に検討を進めた結果、Cu、Ni、Mo、Cr等の希少金属を添加することなく、析出強化元素であるNb、V、Tiを所定量添加した鋼素材を用い、仕上げ圧延時の未再結晶温度域における圧下率や、仕上げ圧延終了温度、およびこれに続く冷却の冷却速度や巻取り温度を規定することで、高靭性かつ低降伏伸びを有するX80級厚肉鋼管の素材として好適な厚肉熱延鋼板が得られることを知見した。   And as a result of further investigation, without adding rare metals such as Cu, Ni, Mo, Cr, using a steel material added with a predetermined amount of precipitation strengthening elements Nb, V, Ti, at the time of finish rolling By specifying the reduction ratio in the non-recrystallization temperature range, the finish rolling finish temperature, the subsequent cooling rate and the coiling temperature, it is suitable as a material for X80 grade thick-walled steel pipes with high toughness and low yield elongation. It has been found that a thick hot-rolled steel sheet can be obtained.

本発明は、以上の知見に基づき為されたものであり、その要旨は次のとおりである。
[1] 質量%で、C:0.04%以上0.15%以下、Si:0.01%以上0.55%以下、Mn:1.0%以上3.0%以下、P:0.03%以下、S:0.01%以下、Al:0.003%以上0.1%以下、N:0.006%以下、Nb:0.035%以上0.1%以下、V:0.001%以上0.1%以下、Ti:0.001%以上0.1%以下を含有し、残部がFeおよび不可避的不純物である組成を有し、全添加Nb量に対する析出Nbの割合が5%以上35%未満であり、板厚中央位置におけるベイニティックフェライトの体積分率が95%以上であり、かつ、板厚表層1mm位置における焼戻しマルテンサイトおよび/または焼戻しベイナイトの体積分率が95%以上である組織を有し、熱延鋼板長手方向の引張試験における降伏伸びが0.1%以上3.0%以下であることを特徴とする厚肉熱延鋼板。
This invention is made | formed based on the above knowledge, The summary is as follows.
[1] By mass%, C: 0.04% to 0.15%, Si: 0.01% to 0.55%, Mn: 1.0% to 3.0%, P: 0.03% or less, S: 0.01% or less, Al: 0.003% Contains 0.1% or less, N: 0.006% or less, Nb: 0.035% or more and 0.1% or less, V: 0.001% or more and 0.1% or less, Ti: 0.001% or more and 0.1% or less, and the balance is Fe and inevitable impurities It has a composition, the ratio of precipitated Nb to the total amount of added Nb is 5% or more and less than 35%, the volume fraction of bainitic ferrite at the center of the plate thickness is 95% or more, and the plate thickness surface layer is 1 mm. It has a structure in which the volume fraction of tempered martensite and / or tempered bainite at the position is 95% or more, and the yield elongation in the tensile test in the longitudinal direction of the hot-rolled steel sheet is 0.1% or more and 3.0% or less. Thick hot rolled steel sheet.

[2] 前記[1]において、前記組成が、下記(1)式および(2)式を満足することを特徴とする厚肉熱延鋼板。

Pcm=[%C]+[%Si]/30+([%Mn]+[%Cu]+[%Cr])/20
+[%Ni]/60+[%V]/10+[%Mo]/7+5×[%B]≦0.25 ・・・ (1)
Px=701×[%C]+85×[%Mn]≧181 ・・・ (2)
ここで、(1)式および(2)式において、[%C]、[%Si]、[%Mn]、[%Cu]、[%Cr]、[%Ni]、[%V]、[%Mo]、[%B]は各元素の含有量(質量%)。
[2] A thick hot-rolled steel sheet according to [1], wherein the composition satisfies the following formulas (1) and (2).
Record
Pcm = [% C] + [% Si] / 30 + ([% Mn] + [% Cu] + [% Cr]) / 20
+ [% Ni] / 60 + [% V] / 10 + [% Mo] / 7 + 5 × [% B] ≦ 0.25 (1)
Px = 701 × [% C] + 85 × [% Mn] ≧ 181 (2)
Here, in the formulas (1) and (2), [% C], [% Si], [% Mn], [% Cu], [% Cr], [% Ni], [% V], [% % Mo] and [% B] are the contents of each element (% by mass).

[3] 前記[1]または[2]において、前記組成に加えて更に、質量%でCa:0.0001%以上0.005%以下を含有することを特徴とする厚肉熱延鋼板。 [3] The thick hot-rolled steel sheet according to [1] or [2], further containing Ca: 0.0001% to 0.005% by mass% in addition to the composition.

[4] 前記[1]ないし[3]のいずれかにおいて、前記組成に加えて更に、質量%で、Cu:0.001%以上0.5%以下、Ni:0.001%以上0.5%以下、Mo:0.001%以上0.5%以下、Cr:0.001%以上0.5%以下、B :0.0001%以上0.004%以下のうちから選ばれる1種または2種以上を含有することを特徴とする厚肉熱延鋼板。 [4] In any one of the above [1] to [3], in addition to the above composition, Cu: 0.001% to 0.5%, Ni: 0.001% to 0.5%, Mo: 0.001% or more in mass% A thick-walled hot-rolled steel sheet containing one or more selected from 0.5% or less, Cr: 0.001% or more and 0.5% or less, and B: 0.0001% or more and 0.004% or less.

[5] 質量%で、C:0.04%以上0.15%以下、Si:0.01%以上0.55%以下、Mn:1.0%以上3.0%以下、P:0.03%以下、S:0.01%以下、Al:0.003%以上0.1%以下、N:0.006%以下、Nb:0.035%以上0.1%以下、V:0.001%以上0.1%以下、Ti:0.001%以上0.1%以下を含有し、残部がFeおよび不可避的不純物からなる組成の鋼片を、1000℃以上1250℃以下の温度域に再加熱し、粗圧延および該粗圧延に続き未再結晶温度域での圧下率を20%以上85%以下、仕上げ圧延終了温度を(Ar3−50℃)以上(Ar3+100℃)以下の温度域とする仕上げ圧延を施し、該仕上げ圧延終了後、板厚中央位置の750℃以下650℃以上の温度域における平均冷却速度を5℃/s以上50℃/s未満、板厚表層1mm位置の750℃以下650℃以上の温度域における平均冷却速度を50℃/s以上300℃/s以下で冷却し、200℃以上550℃以下の巻取り温度で巻き取ることを特徴とする厚肉熱延鋼板の製造方法。 [5] By mass%, C: 0.04% to 0.15%, Si: 0.01% to 0.55%, Mn: 1.0% to 3.0%, P: 0.03% or less, S: 0.01% or less, Al: 0.003% Contains 0.1% or less, N: 0.006% or less, Nb: 0.035% or more and 0.1% or less, V: 0.001% or more and 0.1% or less, Ti: 0.001% or more and 0.1% or less, with the balance being Fe and inevitable impurities The steel slab having the composition is reheated to a temperature range of 1000 ° C. or more and 1250 ° C. or less, and after the rough rolling and the rough rolling, the reduction rate in the non-recrystallization temperature range is 20% or more and 85% or less, and the finish rolling finish temperature is (Ar 3 −50 ° C.) to (Ar 3 + 100 ° C.) in a temperature range of less than or equal to (Ar 3 + 100 ° C.). After the finish rolling, the average cooling rate in the temperature range of 750 ° C. Cool at an average cooling rate of 50 ° C / s or more and 300 ° C / s or less at a temperature range of 750 ° C or less and 650 ° C or more at a position of 5mm / s or more and less than 50 ° C / s, 1mm position of the plate thickness, 200 ° C or more and 550 ° C Less than Method for producing a hot rolled thick steel plate, wherein a wound in the coiling temperature.

[6] 前記[5]において、前記組成が下記(1)式、(2)式を満足し、前記巻取り温度が下記(3)式を満足することを特徴とする厚肉熱延鋼板の製造方法。

Pcm=[%C]+[%Si]/30+([%Mn]+[%Cu]+[%Cr])/20
+[%Ni]/60+[%V]/10+[%Mo]/7+5×[%B]≦0.25 ・・・ (1)
Px=701×[%C]+85×[%Mn]≧181 ・・・ (2)
0.0≦7.09×[%C]−1.31×[%Mn]+0.00910×CT≦3.3 ・・・ (3)
ここで、(1)式、(2)式および(3)式において、[%C]、[%Si]、[%Mn]、[%Cu]、[%Cr]、[%Ni]、[%V]、[%Mo]、[%B]は各元素の含有量(質量%)。
(3)式において、CTは巻取り温度(℃)。
[6] The thick hot rolled steel sheet according to [5], wherein the composition satisfies the following formulas (1) and (2), and the winding temperature satisfies the following formula (3): Production method.
Record
Pcm = [% C] + [% Si] / 30 + ([% Mn] + [% Cu] + [% Cr]) / 20
+ [% Ni] / 60 + [% V] / 10 + [% Mo] / 7 + 5 × [% B] ≦ 0.25 (1)
Px = 701 × [% C] + 85 × [% Mn] ≧ 181 (2)
0.0 ≦ 7.09 × [% C] −1.31 × [% Mn] + 0.00910 × CT ≦ 3.3 (3)
Here, in the formulas (1), (2) and (3), [% C], [% Si], [% Mn], [% Cu], [% Cr], [% Ni], [% % V], [% Mo], and [% B] are the contents (% by mass) of each element.
In equation (3), CT is the coiling temperature (° C).

[7] 前記[5]または[6]において、前記組成に加えて更に、質量%でCa:0.0001%以上0.005%以下を含有することを特徴とする厚肉熱延鋼板の製造方法。 [7] The method for producing a thick hot-rolled steel sheet according to [5] or [6], further comprising Ca: 0.0001% to 0.005% by mass% in addition to the composition.

[8] 前記[5]ないし[7]のいずれかにおいて、前記組成に加えて更に、質量%で、Cu:0.001%以上0.5%以下、Ni:0.001%以上0.5%以下、Mo:0.001%以上0.5%以下、Cr:0.001%以上0.5%以下、B :0.0001%以上0.004%以下のうちから選ばれる1種または2種以上を含有することを特徴とする厚肉熱延鋼板の製造方法。 [8] In any one of the above [5] to [7], in addition to the above composition, Cu: 0.001% to 0.5%, Ni: 0.001% to 0.5%, Mo: 0.001% or more in mass% A method for producing a thick hot-rolled steel sheet, comprising 0.5% or less, Cr: 0.001% or more and 0.5% or less, and B: 0.0001% or more and 0.004% or less selected from one or more.

本発明によれば、ラインパイプ、油井管、土木・建築用鋼管などに適用されるX80級電縫鋼管素材やX80級スパイラル鋼管素材として必要となる高強度、高靭性および低降伏伸び特性を兼ね備えた厚肉熱延鋼板を、希少元素を殆ど用いず、製造効率を落とすことなく、安定的に製造することができ、工業的に極めて有用である。   According to the present invention, it has the high strength, high toughness, and low yield elongation characteristics required for X80 grade electric resistance welded steel pipe material and X80 grade spiral steel pipe material applied to line pipe, oil well pipe, steel pipe for civil engineering and construction. The thick-walled hot-rolled steel sheet can be manufactured stably without using rare elements and without reducing the manufacturing efficiency, and is extremely useful industrially.

以下に、本発明の詳細を説明する。
まず、本発明における厚肉熱延鋼板の成分組成の限定理由について説明する。なお、以下の成分組成を表す%は、特に断らない限り質量%を意味するものとする。
Details of the present invention will be described below.
First, the reason for limitation of the component composition of the thick hot-rolled steel sheet in the present invention will be described. In addition,% showing the following component composition shall mean the mass% unless there is particular notice.

C :0.04%以上0.15%以下
Cは、Nb、V、Ti等と炭化物を形成することで熱延鋼板強度を確保するために重要な元素であり、所望の強度を満足するためには、C含有量を0.04%以上とする必要がある。一方、C含有量が0.15%を超えると、炭素当量が高くなり、このような熱延鋼板を造管・溶接すると、溶接部の靭性が劣化する。また、析出物の過剰生成に伴い降伏比が上昇し、更には熱延鋼板長手方向の降伏伸びが増大する。したがって、C含有量は0.04%以上0.15%以下とする。
C: 0.04% to 0.15%
C is an important element for securing the strength of the hot-rolled steel sheet by forming carbides with Nb, V, Ti, etc. In order to satisfy the desired strength, the C content is set to 0.04% or more. There is a need. On the other hand, when the C content exceeds 0.15%, the carbon equivalent becomes high, and when such a hot-rolled steel sheet is piped and welded, the toughness of the welded portion deteriorates. In addition, the yield ratio increases with the excessive production of precipitates, and the yield elongation in the longitudinal direction of the hot-rolled steel sheet increases. Therefore, the C content is 0.04% or more and 0.15% or less.

Si:0.01%以上0.55%以下
Siの含有量が増加すると、Mn−Si系の非金属介在物を形成して溶接部靭性を劣化させる原因となる。したがって、Si含有量は0.55%を上限とする。一方、Si含有量の下限は、脱酸効果と製鋼技術限界から0.01%に定める。
Si: 0.01% or more and 0.55% or less
When the Si content is increased, Mn-Si-based non-metallic inclusions are formed and the weld toughness is deteriorated. Therefore, the upper limit of Si content is 0.55%. On the other hand, the lower limit of the Si content is set to 0.01% from the deoxidation effect and the steelmaking technology limit.

Mn:1.0%以上3.0%以下
Mnは、強度低下と靭性低下の要因となるポリゴナルフェライトとパーライトの生成を抑制することで強度と靭性を確保できる元素であるとともに、熱延鋼板長手方向の降伏伸びを低位に抑制する効果を有する元素でもある。これらの効果を発現させるためには、Mn含有量を1.0%以上とする必要がある。一方、Mn含有量が3.0%を超えると、炭素当量の増加に伴い溶接部靭性が劣化する可能性がある。したがって、Mn含有量は1.0%以上3.0%以下とする。
Mn: 1.0% to 3.0%
Mn is an element that can secure strength and toughness by suppressing the formation of polygonal ferrite and pearlite, which cause strength reduction and toughness reduction, and has the effect of suppressing the yield elongation in the longitudinal direction of the hot-rolled steel sheet to a low level. It is also an element. In order to express these effects, the Mn content needs to be 1.0% or more. On the other hand, if the Mn content exceeds 3.0%, the weld zone toughness may deteriorate with an increase in carbon equivalent. Therefore, the Mn content is 1.0% or more and 3.0% or less.

P:0.03%以下、S:0.01%以下、N:0.006%以下
Pは、鋼中に不純物として存在するが、偏析し易い元素で鋼の靭性劣化をもたらす。したがって、P含有量は0.03%を上限とする。
SおよびNも、P同様、鋼の靭性を劣化させるため、S含有量は0.01%を上限とし、N含有量は0.006%を上限とする。
なお、P、S、Nはいずれも現実的に可能な製鋼制御能力限界のため、それぞれの含有量をP:0.001%以上、S:0.0001%以上、N:0.001%以上とすることが好ましい。
P: 0.03% or less, S: 0.01% or less, N: 0.006% or less
P exists as an impurity in the steel, but is an element that easily segregates and causes toughness deterioration of the steel. Therefore, the upper limit of the P content is 0.03%.
S and N, like P, deteriorate the toughness of steel, so the upper limit of the S content is 0.01% and the upper limit of the N content is 0.006%.
In addition, since P, S, and N are practically possible steelmaking control capability limits, it is preferable that the respective contents are P: 0.001% or more, S: 0.0001% or more, and N: 0.001% or more.

Al:0.003%以上0.1%以下
Alは、鋼の脱酸剤として有用であり、Al含有量は脱酸効果の発現する0.003%以上とする。但し、Al含有量が過剰になると、アルミナ系介在物が生成し、溶接部欠陥の原因となる。したがって、Al含有量は0.003%以上0.1%以下とする。
Al: 0.003% to 0.1%
Al is useful as a deoxidizer for steel, and the Al content is 0.003% or more at which a deoxidizing effect is exhibited. However, when the Al content is excessive, alumina inclusions are generated, causing defects in the weld. Therefore, the Al content is 0.003% or more and 0.1% or less.

Nb:0.035%以上0.1%以下
Nbは、結晶粒の微細化に有効でかつ析出強化元素であり、その効果の発現にはNb含有量を0.035%以上とする必要がある。一方、Nb含有量が過剰になると、溶接性が劣化する。したがって、Nb含有量は0.035%以上0.1%以下とする。
Nb: 0.035% to 0.1%
Nb is effective for refinement of crystal grains and is a precipitation strengthening element, and the Nb content needs to be 0.035% or more for manifestation of the effect. On the other hand, when the Nb content is excessive, weldability deteriorates. Therefore, the Nb content is 0.035% or more and 0.1% or less.

V :0.001%以上0.1%以下
Vは、析出強化元素であり、これを有効に作用させるためにはV含有量を0.001%以上とする必要がある。一方、V含有量が過剰になると、溶接性が劣化する。したがって、V含有量は0.001%以上0.1%以下とする。
V: 0.001% to 0.1%
V is a precipitation strengthening element, and in order to make this work effectively, the V content needs to be 0.001% or more. On the other hand, when the V content is excessive, weldability deteriorates. Therefore, the V content is 0.001% or more and 0.1% or less.

Ti:0.001%以上0.1%以下
Tiは、結晶粒の微細化に有効でかつ析出強化元素であり、その効果の発現にはTi含有量を0.001%以上とする必要がある。一方、Ti含有量が過剰になると溶接性が劣化する。したがって、Ti含有量は0.001%以上0.1%以下とする。
Ti: 0.001% to 0.1%
Ti is effective for refining crystal grains and is a precipitation strengthening element, and the Ti content needs to be 0.001% or more in order to achieve the effect. On the other hand, when the Ti content is excessive, weldability deteriorates. Therefore, Ti content shall be 0.001% or more and 0.1% or less.

本発明の厚肉熱延鋼板は、上記の成分組成に加えて更に、Ca:0.0001%以上0.005%以下を含有することが好ましい。
Ca:0.0001%以上0.005%以下
Caは、Sを固定し、MnSの生成を抑制することで靭性を向上させる効果がある。このような効果を発現させるためには、Ca含有量を0.0001%以上とすることが好ましい。一方、Ca含有量が過剰になると、Ca系酸化物の形成により靭性が低下するため、Ca含有量は0.005%以下とすることが好ましい。
The thick hot-rolled steel sheet of the present invention preferably further contains Ca: 0.0001% to 0.005% in addition to the above component composition.
Ca: 0.0001% to 0.005%
Ca has the effect of improving toughness by fixing S and suppressing the formation of MnS. In order to exhibit such an effect, the Ca content is preferably 0.0001% or more. On the other hand, when the Ca content is excessive, the toughness is reduced due to the formation of the Ca-based oxide, so the Ca content is preferably 0.005% or less.

また、本発明の厚肉熱延鋼板は、上記の成分組成に加えて更に、Cu:0.001%以上0.5%以下、Ni:0.001%以上0.5%以下、Mo:0.001%以上0.5%以下、Cr:0.001%以上0.5%以下、B:0.0001%以上0.004%以下のうちから選ばれる1種または2種以上を含有してもよい。   In addition to the above component composition, the thick hot rolled steel sheet of the present invention further includes Cu: 0.001% to 0.5%, Ni: 0.001% to 0.5%, Mo: 0.001% to 0.5%, Cr: One or more selected from 0.001% to 0.5% and B: 0.0001% to 0.004% may be contained.

Cu:0.001%以上0.5%以下
Cuは、鋼の変態を制御するとともに、熱延鋼板の強度向上に有効な元素である。このような効果を発現させるためには、Cu含有量を0.001%以上とすることが好ましい。但し、Cuは、熱間加工性を低下させるため、その含有量を0.5%以下にすることが好ましい。
Cu: 0.001% to 0.5%
Cu is an element effective in controlling the transformation of steel and improving the strength of hot-rolled steel sheets. In order to exhibit such an effect, it is preferable to make Cu content 0.001% or more. However, since Cu reduces hot workability, its content is preferably 0.5% or less.

Ni:0.001%以上0.5%以下
Niは、鋼の変態を制御するとともに、熱延鋼板の強度向上に有効な元素である。このような効果を発現させるためには、Ni含有量を0.001%以上とすることが好ましい。但し、Niは、熱間加工性を低下させるため、その含有量を0.5%以下にすることが好ましい。
Ni: 0.001% to 0.5%
Ni is an element effective in controlling the transformation of steel and improving the strength of the hot-rolled steel sheet. In order to exhibit such an effect, the Ni content is preferably 0.001% or more. However, since Ni decreases the hot workability, its content is preferably 0.5% or less.

Mo:0.001%以上0.5%以下
Moは、鋼の変態を制御するとともに、熱延鋼板の強度向上に有効な元素である。このような効果を発現させるためには、Mo含有量を0.001%以上とすることが好ましい。但し、Moは、マルテンサイトの生成を促進し、靭性を低下させるため、その含有量を0.5%以下にすることが好ましい。
Mo: 0.001% to 0.5%
Mo is an element effective in controlling the transformation of steel and improving the strength of the hot-rolled steel sheet. In order to exhibit such an effect, the Mo content is preferably 0.001% or more. However, since Mo promotes the formation of martensite and lowers the toughness, its content is preferably 0.5% or less.

Cr:0.001%以上0.5%以下
Crは、パーライト変態の遅延効果と粒界セメンタイトの低減効果により、靭性劣化を抑制する有効な元素である。これらの効果を発現させるためにはCr含有量を0.001%以上とすることが好ましい。一方、Cr含有量が過剰になると、溶接部に焼入れ組織を形成して溶接部靭性の劣化を招くおそれがある。したがって、Cr含有量は0.001%以上0.5%以下とすることが好ましい。
Cr: 0.001% to 0.5%
Cr is an effective element that suppresses the deterioration of toughness by the effect of delaying pearlite transformation and the effect of reducing grain boundary cementite. In order to exhibit these effects, the Cr content is preferably 0.001% or more. On the other hand, if the Cr content is excessive, there is a possibility that a hardened structure is formed in the welded portion and the toughness of the welded portion is deteriorated. Therefore, the Cr content is preferably 0.001% or more and 0.5% or less.

なお、Cu、Ni、MoおよびCrは、いずれも希少金属であり、安定的な確保が困難であるとともに、高価な元素でもある。それゆえ、原料の安定確保、生産コスト等の観点からは、これらの元素の添加を極力避けることが好ましく、それぞれの含有量を0.1%以下とすることが望ましい。   Cu, Ni, Mo, and Cr are all rare metals, and are difficult to ensure stably and are also expensive elements. Therefore, from the viewpoints of securing the stability of raw materials, production costs, etc., it is preferable to avoid the addition of these elements as much as possible, and the respective contents are preferably set to 0.1% or less.

B :0.0001%以上0.004%以下
Bは、熱延鋼板製造時、仕上げ圧延終了後の冷却過程において高温でのフェライト変態を抑制して、フェライトの硬度低下に起因する熱延鋼板の強度低下を防止する効果がある。このような効果を発現させるためには、B含有量を0.0001%以上とすることが好ましい。一方、B含有量が過剰になると、溶接部に焼入れ組織を形成するおそれがある。したがって、B含有量は0.0001%以上0.004%以下とすることが好ましい。
B: 0.0001% or more and 0.004% or less
B is effective in suppressing the ferrite transformation at a high temperature in the cooling process after finishing the finish rolling during the production of the hot-rolled steel sheet and preventing the strength of the hot-rolled steel sheet from being reduced due to the decrease in the hardness of the ferrite. In order to exhibit such an effect, the B content is preferably 0.0001% or more. On the other hand, if the B content is excessive, a hardened structure may be formed in the weld. Therefore, the B content is preferably 0.0001% or more and 0.004% or less.

本発明の厚肉熱延鋼板は、以下(1)式および(2)式に示す成分指標を満足する組成とすることが好ましい。これらの式を満足することで、更なる高強度、高靭性化と溶接性の向上が可能となる。
Pcm=[%C]+[%Si]/30+([%Mn]+[%Cu]+[%Cr])/20+[%Ni]/60
+[%V]/10+[%Mo]/7+5×[%B]≦0.25 ・・・ (1)
Px=701×[%C]+85×[%Mn]≧181 ・・・ (2)
The thick hot-rolled steel sheet of the present invention preferably has a composition that satisfies the component indices shown in the following formulas (1) and (2). By satisfying these formulas, it is possible to further increase the strength, toughness and improve the weldability.
Pcm = [% C] + [% Si] / 30 + ([% Mn] + [% Cu] + [% Cr]) / 20 + [% Ni] / 60
+ [% V] / 10 + [% Mo] / 7 + 5 × [% B] ≦ 0.25 (1)
Px = 701 × [% C] + 85 × [% Mn] ≧ 181 (2)

ここで、(1)式および(2)式において、[%C]、[%Si]、[%Mn]、[%Cu]、[%Cr]、[%Ni]、[%V]、[%Mo]、[%B]は各元素の含有量(質量%)である。また、鋼板がCuを含有しない場合、(1)式中の[%Cu]をゼロとしてPcm値を算出するものとする。 [%Cr]、[%Ni]、[%V]、[%Mo]、[%B]についても同様である。   Here, in the formulas (1) and (2), [% C], [% Si], [% Mn], [% Cu], [% Cr], [% Ni], [% V], [% % Mo] and [% B] are the contents (% by mass) of each element. Moreover, when a steel plate does not contain Cu, Pcm value shall be calculated by setting [% Cu] in Formula (1) to zero. The same applies to [% Cr], [% Ni], [% V], [% Mo], and [% B].

(1)式に示すPcmは、溶接部靱性の指標である。Pcm値が一定値を超えると、例えば熱延鋼板を造管・溶接する際、溶接部靱性が低下する傾向にある。したがって、Pcm値は0.25以下とすることが好ましい。   Pcm shown in the equation (1) is an index of weld zone toughness. When the Pcm value exceeds a certain value, the toughness of the welded portion tends to decrease when, for example, pipe forming and welding a hot-rolled steel sheet. Therefore, the Pcm value is preferably 0.25 or less.

一方、(2)式に示すPxは、強度の指標であり、Cu、Ni、Mo、Crなどの希少元素を用いることなくX80級鋼管用の素材として十分な熱延鋼板強度を確保するためには、Px値を181以上とすることが好ましい。但し、Px値が過剰に高くなると、伸び特性が低下し、造管加工が困難になるとともに、地震などの地殻変動に伴う強制的な変形に対する変形能が低下することが懸念されるため、300以下とすることが好ましい。   On the other hand, Px shown in the formula (2) is an index of strength, in order to ensure sufficient hot-rolled steel sheet strength as a material for X80 grade steel pipe without using rare elements such as Cu, Ni, Mo, Cr. Preferably has a Px value of 181 or more. However, if the Px value becomes excessively high, the elongation characteristics deteriorate, pipe making becomes difficult, and the deformability against forced deformation associated with crustal movements such as earthquakes may be reduced. The following is preferable.

なお、本発明の厚肉熱延鋼板において、上記以外の成分は、Feおよび不可避的不純物である。不可避的不純物としては、例えばCo、W、Pb、Sn等が挙げられる。   In the thick hot-rolled steel sheet of the present invention, components other than the above are Fe and inevitable impurities. Examples of inevitable impurities include Co, W, Pb, and Sn.

次に、本発明の厚肉熱延鋼板の組織について説明する。
本発明の厚肉熱延鋼板は、全添加Nb量に対する析出Nbの割合が5%以上35%未満であり、板厚中央位置におけるベイニティックフェライトの体積分率が95%以上であり、かつ、板厚表層1mm位置における焼戻しマルテンサイトおよび/または焼戻しベイナイトの体積分率が95%以上である組織を有する。
Next, the structure of the thick hot-rolled steel sheet of the present invention will be described.
In the thick hot-rolled steel sheet of the present invention, the ratio of precipitated Nb to the total amount of added Nb is 5% or more and less than 35%, the volume fraction of bainitic ferrite at the center position of the sheet thickness is 95% or more, and The tempered martensite and / or tempered bainite has a volume fraction of 95% or more at a position of 1 mm in the plate thickness surface layer.

全添加Nb量に対する析出Nbの割合:5%以上35%未満
本発明の厚肉熱延鋼板は、全Nb量に対する析出Nbの割合を5%以上35%未満とする。Nbの析出割合が5%未満では、熱延鋼板の強度不足が発生し易く、X80級の鋼管強度特性を満足することが困難となる場合がある。一方、35%以上になると析出強化が過剰となり、降伏比が高くなることで耐座屈特性が劣化する傾向にある。したがって、全Nb量に対する析出Nbの割合は、5%以上35%未満とする。
Ratio of precipitated Nb to total added Nb amount: 5% or more and less than 35% In the thick hot-rolled steel sheet of the present invention, the ratio of precipitated Nb to the total Nb amount is 5% or more and less than 35%. If the Nb precipitation ratio is less than 5%, the hot rolled steel sheet tends to have insufficient strength, and it may be difficult to satisfy the X80 grade steel pipe strength characteristics. On the other hand, if it exceeds 35%, precipitation strengthening becomes excessive, and the yield ratio tends to be high, whereby the buckling resistance tends to deteriorate. Therefore, the ratio of precipitated Nb to the total Nb amount is 5% or more and less than 35%.

ここで、鋼板中に析出したNbの割合(質量比)は、抽出残渣分析により鋼板中に析出したNbの質量を測定し、この測定値の全Nb含有量に対する割合(質量%)として求めることができる。なお、抽出残渣分析では、鋼板を10%アセチルアセトン−1%テトラメチルアンモニウム−メタノール中で定電流電解(約20mA/cm2)し、溶解残渣をメンブランフィルター(孔径:0.2μmφ)で捕集し、硫酸、硝酸および過塩素酸の混合融剤を用いて融解し、ICP発光分析法により析出量を定量化することができる。 Here, the ratio (mass ratio) of Nb precipitated in the steel sheet is obtained by measuring the mass of Nb precipitated in the steel sheet by extraction residue analysis and calculating the ratio (mass%) of this measured value with respect to the total Nb content. Can do. In the extraction residue analysis, the steel plate was subjected to constant current electrolysis (about 20 mA / cm 2 ) in 10% acetylacetone-1% tetramethylammonium-methanol, and the dissolved residue was collected with a membrane filter (pore diameter: 0.2 μmφ). Melting with a mixed flux of sulfuric acid, nitric acid and perchloric acid, the amount of precipitation can be quantified by ICP emission spectrometry.

厚肉熱延鋼板の主相
高強度、高靱性且つ低降伏伸び特性を有する厚肉熱延鋼板とするためには、厚肉熱延鋼板の組織を板厚全域に亘りベイニティックフェライトとすることが好ましい。しかしながら、板厚が例えば12mm以上である厚肉熱延鋼板を製造する場合において、熱間圧延終了後、板厚中央位置でベイニティックフェライトが生成するように冷却速度を調整すると、板厚表層部での冷却速度が極端に大きくなる。それゆえ、厚肉熱延鋼板の場合、板厚全域に亘りベイニティックフェライト主相組織とすることは極めて困難である。
Main phase of thick-walled hot-rolled steel sheet In order to obtain a thick-walled hot-rolled steel sheet with high strength, high toughness and low yield elongation characteristics, the structure of the thick-walled hot-rolled steel sheet is made of bainitic ferrite over the entire thickness. It is preferable. However, when manufacturing a thick hot-rolled steel sheet having a sheet thickness of 12 mm or more, for example, when the cooling rate is adjusted so that bainitic ferrite is generated at the center position of the sheet thickness after hot rolling, the sheet thickness surface layer The cooling rate at the part becomes extremely large. Therefore, in the case of a thick hot-rolled steel sheet, it is extremely difficult to obtain a bainitic ferrite main phase structure over the entire plate thickness.

そこで、本発明の厚肉熱延鋼板では、板厚表層部(鋼板表面から板厚方向1mmまでの領域)の主相を焼戻しマルテンサイトおよび/または焼戻しベイナイトとし、上記表層部以外の領域の主相をベイニティックフェライトとする。
焼戻しマルテンサイトや焼戻しベイナイトは、ベイニティックフェライトには劣るものの、焼入れままのマルテンサイトやベイナイトよりも伸び特性や靱性がはるかに優れている。したがって、板厚表層部のみを焼戻しマルテンサイトおよび/または焼戻しベイナイト主相とし、その他の領域をベイニティックフェライト主相とすることで、板厚表層部における特性劣化を最小限とし、鋼板全体としては高強度、高靭性且つ低降伏伸びを有する厚肉熱延鋼板とすることができる。
Therefore, in the thick hot-rolled steel sheet according to the present invention, the main phase of the plate thickness surface layer portion (region from the steel plate surface to the plate thickness direction 1 mm) is tempered martensite and / or tempered bainite, and the main region in the region other than the above surface layer portion. The phase is bainitic ferrite.
Although tempered martensite and tempered bainite are inferior to bainitic ferrite, they have far superior elongation properties and toughness than as-quenched martensite and bainite. Therefore, by making only the plate thickness surface layer part a tempered martensite and / or tempered bainite main phase and the other region a bainitic ferrite main phase, the characteristic deterioration in the plate thickness surface layer part is minimized, and the entire steel plate Can be a thick hot rolled steel sheet having high strength, high toughness and low yield elongation.

主相の体積分率:95%以上
板厚表層1mm位置(鋼板表面から板厚方向1.0mmの位置)において、焼戻しマルテンサイトおよび/または焼戻しベイナイトの体積分率の合計が95%未満になると、板厚全厚の靭性が大きく低下する。また、板厚中央位置において、ベイニティックフェライトの体積分率が95%未満になる場合、靭性が大幅に低下する。したがって、本発明では、各々の位置における主相の体積分率を95%以上とする。
Volume fraction of main phase: 95% or more When the total volume fraction of tempered martensite and / or tempered bainite is less than 95% at the plate thickness surface layer position of 1 mm (position of 1.0 mm from the steel plate surface), The toughness of the full thickness is greatly reduced. In addition, when the volume fraction of bainitic ferrite is less than 95% at the center of the plate thickness, the toughness is greatly reduced. Therefore, in the present invention, the volume fraction of the main phase at each position is set to 95% or more.

なお、板厚表層部において、焼戻しマルテンサイトおよび/または焼戻しベイナイト以外の組織としては、ベイニティックフェライト、パーライト、マルテンサイト、残留オーステナイト等が挙げられ、これらの体積分率は合計で5%以下とすることが好ましい。また、板厚表層部以外の領域において、ベイニティックフェライト以外の組織としては、焼戻しマルテンサイト、焼戻しベイナイト、パーライト、マルテンサイト、残留オーステナイト等が挙げられ、これらの体積分率は合計で5%以下とすることが好ましい。   In addition, in the plate thickness surface layer portion, examples of the structure other than tempered martensite and / or tempered bainite include bainitic ferrite, pearlite, martensite, retained austenite, etc., and the total volume fraction thereof is 5% or less. It is preferable that Further, in the region other than the surface layer portion of the plate thickness, examples of the structure other than bainitic ferrite include tempered martensite, tempered bainite, pearlite, martensite, retained austenite, etc., and their volume fraction is 5% in total. The following is preferable.

本発明の厚肉熱延鋼板は、上記した組成および組織を有し、熱延鋼板長手方向の引張試験における降伏伸びが0.1%以上3.0%以下であることを特徴とする。なお、上記降伏伸びは、コイル状の熱延鋼板(コイル曲げ戻しをしない湾曲したままの熱延鋼板)から採取した丸棒試験片を用い、引張試験を実施することで測定される降伏伸びの値である。   The thick-walled hot-rolled steel sheet of the present invention has the above composition and structure, and is characterized in that the yield elongation in a tensile test in the longitudinal direction of the hot-rolled steel sheet is 0.1% or more and 3.0% or less. The yield elongation is a yield elongation measured by conducting a tensile test using a round bar specimen taken from a coiled hot-rolled steel sheet (a hot-rolled steel sheet that has not been bent back). Value.

降伏伸びが0.1%未満の場合、応力−ひずみ曲線がラウンドハウス型となり、降伏強度YSが極端に低下する恐れがある。一方、降伏伸びが3.0%を超えると、造管歪を加えても降伏伸びが消失せず、造管後の耐座屈特性が低下する。したがって、熱延鋼板長手方向の引張試験における降伏伸びは0.1%以上3.0%以下とする。   When the yield elongation is less than 0.1%, the stress-strain curve becomes a round house type, and the yield strength YS may be extremely lowered. On the other hand, if the yield elongation exceeds 3.0%, the yield elongation does not disappear even if pipe forming strain is applied, and the buckling resistance after pipe forming deteriorates. Therefore, the yield elongation in the tensile test in the longitudinal direction of the hot-rolled steel sheet is 0.1% to 3.0%.

次に、本発明の厚肉熱延鋼板の製造方法について説明する。
本発明の厚肉熱延鋼板は、上記組成を有するスラブ(鋼片)を、再加熱後、粗圧延、仕上げ圧延を行ったのち、所定の条件にて加速冷却を行い、所定温度で巻き取ることにより製造することができる。
なお、本発明に用いる鋼の溶製は、転炉法や電炉等、公知の溶製方法のいずれによっても可能である。溶製した鋼は、連続鋳造または造塊・分塊圧延によりスラブ(鋼片)とすることができる。
Next, the manufacturing method of the thick hot rolled steel sheet according to the present invention will be described.
The thick hot-rolled steel sheet of the present invention is subjected to rough rolling and finish rolling after reheating the slab (steel piece) having the above composition, and then accelerated cooling under predetermined conditions and winding at a predetermined temperature. Can be manufactured.
In addition, melting of the steel used for this invention is possible by any of well-known melting methods, such as a converter method and an electric furnace. The molten steel can be made into a slab (steel piece) by continuous casting or ingot-making / bundling rolling.

スラブ加熱温度:1000℃以上1250℃以下
スラブ(鋼片)再加熱温度が1000℃未満では、析出強化元素であるNb、V、Tiが十分固溶せず、仕上げ圧延終了後の冷却・巻取り過程においてCとの析出物を形成しない。その結果、最終的に得られる熱延鋼板に含まれる固溶C量が増大し、降伏伸びが増大するとともに、強度が低下する。一方、1250℃を超えると、オーステナイトが粗大化して最終的に得られる熱延鋼板の靭性が劣化するとともに、析出物の析出形態が変化することで、X80級の鋼管強度を確保できなくなる。したがって、スラブ(鋼片)再加熱温度は1000℃以上1250℃以下とする。
Slab heating temperature: 1000 ° C or higher and 1250 ° C or lower If the slab (steel slab) reheating temperature is lower than 1000 ° C, the precipitation strengthening elements Nb, V, and Ti are not sufficiently dissolved, and cooling and winding after finishing rolling is completed. Does not form precipitates with C in the process. As a result, the amount of solute C contained in the finally obtained hot-rolled steel sheet increases, yield elongation increases, and strength decreases. On the other hand, when the temperature exceeds 1250 ° C., the austenite coarsens and the toughness of the finally obtained hot-rolled steel sheet deteriorates, and the precipitation form of the precipitates changes, so that it becomes impossible to secure the X80 grade steel pipe strength. Therefore, the slab (steel slab) reheating temperature is set to 1000 ° C. or more and 1250 ° C. or less.

なお、スラブ(鋼片)に熱間圧延を施すに際し、鋳造後のスラブが1000℃以上1250℃以下の温度となっている場合には、スラブを加熱することなく直送圧延してもよい。再加熱後のスラブは、粗圧延および仕上げ圧延が施されて任意の板厚に調整されるが、本発明において粗圧延の条件は特に限定されない。   In addition, when hot-rolling a slab (steel piece), when the slab after casting has a temperature of 1000 ° C. or higher and 1250 ° C. or lower, direct rolling may be performed without heating the slab. The slab after reheating is subjected to rough rolling and finish rolling to be adjusted to an arbitrary plate thickness, but the conditions for rough rolling are not particularly limited in the present invention.

仕上げ圧延時における未再結晶温度域での圧下率:20%以上85%以下
未再結晶温度域(本発明の鋼組成の場合、約940℃以下)で仕上げ圧延を行うことにより、オーステナイト相の再結晶が遅延して歪が蓄積し、γ/α変態時にベイニティックフェライトが微細化して強度及び靭性が向上する。ここで、仕上げ圧延時における未再結晶温度域での圧下率が20%未満では、これらの効果が十分に発現しない。一方、上記圧下率が85%を超えると、変形抵抗が増大して圧延に支障をきたす。したがって、本発明では上記圧下率を20%以上85%以下とする。好ましくは35%以上75%以下である。
Reduction ratio in non-recrystallization temperature range during finish rolling: 20% or more and 85% or less By performing finish rolling in the non-recrystallization temperature range (about 940 ° C or less in the case of the steel composition of the present invention), the austenite phase Recrystallization is delayed and strain accumulates, and bainitic ferrite is refined during γ / α transformation, improving strength and toughness. Here, when the rolling reduction in the non-recrystallization temperature region during finish rolling is less than 20%, these effects are not sufficiently exhibited. On the other hand, if the rolling reduction exceeds 85%, the deformation resistance increases and hinders rolling. Therefore, in the present invention, the rolling reduction is set to 20% or more and 85% or less. Preferably they are 35% or more and 75% or less.

仕上げ圧延終了温度:(Ar3−50℃)以上(Ar3+100℃)以下
均質な粒径および組織で圧延を終了するためには、仕上げ圧延終了温度を(Ar3−50℃)以上とする必要がある。仕上げ圧延終了温度が(Ar3−50℃)を下回ると、仕上げ圧延中に鋼板内部でフェライト変態が生じ、組織が不均一になって、所望の特性が得られない。一方、仕上げ圧延終了温度が(Ar3+100℃)を超えると、結晶粒が粗大化し、靱性が劣化する。従って、仕上げ圧延終了温度を(Ar3−50℃)以上(Ar3+100℃)以下の範囲内とする。
なお、仕上げ圧延終了温度は、仕上圧延機の出側での鋼板表面の測定温度値である。
Finishing rolling end temperature: (Ar 3 −50 ° C.) or more (Ar 3 + 100 ° C.) or less In order to finish rolling with a uniform particle size and structure, the finishing rolling end temperature is set to (Ar 3 −50 ° C.) or more. There is a need. When the finish rolling finish temperature is lower than (Ar 3 -50 ° C.), ferrite transformation occurs inside the steel plate during finish rolling, the structure becomes non-uniform, and desired characteristics cannot be obtained. On the other hand, when the finish rolling finish temperature exceeds (Ar 3 + 100 ° C.), the crystal grains become coarse and the toughness deteriorates. Accordingly, the finish rolling finish temperature is set within the range of (Ar 3 −50 ° C.) to (Ar 3 + 100 ° C.).
The finish rolling end temperature is a measured temperature value of the steel sheet surface on the exit side of the finish rolling mill.

板厚中央位置の750℃以下650℃以上の温度域における平均冷却速度:5℃/s以上50℃/s未満
パーライト変態及びポリゴナルフェライトの生成を抑制し、強度又は靱性を確保するためには、仕上げ圧延終了後の鋼板を強制冷却し、板厚中央部の750℃以下650℃以上の温度域における平均冷却速度を5℃/s以上とすることが必要である。一方、上記温度域における板厚中央部の冷却速度が大きくなり過ぎると、板厚中央部にマルテンサイトまたはベイナイトが形成されて靱性が劣化するため、上記温度域における板厚中央位置の平均冷却速度は50℃/s未満とする必要がある。好ましくは5℃/s以上40℃/s以下である。
Average cooling rate in the temperature range of 750 ° C or lower and 650 ° C or higher at the center of the plate thickness: 5 ° C / s or more and less than 50 ° C / s To suppress the formation of pearlite transformation and polygonal ferrite and to ensure strength or toughness It is necessary to forcibly cool the steel sheet after finish rolling, and to set the average cooling rate in the temperature range of 750 ° C. or lower and 650 ° C. or higher at the center of the plate thickness to 5 ° C./s or higher. On the other hand, if the cooling rate at the central portion of the plate thickness in the above temperature range becomes too large, martensite or bainite is formed in the central portion of the plate thickness and the toughness deteriorates, so the average cooling rate at the central position of the plate thickness in the above temperature range Must be less than 50 ° C / s. Preferably, it is 5 ° C./s or more and 40 ° C./s or less.

なお、板厚中央位置の650℃以下の温度域における冷却条件は特に限定されない。例えば、板厚中央位置が650℃まで冷却された後は、650℃以下の所定の温度で強制冷却を停止し、後述する巻取り温度まで放冷してもよい。また、板厚中央位置が650℃まで冷却された後も巻取り温度まで強制冷却を続け、650℃から巻取り温度までの温度域を5℃/s以上50℃/s未満の平均冷却速度で冷却してもよい。   The cooling conditions in the temperature range of 650 ° C. or less at the center of the plate thickness are not particularly limited. For example, after the plate thickness center position has been cooled to 650 ° C., forced cooling may be stopped at a predetermined temperature of 650 ° C. or lower, and the plate may be allowed to cool to a winding temperature described later. In addition, forced cooling is continued to the coiling temperature even after the center position of the plate thickness is cooled to 650 ° C, and the temperature range from 650 ° C to the coiling temperature is maintained at an average cooling rate of 5 ° C / s or more and less than 50 ° C / s. It may be cooled.

板厚表層1mm位置の750℃以下650℃以上の温度域における平均冷却速度:50℃/s以上300℃/s以下
板厚表層1mm位置の750℃以下650℃以上の温度域における平均冷却速度が50℃/s未満では、板厚が例えば12mm以上30mm以下であるような厚肉熱延鋼板の板厚中央位置における冷却速度が不十分となり、パーライトおよびポリゴナルフェライトが生成し、厚肉熱延鋼板の強度、靭性が劣化する。一方、板厚表層1mm位置の750℃以下650℃以上の温度域における平均冷却速度が300℃/sを超えると、表層硬度が上昇し、伸び特性が劣化するため、上限は300℃/sとする必要がある。好ましくは50℃/s以上200℃/s以下である。
Average cooling rate in the temperature range of 750 ° C or higher and 650 ° C or higher at the plate thickness surface of 1mm position: 50 ° C / s or higher and 300 ° C / s or lower If it is less than 50 ° C / s, the cooling rate at the center of the thickness of the thick hot-rolled steel sheet having a thickness of, for example, 12 mm or more and 30 mm or less becomes insufficient, pearlite and polygonal ferrite are generated, and the thick hot-rolled steel sheet is formed. The strength and toughness of the steel sheet deteriorate. On the other hand, if the average cooling rate in the temperature range of 750 ° C or lower and 650 ° C or higher at the 1mm position of the plate thickness exceeds 300 ° C / s, the surface layer hardness increases and the elongation characteristics deteriorate, so the upper limit is 300 ° C / s There is a need to. Preferably, it is 50 ° C./s or more and 200 ° C./s or less.

巻取り温度:200℃以上550℃以下
本発明において、巻取り温度を所定の温度域とすることは、低降伏伸びを確保するうえで極めて重要である。巻取り温度が550℃を超えると、降伏伸びが極端に上昇して耐座屈性能が低下するとともに、析出強化が過剰となり降伏比が上昇する。したがって、巻取り温度は550℃以下とする。特に優れた耐座屈性能を発揮するためには、400℃以下とすることが望ましい。一方、巻取り温度を低くし過ぎると、熱延の巻取りに支障をきたすため、巻取り温度の下限を200℃とする。ここで、上記巻取り温度は、巻き取り直前の鋼板表面温度であるが、これは板厚表層1mm位置における温度とほぼ同じである。
Winding temperature: 200 ° C. or higher and 550 ° C. or lower In the present invention, setting the winding temperature to a predetermined temperature range is extremely important for securing low yield elongation. When the coiling temperature exceeds 550 ° C., the yield elongation is extremely increased to deteriorate the buckling resistance, and the precipitation strengthening is excessive to increase the yield ratio. Therefore, the coiling temperature is 550 ° C. or lower. In order to exhibit particularly excellent buckling resistance, the temperature is desirably 400 ° C. or lower. On the other hand, if the winding temperature is too low, hot rolling winding will be hindered, so the lower limit of the winding temperature is 200 ° C. Here, the winding temperature is the surface temperature of the steel plate immediately before winding, which is substantially the same as the temperature at the plate thickness surface layer of 1 mm.

なお、例えば仕上げ圧延終了後の鋼板を水冷し、板厚中央位置の750℃以下650℃以上の温度域における平均冷却速度が5℃/s以上50℃/s未満となるように水量を調整し、板厚中央位置が650℃〜巻取り温度の任意の温度まで冷却された時点で水冷を停止すれば、板厚表層1mm位置の750℃以下650℃以上の温度域における平均冷却速度はおのずと50℃/s以上となる。また、上記のように水冷すれば、板厚表層1mm位置は一旦Ms点以下或いはBs点以下の温度まで冷却された後、巻取り工程以降に復熱して焼戻される。   For example, the steel sheet after finish rolling is cooled with water, and the amount of water is adjusted so that the average cooling rate in the temperature range of 750 ° C. or lower and 650 ° C. or higher at the center of the plate thickness is 5 ° C./s or higher and lower than 50 ° C./s. If the water cooling is stopped when the sheet thickness central position is cooled to an arbitrary temperature of 650 ° C. to the coiling temperature, the average cooling rate in the temperature range of 750 ° C. or lower and 650 ° C. or higher at the plate thickness 1 mm position is naturally 50 ℃ / s or more. Further, if water cooling is performed as described above, the 1 mm position of the plate thickness surface layer is once cooled to a temperature below the Ms point or below the Bs point, and then reheated and tempered after the winding step.

また、本発明では、降伏伸びを低位に抑制し、耐座屈性能を向上させるために、以下の(3)式を満足することが好ましい。
0.0≦7.09×[%C]−1.31×[%Mn]+0.00910×CT≦3.3 ・・・ (3)
ここで、 (3)式において、[%C]および[%Mn]は各元素の含有量(質量%)、
CTは巻取り温度(℃)である。
In the present invention, it is preferable to satisfy the following formula (3) in order to suppress the yield elongation to a low level and improve the buckling resistance.
0.0 ≦ 7.09 × [% C] −1.31 × [% Mn] + 0.00910 × CT ≦ 3.3 (3)
Here, in the formula (3), [% C] and [% Mn] are the content (mass%) of each element,
CT is the coiling temperature (° C).

上記(3)式の7.09×[%C]−1.31×[%Mn]+0.00910×CT(=YE)は、降伏伸びの指標である。YEの値が小さいほど熱延鋼板の降伏伸びが低位となり、鋼管の耐座屈性能が向上する傾向にある。十分な耐座屈性能を確保するうえでは、YE値を3.3以下とすることが好ましい。一方、熱延鋼板の降伏伸びが極端に小さくなると、応力−ひずみ曲線がラウンドハウス型となり、降伏強度YSが極端に低下する恐れがある。したがって、YE値は0.0以上とすることが好ましい。   In the above formula (3), 7.09 × [% C] −1.31 × [% Mn] + 0.00910 × CT (= YE) is an index of yield elongation. The smaller the YE value, the lower the yield elongation of the hot-rolled steel sheet, and the tendency to improve the buckling resistance of the steel pipe. In order to ensure sufficient buckling resistance, the YE value is preferably 3.3 or less. On the other hand, when the yield elongation of the hot-rolled steel sheet becomes extremely small, the stress-strain curve becomes a round house type, and the yield strength YS may be extremely lowered. Therefore, the YE value is preferably 0.0 or more.

表1に示す組成のスラブ(鋼片)(肉厚:215mm)を用いて、表2に示す熱間圧延条件で熱間圧延を施し、熱間圧延終了後、表2に示す冷却条件で冷却し、表2に示す巻取り温度でコイル状に巻取り、表2に示す板厚の熱延鋼板(鋼帯)とした。更に、これら熱延鋼板を素材として、冷間でのロール連続成形によりオープン管とし、該オープン管の端面同士を電縫溶接して、電縫鋼管(外径610mmφ)とした。なお、表2に記載の仕上げ圧延終了温度は仕上圧延機の出側での鋼板表面における温度(実測値)であり、表2に記載の巻取り温度は巻き取り直前の鋼板表面における温度(実測値)である。また、熱間圧延終了後の冷却は水冷により行い、板厚中央位置が、目標の巻取り温度近くまで冷却された時点で水冷を停止した。また、板厚中央位置の温度および、冷却速度は伝熱計算による計算値である。   Using a slab (steel piece) (thickness: 215 mm) having the composition shown in Table 1, hot rolling is performed under the hot rolling conditions shown in Table 2, and after completion of the hot rolling, cooling is performed under the cooling conditions shown in Table 2. And it wound up in the shape of a coil at the coiling temperature shown in Table 2, and made it the hot-rolled steel plate (steel strip) of the plate thickness shown in Table 2. Furthermore, using these hot-rolled steel sheets as the raw material, open tubes were formed by continuous roll forming in the cold, and the end faces of the open tubes were electro-welded to form electric-welded steel tubes (outer diameter 610 mmφ). The finish rolling finish temperature described in Table 2 is the temperature (measured value) on the steel sheet surface on the exit side of the finish rolling mill, and the winding temperature shown in Table 2 is the temperature (measured value) on the steel sheet surface immediately before winding. Value). The cooling after the hot rolling was finished by water cooling, and the water cooling was stopped when the plate thickness center position was cooled to near the target winding temperature. The temperature at the center position of the plate thickness and the cooling rate are calculated values by heat transfer calculation.

得られた造管前の熱延鋼板から試験片を採取し、抽出残渣分析、引張試験、衝撃試験、DWTT試験、組織観察、を実施した。なお、引張試験は、熱延コイルを曲げ戻した平板から採取した全厚引張試験片と、熱延コイルを曲げ戻さずに湾曲したままの鋼板から上述した丸棒試験片の2種類の試験片にて実施した。また、電縫鋼管については、DWTT試験を実施した。更に、電縫鋼管については、耐座屈試験も実施した。試験方法は次のとおりとした。   Test pieces were collected from the obtained hot-rolled steel sheet before pipe making, and subjected to extraction residue analysis, tensile test, impact test, DWTT test, and structure observation. In addition, the tensile test has two types of test pieces: a full-thickness tensile test piece collected from a flat plate obtained by bending back a hot-rolled coil, and a round bar test piece described above from a steel plate that is bent without bending back the hot-rolled coil. It carried out in. In addition, a DWTT test was carried out on ERW steel pipes. In addition, a buckling resistance test was conducted on the ERW steel pipe. The test method was as follows.

(1)抽出残渣分析(析出Nb割合の測定方法)
得られた熱延鋼板の板厚中央位置と板厚表層1mm位置より試験片を採取し、マレイン酸系電解液を利用した電解抽出法で抽出した析出物について、ICP発光分析法により析出物中のNb量を測定して、試験片全Nb質量に対する質量%で表示したものを「全Nb量に対する析出Nbの割合(%)」とした。なお、マレイン酸系電解液の組成は、10%マレイン酸−2%アセチルアセトン−5%テトラメチルアンモニウムクロライド−メタノールとした。また、電解抽出にあたっては、定電流電解(約20mA)し、残渣をメンブレンフィルターで捕集するものとする。その後、フィルターおよび残渣を圧下したのち、ホウ酸リチウムと過酸化ナトリウムの混合融剤を用いて融解し、融生物を塩酸で溶解し、水で一定量に希釈し、ICP発光分析法で板厚中央位置と板厚表層1mm位置のNb析出割合を定量化するものとする。Nb析出割合が5%以上35%未満の範囲内である場合を「耐座屈特性に優れたNb析出割合」と評価した。
(1) Extraction residue analysis (measurement method of precipitated Nb ratio)
Test specimens were collected from the center of the thickness of the obtained hot-rolled steel sheet and the surface thickness of 1 mm, and the precipitates extracted by electrolytic extraction using a maleic acid electrolyte were analyzed by ICP emission spectrometry. The amount of Nb was measured and expressed as mass% with respect to the total Nb mass of the test piece as “a ratio (%) of precipitated Nb to the total Nb amount”. The composition of the maleic acid electrolyte was 10% maleic acid-2% acetylacetone-5% tetramethylammonium chloride-methanol. In the electrolytic extraction, constant current electrolysis (about 20 mA) is performed, and the residue is collected with a membrane filter. After that, the filter and residue are crushed and then melted using a mixed flux of lithium borate and sodium peroxide. The molten product is dissolved in hydrochloric acid, diluted to a certain volume with water, and the thickness is measured by ICP emission spectrometry. The Nb deposition rate at the center position and the 1 mm thickness surface layer shall be quantified. The case where the Nb precipitation ratio was in the range of 5% or more and less than 35% was evaluated as “Nb precipitation ratio excellent in buckling resistance”.

(2)引張試験
引張試験は、次の2種類の試験片にて実施した。
(A) 得られた熱延コイルを矯正加工し、圧延方向(L方向)が長手方向となるように採取した、板状の全厚試験片(平行部幅:25mm、標点間距離:50mm、板厚:全厚)
(B) 湾曲したままの熱延コイル板厚中央部から圧延方向(L方向)が長手方向となるように採取した丸棒試験片(ASTM規格記載の平行部30mm、ゲージ長さ25mm、ゲージ部径6mmφ)
(2) Tensile test The tensile test was performed with the following two types of test pieces.
(A) The obtained hot-rolled coil was straightened and sampled so that the rolling direction (L direction) was the longitudinal direction, a plate-like full-thickness test piece (parallel part width: 25 mm, distance between gauge points: 50 mm) , Board thickness: total thickness)
(B) Round bar test specimen (parallel part 30mm, gauge length 25mm, gauge part taken from the center part of the hot-rolled coil plate thickness that remains curved so that the rolling direction (L direction) is the longitudinal direction. (Diameter 6mmφ)

上記2種類の引張試験片を用い、ASTM E8M−04の規定に準拠して、室温で引張試験を実施し、降伏強度YS(MPa)、引張強さTS(MPa)、降伏伸び(%)を求めた。降伏強度が550MPa以上、引張強さが650MPa以上である場合を「引張特性が良好である」と評価した。但し、強度が高くなり過ぎると、伸び特性が低下するため、降伏強度は690MPa以下、引張強さは760MPa以下とすることが望ましい。また、丸棒引張試験片における降伏伸びが0.1%以上3.0%以下である場合を「低降伏伸び特性が良好である」と評価した。   Using the above two types of tensile test pieces, in accordance with ASTM E8M-04, a tensile test is performed at room temperature, yield strength YS (MPa), tensile strength TS (MPa), and yield elongation (%). Asked. A case where the yield strength was 550 MPa or more and the tensile strength was 650 MPa or more was evaluated as “good tensile properties”. However, if the strength becomes too high, the elongation characteristics deteriorate, so it is desirable that the yield strength is 690 MPa or less and the tensile strength is 760 MPa or less. Moreover, the case where the yield elongation in the round bar tensile test piece was 0.1% or more and 3.0% or less was evaluated as “low yield elongation characteristics were good”.

(3)シャルピー衝撃試験
得られた熱延鋼板の板厚中央部から、圧延方向に直交する方向(C方向)が長手方向となるようにVノッチ試験片を採取し、JIS Z 2242の規定に準拠してシャルピー衝撃試験を実施し、試験温度:−60℃での吸収エネルギーvE-60(J)と延性−脆性破面遷移温度vTrs(℃)を求めた。なお、試験温度は、−60℃を含む複数温度条件とし、試験片は各試験温度で3本ずつとした。得られた−60℃における吸収エネルギー値の算術平均を求め、その鋼板の吸収エネルギー値vE-60とした。また、各試験温度での脆性破面率の平均値も求め、これらをグラフ(横軸:試験温度、縦軸:脆性破面率)にプロットすることでvTrsを求めた。vE-60が100 J以上、vTrsが−80℃以下である場合を「靭性が良好である」と評価した。
(3) Charpy impact test V-notch specimens were taken from the center of the thickness of the obtained hot-rolled steel sheet so that the direction perpendicular to the rolling direction (C direction) was the longitudinal direction, and stipulated in JIS Z 2242 In accordance with the Charpy impact test, the absorbed energy vE -60 (J) and the ductile-brittle fracture surface transition temperature vTrs (° C) at -60 ° C were determined. The test temperature was a multiple temperature condition including −60 ° C., and three test pieces were used at each test temperature. The arithmetic average of the obtained absorbed energy value at −60 ° C. was obtained and was defined as the absorbed energy value vE- 60 of the steel sheet. Moreover, the average value of the brittle fracture surface ratio at each test temperature was also obtained, and vTrs was obtained by plotting these on a graph (horizontal axis: test temperature, vertical axis: brittle fracture surface ratio). A case where vE- 60 was 100 J or more and vTrs was −80 ° C. or less was evaluated as “good toughness”.

(4)DWTT試験
得られた熱延鋼板および電縫鋼管の母材部から、圧延方向に直交する方向(C方向)がサンプル長辺方向となるようにDWTT試験片(大きさ:板厚全厚×幅3in.×長さ12in.)を採取し、ASTM E 436の規定に準拠して、DWTT試験を行い、延性破面率が85%となる最低温度(DWTT SA85%TT)を求めた。DWTT SA85%TTが、熱延鋼板:−30℃以下、電縫鋼管:−10℃以下の場合を「優れたDWTT特性」を有すると評価した。なお、電縫鋼管の母材部から試験片を採取する場合は、試験片長手方向が管周方向となるように採取し、鋼板と同様に試験を実施した。
(4) DWTT test DWTT test piece (size: full plate thickness) so that the direction (C direction) perpendicular to the rolling direction is the sample long side direction from the base material part of the obtained hot rolled steel sheet and ERW steel pipe (Thickness x width 3in. X length 12in.) Was collected and subjected to a DWTT test in accordance with ASTM E 436 to determine the lowest temperature (DWTT SA85% TT) at which the ductile fracture surface ratio was 85%. . It was evaluated that DWTT SA85% TT had “excellent DWTT characteristics” when the hot-rolled steel sheet was −30 ° C. or lower and the ERW steel pipe was −10 ° C. or lower. In addition, when extracting a test piece from the base material part of an ERW steel pipe, it extract | collected so that a test piece longitudinal direction might turn into a pipe peripheral direction, and implemented the test similarly to the steel plate.

(5)管軸圧縮試験(耐座屈試験)
得られた電縫鋼管(鋼管長1,800mm)の両端に耐圧板をつけ、大型圧縮試験装置によって軸方向圧縮試験を行い、圧縮荷重が最大になる点の歪量を限界座屈歪とした。限界座屈歪が0.5%以上である場合を「耐座屈性能が良好である」と評価した。
(5) Pipe shaft compression test (buckling resistance test)
Pressure-resistant plates were attached to both ends of the obtained electric resistance welded steel pipe (steel pipe length 1,800 mm), and an axial compression test was conducted using a large compression tester. The amount of strain at the point where the compressive load was maximized was defined as the critical buckling strain. The case where the critical buckling strain was 0.5% or more was evaluated as “good buckling resistance”.

(6)組織観察
得られた熱延鋼板から、板厚方向全ての位置が観察できるようなブロック状試験片を採取し、走査型電子顕微鏡(倍率:2000〜5000倍)を用いて、L断面観察(熱延鋼板幅方向が観察面に垂直)を実施した。組織の平均的な情報を得るため、板厚1/2(中央)位置、板厚表層1mm位置について板厚位置毎に3視野以上観察し、各構成組織の体積分率はこれらの平均値として求めた。板厚中央位置でのベイニティックフェライトの体積分率が95%以上で、板厚表層1mm位置での焼戻しマルテンサイトおよび/または焼戻しベイナイトの体積分率が95%以上である組織を、「靭性に優れた組織」と評価した。
上記(1)〜(6)の結果を、表3に示す。
(6) Microstructure observation From the obtained hot-rolled steel sheet, a block-shaped test piece that can observe all positions in the thickness direction is collected, and an L cross section is obtained using a scanning electron microscope (magnification: 2000 to 5000 times). Observation (the hot-rolled steel sheet width direction is perpendicular to the observation surface) was performed. In order to obtain average tissue information, observe at least 3 fields of view at each thickness position for the thickness 1/2 (center) position and 1 mm thickness surface layer, and the volume fraction of each constituent tissue is the average of these values. Asked. A structure in which the volume fraction of bainitic ferrite at the center of the plate thickness is 95% or more and the volume fraction of tempered martensite and / or tempered bainite at the plate thickness 1mm position is 95% or more “Excellent organization”.
Table 3 shows the results of the above (1) to (6).

Figure 2015175039
Figure 2015175039

Figure 2015175039
Figure 2015175039

Figure 2015175039
Figure 2015175039

表3に示すように、発明例の熱延鋼板は、引張特性(強度、低降伏伸び)および靭性(低温靭性)がいずれも良好であった。また、発明例の熱延鋼板を素材とした電縫鋼管はいすれも、靭性(低温靭性)が良好であり、且つ優れた耐座屈性能を示した。これに対し、比較例の熱延鋼板は、引張特性および靭性(低温靭性)のいずれか一方、或いは双方において、十分な特性が得られなかった。また、比較例の熱延鋼板を素材とした電縫鋼管は、靭性(低温靭性)および耐座屈性能のいずれかにおいて、十分な特性が得られなかった。   As shown in Table 3, the hot-rolled steel sheet of the inventive example was good in tensile properties (strength, low yield elongation) and toughness (low temperature toughness). In addition, any ERW steel pipe made of the hot-rolled steel sheet of the inventive example had good toughness (low temperature toughness) and showed excellent buckling resistance. On the other hand, the hot-rolled steel sheet of the comparative example could not obtain sufficient characteristics in either one or both of tensile properties and toughness (low temperature toughness). In addition, the electric resistance welded steel pipe made of the hot-rolled steel sheet of the comparative example did not have sufficient characteristics in either toughness (low temperature toughness) or buckling resistance.

Claims (8)

質量%で、
C :0.04%以上0.15%以下、 Si:0.01%以上0.55%以下、
Mn:1.0%以上3.0%以下、 P :0.03%以下、
S :0.01%以下、 Al:0.003%以上0.1%以下、
N :0.006%以下、 Nb:0.035%以上0.1%以下、
V :0.001%以上0.1%以下、 Ti:0.001%以上0.1%以下
を含有し、残部がFeおよび不可避的不純物である組成を有し、全添加Nb量に対する析出Nbの割合が5%以上35%未満であり、板厚中央位置におけるベイニティックフェライトの体積分率が95%以上であり、かつ、板厚表層1mm位置における焼戻しマルテンサイトおよび/または焼戻しベイナイトの体積分率が95%以上である組織を有し、熱延鋼板長手方向の引張試験における降伏伸びが0.1%以上3.0%以下であることを特徴とする厚肉熱延鋼板。
% By mass
C: 0.04% to 0.15%, Si: 0.01% to 0.55%,
Mn: 1.0% to 3.0%, P: 0.03% or less,
S: 0.01% or less, Al: 0.003% or more and 0.1% or less,
N: 0.006% or less, Nb: 0.035% or more and 0.1% or less,
V: 0.001% or more and 0.1% or less, Ti: 0.001% or more and 0.1% or less, with the balance being Fe and inevitable impurities, and the ratio of precipitated Nb to the total amount of added Nb is 5% or more and 35% The volume fraction of bainitic ferrite at the center of the plate thickness is 95% or more, and the volume fraction of tempered martensite and / or tempered bainite at the plate thickness 1 mm position is 95% or more. A thick-walled hot-rolled steel sheet having a structure and having a yield elongation of 0.1% to 3.0% in a tensile test in the longitudinal direction of the hot-rolled steel sheet.
前記組成が、下記(1)式および(2)式を満足することを特徴とする請求項1に記載の厚肉熱延鋼板。

Pcm=[%C]+[%Si]/30+([%Mn]+[%Cu]+[%Cr])/20
+[%Ni]/60+[%V]/10+[%Mo]/7+5×[%B]≦0.25 ・・・ (1)
Px=701×[%C]+85×[%Mn]≧181 ・・・ (2)
ここで、(1)式および(2)式において、[%C]、[%Si]、[%Mn]、[%Cu]、[%Cr]、[%Ni]、[%V]、[%Mo]、[%B]は各元素の含有量(質量%)。
The thick hot-rolled steel sheet according to claim 1, wherein the composition satisfies the following formulas (1) and (2).
Record
Pcm = [% C] + [% Si] / 30 + ([% Mn] + [% Cu] + [% Cr]) / 20
+ [% Ni] / 60 + [% V] / 10 + [% Mo] / 7 + 5 × [% B] ≦ 0.25 (1)
Px = 701 × [% C] + 85 × [% Mn] ≧ 181 (2)
Here, in the formulas (1) and (2), [% C], [% Si], [% Mn], [% Cu], [% Cr], [% Ni], [% V], [% % Mo] and [% B] are the contents of each element (% by mass).
前記組成に加えて更に、質量%でCa:0.0001%以上0.005%以下を含有することを特徴とする請求項1または2に記載の厚肉熱延鋼板。   The thick hot-rolled steel sheet according to claim 1 or 2, further comprising Ca: 0.0001% or more and 0.005% or less by mass% in addition to the composition. 前記組成に加えて更に、質量%で、Cu:0.001%以上0.5%以下、Ni:0.001%以上0.5%以下、Mo:0.001%以上0.5%以下、Cr:0.001%以上0.5%以下、B :0.0001%以上0.004%以下のうちから選ばれる1種または2種以上を含有することを特徴とする請求項1ないし3のいずれかに記載の厚肉熱延鋼板。   In addition to the above composition, Cu: 0.001% to 0.5%, Ni: 0.001% to 0.5%, Mo: 0.001% to 0.5%, Cr: 0.001% to 0.5%, B: 0.0001 The thick hot-rolled steel sheet according to any one of claims 1 to 3, wherein the thick hot-rolled steel sheet contains one or two or more selected from% to 0.004%. 質量%で、
C :0.04%以上0.15%以下、 Si:0.01%以上0.55%以下、
Mn:1.0%以上3.0%以下、 P :0.03%以下、
S :0.01%以下、 Al:0.003%以上0.1%以下、
N :0.006%以下、 Nb:0.035%以上0.1%以下、
V :0.001%以上0.1%以下、 Ti:0.001%以上0.1%以下
を含有し、残部がFeおよび不可避的不純物からなる組成の鋼片を、1000℃以上1250℃以下の温度域に再加熱し、粗圧延および該粗圧延に続き未再結晶温度域での圧下率を20%以上85%以下、仕上げ圧延終了温度を(Ar3−50℃)以上(Ar3+100℃)以下の温度域とする仕上げ圧延を施し、該仕上げ圧延終了後、板厚中央位置の750℃以下650℃以上の温度域における平均冷却速度を5℃/s以上50℃/s未満、板厚表層1mm位置の750℃以下650℃以上の温度域における平均冷却速度を50℃/s以上300℃/s以下で冷却し、200℃以上550℃以下の巻取り温度で巻き取ることを特徴とする厚肉熱延鋼板の製造方法。
% By mass
C: 0.04% to 0.15%, Si: 0.01% to 0.55%,
Mn: 1.0% to 3.0%, P: 0.03% or less,
S: 0.01% or less, Al: 0.003% or more and 0.1% or less,
N: 0.006% or less, Nb: 0.035% or more and 0.1% or less,
V: 0.001% or more and 0.1% or less, Ti: 0.001% or more and 0.1% or less, and a steel slab having a composition composed of Fe and unavoidable impurities in the remainder is reheated to a temperature range of 1000 ° C to 1250 ° C, Following rough rolling and rough rolling, the rolling reduction in the non-recrystallization temperature range is 20% or more and 85% or less, and the finish rolling finish temperature is set to a temperature range of (Ar 3 −50 ° C.) to (Ar 3 + 100 ° C.). After finish rolling, after finishing the finish rolling, the average cooling rate in the temperature range of 750 ° C or lower and 650 ° C or higher at the center of the plate thickness is 5 ° C / s or higher and less than 50 ° C / s, and the thickness of the surface layer 1mm position is 750 ° C or lower Production of thick-walled hot-rolled steel sheet, which is cooled at an average cooling rate of 50 ° C / s or more and 300 ° C / s or less in a temperature range of 650 ° C or more and wound at a winding temperature of 200 ° C or more and 550 ° C or less Method.
前記組成が下記(1)式、(2)式を満足し、前記巻取り温度が下記(3)式を満足することを特徴とする請求項5に記載の厚肉熱延鋼板の製造方法。

Pcm=[%C]+[%Si]/30+([%Mn]+[%Cu]+[%Cr])/20
+[%Ni]/60+[%V]/10+[%Mo]/7+5×[%B]≦0.25 ・・・ (1)
Px=701×[%C]+85×[%Mn]≧181 ・・・ (2)
0.0≦7.09×[%C]−1.31×[%Mn]+0.00910×CT≦3.3 ・・・ (3)
ここで、(1)式、(2)式および(3)式において、[%C]、[%Si]、[%Mn]、[%Cu]、[%Cr]、[%Ni]、[%V]、[%Mo]、[%B]は各元素の含有量(質量%)。
(3)式において、CTは巻取り温度(℃)。
The method for producing a thick hot-rolled steel sheet according to claim 5, wherein the composition satisfies the following formulas (1) and (2), and the winding temperature satisfies the following formula (3).
Record
Pcm = [% C] + [% Si] / 30 + ([% Mn] + [% Cu] + [% Cr]) / 20
+ [% Ni] / 60 + [% V] / 10 + [% Mo] / 7 + 5 × [% B] ≦ 0.25 (1)
Px = 701 × [% C] + 85 × [% Mn] ≧ 181 (2)
0.0 ≦ 7.09 × [% C] −1.31 × [% Mn] + 0.00910 × CT ≦ 3.3 (3)
Here, in the formulas (1), (2) and (3), [% C], [% Si], [% Mn], [% Cu], [% Cr], [% Ni], [% % V], [% Mo], and [% B] are the contents (% by mass) of each element.
In equation (3), CT is the coiling temperature (° C).
前記組成に加えて更に、質量%でCa:0.0001%以上0.005%以下を含有することを特徴とする請求項5または6に記載の厚肉熱延鋼板の製造方法。   The method for producing a thick hot-rolled steel sheet according to claim 5 or 6, further comprising Ca: 0.0001% or more and 0.005% or less by mass% in addition to the composition. 前記組成に加えて更に、質量%で、Cu:0.001%以上0.5%以下、Ni:0.001%以上0.5%以下、Mo:0.001%以上0.5%以下、Cr:0.001%以上0.5%以下、B:0.0001%以上0.004%以下のうちから選ばれる1種または2種以上を含有することを特徴とする請求項5ないし7のいずれかに記載の厚肉熱延鋼板の製造方法。   In addition to the above composition, Cu: 0.001% to 0.5%, Ni: 0.001% to 0.5%, Mo: 0.001% to 0.5%, Cr: 0.001% to 0.5%, B: 0.0001 The method for producing a thick hot-rolled steel sheet according to any one of claims 5 to 7, comprising one or more selected from 1% or more and 0.004% or less.
JP2014053255A 2014-03-17 2014-03-17 Thick-walled hot-rolled steel strip and method for producing the same Active JP6123713B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014053255A JP6123713B2 (en) 2014-03-17 2014-03-17 Thick-walled hot-rolled steel strip and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014053255A JP6123713B2 (en) 2014-03-17 2014-03-17 Thick-walled hot-rolled steel strip and method for producing the same

Publications (2)

Publication Number Publication Date
JP2015175039A true JP2015175039A (en) 2015-10-05
JP6123713B2 JP6123713B2 (en) 2017-05-10

Family

ID=54254509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014053255A Active JP6123713B2 (en) 2014-03-17 2014-03-17 Thick-walled hot-rolled steel strip and method for producing the same

Country Status (1)

Country Link
JP (1) JP6123713B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104805375A (en) * 2015-04-02 2015-07-29 江阴兴澄特种钢铁有限公司 Steel plate for super-thick high-tenacity X80 pipeline and manufacturing method of steel plate
WO2018042522A1 (en) * 2016-08-30 2018-03-08 新日鐵住金株式会社 Oil well pipe for expandable tubular
WO2019131100A1 (en) * 2017-12-25 2019-07-04 Jfeスチール株式会社 Hot-rolled steel sheet and method for producing same
CN110592360A (en) * 2019-08-27 2019-12-20 西安理工大学 Heat treatment method of X80 elbow welding joint with excellent low-temperature toughness
JP2022513269A (en) * 2018-12-19 2022-02-07 ポスコ Structural steel with excellent brittle fracture resistance and its manufacturing method
JP2022514018A (en) * 2018-12-19 2022-02-09 ポスコ High-strength structural steel with excellent cold bendability and its manufacturing method
CN114761595A (en) * 2019-11-27 2022-07-15 杰富意钢铁株式会社 Steel sheet and method for producing same
CN115702256A (en) * 2020-10-28 2023-02-14 日本制铁株式会社 Hot rolled steel plate
CN116043104A (en) * 2022-10-28 2023-05-02 南阳汉冶特钢有限公司 Low-cost Q550D steel produced by TMCP (thermal mechanical control process) technology and production method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005240051A (en) * 2004-02-24 2005-09-08 Jfe Steel Kk Sour-resistant high-strength hot rolled steel plate with excellent toughness of weld zone for electric resistance welded pipe, and manufacturing method therefor
WO2010087511A1 (en) * 2009-01-30 2010-08-05 Jfeスチール株式会社 Thick high-tensile-strength hot-rolled steel sheet with excellent low-temperature toughness and process for production of same
JP2010174342A (en) * 2009-01-30 2010-08-12 Jfe Steel Corp Thick and high tension hot-rolled steel plate excellent in low temperature toughness, and producing method therefor
JP2010196164A (en) * 2009-01-30 2010-09-09 Jfe Steel Corp Thick, high-tension, hot-rolled steel sheet excellent in low-temperature toughness, and manufacturing method therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005240051A (en) * 2004-02-24 2005-09-08 Jfe Steel Kk Sour-resistant high-strength hot rolled steel plate with excellent toughness of weld zone for electric resistance welded pipe, and manufacturing method therefor
WO2010087511A1 (en) * 2009-01-30 2010-08-05 Jfeスチール株式会社 Thick high-tensile-strength hot-rolled steel sheet with excellent low-temperature toughness and process for production of same
JP2010174342A (en) * 2009-01-30 2010-08-12 Jfe Steel Corp Thick and high tension hot-rolled steel plate excellent in low temperature toughness, and producing method therefor
JP2010196164A (en) * 2009-01-30 2010-09-09 Jfe Steel Corp Thick, high-tension, hot-rolled steel sheet excellent in low-temperature toughness, and manufacturing method therefor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JISハンドブック 1 鉄鋼I, JPN6016035997, 19 January 2007 (2007-01-19), pages 172 - 180, ISSN: 0003509724 *

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104805375A (en) * 2015-04-02 2015-07-29 江阴兴澄特种钢铁有限公司 Steel plate for super-thick high-tenacity X80 pipeline and manufacturing method of steel plate
WO2018042522A1 (en) * 2016-08-30 2018-03-08 新日鐵住金株式会社 Oil well pipe for expandable tubular
JPWO2018042522A1 (en) * 2016-08-30 2019-03-28 新日鐵住金株式会社 Oil well pipe for expandable tubular
US11390931B2 (en) 2017-12-25 2022-07-19 Jfe Steel Corporation Hot-rolled steel plate and method for manufacturing same
JP2019112676A (en) * 2017-12-25 2019-07-11 Jfeスチール株式会社 Hot rolled steel sheet and manufacturing method therefor
WO2019131100A1 (en) * 2017-12-25 2019-07-04 Jfeスチール株式会社 Hot-rolled steel sheet and method for producing same
EP3715494A4 (en) * 2017-12-25 2020-10-14 JFE Steel Corporation Hot-rolled steel sheet and method for producing same
RU2740067C1 (en) * 2017-12-25 2020-12-31 ДжФЕ СТИЛ КОРПОРЕЙШН Hot-rolled plate steel and method of its production
JP2022514018A (en) * 2018-12-19 2022-02-09 ポスコ High-strength structural steel with excellent cold bendability and its manufacturing method
JP2022513269A (en) * 2018-12-19 2022-02-07 ポスコ Structural steel with excellent brittle fracture resistance and its manufacturing method
JP7348947B2 (en) 2018-12-19 2023-09-21 ポスコ カンパニー リミテッド Structural steel material with excellent brittle fracture resistance and its manufacturing method
JP7348948B2 (en) 2018-12-19 2023-09-21 ポスコ カンパニー リミテッド High-strength structural steel material with excellent cold bendability and method for producing the same
CN110592360B (en) * 2019-08-27 2021-09-10 西安理工大学 Heat treatment method of X80 elbow welding joint with excellent low-temperature toughness
CN110592360A (en) * 2019-08-27 2019-12-20 西安理工大学 Heat treatment method of X80 elbow welding joint with excellent low-temperature toughness
CN114761595A (en) * 2019-11-27 2022-07-15 杰富意钢铁株式会社 Steel sheet and method for producing same
CN115702256A (en) * 2020-10-28 2023-02-14 日本制铁株式会社 Hot rolled steel plate
CN115702256B (en) * 2020-10-28 2023-10-17 日本制铁株式会社 Hot rolled steel sheet
CN116043104A (en) * 2022-10-28 2023-05-02 南阳汉冶特钢有限公司 Low-cost Q550D steel produced by TMCP (thermal mechanical control process) technology and production method thereof
WO2024088056A1 (en) * 2022-10-28 2024-05-02 南阳汉冶特钢有限公司 Tmcp-produced low-cost q550d steel and production method therefor

Also Published As

Publication number Publication date
JP6123713B2 (en) 2017-05-10

Similar Documents

Publication Publication Date Title
JP5679091B1 (en) Hot-rolled steel sheet and manufacturing method thereof
JP6123713B2 (en) Thick-walled hot-rolled steel strip and method for producing the same
CA2851325C (en) High-strength hot rolled steel sheet with excellent bendability and low-temperature toughness, and method for manufacturing the same
KR101333854B1 (en) Thick high-tensile-strength hot-rolled steel sheet with excellent low-temperature toughness and process for production of same
JP5499733B2 (en) Thick high-tensile hot-rolled steel sheet excellent in low-temperature toughness and method for producing the same
JP4341396B2 (en) High strength hot rolled steel strip for ERW pipes with excellent low temperature toughness and weldability
JP5679114B2 (en) Low yield ratio high strength hot rolled steel sheet with excellent low temperature toughness and method for producing the same
JP6354910B2 (en) Hot-rolled steel sheet for thick-walled high-strength line pipe, welded steel pipe for thick-walled, high-strength line pipe, and manufacturing method thereof
JP6015602B2 (en) High toughness, high ductility, high strength hot-rolled steel sheet and method for producing the same
JP5481976B2 (en) High strength hot rolled steel sheet for high strength welded steel pipe and method for producing the same
JP6572963B2 (en) Hot-rolled steel sheet and manufacturing method thereof
JPWO2015151469A1 (en) Steel material for high deformability line pipe excellent in strain aging resistance and HIC resistance, manufacturing method thereof, and welded steel pipe
JP6149776B2 (en) High toughness, high ductility, high strength hot-rolled steel sheet and method for producing the same
WO2013099192A1 (en) High-tension hot rolled steel sheet and method for manufacturing same
JP5401863B2 (en) Manufacturing method for thick-walled high-tensile hot-rolled steel sheet with excellent low-temperature toughness
JP2008274355A (en) Method for manufacturing hot-rolled steel plate superior in surface quality, fracture toughness and sour corrosion resistance
JP2015190026A (en) Thick high strength electroseamed steel pipe for linepipe and manufacturing method therefor
JP5742123B2 (en) High-tensile hot-rolled steel sheet for high-strength welded steel pipe for line pipe and method for producing the same
WO2014115548A1 (en) HOT-ROLLED STEEL PLATE FOR HIGH-STRENGTH LINE PIPE AND HAVING TENSILE STRENGTH OF AT LEAST 540 MPa
JP5521482B2 (en) Thick high-tensile hot-rolled steel sheet excellent in low-temperature toughness and method for producing the same
JP6128042B2 (en) Low yield ratio high strength spiral steel pipe pile and manufacturing method thereof
JP2020066747A (en) Electroseamed steel pipe for linepipe, and hot rolled steel sheet for linepipe
JP4900260B2 (en) Method for producing hot-rolled steel sheet having excellent ductile crack propagation characteristics and sour resistance
JP2004143500A (en) High-strength steel pipe excellent in buckling resistance and its production method
JP5521484B2 (en) Thick high-tensile hot-rolled steel sheet excellent in low-temperature toughness and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151027

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160920

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170320

R150 Certificate of patent or registration of utility model

Ref document number: 6123713

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250