JP2015175003A - Surface treatment liquid for galvanized steel plate, surface treated galvanized steel plate, and method of manufacturing the same - Google Patents

Surface treatment liquid for galvanized steel plate, surface treated galvanized steel plate, and method of manufacturing the same Download PDF

Info

Publication number
JP2015175003A
JP2015175003A JP2014049650A JP2014049650A JP2015175003A JP 2015175003 A JP2015175003 A JP 2015175003A JP 2014049650 A JP2014049650 A JP 2014049650A JP 2014049650 A JP2014049650 A JP 2014049650A JP 2015175003 A JP2015175003 A JP 2015175003A
Authority
JP
Japan
Prior art keywords
compound
surface treatment
steel sheet
galvanized steel
treatment liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014049650A
Other languages
Japanese (ja)
Other versions
JP6056792B2 (en
Inventor
土本 和明
Kazuaki Tsuchimoto
和明 土本
三好 達也
Tatsuya Miyoshi
達也 三好
里江 金子
Rie Kaneko
里江 金子
松崎 晃
Akira Matsuzaki
晃 松崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2014049650A priority Critical patent/JP6056792B2/en
Publication of JP2015175003A publication Critical patent/JP2015175003A/en
Application granted granted Critical
Publication of JP6056792B2 publication Critical patent/JP6056792B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a surface treatment liquid that does not contain a chromium compound, makes it possible to obtain a surface-treated galvanized steel plate having both corrosion resistance and black discoloration resistance at high level with a thin film, and enables proper thin film formation by any simple drying means such as dryer drying.SOLUTION: There is provided a surface treatment liquid that contains a silane coupling agent (a1) having a glycidyl group, a silane compound (A) obtained from tetraalkoxysilane (a2) and phosphonic acid (a3) and having a hydrolyzable group, a zirconium carbonate compound (B), a vanadic acid compound (C), and water at a specific ratio, has its pH adjusted to 7.2-8.0 with carbonic acid as a pH adjuster, and does not contain any fluorine compound.

Description

本発明は、亜鉛系めっき鋼板用の表面処理液であって、6価クロムを含まない表面処理液と、この表面処理液で処理した環境調和型の表面処理亜鉛系めっき鋼板およびその製造方法に関する。   The present invention relates to a surface treatment liquid for a zinc-based plated steel sheet, a surface treatment liquid not containing hexavalent chromium, an environment-friendly surface-treated zinc-based plated steel sheet treated with this surface treatment liquid, and a method for producing the same. .

従来、家電製品用鋼板、建材用鋼板、自動車用鋼板に使用される亜鉛系めっき鋼板の表面に、耐食性(耐白錆性、耐赤錆性)を向上させる目的で、クロム酸、重クロム酸またはその塩類を主要成分とした表面処理液によるクロメート処理を施した鋼板が広く用いられてきた。しかしながら、最近の地球環境問題から、クロメート処理によらない無公害な表面処理鋼板、所謂クロムフリー処理鋼板を採用することへの要請が高まっている。   Conventionally, for the purpose of improving the corrosion resistance (white rust resistance, red rust resistance) on the surface of galvanized steel sheets used for steel sheets for household appliances, steel sheets for building materials, and steel sheets for automobiles, chromic acid, dichromic acid or Steel sheets subjected to chromate treatment with a surface treatment solution containing salts as main components have been widely used. However, due to recent global environmental problems, there is an increasing demand for adopting non-polluted surface-treated steel sheets that do not depend on chromate treatment, so-called chromium-free treated steel sheets.

クロムフリー処理鋼板に関する技術は既に数多く提案されており、クロム酸と同じIVA族に属するモリブデン酸、タングステン酸の不動態化作用を狙った技術、Ti、Zr、V、Mn、Ni、Coなどの遷移金属やLa、Ceなどの希土類元素の金属塩を用いる技術、タンニン酸などの多価フェノールカルボン酸やS、Nを含む化合物などのキレート剤をベースとする技術、シランカップリング剤を用いてポリシロキサン皮膜を形成する技術、或いは、これらを組み合わせた技術などが提案されている。   Many technologies related to chromium-free treated steel sheets have already been proposed. Technologies aiming at the passivating action of molybdic acid and tungstic acid belonging to the same group IVA as chromic acid, such as Ti, Zr, V, Mn, Ni, Co, etc. Using technology using metal salts of rare earth elements such as transition metals and La, Ce, technology based on chelating agents such as polyphenolic carboxylic acids such as tannic acid and compounds containing S and N, using silane coupling agents A technique for forming a polysiloxane film or a technique combining these techniques has been proposed.

具体的に例を挙げると以下の通りである。
(1)ポリビニルフェノール誘導体などの有機樹脂と酸成分とエポキシ化合物とを反応させて得られる被覆剤、シランカップリング剤、およびバナジウム化合物等を配合した処理液から皮膜を形成する技術(特許文献1〜4)
(2)水性樹脂とチオカルボニル基とバナジン酸化合物とリン酸を含む皮膜を形成する技術(特許文献5)
(3)Tiなどの金属化合物と、フッ化物、リン酸化合物等の無機酸および有機酸とを含む処理液から皮膜を形成する技術(特許文献6〜12)
(4)Ce、La、Y等の希土類元素とTi、Zr元素の複合皮膜を形成し、その皮膜中でめっき界面側に酸化物層、表面側に水酸化物層を濃化させる技術(特許文献13)や、CeとSi酸化物の複合皮膜を形成する技術(特許文献14)
Specific examples are as follows.
(1) Technology for forming a film from a treatment liquid containing a coating agent obtained by reacting an organic resin such as a polyvinylphenol derivative, an acid component, and an epoxy compound, a silane coupling agent, and a vanadium compound (Patent Document 1) ~ 4)
(2) Technology for forming a film containing an aqueous resin, a thiocarbonyl group, a vanadic acid compound, and phosphoric acid (Patent Document 5)
(3) Technology for forming a film from a treatment liquid containing a metal compound such as Ti and inorganic and organic acids such as fluoride and phosphate compounds (Patent Documents 6 to 12)
(4) Technology to form a composite film of rare earth elements such as Ce, La, Y, etc. and Ti, Zr elements, and to concentrate the oxide layer on the plating interface side and the hydroxide layer on the surface side in the film (patent Document 13) and technology for forming a composite film of Ce and Si oxide (Patent Document 14)

(5)下層に酸化物を含有するリン酸および/またはリン酸化合物皮膜、その上層に樹脂皮膜からなる有機複合被覆を形成する技術(特許文献15、16)
(6)特定のインヒビター成分とシリカ/ジルコニウム化合物からなる複合皮膜を形成する技術(特許文献17)
(7)水溶性ジルコニウム化合物と、テトラアルコキシシランと、エポキシ基を有する化合物と、キレート剤と、バナジン酸と、所定の金属化合物とからなる複合皮膜を形成する技術(特許文献18)
(8)特定のシラン化合物と、炭酸ジルコニウム化合物と、バナジン酸化合物と、硝酸化合物からなる複合皮膜を形成する技術(特許文献19)
(5) Technology for forming an organic composite coating comprising a phosphoric acid and / or phosphoric acid compound film containing an oxide in the lower layer and a resin film on the upper layer (Patent Documents 15 and 16)
(6) Technology for forming a composite film comprising a specific inhibitor component and a silica / zirconium compound (Patent Document 17)
(7) Technology for forming a composite film comprising a water-soluble zirconium compound, a tetraalkoxysilane, a compound having an epoxy group, a chelating agent, vanadic acid, and a predetermined metal compound (Patent Document 18)
(8) Technology for forming a composite film composed of a specific silane compound, zirconium carbonate compound, vanadic acid compound, and nitric acid compound (Patent Document 19)

特開2003−13252号公報JP 2003-13252 A 特開2001−181860号公報JP 2001-181860 A 特開2004−263252号公報JP 2004-263252 A 特開2003−155452号公報Japanese Patent Laid-Open No. 2003-155542 特許第3549455号公報Japanese Patent No. 3549455 特許第3302677号公報Japanese Patent No. 3302677 特開2002−105658号公報JP 2002-105658 A 特開2004−183015号公報JP 2004-183015 A 特開2003−171778号公報JP 2003-171778 A 特開2001−271175号公報JP 2001-271175 A 特開2006−213958号公報JP 2006-213958 A 特開2005−48199号公報JP 2005-48199 A 特開2001−234358号公報JP 2001-234358 A 特許第3596665号公報Japanese Patent No. 3596665 特開2002−53980号公報JP 2002-53980 A 特開2002−53979号公報JP 2002-53979 A 特開2008−169470号公報JP 2008-169470 A 特開2010−255105号公報JP 2010-255105 A 特開2013−60647号公報JP 2013-60647 A

これらの技術により形成される皮膜は、有機成分または無機成分の複合添加によって亜鉛の白錆発生を抑制することを狙ったものであり、例えば、上記(1)、(2)の技術は、主に有機樹脂を添加することで耐食性を確保している。しかしながら、このような有機樹脂による皮膜は屋外環境や高温多湿環境下では、樹脂劣化による変色が問題となる。また、皮膜形成には高温焼付が必須であり、簡易的なドライヤー乾燥で製造した場合には、耐食性が確保できない。   Films formed by these technologies aim to suppress the occurrence of zinc white rust by the combined addition of organic or inorganic components. For example, the technologies (1) and (2) above are mainly used. Corrosion resistance is ensured by adding an organic resin. However, such an organic resin film has a problem of discoloration due to resin deterioration in an outdoor environment or a high temperature and high humidity environment. Moreover, high temperature baking is indispensable for film formation, and when manufactured by simple dryer drying, corrosion resistance cannot be ensured.

上記(3)、(4)の技術では、有機成分を全く含有しない無機単独皮膜が提案されている。しかしながら、これらの金属酸化物・金属水酸化物による複合皮膜では、皮膜を厚くしなければ亜鉛めっき鋼板に十分な耐食性を付与することができない。つまり、簡易的なドライヤー乾燥で製造した場合には、乾燥不十分となり、耐食性が確保できない。
上記(5)の技術では、耐食性を確保するために、上層に樹脂皮膜を用いているため、上記(1)、(2)の技術と同様の問題がある。
In the techniques (3) and (4), an inorganic single film that does not contain any organic component has been proposed. However, these metal oxide / metal hydroxide composite films cannot provide sufficient corrosion resistance to the galvanized steel sheet unless the film is thickened. That is, when manufactured by simple dryer drying, drying becomes insufficient, and corrosion resistance cannot be ensured.
The technique (5) has the same problems as the techniques (1) and (2) because a resin film is used as an upper layer in order to ensure corrosion resistance.

上記(6)の技術では、インヒビター成分としてバナジン酸化合物の不動態化作用およびリン酸化合物による難溶性金属塩を利用し、更に骨格皮膜としてジルコニウム化合物、微粒子シリカ、シランカップリング剤の複合皮膜を形成させることで優れた耐食性を発現している。しかしながら、皮膜を厚くしなければ亜鉛めっき鋼板に十分な耐食性を付与することができない。つまり、簡易的なドライヤー乾燥で製造した場合には、乾燥不十分となり、耐食性が確保できない。   In the technique of (6) above, a passivating action of a vanadate compound and a hardly soluble metal salt by a phosphate compound are used as an inhibitor component, and a composite film of a zirconium compound, fine particle silica, and a silane coupling agent is used as a skeleton film. By forming it, excellent corrosion resistance is expressed. However, sufficient corrosion resistance cannot be imparted to the galvanized steel sheet unless the film is thickened. That is, when manufactured by simple dryer drying, drying becomes insufficient, and corrosion resistance cannot be ensured.

上記(7)、(8)の技術では、薄膜で耐食性に優れた亜鉛めっき鋼板を提供することが可能であるが、十分な耐黒変性が得られず、このため優れた耐食性と耐黒変性を両立できないことが判った。
以上のように、現在までに提案されているクロムフリー処理鋼板では、平板部耐食性と耐黒変性とを両立できないことが分かった。
With the technologies (7) and (8) above, it is possible to provide a galvanized steel sheet that is thin and excellent in corrosion resistance. However, sufficient blacking resistance cannot be obtained, and therefore excellent corrosion resistance and blackening resistance are obtained. It was found that both cannot be achieved.
As described above, it has been found that the chromium-free treated steel plates proposed so far cannot achieve both the corrosion resistance of the flat plate portion and the blackening resistance.

したがって本発明の目的は、以上のような従来技術の課題を解決する亜鉛系めっき鋼板用の表面処理液であって、クロム化合物を含有することなく、薄膜で耐食性と耐黒変性を高度に両立させた表面処理亜鉛系めっき鋼板を得ることができ、しかも、ドライヤー乾燥などのような簡易な乾燥手段でも適切に皮膜形成ができる表面処理液を提供することにある。
また、本発明の他の目的は、そのような表面処理液で表面処理皮膜が形成された表面処理亜鉛めっき鋼板およびその製造方法を提供することにある。
Therefore, the object of the present invention is a surface treatment solution for galvanized steel sheet that solves the problems of the prior art as described above, and is highly compatible with corrosion resistance and blackening resistance in a thin film without containing a chromium compound. An object of the present invention is to provide a surface-treated liquid that can provide a surface-treated zinc-based plated steel sheet and that can appropriately form a film even with a simple drying means such as dryer drying.
Another object of the present invention is to provide a surface-treated galvanized steel sheet having a surface treatment film formed with such a surface treatment liquid and a method for producing the same.

本発明者らは、上記の課題を解決すべく鋭意検討を重ねた結果、特定のシラン化合物と、炭酸ジルコニウム化合物と、バナジン酸化合物と、水とを特定の割合で配合し、炭酸によりpHを特定の範囲に調整した表面処理液を用いて亜鉛系めっき鋼板表面に表面処理皮膜を形成することにより、上記問題点を解決できることを見出した。
本発明はこのような知見に基づきなされたもので、以下を要旨とするものである。
As a result of intensive studies to solve the above problems, the present inventors have formulated a specific silane compound, a zirconium carbonate compound, a vanadic acid compound, and water at a specific ratio, and adjusted the pH by carbonic acid. It has been found that the above problems can be solved by forming a surface treatment film on the surface of a zinc-based plated steel sheet using a surface treatment liquid adjusted to a specific range.
The present invention has been made on the basis of such findings and has the following gist.

[1]グリシジル基を有するシランカップリング剤(a1)、テトラアルコキシシラン(a2)およびホスホン酸(a3)から得られる、加水分解性基を有するシラン化合物(A)と、炭酸ジルコニウム化合物(B)と、バナジン酸化合物(C)と、水を含有し、pH調整剤である炭酸によりpHが7.2〜8.0に調整され、下記(i)〜(iv)の条件を満足することを特徴とする亜鉛系めっき鋼板用の表面処理液。
(i)シラン化合物(A)が表面処理液の全固形分中で30〜70質量%
(ii)炭酸ジルコニウム化合物(B)のZrO換算質量とシラン化合物(A)の質量の比(B/A)が0.3〜2.0
(iii)バナジン酸化合物(C)のV換算質量とシラン化合物(A)の質量の比(C/A)が0.010〜0.15
(iv)フッ素化合物(但し、不可避的不純物として含まれるフッ素化合物を除く。)を含有しない。
[1] A silane compound (A) having a hydrolyzable group obtained from a silane coupling agent (a1) having a glycidyl group, a tetraalkoxysilane (a2) and a phosphonic acid (a3), and a zirconium carbonate compound (B) And the vanadic acid compound (C) and water, and the pH is adjusted to 7.2 to 8.0 by carbonic acid as a pH adjusting agent, and satisfies the following conditions (i) to (iv): A surface treatment solution for galvanized steel sheets.
(I) The silane compound (A) is 30 to 70% by mass in the total solid content of the surface treatment liquid.
(Ii) The ratio (B / A) of the mass of the zirconium carbonate compound (B) in terms of ZrO 2 and the mass of the silane compound (A) is 0.3 to 2.0.
(Iii) The ratio (C / A) of the V-converted mass of the vanadic acid compound (C) to the mass of the silane compound (A) is from 0.010 to 0.15.
(Iv) Does not contain fluorine compounds (excluding fluorine compounds contained as inevitable impurities).

[2]上記[1]の表面処理液を亜鉛系めっき鋼板の表面に塗布し、乾燥することにより形成された、片面当たりの付着量が100〜600mg/mの表面処理皮膜を有することを特徴とする表面処理亜鉛系めっき鋼板。
[3]上記[1]の表面処理液を、乾燥後の片面当たりの付着量が100〜600mg/mとなるように亜鉛系めっき鋼板表面に塗布し、次いで乾燥することを特徴とする表面処理亜鉛系めっき鋼板の製造方法。
[2] It has a surface treatment film having a surface treatment film of 100 to 600 mg / m 2 formed by applying the surface treatment liquid of [1] above to the surface of a zinc-based plated steel sheet and drying. A surface-treated galvanized steel sheet.
[3] A surface characterized in that the surface treatment liquid of [1] is applied to the surface of a galvanized steel sheet so that the amount of adhesion per side after drying is 100 to 600 mg / m 2 and then dried. A method for producing a treated galvanized steel sheet.

本発明の亜鉛系めっき鋼板用の表面処理液は、クロム化合物を含有することなく、緻密なバリアー性を有することで、クロメート処理材に匹敵する優れた耐食性と耐黒変性を有する表面処理亜鉛系めっき鋼板を得ることができ、しかも、ドライヤー乾燥などのような簡易な乾燥手段でも適切に皮膜を形成することができる。また、本発明の表面処理亜鉛系めっき鋼板は、クロメート処理材に匹敵する優れた耐食性と耐黒変性を有し、また、ドライヤー乾燥などのような簡易な乾燥手段を備えた表面処理設備でも容易に製造することができる。   The surface treatment solution for galvanized steel sheet according to the present invention has a dense barrier property without containing a chromium compound, and has a surface treatment zinc system having excellent corrosion resistance and blackening resistance comparable to a chromate treatment material. A plated steel sheet can be obtained, and a film can be appropriately formed by simple drying means such as dryer drying. In addition, the surface-treated zinc-based plated steel sheet of the present invention has excellent corrosion resistance and blackening resistance comparable to chromate-treated materials, and is easy even with surface treatment equipment equipped with simple drying means such as dryer drying. Can be manufactured.

本発明の表面処理液が適用される亜鉛系めっき鋼板としては、めっき皮膜中に亜鉛を含有するものであれば、特に制限はない。代表的なものとしては、溶融亜鉛めっき鋼板(GI)、合金化溶融亜鉛めっき鋼板(GA)、溶融Zn−5質量%Al合金めっき鋼板(GF)、溶融Zn−55%質量Al合金めっき鋼板(GL)、電気亜鉛めっき鋼板(EG)、電気亜鉛−Ni合金めっき鋼板などが挙げられるが、これらに限定されない。   The zinc-based plated steel sheet to which the surface treatment liquid of the present invention is applied is not particularly limited as long as it contains zinc in the plating film. Typical examples include hot-dip galvanized steel sheet (GI), alloyed hot-dip galvanized steel sheet (GA), hot-dip Zn-5 mass% Al alloy-plated steel sheet (GF), hot-dip Zn-55% mass Al alloy-plated steel sheet ( GL), electrogalvanized steel sheet (EG), electrogalvanized-Ni alloy plated steel sheet, and the like, but are not limited thereto.

本発明の亜鉛系めっき鋼板用の表面処理液は、グリシジル基を有するシランカップリング剤(a1)、テトラアルコキシシラン(a2)およびホスホン酸(a3)から得られる、加水分解性基を有するシラン化合物(A)と、炭酸ジルコニウム化合物(B)と、バナジン酸化合物(C)と、水を含有する。なお、この表面処理液は、6価クロムなどのクロム化合物(但し、不可避的不純物として含まれるクロム化合物を除く。)を含有しない。
加水分解性基を有するシラン化合物(A)は、グリシジル基を有するシランカップリング剤(a1)とテトラアルコキシシラン(a2)との低縮合物と、ホスホン酸(a3)とを反応させることにより得られる化合物である。
シラン化合物(A)は、Si元素に直接結合する加水分解性基を有するシラン化合物であって、加水分解性基は水分と反応することによりシラノール基を形成する。シラン化合物(A)は、Si元素に結合する基の全てが加水分解性基であるものでもよいし、Si元素に結合する基の一部が加水分解性基であるものでもよい。
The surface treatment liquid for galvanized steel sheet of the present invention is a silane compound having a hydrolyzable group obtained from a silane coupling agent (a1) having a glycidyl group, a tetraalkoxysilane (a2) and a phosphonic acid (a3). (A), a zirconium carbonate compound (B), a vanadic acid compound (C), and water are contained. This surface treatment liquid does not contain a chromium compound such as hexavalent chromium (excluding chromium compounds contained as inevitable impurities).
The silane compound (A) having a hydrolyzable group is obtained by reacting a phosphonic acid (a3) with a low condensate of a silane coupling agent (a1) having a glycidyl group and a tetraalkoxysilane (a2). Compound.
The silane compound (A) is a silane compound having a hydrolyzable group directly bonded to Si element, and the hydrolyzable group forms a silanol group by reacting with moisture. The silane compound (A) may be a group in which all of the groups bonded to the Si element are hydrolyzable groups, or a part of the groups bonded to the Si element may be hydrolyzable groups.

グリシジル基を有するシランカップリング剤(a1)は、Siを含む1分子中にグリシジル基および加水分解性基として炭素数が1〜5、好ましくは1〜3である低級アルコキシル基を含有するものであれば、特に限定されず、例えば、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルトリエトキシシラン、3−グリシドキシプロピルメチルジメトキシシラン、2−(3,4エポキシシクロヘキシル)エチルトリエトキシシランなどが挙げられ、これらの1種以上を用いることができる。   The silane coupling agent (a1) having a glycidyl group contains a glycidyl group and a lower alkoxyl group having 1 to 5 carbon atoms, preferably 1 to 3 carbon atoms, as a hydrolyzable group in one molecule containing Si. If it exists, it will not specifically limit, For example, 3-glycidoxypropyl trimethoxysilane, 3-glycidoxypropyl triethoxysilane, 3-glycidoxypropylmethyl dimethoxysilane, 2- (3,4 epoxy cyclohexyl) ethyl Examples thereof include triethoxysilane, and one or more of these can be used.

テトラアルコキシシラン(a2)は、加水分解性基として4個の低級アルコキシル基を含有するものであり、一般式Si(OR)(式中、Rは同一のまたは異なる炭素数1〜5のアルキル基を示す)で示されるものであれば、特に限定されず、例えば、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシランなどが挙げられ、これらの1種以上を用いることができる。なかでも、亜鉛系めっき鋼板の耐食性がより優れるという観点から、テトラエトキシシランとテトラメトキシシランが好ましい。
ホスホン酸(a3)としては、ヒドロキシエチレンジホスホン酸、ニトロトリス(メチレンホスホン酸)、ホスホノブタントリカルボン酸、エチレジアミンテトラ(メチレンホスホン酸)などが挙げられ、これらの1種以上を用いることができる。
The tetraalkoxysilane (a2) contains four lower alkoxyl groups as hydrolyzable groups, and has a general formula Si (OR) 4 (wherein R is the same or different alkyl group having 1 to 5 carbon atoms). Group) is not particularly limited, and examples thereof include tetramethoxysilane, tetraethoxysilane, and tetrapropoxysilane, and one or more of these can be used. Among these, tetraethoxysilane and tetramethoxysilane are preferable from the viewpoint that the corrosion resistance of the galvanized steel sheet is more excellent.
Examples of the phosphonic acid (a3) include hydroxyethylene diphosphonic acid, nitrotris (methylenephosphonic acid), phosphonobutanetricarboxylic acid, and ethylenediaminetetra (methylenephosphonic acid), and one or more of these can be used. .

加水分解性基を有するシラン化合物(A)は、上記したグリシジル基を有するシランカップリング剤(a1)とテトラアルコキシシラン(a2)との低縮合物を含む。この低縮合物は、シランカップリング剤(a1)とテトラアルコキシシラン(a2)の縮合反応により形成されるポリシロキサン結合を主骨格とするものであり、Si元素に結合する末端の基が加水分解性基であるものでもよいし、Si元素に結合する基の一部が加水分解性であるものでもよい。   The silane compound (A) having a hydrolyzable group includes a low condensate of the above-described silane coupling agent (a1) having a glycidyl group and tetraalkoxysilane (a2). This low condensate has a polysiloxane bond formed by the condensation reaction of the silane coupling agent (a1) and the tetraalkoxysilane (a2) as the main skeleton, and the terminal group bonded to the Si element is hydrolyzed. It may be a functional group, or a part of the group bonded to the Si element may be hydrolyzable.

加水分解性基を有するシラン化合物(A)としては、縮合度が2〜30の化合物が使用可能であり、特に縮合度が2〜10の化合物を使用することが好ましい。縮合度が30以下であれば、白色沈殿を生じることがなく、安定なシラン化合物(A)が得られるからである。
加水分解性基を有するシラン化合物(A)は、シランカップリング剤(a1)とテトラアルコキシシラン(a2)との低縮合物と、ホスホン酸(a3)とを、反応温度1〜70℃で10分間〜20時間程度反応させ、オートクレープ処理を行うことなどにより得ることができる。
As the silane compound (A) having a hydrolyzable group, a compound having a condensation degree of 2 to 30 can be used, and a compound having a condensation degree of 2 to 10 is particularly preferable. This is because if the degree of condensation is 30 or less, no white precipitation occurs and a stable silane compound (A) is obtained.
The silane compound (A) having a hydrolyzable group is obtained by combining a low condensate of a silane coupling agent (a1) and a tetraalkoxysilane (a2) with a phosphonic acid (a3) at a reaction temperature of 1 to 70 ° C. It can be obtained by reacting for about 20 minutes to 20 minutes and performing autoclaving.

加水分解性基を有するシラン化合物(A)は、加水分解性基の特定および縮合状態を、ゲル・パーミッション・クロマトグラフィー(GPC)、NMRおよびIRを用いて測定することができる。
加水分解性基を有するシラン化合物(A)は、グリシジル基を有するシランカップリング剤(a1)と、テトラアルコキシシラン(a2)と、ホスホン酸(a3)とを反応させることにより、シランカップリング剤(a1)と、テトラアルコキシシラン(a2)が、水とホスホン酸(a3)により加水分解されて配位するものと考えられる。この加水分解反応およびホスホン酸(a3)による配位が同時に起こることにより得られたものであり、室温域での安定性が極めて高く、長期の保存に耐えるシラン化合物を生成する。
In the silane compound (A) having a hydrolyzable group, the specific and condensed state of the hydrolyzable group can be measured using gel permission chromatography (GPC), NMR and IR.
The silane compound (A) having a hydrolyzable group is obtained by reacting a silane coupling agent (a1) having a glycidyl group, a tetraalkoxysilane (a2), and a phosphonic acid (a3). It is considered that (a1) and tetraalkoxysilane (a2) are coordinated by hydrolysis with water and phosphonic acid (a3). This hydrolysis reaction and coordination by phosphonic acid (a3) are obtained at the same time, and a silane compound that has extremely high stability at room temperature and can withstand long-term storage is produced.

また、ホスホン酸(a3)は、耐食性と保管安定性を確保する上でも有効な成分である。その理由は必ずしも明らかではないが、ホスホン酸(a3)は、シランカップリング剤(a1)とテトラアルコキシシラン(a2)に配位すると考えられ、表面処理液中でシラン化合物(A)が高分子化することを抑制する作用を有するものと考えられ、このような作用に起因して表面処理液を調製後長期に亘り保管した場合においても変質することなく、調製時の品質が維持されるものと考えられる。また、ホスホン酸(a3)は、後述するバナジン酸化合物(C)とも配位すると考えられ、腐食環境下でバナジウムが溶解し、再度、ポリシロキサン結合を形成するものと考えられる。   Phosphonic acid (a3) is also an effective component for securing corrosion resistance and storage stability. Although the reason is not necessarily clear, it is considered that the phosphonic acid (a3) coordinates to the silane coupling agent (a1) and the tetraalkoxysilane (a2), and the silane compound (A) is a polymer in the surface treatment liquid. It is thought that it has an action to suppress the formation of the material, and the quality at the time of preparation is maintained without deterioration even when the surface treatment liquid is stored for a long time after preparation due to such action. it is conceivable that. In addition, phosphonic acid (a3) is considered to coordinate with the vanadate compound (C) described later, and it is considered that vanadium dissolves in a corrosive environment to form a polysiloxane bond again.

グリシジル基を有するシランカップリング剤(a1)と、テトラアルコキシシラン(a2)と、ホスホン酸(a3)の配合比率は、耐食性などの観点から、シランカップリング剤(a1)の100質量部に対して、テトラアルコキシシラン(a2)を25〜75質量部、ホスホン酸(a3)を5〜30質量部とすることが好ましい。
表面処理液中でのシラン化合物(A)の含有量は、表面処理液の全固形分中で30〜70質量%とする。シラン化合物(A)の含有量が30質量%未満では耐食性が確保できず、一方、含有量が70質量%を超えると却って耐食性が低下する。
シラン化合物(A)は、炭酸ジルコニウム化合物(B)と混合することにより、一旦乾燥すると再度水には溶解しないバリアー的効果を有する。
The blending ratio of the silane coupling agent (a1) having a glycidyl group, the tetraalkoxysilane (a2), and the phosphonic acid (a3) is based on 100 parts by mass of the silane coupling agent (a1) from the viewpoint of corrosion resistance. The tetraalkoxysilane (a2) is preferably 25 to 75 parts by mass and the phosphonic acid (a3) is preferably 5 to 30 parts by mass.
Content of the silane compound (A) in a surface treatment liquid shall be 30-70 mass% in the total solid of a surface treatment liquid. If the content of the silane compound (A) is less than 30% by mass, the corrosion resistance cannot be ensured. On the other hand, if the content exceeds 70% by mass, the corrosion resistance decreases.
By mixing with the zirconium carbonate compound (B), the silane compound (A) has a barrier effect that once dried, it does not dissolve in water again.

炭酸ジルコニウム化合物(B)としては、例えば、炭酸ジルコニウムのナトリウム、カリウム、リチウム、アンモニウムなどの塩(例えば、炭酸ジルコニウムアンモニウム、炭酸ジルコニウムナトリウム、炭酸ジルコニウムリチウム)が挙げられ、これらの1種以上を用いることができる。
炭酸ジルコニウム化合物(B)の含有量は、炭酸ジルコニウム化合物(B)のZrをZrO換算した質量(ZrO換算質量)とシラン化合物(A)の質量との比(B/A)が0.3〜2.0となるようにし、好ましくは0.35〜1.5となるようにする。質量比(B/A)が0.3未満では耐食性が確保できず、一方、質量比(B/A)が2.0を超えると却って耐食性が低下する。また、質量比(B/A)が2.0を超えると、耐黒変性も低下する。
Examples of the zirconium carbonate compound (B) include salts of zirconium carbonate such as sodium, potassium, lithium, and ammonium (for example, zirconium ammonium carbonate, sodium zirconium carbonate, lithium zirconium carbonate), and one or more of these are used. be able to.
The content of the zirconium carbonate compound (B) is such that the ratio (B / A) of the mass of ZrO 2 converted to ZrO 2 (ZrO 2 converted mass) of the zirconium carbonate compound (B) and the mass of the silane compound (A) is 0. 3 to 2.0, preferably 0.35 to 1.5. If the mass ratio (B / A) is less than 0.3, corrosion resistance cannot be ensured. On the other hand, if the mass ratio (B / A) exceeds 2.0, the corrosion resistance decreases. Moreover, when mass ratio (B / A) exceeds 2.0, blackening-proof property will also fall.

バナジン酸化合物(C)は、亜鉛系めっき鋼板表面に形成される皮膜中において、水に溶解し易い形態で均一に分散して存在し、いわゆる亜鉛腐食時のインヒビター効果を発現する。また、バナジン酸化合物(C)は、ホスホン酸(a3)に配位していると考えられ、腐食環境下でバナジン酸(C)の一部がイオン化し、不働態化することにより優れた耐食性を発揮する。バナジン酸化合物(C)としては、例えば、メタバナジン酸アンモニウム、メタバナジン酸ナトリウム、バナジウムアセチルアセトネートなどが挙げられ、これらの1種以上を用いることができる。
バナジン酸化合物(C)の含有量は、バナジン酸化合物(C)のV換算質量とシラン化合物(A)の質量との比(C/A)が0.010〜0.15となるようにし、好ましくは0.030〜0.10となるようにする。質量比(C/A)が0.010未満では耐食性が確保できず、一方、質量比(C/A)が0.15を超えると耐黒変性が低下するだけでなく、表面処理液へのバナジン酸化合物(C)の溶解が困難となるため保管安定性が低下する。
The vanadic acid compound (C) is present in the film formed on the surface of the zinc-based plated steel sheet, uniformly dispersed in a form that is easily dissolved in water, and exhibits a so-called inhibitor effect during zinc corrosion. Further, the vanadic acid compound (C) is considered to be coordinated to the phosphonic acid (a3), and a part of the vanadic acid (C) is ionized and deactivated in a corrosive environment. Demonstrate. Examples of the vanadic acid compound (C) include ammonium metavanadate, sodium metavanadate, vanadium acetylacetonate, and one or more of these can be used.
The content of the vanadic acid compound (C) is such that the ratio (C / A) of the V-converted mass of the vanadic acid compound (C) to the mass of the silane compound (A) is 0.010 to 0.15, Preferably it is set to 0.030-0.10. When the mass ratio (C / A) is less than 0.010, corrosion resistance cannot be ensured. On the other hand, when the mass ratio (C / A) exceeds 0.15, not only the blackening resistance decreases, Since it becomes difficult to dissolve the vanadic acid compound (C), the storage stability is lowered.

表面処理液はpH7.2〜8.0とする必要がある。pHが8.0を上回ると、表面処理液の塗布時に亜鉛系めっきが溶解して亜鉛の活性な表面が露出するために、耐黒変性が低下する。一方、pHが7.2を下回ると、表面処理液の保管安定性が劣化する。
また、表面処理液のpH調整には炭酸を用いる必要がある。pH調整に蟻酸や酢酸、乳酸などのカルボン酸を用いると、それらの成分が皮膜中に残存し、耐黒変性や耐水しみ性を低下させる。
さらに、表面処理液はフッ素化合物(但し、不可避的不純物として含まれるフッ素化合物を除く。)を含まない必要がある。フッ素化合物としては、例えば、フッ化水素酸、フッ化チタン、フッ化ジルコニウム、フッ化ジルコニウムなどが挙げられる。フッ素化合物は、耐水しみ性を低下させるだけでなく、シラン化合物の安定性を低下させ、表面処理液の保管安定性が確保できなくなる。
The surface treatment liquid needs to have a pH of 7.2 to 8.0. When the pH exceeds 8.0, the zinc-based plating dissolves during the application of the surface treatment solution, and the active surface of zinc is exposed, resulting in a decrease in blackening resistance. On the other hand, when the pH is lower than 7.2, the storage stability of the surface treatment liquid deteriorates.
Moreover, it is necessary to use carbonic acid for pH adjustment of the surface treatment solution. When carboxylic acids such as formic acid, acetic acid, and lactic acid are used for pH adjustment, these components remain in the film, and the blackening resistance and water stain resistance are reduced.
Furthermore, the surface treatment liquid needs to contain no fluorine compound (excluding fluorine compounds contained as inevitable impurities). Examples of the fluorine compound include hydrofluoric acid, titanium fluoride, zirconium fluoride, and zirconium fluoride. The fluorine compound not only lowers the water stain resistance but also reduces the stability of the silane compound, making it impossible to ensure the storage stability of the surface treatment liquid.

本発明の表面処理液には、潤滑性能を向上させるために固形潤滑剤を添加することができる。固形潤滑剤としては、ポリエチレンワックス、酸化ポリエチレンワックス、酸化ポリプロピレンワックス、カルナバワックス、パラフィンワックス、モンタンワックス、ライスワックス、テフロン(登録商標)ワックス、2硫化炭素、グラファイトなどが挙げられ、これらの1種以上を用いることができる。
固形潤滑剤の含有量は、表面処理液の全固形分中で1〜10質量%が好ましく、3〜7質量%がより好ましい。固形潤滑剤の含有量を1質量%以上とすることで潤滑性能の向上効果が得られ、10質量%以下であれば亜鉛系めっき鋼板の耐食性が低下することはない。
A solid lubricant can be added to the surface treatment liquid of the present invention in order to improve the lubricating performance. Examples of solid lubricants include polyethylene wax, oxidized polyethylene wax, oxidized polypropylene wax, carnauba wax, paraffin wax, montan wax, rice wax, Teflon (registered trademark) wax, carbon disulfide, graphite, and the like. The above can be used.
The content of the solid lubricant is preferably 1 to 10% by mass and more preferably 3 to 7% by mass in the total solid content of the surface treatment liquid. When the content of the solid lubricant is 1% by mass or more, an effect of improving the lubrication performance is obtained, and when it is 10% by mass or less, the corrosion resistance of the galvanized steel sheet is not lowered.

また、表面処理液には、作業性を向上させるための増粘剤、導電性を向上させるための導電性物質、意匠性向上のための着色顔料、造膜性向上のための溶剤等を、必要に応じて適宜添加してもよい。
表面処理液は、上記した成分を水中で混合することにより得られる。表面処理液の固形分濃度は適宜選択すればよい。また、表面処理液には、必要に応じてアルコール、ケトン、セロソルブ系の水溶性溶剤、消泡剤、防菌防カビ剤、着色剤などを添加してもよい。ただし、これら(すなわち、成分(A)〜(C)と水と固形潤滑剤以外の添加成分)は本発明で得られる性能を損なわない程度に添加することが重要であり、添加量は表面処理液の全固形分中で5質量%未満とすることが好ましい。
In addition, the surface treatment liquid contains a thickener for improving workability, a conductive substance for improving conductivity, a color pigment for improving design properties, a solvent for improving film forming property, and the like. You may add suitably as needed.
The surface treatment liquid can be obtained by mixing the above-described components in water. What is necessary is just to select the solid content concentration of a surface treatment liquid suitably. Moreover, you may add alcohol, a ketone, a cellosolve-type water-soluble solvent, an antifoamer, a fungicidal agent, a coloring agent, etc. to a surface treatment liquid as needed. However, it is important to add these components (that is, components (A) to (C), water, and an additive component other than the solid lubricant) to the extent that the performance obtained in the present invention is not impaired. The total solid content of the liquid is preferably less than 5% by mass.

本発明の表面処理亜鉛系めっき鋼板は、上述した亜鉛系めっき鋼板を素材とするもので、この亜鉛系めっき鋼板に上述した表面処理液を塗布し、乾燥することにより形成された表面処理皮膜を有する。
この表面処理皮膜の片面当たりの付着量は100〜600mg/mが好ましく、200〜500mg/mがより好ましい。片面当たりの皮膜付着量が100mg/m未満では耐食性不足が懸念され、一方、600mg/mを超えると、ドライヤー乾燥などの簡易設備での製造が困難となる。
The surface-treated zinc-based plated steel sheet of the present invention is made of the above-described zinc-based plated steel sheet, and the surface-treated film formed by applying the above-described surface treatment liquid to the zinc-plated steel sheet and drying it. Have.
Coating weight per one side of the surface treatment film is preferably from 100~600mg / m 2, 200~500mg / m 2 is more preferable. When the coating amount per side is less than 100 mg / m 2 , there is a concern about insufficient corrosion resistance. On the other hand, when it exceeds 600 mg / m 2 , production with simple equipment such as dryer drying becomes difficult.

本発明の表面処理亜鉛系めっき鋼板は、上述した表面処理液を、乾燥後の片面当たりの付着量が100〜600mg/mとなるように亜鉛系めっき鋼板表面に塗布し、次いで乾燥することにより製造される。
表面処理液を亜鉛系めっき鋼板の表面に塗布する方法としては、ロールコート法、バーコート法、浸漬法、スプレー塗布法などの任意の方法を採ることができ、処理される亜鉛系めっき鋼板の形状等によって適宜最適な方法を選択すればよい。例えば、処理される亜鉛系めっき鋼板がシート状であれば、ロールコート法やバーコート法、或いは、表面処理液を亜鉛系めっき鋼板表面にスプレーした後、ロール絞りや気体を高圧で吹きかけて塗布量を調整するスプレー塗布法を用いるのが適当である。また、亜鉛系めっき鋼板が成型品の場合は、表面処理液に浸漬して引き上げ、必要に応じて圧縮エアーで余分な表面処理液を吹き飛ばして塗布量を調整する方法などが適当である。
The surface-treated galvanized steel sheet of the present invention is obtained by applying the above-described surface treatment liquid to the surface of the galvanized steel sheet so that the amount of adhesion per one side after drying is 100 to 600 mg / m 2 and then drying. Manufactured by.
As a method of applying the surface treatment liquid to the surface of the galvanized steel sheet, any method such as a roll coating method, a bar coating method, a dipping method, or a spray coating method can be adopted. An optimal method may be selected as appropriate depending on the shape and the like. For example, if the zinc-based plated steel sheet to be treated is a sheet, the roll coating method or bar coating method, or after spraying the surface treatment liquid onto the surface of the zinc-based plated steel sheet, the roll squeezing or gas is sprayed at a high pressure and applied. It is appropriate to use a spray coating method that adjusts the amount. Moreover, when the zinc-based plated steel sheet is a molded product, a method of adjusting the coating amount by immersing it in the surface treatment liquid and pulling it up and blowing off excess surface treatment liquid with compressed air as necessary is suitable.

また、亜鉛系めっき鋼板に表面処理液を塗布する前に、必要に応じて、亜鉛系めっき鋼板表面の油分や汚れを除去することを目的とした前処理を施してもよい。亜鉛系めっき鋼板は、防錆目的で防錆油が塗られている場合が多く、また、防錆油が塗油されていない場合でも、表面には作業中に付着した油分や汚れなどがある。上記の前処理を施すことにより、亜鉛系めっき層の表面が清浄化され、均一に濡れやすくなる。亜鉛系めっき鋼板表面上で表面処理液が均一に濡れる場合は、前処理は特に必要でない。なお、前処理の方法は、特に限定されないが、例えば、湯洗、溶剤洗浄、アルカリ脱脂洗浄などの方法が挙げられる。   In addition, before applying the surface treatment liquid to the galvanized steel sheet, a pretreatment aimed at removing oil or dirt on the surface of the galvanized steel sheet may be performed as necessary. Zinc-coated steel sheets are often coated with rust-preventive oil for rust-prevention purposes, and even if they are not coated with rust-preventive oil, the surface has oil or dirt attached during work. . By performing the above pretreatment, the surface of the zinc-based plating layer is cleaned and easily wetted uniformly. When the surface treatment liquid gets wet uniformly on the surface of the galvanized steel sheet, pretreatment is not particularly necessary. The pretreatment method is not particularly limited, and examples thereof include hot water washing, solvent washing, and alkaline degreasing washing.

表面処理液を塗布した後、乾燥する際の加熱温度(最高到達板温)は、特に制限はないが、通常、30〜200℃程度である。加熱温度が30℃以上であれば皮膜中に水分が残存しないため、また、加熱温度が200℃以下であれば皮膜のクラック発生が抑制されるため、亜鉛系めっき鋼板の耐食性低下等の問題を生じることがないからである。また、加熱時間は、使用される亜鉛系めっき鋼板の種類などによって適宜最適な条件が選択される。なお、生産性などの観点からは、0.1〜60秒程度が好ましく、1〜30秒程度がより好ましい。   Although there is no restriction | limiting in particular in the heating temperature at the time of drying after apply | coating a surface treatment liquid (maximum ultimate board temperature), Usually, it is about 30-200 degreeC. If the heating temperature is 30 ° C. or higher, moisture does not remain in the film, and if the heating temperature is 200 ° C. or lower, the generation of cracks in the film is suppressed. It is because it does not occur. The heating time is appropriately selected according to the type of zinc-based plated steel sheet used. From the viewpoint of productivity and the like, about 0.1 to 60 seconds is preferable, and about 1 to 30 seconds is more preferable.

本発明の表面処理液により亜鉛系めっき鋼板表面に形成される表面処理皮膜は、クロム化合物を含有することなく優れた耐食性と耐黒変性を有するとともに、ドライヤー乾燥などのような簡易な乾燥手段でも適切に皮膜形成ができるという特徴がある。このような優れた性能が得られる理由は必ずしも明らかではないが、以下のような作用効果によるものであると考えられる。   The surface treatment film formed on the surface of the galvanized steel sheet by the surface treatment liquid of the present invention has excellent corrosion resistance and blackening resistance without containing a chromium compound, and can also be a simple drying means such as dryer drying. It is characterized by the ability to form a film properly. The reason why such excellent performance is obtained is not necessarily clear, but is considered to be due to the following effects.

まず、表面処理液の成分のうち、シラン化合物(A)と炭酸ジルコニウム化合物(B)により、亜鉛系めっき層の表面に形成される皮膜の骨格が構成される。シラン化合物(A)の加水分解性基は、亜鉛系めっき層の表面と反応することにより皮膜成分を固定化するとともに、炭酸ジルコニウム化合物(B)と三次元架橋すると考えられる。さらに、シランカップリング剤(a1)のグリシジル基もめっき層表面と反応し、皮膜の結合力がより強固になるものと考えられる。このようにして形成された表面処理皮膜は、一旦乾燥すると再度水には溶解せずバリアー的効果を有するため、耐食性に優れた亜鉛系めっき鋼板が得られる。また、樹脂のように温度が必要な架橋反応による皮膜形成ではないため、ドライヤー乾燥などのような簡易な乾燥手段でも適切に皮膜形成ができる。   First, the skeleton of the film formed on the surface of the zinc-based plating layer is composed of the silane compound (A) and the zirconium carbonate compound (B) among the components of the surface treatment liquid. The hydrolyzable group of the silane compound (A) is considered to fix the coating component by reacting with the surface of the zinc-based plating layer and three-dimensionally crosslink with the zirconium carbonate compound (B). Furthermore, it is considered that the glycidyl group of the silane coupling agent (a1) also reacts with the surface of the plating layer, and the bond strength of the film becomes stronger. The surface-treated film thus formed does not dissolve again in water once it is dried and has a barrier effect, so that a galvanized steel sheet having excellent corrosion resistance can be obtained. Further, since the film is not formed by a crosslinking reaction that requires a temperature like a resin, the film can be appropriately formed even by a simple drying means such as dryer drying.

また、表面処理液の成分のうち、バナジン酸化合物(C)は、皮膜中において水に溶け易い形態で均一に分散して存在し、いわゆる亜鉛腐食時のインヒビター効果を発現する。すなわち、バナジン酸化合物(C)は、腐食環境下で一部がイオン化し、不動態化することにより、亜鉛の腐食自体を抑制するものと考えられる。また、ホスホン酸(a3)に配位するため、イオン化した後に、シラン化合物(A)の加水分解性基が三次元架橋することにより、皮膜欠陥部を補修し、亜鉛の腐食を抑制するものと考えられる。   Among the components of the surface treatment liquid, the vanadic acid compound (C) is present in the film in a form that is easily dispersed in a form that is easily soluble in water, and exhibits a so-called inhibitory effect during zinc corrosion. That is, it is considered that the vanadic acid compound (C) is partially ionized and passivated in a corrosive environment, thereby suppressing zinc corrosion itself. Moreover, since it coordinates to phosphonic acid (a3), after ionization, the hydrolyzable group of the silane compound (A) is three-dimensionally cross-linked, thereby repairing a film defect portion and suppressing corrosion of zinc. Conceivable.

すなわち、本発明の表面処理液は、シラン化合物(A)と炭酸ジルコニウム化合物(B)により緻密な皮膜を形成して、高い耐食性を得るとともに、腐食インヒビターとしてバナジン酸化合物(C)を皮膜中に含有させることにより、亜鉛系めっき鋼板に追従した緻密な皮膜を形成することがでる。さらに、亜鉛のほぼ溶解しないpH領域へ炭酸を用いて調整することで、皮膜形成時に活性な亜鉛表面が露出せず、耐食性と耐黒変性を高度に両立させ得るものと考えられる。
本発明の表面処理亜鉛系めっき鋼板は、種々の用途に適用することができ、例えば、建築、家電、自動車、OA機器などの分野で使用される材料などに好適に適用できる。
That is, the surface treatment liquid of the present invention forms a dense film with the silane compound (A) and the zirconium carbonate compound (B) to obtain high corrosion resistance, and the vanadate compound (C) as a corrosion inhibitor in the film. By containing, a dense film following the galvanized steel sheet can be formed. Furthermore, it is considered that the active zinc surface is not exposed at the time of film formation and the corrosion resistance and blackening resistance can be made highly compatible by adjusting to a pH region where zinc is hardly dissolved by using carbonic acid.
The surface-treated zinc-based plated steel sheet of the present invention can be applied to various uses, and can be suitably applied to materials used in the fields of architecture, home appliances, automobiles, OA equipment, and the like.

(1)供試板(亜鉛系めっき鋼板)
下記の市販の亜鉛系めっき鋼板を供試板として用いた。
(i)電気亜鉛めっき鋼板(EG):板厚0.8mm、めっき目付量20/20(g/m
(ii)溶融亜鉛めっき鋼板(GI):板厚0.8mm、めっき目付量60/60(g/m
なお、めっき目付量は鋼板両面の各めっき付着量であり、例えば、めっき目付量60/60(g/m)とは、鋼板の両面のそれぞれに60g/mのめっき層を有することを意味する。
(1) Test plate (galvanized steel plate)
The following commercially available galvanized steel sheets were used as test plates.
(I) Electrogalvanized steel sheet (EG): Plate thickness 0.8 mm, plating basis weight 20/20 (g / m 2 )
(Ii) Hot-dip galvanized steel sheet (GI): plate thickness 0.8 mm, plating basis weight 60/60 (g / m 2 )
In addition, the plating basis weight is each plating adhesion amount on both surfaces of the steel sheet. For example, the plating basis weight 60/60 (g / m 2 ) means that each of both surfaces of the steel sheet has a plating layer of 60 g / m 2. means.

(2)供試板の前処理(洗浄)
上記供試板(亜鉛系めっき鋼板)の表面を、日本パーカライジング(株)製「ファインクリーナーE6406」を用いて処理し、表面の油分や汚れを取り除いた。次に、水道水で水洗して供試板の表面が水で100%濡れることを確認した後、純水(脱イオン水)を流しかけ、次いで、100℃雰囲気のオーブンで水分を乾燥し、これを試験板として使用した。
(2) Pretreatment of test plate (cleaning)
The surface of the test plate (zinc-based plated steel plate) was treated with “Fine Cleaner E6406” manufactured by Nippon Parkerizing Co., Ltd. to remove oil and dirt on the surface. Next, after rinsing with tap water and confirming that the surface of the test plate is 100% wet with water, pour pure water (deionized water), and then dry the moisture in an oven at 100 ° C., This was used as a test plate.

(3)表面処理液用の化合物
表面処理液用の化合物としては、以下のものを用いた。
(3-1)シラン化合物(A)の製造
・製造例1(シラン化合物A1)
3−グリシドキシプロピルトリエトキシシランとテトラメトキシシランと脱イオン水とを混合し、アンモニア水を滴下し、シラン化合物を沈殿させた。脱イオン水で洗浄後、ニトロトリス(メチレンホスホン酸)を加えてかき混ぜ、縮合度4のシラン化合物A1を得た。
・製造例2(シラン化合物A2)
3−グリシドキシプロピルトリメトキシシランとテトラエトキシシランの混合物をヒドロキシエチレンジホスホン酸と脱イオン水との混合液中に、20℃で1時間かけて撹拌しながら滴下した。その後25℃で2時間熟成し、縮合度6のシラン化合物A2を得た。
・製造例3(シラン化合物A3)
製造例2のシラン化合物A2を、さらに80℃で1時間熟成し、縮合度10のシラン化合物A3を得た。
(3) Compound for surface treatment liquid The following were used as the compound for the surface treatment liquid.
(3-1) Production of Silane Compound (A) Production Example 1 (Silane Compound A1)
3-glycidoxypropyltriethoxysilane, tetramethoxysilane, and deionized water were mixed, and ammonia water was added dropwise to precipitate a silane compound. After washing with deionized water, nitrotris (methylenephosphonic acid) was added and stirred to obtain a silane compound A1 having a condensation degree of 4.
Production Example 2 (Silane Compound A2)
A mixture of 3-glycidoxypropyltrimethoxysilane and tetraethoxysilane was added dropwise to a mixture of hydroxyethylenediphosphonic acid and deionized water with stirring at 20 ° C. over 1 hour. Thereafter, aging was performed at 25 ° C. for 2 hours to obtain a silane compound A2 having a condensation degree of 6.
Production Example 3 (Silane Compound A3)
The silane compound A2 of Production Example 2 was further aged at 80 ° C. for 1 hour to obtain a silane compound A3 having a condensation degree of 10.

(3-2)炭酸ジルコニウム化合物(B)
B1:炭酸ジルコニウムアンモニウム
B2:炭酸ジルコニウムナトリウム
(3-3)バナジン酸化合物(C)
C1:メタバナジン酸アンモニウム
C2:バナジルアセチルアセトネート(V:19.2質量%)
(3-2) Zirconium carbonate compound (B)
B1: Ammonium zirconium carbonate B2: Sodium zirconium carbonate (3-3) Vanadate compound (C)
C1: ammonium metavanadate C2: vanadyl acetylacetonate (V: 19.2% by mass)

(4)表面処理液の調製
上記化合物を表1に示す割合にて水中で混合し、固形分が15質量%の亜鉛系めっき鋼板用の表面処理液を得た。
(4) Preparation of surface treatment liquid The above compounds were mixed in water at the ratio shown in Table 1 to obtain a surface treatment liquid for a zinc-based plated steel sheet having a solid content of 15% by mass.

(5)表面処理方法
上記の表面処理液を所定のpHに調整し、これをバーコート処理またはスプレー処理により各試験板に塗布し、その後、水洗することなく、そのまま熱風炉で乾燥させ、皮膜を形成させた。乾燥条件は、炉雰囲気温度と炉に入れている時間により調節した。
バーコート処理とスプレー処理は、以下のように行った。
・バーコート処理:表面処理液を試験板に滴下して、#3〜5バーコーターで処理した。使用したバーコーターの番手と表面処理液の固形分濃度により、所定の皮膜付着量となるように調整した。
・スプレー処理:表面処理液を試験板にスプレー処理し、ロールコーターにて皮膜付着量の調整を行った。ロールコーターの条件と表面処理液の固形分濃度により、所定の皮膜付着量となるように調整した。
(5) Surface treatment method The above surface treatment solution is adjusted to a predetermined pH, applied to each test plate by bar coating or spraying, and then dried in a hot air oven without washing with water. Formed. The drying conditions were adjusted according to the furnace atmosphere temperature and the time in the furnace.
The bar coat treatment and spray treatment were performed as follows.
Bar coating treatment: The surface treatment solution was dropped onto the test plate and treated with a # 3-5 bar coater. It adjusted so that it might become the predetermined | prescribed film | membrane adhesion amount with the count of the bar coater used and the solid content concentration of the surface treatment liquid.
-Spray treatment: The surface treatment solution was sprayed on the test plate, and the amount of the film was adjusted with a roll coater. It adjusted so that it might become a predetermined | prescribed film | membrane adhesion amount with the conditions of a roll coater, and solid content concentration of a surface treatment liquid.

(6)評価試験の方法
(6-1)耐食性
上記表面処理皮膜を形成した試験板から70mm×150mmのサイズの試験片を切り出し、この試験片の裏面と端部をビニールテープでシールして、JIS−Z−2371−2000に準拠した塩水噴霧試験(SST)を実施した。塩水噴霧試験における白錆発生面積率が5%となるまでの時間を測定し、耐食性を以下のように評価した。
◎:白錆発生面積率が5%となるまでの時間が240時間以上
○:白錆発生面積率が5%となるまでの時間が120時間以上、240時間未満
△:白錆発生面積率が5%となるまでの時間が72時間以上、120時間未満
×:白錆発生面積率が5%となるまでの時間が72時間未満
(6) Method of evaluation test (6-1) Corrosion resistance A test piece having a size of 70 mm × 150 mm was cut out from the test plate on which the surface treatment film was formed, and the back and end portions of the test piece were sealed with vinyl tape, A salt spray test (SST) based on JIS-Z-2371-2000 was performed. The time until the white rust occurrence area ratio in the salt spray test was 5% was measured, and the corrosion resistance was evaluated as follows.
◎: Time until white rust generation area ratio reaches 5% or more 240 hours ○: Time until white rust generation area ratio reaches 5% 120 hours or more, less than 240 hours △: White rust generation area ratio Time until 5% is 72 hours or more and less than 120 hours ×: Time until white rust occurrence area ratio is 5% is less than 72 hours

(6-2)耐黒変性
上記表面処理皮膜を形成した試験板から50mm×150mmのサイズの試験片を切り出し、80℃、98%RHの恒温槽に24時間保持した。保持前後の試験片の色調を分光色彩計で測定し、その色調をLab表色系のL値で表し、保持前後のL値の差ΔLで耐黒変性を以下のように評価した。
◎:ΔL≧−2
○:−2>ΔL≧−4
△:−4>ΔL≧−6
×:ΔL<−6
(6-2) Blackening resistance A test piece having a size of 50 mm × 150 mm was cut out from the test plate on which the surface treatment film was formed, and held in a thermostatic bath at 80 ° C. and 98% RH for 24 hours. The color tone of the test piece before and after holding was measured with a spectrocolorimeter, the color tone was expressed by the L value of the Lab color system, and the blackening resistance was evaluated by the difference ΔL between the L value before and after holding as follows.
A: ΔL ≧ −2
○: −2> ΔL ≧ −4
Δ: −4> ΔL ≧ −6
×: ΔL <−6

(6-3)耐水しみ性
上記表面処理皮膜を形成した試験板から50mm×150mmのサイズの試験片を切り出し、試験片面に純水をスポイトで一滴滴下してから、100℃のオーブンに15分間保持した。この試験片について純水の滴下跡を目視で観察し、耐水しみ性を以下のように評価した。
○:滴下跡は観察されない。
△:滴下跡がわずかに観察される。
×:滴下跡がはっきり観察される。
(6-3) Water-stain resistance A test piece having a size of 50 mm × 150 mm is cut out from the test plate on which the surface treatment film is formed, and a drop of pure water is dropped on the test piece surface with a dropper, and then placed in an oven at 100 ° C. for 15 minutes. Retained. About this test piece, the trace of pure water was visually observed, and the water resistance was evaluated as follows.
○: No dripping marks are observed.
(Triangle | delta): The dripping trace is observed slightly.
X: The dripping trace is clearly observed.

(6-4)表面処理液の保管安定性
表面処理液を40℃の恒温槽に30日間保管した後、表面処理液の外観を目視により以下のように評価した。
◎:変化なし
○:極微量の沈殿が見られる。
△:微量の沈殿が見られる。または、粘度がやや高くなった。
×:大量の沈殿が見られる。または、ゲル化した。
(6-4) Storage stability of surface treatment liquid After storing the surface treatment liquid in a constant temperature bath at 40 ° C. for 30 days, the appearance of the surface treatment liquid was visually evaluated as follows.
A: No change B: A very small amount of precipitate is observed.
(Triangle | delta): A trace amount precipitation is seen. Or the viscosity became slightly high.
X: A large amount of precipitation is observed. Or it gelled.

以上の評価試験の結果を、表面処理液の組成及びpH、pH調整剤、亜鉛系めっき鋼板、表面処理条件とともに表1〜表3に示す。なお、乾燥温度は試験板表面の到達温度である。
本発明条件を満足しない比較例は、耐食性、耐黒変性のいずれかが不十分である。これに対して本発明例は、表面処理皮膜中にクロム化合物を含有することなく耐食性及び耐黒変性に優れ、また、表面処理液は保管安定性にも優れている。
The results of the above evaluation tests are shown in Tables 1 to 3 together with the composition and pH of the surface treatment liquid, the pH adjuster, the galvanized steel sheet, and the surface treatment conditions. The drying temperature is the temperature reached on the surface of the test plate.
In the comparative example that does not satisfy the conditions of the present invention, either corrosion resistance or blackening resistance is insufficient. On the other hand, the examples of the present invention are excellent in corrosion resistance and blackening resistance without containing a chromium compound in the surface treatment film, and the surface treatment liquid is also excellent in storage stability.

Figure 2015175003
Figure 2015175003

Figure 2015175003
Figure 2015175003

Figure 2015175003
Figure 2015175003

Claims (3)

グリシジル基を有するシランカップリング剤(a1)、テトラアルコキシシラン(a2)およびホスホン酸(a3)から得られる、加水分解性基を有するシラン化合物(A)と、炭酸ジルコニウム化合物(B)と、バナジン酸化合物(C)と、水を含有し、pH調整剤である炭酸によりpHが7.2〜8.0に調整され、下記(i)〜(iv)の条件を満足することを特徴とする亜鉛系めっき鋼板用の表面処理液。
(i)シラン化合物(A)が表面処理液の全固形分中で30〜70質量%
(ii)炭酸ジルコニウム化合物(B)のZrO換算質量とシラン化合物(A)の質量の比(B/A)が0.3〜2.0
(iii)バナジン酸化合物(C)のV換算質量とシラン化合物(A)の質量の比(C/A)が0.010〜0.15
(iv)フッ素化合物(但し、不可避的不純物として含まれるフッ素化合物を除く。)を含有しない。
A silane compound (A) having a hydrolyzable group obtained from a silane coupling agent (a1) having a glycidyl group, a tetraalkoxysilane (a2) and a phosphonic acid (a3), a zirconium carbonate compound (B), and vanadine Acidic compound (C) and water are contained, pH is adjusted to 7.2-8.0 by the carbonic acid which is a pH adjuster, and it satisfies the following conditions (i)-(iv) Surface treatment solution for galvanized steel sheet.
(I) The silane compound (A) is 30 to 70% by mass in the total solid content of the surface treatment liquid.
(Ii) The ratio (B / A) of the mass of the zirconium carbonate compound (B) in terms of ZrO 2 and the mass of the silane compound (A) is 0.3 to 2.0.
(Iii) The ratio (C / A) of the V-converted mass of the vanadic acid compound (C) to the mass of the silane compound (A) is from 0.010 to 0.15.
(Iv) Does not contain fluorine compounds (excluding fluorine compounds contained as inevitable impurities).
請求項1に記載の表面処理液を亜鉛系めっき鋼板の表面に塗布し、乾燥することにより形成された、片面当たりの付着量が100〜600mg/mの表面処理皮膜を有することを特徴とする表面処理亜鉛系めっき鋼板。 The surface treatment liquid according to claim 1 is applied to the surface of a galvanized steel sheet and dried, and has a surface treatment film having an adhesion amount per side of 100 to 600 mg / m 2. Surface treated zinc-based plated steel sheet. 請求項1に記載の表面処理液を、乾燥後の片面当たりの付着量が100〜600mg/mとなるように亜鉛系めっき鋼板表面に塗布し、次いで乾燥することを特徴とする表面処理亜鉛系めっき鋼板の製造方法。 The surface-treated zinc according to claim 1, wherein the surface-treated solution is applied to the surface of the galvanized steel sheet so that the amount of adhesion per side after drying is 100 to 600 mg / m 2 and then dried. Manufacturing method of a galvanized steel sheet.
JP2014049650A 2014-03-13 2014-03-13 Surface treatment liquid for galvanized steel sheet, surface-treated galvanized steel sheet and method for producing the same Active JP6056792B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014049650A JP6056792B2 (en) 2014-03-13 2014-03-13 Surface treatment liquid for galvanized steel sheet, surface-treated galvanized steel sheet and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014049650A JP6056792B2 (en) 2014-03-13 2014-03-13 Surface treatment liquid for galvanized steel sheet, surface-treated galvanized steel sheet and method for producing the same

Publications (2)

Publication Number Publication Date
JP2015175003A true JP2015175003A (en) 2015-10-05
JP6056792B2 JP6056792B2 (en) 2017-01-11

Family

ID=54254478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014049650A Active JP6056792B2 (en) 2014-03-13 2014-03-13 Surface treatment liquid for galvanized steel sheet, surface-treated galvanized steel sheet and method for producing the same

Country Status (1)

Country Link
JP (1) JP6056792B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017014594A (en) * 2015-07-03 2017-01-19 Jfeスチール株式会社 Galvanized steel plate excellent in corrosion resistance
WO2018070350A1 (en) 2016-10-11 2018-04-19 Jfeスチール株式会社 Surface treatment liquid for galvanized steel sheet, method for producing galvanized steel sheet having surface treatment film, and galvanized steel sheet having surface treatment film
WO2022102710A1 (en) * 2020-11-13 2022-05-19 日本製鉄株式会社 Surface-treated metal sheet

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010070730A1 (en) * 2008-12-16 2010-06-24 日本パーカライジング株式会社 Surface treating agent for galvanized steel sheet
JP2011063650A (en) * 2009-09-15 2011-03-31 Nippon Parkerizing Co Ltd Surface treatment agent for metal material, surface treatment method, and surface treated metal material
WO2012165084A1 (en) * 2011-05-27 2012-12-06 関西ペイント株式会社 Aqueous surface treatment agent for metal
JP2013060647A (en) * 2011-09-14 2013-04-04 Jfe Steel Corp Surface-treating liquid for zinc-plated steel sheet, and the zinc-plated steel sheet and method of manufacturing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010070730A1 (en) * 2008-12-16 2010-06-24 日本パーカライジング株式会社 Surface treating agent for galvanized steel sheet
JP2011063650A (en) * 2009-09-15 2011-03-31 Nippon Parkerizing Co Ltd Surface treatment agent for metal material, surface treatment method, and surface treated metal material
WO2012165084A1 (en) * 2011-05-27 2012-12-06 関西ペイント株式会社 Aqueous surface treatment agent for metal
JP2013060647A (en) * 2011-09-14 2013-04-04 Jfe Steel Corp Surface-treating liquid for zinc-plated steel sheet, and the zinc-plated steel sheet and method of manufacturing the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017014594A (en) * 2015-07-03 2017-01-19 Jfeスチール株式会社 Galvanized steel plate excellent in corrosion resistance
WO2018070350A1 (en) 2016-10-11 2018-04-19 Jfeスチール株式会社 Surface treatment liquid for galvanized steel sheet, method for producing galvanized steel sheet having surface treatment film, and galvanized steel sheet having surface treatment film
CN109804103A (en) * 2016-10-11 2019-05-24 杰富意钢铁株式会社 Electrogalvanized steel plate surface treatment liquid, the manufacturing method of the electrogalvanized steel plate with surface treatment epithelium and the electrogalvanized steel plate with surface treatment epithelium
KR20190061068A (en) 2016-10-11 2019-06-04 제이에프이 스틸 가부시키가이샤 A method for producing a zinc-base plated steel sheet having a surface-treated film, and a zinc-based plated steel sheet having a surface-
CN109804103B (en) * 2016-10-11 2021-02-19 杰富意钢铁株式会社 Surface treatment liquid for zinc-based plated steel sheet, zinc-based plated steel sheet with surface treatment film, and method for producing same
US11174556B2 (en) 2016-10-11 2021-11-16 Jfe Steel Corporation Surface-treatment solution for zinc or zinc alloy coated steel sheet, method of producing zinc or zinc alloy coated steel sheet with surface-coating layer, and zinc or zinc alloy coated steel sheet with surface-coating layer
WO2022102710A1 (en) * 2020-11-13 2022-05-19 日本製鉄株式会社 Surface-treated metal sheet

Also Published As

Publication number Publication date
JP6056792B2 (en) 2017-01-11

Similar Documents

Publication Publication Date Title
CN109804102B (en) Surface treatment solution composition, galvanized steel sheet surface-treated with the composition, and method for producing the same
JP4683582B2 (en) Water-based metal material surface treatment agent, surface treatment method and surface treatment metal material
US9512331B2 (en) Surface treatment agent for zinc or zinc alloy coated steel sheet, zinc or zinc alloy coated steel sheet, and method of producing the steel sheet
KR101146156B1 (en) Aqueous fluid for surface treatment of zinc-plated steel sheets and zinc-plated steel sheets
JP5870570B2 (en) Surface treatment liquid for galvanized steel sheet, galvanized steel sheet and method for producing the same
CN102378827B (en) Surface-treating agent, process for manufacturing plated steel sheet using surface-treating agent, and plated steel sheet
CN102257178A (en) Surface treating agent for metallic materials
JPWO2010070729A1 (en) Surface treatment agent for metal material, surface treatment method of metal material using the same, surface treatment metal material
JP6569194B2 (en) Surface-treated hot-dip galvanized steel sheet with excellent corrosion resistance
JP6242010B2 (en) Aqueous metal surface treatment composition
JP6056792B2 (en) Surface treatment liquid for galvanized steel sheet, surface-treated galvanized steel sheet and method for producing the same
JP6510670B2 (en) Water-based surface treatment agent for galvanized steel or zinc-based alloy plated steel, coating method and coated steel
JP2014156615A (en) Aqueous metal surface treatment agent
JP6098579B2 (en) Regular spangled galvanized steel sheet with surface treatment film
JP6112148B2 (en) Galvanized steel sheet with excellent corrosion resistance
JP6323424B2 (en) Surface-treated hot-dip galvanized steel sheet with excellent corrosion resistance
JP7060178B1 (en) Surface-treated steel sheet for organic resin coating and its manufacturing method, and organic resin coated steel sheet and its manufacturing method
JP2014156616A (en) Aqueous metal surface treatment agent
JP5438536B2 (en) Metal surface treatment agent, surface treatment metal material, and metal surface treatment method
JP5528925B2 (en) Metal surface treatment agent, surface treatment metal material, and metal surface treatment method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160614

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161121

R150 Certificate of patent or registration of utility model

Ref document number: 6056792

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250