JP2015174784A - Manufacturing method of carbon fiber/carbon composite material - Google Patents

Manufacturing method of carbon fiber/carbon composite material Download PDF

Info

Publication number
JP2015174784A
JP2015174784A JP2014051125A JP2014051125A JP2015174784A JP 2015174784 A JP2015174784 A JP 2015174784A JP 2014051125 A JP2014051125 A JP 2014051125A JP 2014051125 A JP2014051125 A JP 2014051125A JP 2015174784 A JP2015174784 A JP 2015174784A
Authority
JP
Japan
Prior art keywords
carbon
carbon fiber
composite material
fiber
friction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014051125A
Other languages
Japanese (ja)
Inventor
藤井 透
Toru Fujii
藤井  透
大窪 和也
Kazuya Okubo
和也 大窪
木村 匡宏
Masahiro Kimura
匡宏 木村
亮平 藤谷
Ryohei Fujitani
亮平 藤谷
清貴 小武内
Kiyotaka Kotakeuchi
清貴 小武内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Doshisha Co Ltd
Original Assignee
Doshisha Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Doshisha Co Ltd filed Critical Doshisha Co Ltd
Priority to JP2014051125A priority Critical patent/JP2015174784A/en
Publication of JP2015174784A publication Critical patent/JP2015174784A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of a C/C composite material that can reduce temperature dependence of a friction coefficient.SOLUTION: A carbon fiber material 1 is passed through an immersion tank 4 filled with a phenolic resin solution 2, which is a carbon precursor resin solution with glass fiber 3 dispersed therein and thus the phenolic resin solution 2 with glass fiber dispersed therein is adhered to the carbon fiber 1. The carbon fiber 1 is then wound by a bobbin 51 of a winding device 5 to form a laminate. A C/C composite material is manufactured by curing the phenolic resin in the laminate to obtain CFRP and then burning the CFRP to carbonize the phenolic resin.

Description

本発明は、炭素繊維炭素複合材料の製造方法に関する。   The present invention relates to a method for producing a carbon fiber carbon composite material.

炭素繊維炭素複合材料(以下、「C/C複合材料」と記す)は、強化繊維を炭素繊維,マトリクスを炭素とした複合材料である。
このC/C複合材料は比強度,比弾性率が高く、耐熱性に優れており、不活性雰囲気下では2000℃以上の高温状態でも高強度を有することからFRPの弱点を補う材料として期待されている(非特許文献1〜4参照)。
The carbon fiber carbon composite material (hereinafter referred to as “C / C composite material”) is a composite material in which the reinforcing fibers are carbon fibers and the matrix is carbon.
This C / C composite material is expected to be a material that compensates for the weakness of FRP because it has high specific strength, high specific modulus, excellent heat resistance, and has high strength even under high temperatures of 2000 ° C or higher in an inert atmosphere. (See Non-Patent Documents 1 to 4).

一方、C/C複合材料の作製方法として樹脂含浸法が一般的な手法である。
樹脂含浸法とは,炭素繊維に炭素前駆体樹脂(焼成によって炭化してマトリクスを構成する炭素となる樹脂)となる熱硬化性樹脂液を含浸させたのち、炭素前駆体樹脂を熱硬化させて炭素繊維強化樹脂(以下、「CFRP」と記す)を得たのち、このCFRPを焼成することで炭素前駆体樹脂を炭素化する手法である。
On the other hand, a resin impregnation method is a general method for producing a C / C composite material.
In the resin impregnation method, carbon fiber is impregnated with a thermosetting resin liquid that becomes carbon precursor resin (resin that is carbonized by baking to form carbon), and then the carbon precursor resin is thermoset. After obtaining a carbon fiber reinforced resin (hereinafter referred to as “CFRP”), this CFRP is baked to carbonize the carbon precursor resin.

また、C/C複合材料は金属よりも軽量で摩擦・制動特性が良いなどの利点が挙げられることから、これらの特性を活かして、航空機やフォーミュラカーのディスクブレーキなどの高速高負荷用摩擦材などに利用され、今後も様々な分野への応用が期待されている 。
しかし、C/C複合材料は、摩擦係数の温度依存性が大きく、特に低温における摩擦係数が低いなどの問題がある(非特許文献5)。よって、C/C複合材料を摩擦材として用いる場合には使用温度などに制限がある。
In addition, C / C composite materials have advantages such as lighter weight and better friction / braking characteristics than metals, so these characteristics can be used to make high-speed, high-load friction materials such as disc brakes for aircraft and formula cars. It is expected to be applied to various fields in the future.
However, the C / C composite material has a problem that the temperature dependence of the friction coefficient is large and the friction coefficient is particularly low at low temperatures (Non-Patent Document 5). Therefore, when using a C / C composite material as a friction material, there is a limit to the operating temperature.

この問題点を解決するために様々な手法が考えられている。その一つとして本発明の発明者が、熱CVD法を用いてC/C複合材料の表面にカーボンナノチューブ(CNT)を生成する手法を先に研究した(非特許文献6)
この手法によれば、低温での摩擦係数が向上するのであるが、表面にCNTを生成した場合、摩耗に伴って表面のCNTが摩損し、それに伴い摩擦係数も低下し、摩擦係数の温度依存性を完全に解消するには至らないことがわかった。
したがって、これらの問題点を伴わない新たな摩擦係数の安定化手法が望まれている。
Various methods have been considered to solve this problem. As one of them, the inventor of the present invention has previously studied a method of generating carbon nanotubes (CNT) on the surface of a C / C composite material using a thermal CVD method (Non-patent Document 6).
According to this method, the friction coefficient at low temperature is improved. However, when CNTs are generated on the surface, the CNTs on the surface are worn away with wear, and the friction coefficient is reduced accordingly, and the temperature dependence of the friction coefficient. It has been found that sex cannot be completely eliminated.
Accordingly, a new friction coefficient stabilization method that does not involve these problems is desired.

他方、炭化ケイ素(SiC)は一般に高強度,耐摩耗性などに優れた特性を有するため金属や高分子材料に代わる摺動材料として、特に極低温,超高温,超真空などの極限条件における適用が期待される素材である。また、SiCには耐酸化作用があり、C/C複合材料の酸化による機械的特性の劣化を補う材料として研究が進められている(非特許文献7〜13)。
また、従来のC/C複合材料において、高温域で使用で摩擦係数が高く、低温域での使用で摩擦係数が低くなる原因は、低温域では摩擦によって削られた炭素の摩擦粉が大きい状態で摩擦面に残り、接触面積が少なくなるため、摩擦係数が低くなり、高温域では熱によって炭素の摩擦粉が酸化されて小さなものとなり、摩擦面が小さい摩擦粉で緻密な表面状態になるため摩擦係数が高いものとなるためであることが過去の研究(非特許文献14)によって明らかにされている。
On the other hand, silicon carbide (SiC) generally has excellent properties such as high strength and wear resistance, so it can be used as a sliding material to replace metals and polymer materials, especially in extreme conditions such as ultra-low temperature, ultra-high temperature, and ultra-vacuum. Is an expected material. Further, SiC has oxidation resistance, and research is being conducted as a material that compensates for deterioration of mechanical properties due to oxidation of C / C composite materials (Non-Patent Documents 7 to 13).
Moreover, in the conventional C / C composite material, the friction coefficient is high when used in a high temperature range and the friction coefficient is low when used in a low temperature range. Since the friction surface is reduced and the contact area is reduced, the friction coefficient is reduced, and in high temperatures, the carbon friction powder is oxidized to become small, and the friction surface becomes a dense surface state with small friction powder. It has been clarified by past research (Non-Patent Document 14) that the friction coefficient is high.

山地 俊輔,馬場 信一,石原 正博,二次元炭素繊維強化炭素複合材料の空気酸化挙動‐熱膨張張特性への影響‐,日本機械学会材料力学部門講演会講演論文集(2003),pp.145-146Shunsuke Yamaji, Shinichi Baba, Masahiro Ishihara, Air Oxidation Behavior of Two-Dimensional Carbon Fiber Reinforced Carbon Composites -Effects on Thermal Expansion Tension-, Proc. -146 村上 和美,国枝 義彦,兼松 秀行,沖 猛雄,熱処理温度変えたPAN系C/Cコンポジット表面のX線回折およびサイクリッボルタモグラム特性,表面技術,Vol. 47,1996 ,No.7,pp.633-637Kazumi Murakami, Yoshihiko Kunieda, Hideyuki Kanematsu, Takeo Oki, X-ray diffraction and cyclic voltammogram characteristics of PAN-based C / C composite surfaces with different heat treatment temperatures, Surface technology, Vol. 47, 1996, No.7, pp.633- 637 浴永 直孝, 瀬高 俊哉, 牛嶋 裕次,C/Cコンポジット,TANSO,Vol. 2009 ,2009, No. 239 ,pp.184-194Naotaka Yunaga, Toshiya Setaka, Yuji Ushijima, C / C Composite, TANSO, Vol. 2009, 2009, No. 239, pp.184-194 金枝 敏明,阪口 淳一,金谷 輝人,炭素繊維強化炭素複合材料(C/C コンポジット)切削の研究,日本機械学会論文(C編),65巻,635号,1999,pp.352-357Toshiaki Kaneda, Shinichi Sakaguchi, Teruto Kanaya, Research on carbon fiber reinforced carbon composite (C / C composite) cutting, Japan Society of Mechanical Engineers (C), 65, 635, 1999, pp.352-357 Haytam Kasem ,SylvieBonnamy ,YvesBerthier, PascaleJacquemard, Characterization of surface grooves and scratches induced by friction of C/C composites at low and high temperatures,Tribology International,Volume 43,Issues 11, November 2010,pp.1951-1959Haytam Kasem, SylvieBonnamy, YvesBerthier, Pascale Jacquemard, Characterization of surface grooves and scratches induced by friction of C / C composites at low and high temperatures, Tribology International, Volume 43, Issues 11, November 2010, pp.1951-1959 小武内 清貴, 竹内 康徳, 大窪 和也, 藤井 透,“炭化MFCの炭素前駆体樹脂への添加によるC/C複合材料の機械的特性の向上”,同志社大学理工学研究報告,51(3)(2010),pp.26-31Kotake, Kiyotaka, Takeuchi, Yasunori, Okubo, Kazuya, Fujii, Toru, “Improvement of mechanical properties of C / C composites by adding carbonized MFC to carbon precursor resin”, Doshisha University Science and Engineering Research Report, 51 (3) (2010), pp.26-31 石沢 修一,町田 隆志,C/Cコンポジットの高温強度に及ぼす酸化摩耗の影響,日本機械学会論文集(A集),63巻,608号,pp.189-194Shuichi Ishizawa, Takashi Machida, Effect of oxidation wear on high temperature strength of C / C composites, Transactions of the Japan Society of Mechanical Engineers (A), 63, 608, pp.189-194 田代 徹也,藤原 順介,竹中 康裕,C/C-SiCコンポジットの研削加工,砥粒加工学会誌Vol.51(2007),No.7,pp.428-433Tetsuya Tashiro, Junsuke Fujiwara, Yasuhiro Takenaka, Grinding of C / C-SiC composites, Journal of the Japan Society for Abrasive Technology, Vol.51 (2007), No.7, pp.428-433 向後 保雄,八田 博志,大蔵 明光,後藤 恭博,澤田 豊,清宮 義博,鎗居 俊雄,簡便法によるC/C複合材料へのSiCコーティングと耐酸化性評価,日本金属学会誌 第62巻 第2号(1998),pp.197-206Yukio Mugo, Hiroshi Hatta, Akimitsu Okura, Yasuhiro Goto, Yutaka Sawada, Yoshihiro Kiyomiya, Toshio Sugai, SiC coating on C / C composites by simple method and evaluation of oxidation resistance, Journal of the Japan Institute of Metals, Vol. 62, No. 2 ( 1998), pp.197-206 谷 英治,菖蒲 一久,反応焼結による炭素繊維強化SiC/Cコンポジットの作製,日本セラミック協会学術論文誌,105[8](1997),pp.703-706Eiji Tani, Kazuhisa Tsuji, Fabrication of carbon fiber reinforced SiC / C composite by reactive sintering, Journal of the Ceramic Society of Japan, 105 [8] (1997), pp.703-706 外尾 道太,佐々木 寛,広中 清一郎,炭素/炭化ケイ素複合材料の摩擦・摩耗特性,日本セラミック協会学術論文誌,108[2](2000),pp.191-195Michita Too, Hiroshi Sasaki, Seiichiro Hironaka, Friction and wear properties of carbon / silicon carbide composites, Journal of the Ceramic Society of Japan, 108 [2] (2000), pp.191-195 楊 林,岡崎 修司,橋本 正明,山本 雄二,SiC,TiおよびTiCの摩擦摩耗に及ぼす雰囲気と組み合わせの影響,日本機械学会論文集(C編)64巻627号(1998),pp.300-307Hayashi Hayashi, Okazaki Shuji, Hashimoto Masaaki, Yamamoto Yuji, Effects of Atmosphere and Combination on Friction Wear of SiC, Ti and TiC, Transactions of the Japan Society of Mechanical Engineers (C), Vol. 64, 627 (1998), pp.300-307 Xuan Zhou,Dongmei Zhu,Qiao Xie,Fa Luo,Wancheng Zhou,Friction and wear properties of C/C-SiC braking composites,Ceramics International,Volume 38,Issue 3,April 2012,pp.2467-2473Xuan Zhou, Dongmei Zhu, Qiao Xie, Fa Luo, Wancheng Zhou, Friction and wear properties of C / C-SiC braking composites, Ceramics International, Volume 38, Issue 3, April 2012, pp.2467-2473 Christopher Byrne, Zhiyuan Wang, Influence of thermal properties on friction performance of carbon composites, Carbon 39 (2001) ,pp.1789-1801Christopher Byrne, Zhiyuan Wang, Influence of thermal properties on friction performance of carbon composites, Carbon 39 (2001), pp.1789-1801

本発明は、上記事情に鑑みて、摩擦係数の温度依存性が低減できるC/C複合材料の製造方法を提供することを目的としている。   In view of the above circumstances, an object of the present invention is to provide a method for producing a C / C composite material in which the temperature dependence of the friction coefficient can be reduced.

上記目的を達成するために、本発明にかかるC/C複合材料の製造方法は、炭素繊維材が炭素前駆体樹脂によって固められた炭素繊維強化樹脂を焼成して前記炭素前駆体樹脂を炭化する工程を備える炭素繊維炭素複合材料の製造方法であって、前記炭素繊維強化樹脂中にガラス繊維を分散配合しておくことを特徴としている。   In order to achieve the above object, a method for producing a C / C composite material according to the present invention includes carbonizing a carbon fiber reinforced resin obtained by firing a carbon fiber reinforced resin in which a carbon fiber material is hardened with a carbon precursor resin. A method for producing a carbon fiber-carbon composite material comprising a step, wherein glass fibers are dispersed and blended in the carbon fiber reinforced resin.

本発明にかかるC/C複合材料の製造方法は、上記のようにCFRP中にガラス繊維を分散配合できれば、特に限定されないが、たとえば、炭素前駆体樹脂溶液中にガラス繊維を分散したガラス繊維分散液を炭素繊維に付着させる工程とこのガラス繊維分散液が付着した付着体を積層したのち、炭素前駆体樹脂を硬化させてCFRPを得ることができる。   The method for producing a C / C composite material according to the present invention is not particularly limited as long as glass fibers can be dispersed and blended in CFRP as described above. For example, glass fiber dispersion in which glass fibers are dispersed in a carbon precursor resin solution After laminating the step of adhering the liquid to the carbon fiber and the adhering body to which the glass fiber dispersion is adhered, the carbon precursor resin can be cured to obtain CFRP.

炭素繊維材へガラス繊維分散液を付着させる方法としては、特に限定されないが、例えば、炭素繊維材をガラス繊維分散液槽に浸漬してガラス繊維分散液を炭素繊維に付着させる方法、炭素繊維にガラス繊維分散液を噴霧して付着させる方法、ロールコーター法を用いて付着させる方法等が挙げられ、炭素繊維をガラス繊維分散液槽に浸漬してガラス繊維分散液を炭素繊維に付着させる方法が好適である。   The method for adhering the glass fiber dispersion to the carbon fiber material is not particularly limited. For example, the method of adhering the glass fiber dispersion to the carbon fiber by immersing the carbon fiber material in the glass fiber dispersion tank, the carbon fiber Examples include a method of spraying and adhering a glass fiber dispersion, a method of attaching using a roll coater method, etc., and a method of adhering a glass fiber dispersion to a carbon fiber by immersing the carbon fiber in a glass fiber dispersion tank. Is preferred.

また、炭素繊維材が、長尺の炭素繊維材の場合、巻き取り機等によって炭素繊維材を巻き取る途中で、ガラス繊維分散液槽に連続的に浸漬したり、ガラス繊維分散液を噴霧したりすることができる。
そして、巻き取り機側で巻き取りつつ、所定の厚み(得ようとするC/C複合材料に応じた厚み)に積層することができる。
In addition, when the carbon fiber material is a long carbon fiber material, the carbon fiber material is continuously immersed in the glass fiber dispersion tank or sprayed with the glass fiber dispersion liquid while the carbon fiber material is being wound up by a winder or the like. Can be.
And it can laminate | stack to predetermined | prescribed thickness (thickness according to C / C composite material to obtain), winding up by the winder side.

また、短尺のマット状の炭素繊維材の場合は、バッチ式でガラス繊維分散液を付着させるようにしてもよい。
そして、短尺のマット状の炭素繊維材の場合も、所定の厚み(得ようとするC/C複合材料に応じた厚み)に積層することができる。
上記のように積層された積層体は、必要に応じて炭素前駆体樹脂を半硬化状態としたのち、この半硬化体を型内に入れて所定の形状に成形した状態で本硬化させることができる。
In the case of a short mat-like carbon fiber material, the glass fiber dispersion may be attached in a batch manner.
And also in the case of a short mat-like carbon fiber material, it can be laminated | stacked by predetermined | prescribed thickness (thickness according to the C / C composite material to obtain).
The laminated body laminated as described above may be cured in a state where the carbon precursor resin is made into a semi-cured state if necessary, and then the semi-cured body is put into a mold and molded into a predetermined shape. it can.

本発明にかかるC/C複合材料の製造方法において、炭素繊維材としては、特に限定されないが、モノフィラメント、チョップドストランド、チョップドストランドマット、ロービング、ロービングクロス、ガラスヤーンなどが挙げられる。
また、炭素繊維としては、PAN系炭素繊維、ピッチ系炭素繊維のいずれでも構わないが、PAN系炭素繊維が好適である。
In the method for producing a C / C composite material according to the present invention, the carbon fiber material is not particularly limited, and examples thereof include monofilament, chopped strand, chopped strand mat, roving, roving cloth, and glass yarn.
Further, the carbon fiber may be either a PAN-based carbon fiber or a pitch-based carbon fiber, but a PAN-based carbon fiber is preferable.

炭素前駆体樹脂としては、焼成によりマトリクスとなる炭素を形成することができれば、特に限定されないが、フェノール樹脂、エポキシ樹脂などの熱硬化性樹脂、熱可塑性樹脂が挙げられ、フェノール樹脂が好適である。   The carbon precursor resin is not particularly limited as long as carbon serving as a matrix can be formed by firing, and examples thereof include thermosetting resins and thermoplastic resins such as phenol resins and epoxy resins, and phenol resins are preferable. .

ガラス繊維としては、炭素前駆体樹脂液中にうまく均一に分散できるとともに、炭素前駆体樹脂液とともに炭素繊維にうまく付着し、かつ、CFRPの炭素繊維と炭素繊維との間に入り込むようにできれば、特に限定されないが、繊維長が、8〜10mm、繊維径が 15〜19μmのチョップドガラス繊維が好適である。   As glass fiber, if it can be dispersed uniformly and uniformly in the carbon precursor resin liquid, it can adhere well to the carbon fiber together with the carbon precursor resin liquid, and can enter between the carbon fibers of the CFRP, Although not particularly limited, chopped glass fibers having a fiber length of 8 to 10 mm and a fiber diameter of 15 to 19 μm are suitable.

CFRPの焼成条件は、炭素前駆体樹脂を炭化できるとともに、ガラス繊維を構成するSiが炭素と反応してSiCになれば、特に限定されないが、低温焼成工程、中温焼成工程、高温焼成工程の3段階で行うことが好ましい。
そして、特に限定されないが、低温焼成工程は、900〜1100℃、中温焼成工程は、1300〜1500℃、高温焼成工程は、2000〜2400℃で行うことが好ましい。
The firing conditions of CFRP are not particularly limited as long as the carbon precursor resin can be carbonized and Si constituting the glass fiber reacts with carbon to become SiC, but the low temperature firing step, the intermediate temperature firing step, and the high temperature firing step are not limited. Preferably it is done in stages.
And although it does not specifically limit, It is preferable to perform a low temperature baking process at 900-1100 degreeC, a medium temperature baking process at 1300-1500 degreeC, and a high temperature baking process at 2000-2400 degreeC.

また、CFRPの焼成は、炭素前駆体樹脂がうまく炭化できれば、特に限定されないが、不活性ガス雰囲気中で行うことが好ましい。
不活性ガスとしては、特に限定されないが、アルゴン、ヘリウム、窒素等が挙げられる。
The firing of CFRP is not particularly limited as long as the carbon precursor resin can be carbonized well, but is preferably performed in an inert gas atmosphere.
Although it does not specifically limit as an inert gas, Argon, helium, nitrogen, etc. are mentioned.

本発明の製造方法は、以上のように、炭素繊維材が炭素前駆体樹脂によって固められた炭素繊維強化樹脂を焼成して前記炭素前駆体樹脂を炭化する工程を備える炭素繊維炭素複合材料の製造方法であって、前記炭素繊維強化樹脂中にガラス繊維を分散配合しておくようにしたので、焼成工程において、炭素前駆体樹脂の炭化によって形成される炭素の一部、あるいは、炭素繊維材を構成する炭素の一部が、ガラス繊維を構成するSi元素と反応し、C/C複合材料中にガラス繊維由来のSiCが分散された状態になる。
そして、この分散されたSiCによって、摩擦係数の温度依存性が低減されると考えられる。すなわち、所謂、摩擦面においてSiCによる“ひっかき効果”が発揮されて、高温域はもとより、低温域においても安定した摩擦係数が得られる。
As described above, the production method of the present invention is a production of a carbon fiber carbon composite material comprising a step of firing a carbon fiber reinforced resin in which a carbon fiber material is solidified by a carbon precursor resin to carbonize the carbon precursor resin. Since the glass fiber is dispersed and blended in the carbon fiber reinforced resin, a part of carbon formed by carbonization of the carbon precursor resin or the carbon fiber material is used in the firing step. Part of the carbon that constitutes reacts with the Si element that constitutes the glass fiber, and the glass fiber-derived SiC is dispersed in the C / C composite material.
And it is thought that the temperature dependence of a friction coefficient is reduced by this dispersed SiC. That is, the so-called “scratch effect” by SiC is exhibited on the friction surface, and a stable friction coefficient can be obtained not only in the high temperature range but also in the low temperature range.

本発明のC/C複合材料の製造方法の1つの実施の形態であって、そのCFRPの製造工程の概略を説明する図である。It is one Embodiment of the manufacturing method of the C / C composite material of this invention, Comprising: It is a figure explaining the outline of the manufacturing process of the CFRP. 実施例1および比較例3で得られたC/C複合材料試験片のX線回折データを対比してあらわすグラフである。6 is a graph showing the X-ray diffraction data of the C / C composite material specimens obtained in Example 1 and Comparative Example 3 in comparison. 摩擦係数の温度依存性を測定するために用いた摩擦試験機を説明する図である。It is a figure explaining the friction testing machine used in order to measure the temperature dependence of a friction coefficient. 実施例1、比較例1,2でそれぞれ得たC/C複合材料試験片の摩擦係数の温度依存性を対比してあらわすグラフである。It is a graph showing the temperature dependence of the friction coefficient of the C / C composite material specimens obtained in Example 1 and Comparative Examples 1 and 2, respectively. 実施例1で得られたC/C複合材料試験片同士を摩擦させた後の摩擦面の状態の走査型電子顕微鏡で撮像した写真の写しであって、同図(a)が常温で摩擦させたとき、同図(b)が300℃で摩擦させたときをあらわしている。It is a copy of the photograph imaged with the scanning electron microscope of the state of a friction surface after rubbing the C / C composite-material test pieces obtained in Example 1, Comprising: The figure (a) is made to rub at normal temperature. Fig. 4 (b) shows the case of friction at 300 ° C. 比較例1で得られたC/C複合材料試験片同士を摩擦させた後の摩擦面の状態の走査型電子顕微鏡で撮像した写真の写しであって、同図(a)が常温で摩擦させたとき、同図(b)が300℃で摩擦させたときをあらわしている。It is a copy of the photograph imaged with the scanning electron microscope of the state of a friction surface after rubbing the C / C composite-material test pieces obtained in the comparative example 1, Comprising: The figure (a) is made to rub at normal temperature. Fig. 4 (b) shows the case of friction at 300 ° C.

以下に、本発明にかかるC/C複合材料の製造方法の1例を詳しく説明する。
このC/C複合材料の製造方法は、図1に示すように、ガラス繊維3が分散された炭化前駆体樹脂であるフェノール樹脂液2を満たした浸漬槽4内に炭素繊維材1を通し、樹脂液とともにガラス繊維を炭素繊維材1に付着させた状態で炭素繊維材1を連続的にワインディング装置5のボビン51に巻き取って所定厚みおよび幅の筒状積層体6を形成する。
なお、積層厚みおよび筒軸方向の長さは、得ようとするC/C複合材料の大きさや厚みに応じて適宜決定される。
そして、ボビン51とともに、筒状積層体6をオーブン7に入れ、オーブン7中で、所定温度に保ちフェノール樹脂を半硬化させてCFRP前駆体(半硬化体)8を得たのち、ボビン51からCFRP前駆体8を抜き取り、CFRP前駆体8をプレス型9に入れ、加熱プレスして本硬化させてCFRP10を得る。
次に、このCFRP10をそのまま、あるいは必要に応じてカットしたのち、不活性ガス雰囲気であるアルゴン中で、フェノール樹脂が炭化するように焼成し、C/C複合材料を得る。
Below, an example of the manufacturing method of the C / C composite material concerning this invention is demonstrated in detail.
As shown in FIG. 1, the C / C composite material is produced by passing the carbon fiber material 1 through an immersion tank 4 filled with a phenol resin liquid 2 which is a carbonized precursor resin in which glass fibers 3 are dispersed. The carbon fiber material 1 is continuously wound around the bobbin 51 of the winding device 5 in a state where the glass fiber is adhered to the carbon fiber material 1 together with the resin liquid to form the cylindrical laminate 6 having a predetermined thickness and width.
The laminated thickness and the length in the cylinder axis direction are appropriately determined according to the size and thickness of the C / C composite material to be obtained.
Then, together with the bobbin 51, the cylindrical laminate 6 is put in an oven 7, and the phenol resin is semi-cured in the oven 7 while maintaining a predetermined temperature to obtain a CFRP precursor (semi-cured body) 8. The CFRP precursor 8 is extracted, and the CFRP precursor 8 is put into a press die 9 and heat-pressed to be fully cured to obtain a CFRP 10.
Next, the CFRP 10 is cut as it is or if necessary, and then fired in an inert gas atmosphere such that the phenol resin is carbonized to obtain a C / C composite material.

以下に、本発明にかかるC/C複合材料の製造方法の具体的な実施例と、比較例を説明する。   Below, the specific Example of the manufacturing method of the C / C composite material concerning this invention and a comparative example are demonstrated.

(実施例1)
炭素前駆体樹脂であるフェノール樹脂(住友ベークライト社,工業用フェノールレジン PR-51697)をエタノールで希釈(重量比でフェノール:エタノール=1:2)して、炭素前駆体樹脂液であるフェノール樹脂液を得た。
このフェノール樹脂液に対し1重量%の割合で繊維径17μm,長さ9mmのチョップドガラス繊維(日本電気硝子社製)を添加し、プロセスホモジナイザー(silverson社,L4-RT,)を用いて、5000rpmの条件で30分攪拌して、ガラス繊維分散フェノール樹脂液2を得た。
PAN系炭素繊維(TORAY社製,TORAYCA,M40JB-6000)を上記ガラス繊維分散樹脂液に通して、炭素繊維にガラス繊維分散樹脂液を付着させた後、フィラメントワインディング装置のボビンに巻き取りピッチが1.25mm,積層数が20となるように連続的に巻き付けた。
Example 1
Phenol resin that is carbon precursor resin (Sumitomo Bakelite Co., Ltd., industrial phenol resin PR-51697) is diluted with ethanol (phenol: ethanol = 1: 2 by weight) to obtain a phenol resin solution that is a carbon precursor resin solution Got.
A chopped glass fiber (manufactured by Nippon Electric Glass Co., Ltd.) having a fiber diameter of 17 μm and a length of 9 mm is added to the phenol resin solution at a ratio of 1% by weight, and 5000 rpm is used using a process homogenizer (silverson, L4-RT). The mixture was stirred for 30 minutes to obtain a glass fiber-dispersed phenol resin liquid 2.
A PAN-based carbon fiber (TORAY, TORAYCA, M40JB-6000) is passed through the glass fiber dispersion resin liquid, and after the glass fiber dispersion resin liquid is adhered to the carbon fiber, the winding pitch is set on the bobbin of the filament winding apparatus. It was continuously wound so that the number of layers was 1.25 mm.

上記のようにして炭素繊維を巻きつけたホビンを、定温乾燥器(アドバンテック東洋社,FC-610)を用いて60℃で24時間保持し、予備硬化させてCFRP前駆体を作製した。
予備硬化後、ホビンからCFRP前駆体を切り出し、150℃,15MPa,1時間の条件でヒートプレス機(河中産業社,HB200HB)を用いて本硬化させてCFRPを得た。
The hobbin wrapped with the carbon fiber as described above was kept at 60 ° C. for 24 hours using a constant temperature dryer (Advantech Toyo Co., Ltd., FC-610) and precured to prepare a CFRP precursor.
After pre-curing, the CFRP precursor was cut out from the hobbin and subjected to main curing using a heat press machine (Kawanaka Sangyo Co., Ltd., HB200HB) at 150 ° C. and 15 MPa for 1 hour to obtain CFRP.

このCFRPをダイヤモンドカッターで20mm四方、厚さ3mmの試験片に切り分けた。得られた試験片を、プログラム環状電気炉(アズワン株式会社,TMF-500N)を用いてアルゴン雰囲気下800℃に1時間保持して焼成して第1焼成体を得た。
得られた第1焼成体を高性能真空置換型マルチ雰囲気炉(丸祥電気社,SPX1518−16V)にいれ、炉内をアルゴンガスで満たした状態で15℃/minで1400℃まで昇温し、1400℃で1時間保持した後、1400℃で1時間保持して焼成した後炉冷して第2焼成体を得た。
This CFRP was cut into test pieces of 20 mm square and 3 mm thickness with a diamond cutter. The obtained test piece was fired by holding it at 800 ° C. for 1 hour in an argon atmosphere using a programmed annular electric furnace (As One Co., Ltd., TMF-500N) to obtain a first fired body.
The obtained first fired body is placed in a high performance vacuum substitution type multi-atmosphere furnace (Marusho Electric Co., Ltd., SPX1518-16V) and heated to 1400 ° C. at 15 ° C./min with the furnace filled with argon gas. After being held at 1400 ° C. for 1 hour, held at 1400 ° C. for 1 hour, fired and then cooled in the furnace to obtain a second fired body.

得られた第2焼成体を黒鉛化炉の炭素製炉心管に入れて炭素製炉心管に直接電流を通電して、通電電流を600A各通電電流で10分間保持しながら100Aずつ通電電流を1000Aまで上げて炭素製炉心管を昇温したのち、1000Aの電流を通電させて1時間保持して第2焼成体を焼成した。このときの炉内の温度を、放射温度計を用いて測定したところ2200℃であった。
その後、炉内を水冷して、C/C複合材料試験片Aを得た。
The obtained second fired body was put into a carbon furnace core tube of a graphitization furnace, and current was directly passed through the carbon furnace core tube. After raising the temperature of the carbon furnace core tube to 1000 ° C., the second fired body was fired by supplying a current of 1000 A and holding it for 1 hour. The temperature in the furnace at this time was 2200 ° C. when measured using a radiation thermometer.
Thereafter, the inside of the furnace was cooled with water to obtain a C / C composite material test piece A.

(比較例1)
ガラス繊維に代えて黒色炭化珪素粉(太平洋ランダム社,粒径8μm)を炭素前駆体樹脂液に対し1重量%の割合で添加して炭化珪素分散樹脂液を得た。
そして、ガラス繊維分散樹脂液に代えてこの炭化珪素分散樹脂液中に炭素繊維を通した以外は、上記実施例1と同様にしてC/C複合材料試験片Bを得た。
(Comparative Example 1)
Instead of glass fiber, black silicon carbide powder (Pacific Random Co., Ltd., particle size 8 μm) was added at a ratio of 1% by weight to the carbon precursor resin liquid to obtain a silicon carbide dispersed resin liquid.
A C / C composite material test piece B was obtained in the same manner as in Example 1 except that carbon fiber was passed through the silicon carbide dispersed resin liquid instead of the glass fiber dispersed resin liquid.

(比較例2)
ガラス繊維を分散していない実施例1のフェノール樹脂液中に直接炭素繊維を通した以外は、上記実施例1と同様にしてC/C複合材料試験片Cを得た
(Comparative Example 2)
A C / C composite material test piece C was obtained in the same manner as in Example 1 except that the carbon fiber was directly passed through the phenol resin solution of Example 1 in which the glass fiber was not dispersed.

(比較例3)
ガラス繊維に代えて黒色炭化珪素粉(太平洋ランダム社,粒径8μm)を炭素前駆体樹脂液に対し50重量%の割合で添加して炭化珪素分散樹脂液を得た。
そして、ガラス繊維分散樹脂液に代えてこの炭化珪素分散樹脂液中に炭素繊維を通した以外は、上記実施例1と同様にしてC/C複合材料試験片Dを得た。
(Comparative Example 3)
Instead of glass fiber, black silicon carbide powder (Pacific Random Co., Ltd., particle size 8 μm) was added at a ratio of 50% by weight to the carbon precursor resin liquid to obtain a silicon carbide dispersed resin liquid.
Then, a C / C composite material test piece D was obtained in the same manner as in Example 1 except that carbon fiber was passed through the silicon carbide dispersed resin liquid instead of the glass fiber dispersed resin liquid.

(C/C複合材料のX線回折)
上記実施例1で得られたC/C複合材料試験片Aおよび比較例4で得られたC/C複合材料試験片Dを、それぞれX線回折装置(リガク社,RINT-2200VK)の試験台に固定し、試験台を中心とした円周方向からX線を照射し回折パターンを測定し、その結果を図2に対比して示した。
(X-ray diffraction of C / C composite material)
The C / C composite material test piece A obtained in Example 1 and the C / C composite material test piece D obtained in Comparative Example 4 were each tested on an X-ray diffractometer (Rigaku Corporation, RINT-2200VK). The diffraction pattern was measured by irradiating X-rays from the circumferential direction centering on the test bench, and the results are shown in comparison with FIG.

なお、測定方法は汎用測定(集中法)D/texを用い、測定条件は走査範囲を2θ=10~80°,ステップを0.01°,スピード計数時間(スキャン速度)を9.0,管電圧を40kV,管電流を30mAとした。
図2に示すように、C/C複合材料試験片AおよびC/C複合材料試験片Dのいずれにおいても、θ=36°,60°,72°付近に回折線のピークがあることが確認できた。この回折線を、解析ソフト(リガク社,PDXL2)を用いて同定解析を行ったところSiCのピークと重なることが確認できた。
このことから、C/C複合材料試験片Aにおいては、Si元素を含むガラス繊維と炭素前駆体樹脂との焼成段階での反応によりSiCが生成されていると確認できた。
The measurement method uses general-purpose measurement (concentrated method) D / tex, and the measurement conditions are scanning range 2θ = 10 ~ 80 °, step 0.01 °, speed counting time (scanning speed) 9.0, tube voltage 40 kV, The tube current was 30 mA.
As shown in FIG. 2, it is confirmed that there is a diffraction line peak near θ = 36 °, 60 °, and 72 ° in both the C / C composite material specimen A and the C / C composite material specimen D. did it. When this diffraction line was subjected to identification analysis using analysis software (Rigaku Corporation, PDXL2), it was confirmed that it overlapped with the SiC peak.
From this, in C / C composite material test piece A, it has confirmed that SiC was produced | generated by reaction in the baking step of the glass fiber containing Si element, and carbon precursor resin.

(C/C複合材料の摩擦係数の温度依存性試験)
図3に示すACモータ,トルク計,試験片取り付け部,ロードセル,接触式変位計、ヒータから構成された摩擦試験機を自作し、C/C複合材料試料片A〜Cの各試料片を一対ずつ用意し、一対のうち、一方の試験片をACモータ側の取り付け部に取り付けるとともに、もう一方の試験片を上下の試験片の面が重なるように、ヒータを備えた上方の取り付け部に固定した。
そののち、錘を用いて上下の試験片間の接触面間に1.0MPaの押し付け力を与えながら、ACモータを用いて回転トルクを与えた。また、ヒータを用いて試験片の温度を室温,100℃,200℃,300℃と変更し、各温度での摩擦係数を、回転数を300rpm、サンプリング間隔を5ms、計測時間を300sでそれぞれ計測した。
(Temperature dependence test of friction coefficient of C / C composite material)
A friction tester composed of an AC motor, a torque meter, a test piece mounting portion, a load cell, a contact displacement meter, and a heater shown in FIG. 3 is made by itself, and each sample piece of C / C composite material sample pieces A to C is paired. Prepare one by one and attach one of the test pieces to the AC motor side attachment, and fix the other test piece to the upper attachment with a heater so that the upper and lower test piece surfaces overlap. did.
After that, a rotational torque was applied using an AC motor while applying a pressing force of 1.0 MPa between the contact surfaces between the upper and lower test pieces using a weight. In addition, the temperature of the test piece was changed to room temperature, 100 ° C, 200 ° C, and 300 ° C using a heater, and the friction coefficient at each temperature was measured at a rotation speed of 300 rpm, a sampling interval of 5 ms, and a measurement time of 300 s. did.

各試験片の摩擦係数の測定結果を図4に対比して示す。
図4に示すように、試験片B,Cの場合、常温では摩擦係数が低くなっているのに対し、本発明の製造方法で得られた試験片Aは、常温でも、100℃以上の温度域とほぼ同程度か少し高い摩擦係数を示し、摩擦係数の温度依存性を低減されていることがわかる。
すなわち、SiC粉を直接添加しただけでは試験片Bのように、常温(低温域)まで高い摩擦係数を備えたC/C複合材料が得られないのに対し、本発明の製造方法を用いれば、摩擦係数に温度依存性がなく、高温域だけでなく低温域においても摩擦材として安定した摩擦効果が得られるC/C複合材料を製造できることがよくわかる。
また、この摩擦係数の向上は、上記X線回折により確認されたように、焼成工程において炭素前駆体樹脂が炭化するに伴い、CFRP中に添加されたガラス繊維の少なくとも一部のSi元素と、炭素前駆体樹脂から形成された炭素の一部あるいは炭素繊維を構成する炭素の一部とが反応してSiCが形成され、炭素層内部にSiCが分散されたC/C複合材料となるためであると考えられる。
The measurement result of the friction coefficient of each test piece is shown in comparison with FIG.
As shown in FIG. 4, in the case of test pieces B and C, the friction coefficient is low at room temperature, whereas the test piece A obtained by the production method of the present invention has a temperature of 100 ° C. or higher even at normal temperature. The coefficient of friction is almost the same as or slightly higher than that in the region, indicating that the temperature dependence of the coefficient of friction is reduced.
That is, when the SiC powder is directly added, a C / C composite material having a high friction coefficient up to room temperature (low temperature range) cannot be obtained as in the test piece B, whereas the production method of the present invention is used. It can be seen that it is possible to produce a C / C composite material that does not depend on temperature in the friction coefficient and that can provide a stable friction effect as a friction material not only in a high temperature range but also in a low temperature range.
In addition, as confirmed by the X-ray diffraction, the improvement in the friction coefficient, as the carbon precursor resin is carbonized in the firing step, at least a part of Si element of the glass fiber added in the CFRP, This is because part of the carbon formed from the carbon precursor resin or part of the carbon constituting the carbon fiber reacts to form SiC, resulting in a C / C composite material in which SiC is dispersed inside the carbon layer. It is believed that there is.

(試験片の摩擦面の観察)
上記摩擦係数の温度依存性試験と同様に試験片Aおよび試験片Cについて、それぞれ常温および300℃の摩擦係数の測定と同じ押し付け力、回転数で下側の試験片を300秒間回転させた後、摩擦試験機から試験片を取り外し、その摩擦面の表面観察を走査型電子顕微鏡(SEM)を用いて行い、それぞれその結果を撮像して図5、図6に示した。
(Observation of friction surface of specimen)
After rotating the lower test piece for 300 seconds with the same pressing force and the same rotational speed as those for the measurement of the friction coefficient at normal temperature and 300 ° C. for the test piece A and the test piece C, respectively, as in the temperature dependence test of the friction coefficient. The test piece was removed from the friction tester, the surface of the friction surface was observed using a scanning electron microscope (SEM), and the results were imaged and shown in FIGS.

(表面の観察結果)
図5(a)に示すように、試験片Aを常温で摩擦させた場合には、表面に一方向に配向した炭素繊維が表面に露出するとともに、摩擦方向にスクラッチ痕とみられるくぼみ(図5(a)中、長円で囲んだ部分)が形成されていることがわかった。
図5(b)に示すように、試験片Aを300℃で摩擦させた場合には、炭素繊維が表面に大きく露出せず、表面が炭素の細かい摩擦粉でほぼ全面が覆われているとともに、スクラッチ痕とみられるくぼみ(図5(b)中、長円で囲んだ部分)が形成されていることがわかった。
上記図5(a),(b)のスクラッチ痕は、焼成によって炭素層の内部に形成されたSiCが試験片同士の摩擦面間に混入し、試験片の摩擦面に発生した傷であることが考えられる。また、SiCが試験片の摩擦面間に混入することによって、摩擦面同士の接触面積が大幅に減少し、従来のガラス繊維が無添加のCFRPを焼成して得たC/C複合材料の摩擦係数が温度依存性を有することの原因であった表面の影響を受けにくい。そして、引き換えに、生成したSiCが対向する相手方の摩擦面を削ることによる“ひっかき効果”によって大きな摩擦抵抗が発生し、低温域(常温)においても高温域と略同程度か少し高い摩擦係数を得られると考えられる。
すなわち、ガラス繊維を添加しC/C複合材料内部にSiCを生成させることにより摩擦係数の温度依存性は低減されたと考えられる。
(Surface observation results)
As shown in FIG. 5 (a), when the test piece A is rubbed at room temperature, carbon fibers oriented in one direction on the surface are exposed on the surface, and indentations appearing as scratch marks in the friction direction (FIG. 5). (A) It was found that a portion surrounded by an ellipse was formed.
As shown in FIG. 5B, when the test piece A is rubbed at 300 ° C., the carbon fiber is not exposed to the surface and the surface is almost entirely covered with fine friction powder of carbon. It was found that a depression (a part surrounded by an ellipse in FIG. 5B) formed as a scratch mark was formed.
The scratch marks in FIGS. 5 (a) and 5 (b) are scratches generated on the friction surface of the test piece because SiC formed in the carbon layer by firing is mixed between the friction surfaces of the test pieces. Can be considered. In addition, when SiC is mixed between the friction surfaces of the test piece, the contact area between the friction surfaces is greatly reduced, and the friction of the C / C composite material obtained by firing the conventional glass fiber-free CFRP. The coefficient is less susceptible to surface influences that have caused temperature dependence. In exchange for this, a large frictional resistance is generated due to the “scratch effect” caused by scraping the friction surface of the other side facing the generated SiC, and the friction coefficient is approximately the same as or slightly higher in the low temperature range (normal temperature) It is thought that it is obtained.
That is, it is considered that the temperature dependence of the friction coefficient is reduced by adding glass fiber to generate SiC inside the C / C composite material.

一方、試験片Cを常温下で摩擦させた場合には、図6(a)に示すように、表面が炭素の摩擦粉で覆われているとともに、一部に大きな炭素の摩擦粉(図6(a)中、長円で囲った部分)が存在していることが観察された。すなわち、摩擦面において、この炭素の大きな摩擦粉が形成されているため、炭素の接触面積が減り、摩擦係数が低くなると考えられる。
また、試験片Cを300℃で摩擦させた場合には、図6(b)に示すように、炭素の大きな摩擦粉が少なく炭素の緻密な膜が形成されているため、常温より大きな摩擦係数が得られると考えられる。
On the other hand, when the test piece C is rubbed at room temperature, the surface is covered with carbon friction powder as shown in FIG. In (a), it was observed that a portion surrounded by an ellipse was present. That is, since this carbon large friction powder is formed on the friction surface, it is considered that the contact area of carbon decreases and the friction coefficient decreases.
In addition, when the specimen C is rubbed at 300 ° C., as shown in FIG. 6 (b), a carbon dense film is formed with a small amount of carbon-containing friction powder. Can be obtained.

本発明は、上記の実施の形態や実施例に限定されない。たとえば、上記の実施の形態では、炭素繊維材を炭素前駆体樹脂液に通した後、ワインディング装置のボビンに巻き取って積層体を得るようにしていたが、炭素繊維マットを用い、ハンドレイアップ法で積層するようにしても構わない。
また、上記の実施の形態では、オーブン中で半硬化させてCFRP前駆体を得るようになっていたが、常温で半硬化させるようにしても構わない。
The present invention is not limited to the above-described embodiments and examples. For example, in the above embodiment, the carbon fiber material is passed through the carbon precursor resin liquid and then wound around the bobbin of the winding apparatus to obtain a laminate. You may make it laminate | stack by the method.
In the above embodiment, the CFRP precursor is obtained by being semi-cured in an oven. However, it may be semi-cured at room temperature.

1 炭素繊維材
2 フェノール樹脂液(炭化前駆体樹脂液)
3 ガラス繊維
4 浸漬槽
5 ワインディング装置
51 ボビン
6 筒状積層体
7 オーブン
8 CFRP前駆体
9 プレス型
10 CFRP
1 Carbon fiber material 2 Phenolic resin liquid (carbonized precursor resin liquid)
3 Glass fiber 4 Immersion tank 5 Winding device 51 Bobbin 6 Cylindrical laminate 7 Oven 8 CFRP precursor 9 Press die 10 CFRP

Claims (6)

炭素繊維材が炭素前駆体樹脂によって固められた炭素繊維強化樹脂を焼成して前記炭素前駆体樹脂を炭化する工程を備える炭素繊維炭素複合材料の製造方法であって、
前記炭素繊維強化樹脂中にガラス繊維を分散配合しておくことを特徴とする炭素繊維炭素複合材料の製造方法。
A method for producing a carbon fiber-carbon composite material comprising a step of firing a carbon fiber reinforced resin obtained by solidifying a carbon fiber material with a carbon precursor resin to carbonize the carbon precursor resin,
A method for producing a carbon fiber-carbon composite material, wherein glass fibers are dispersed and blended in the carbon fiber reinforced resin.
炭素前駆体樹脂溶液中にガラス繊維を分散したガラス繊維分散液を炭素繊維材に付着させる工程と、
このガラス繊維分散液が付着した付着体を積層したのち、炭素前駆体樹脂を硬化させて炭素繊維強化樹脂を得る請求項1に記載の炭素繊維炭素複合材料の製造方法。
Attaching a glass fiber dispersion liquid in which glass fibers are dispersed in a carbon precursor resin solution to a carbon fiber material;
The method for producing a carbon fiber-carbon composite material according to claim 1, wherein the carbon fiber reinforced resin is obtained by curing the carbon precursor resin after laminating the adherend to which the glass fiber dispersion is adhered.
炭素繊維材をガラス繊維分散液槽に浸漬してガラス繊維分散液を炭素繊維に付着させる請求項2に記載の炭素繊維炭素複合材料。   The carbon fiber carbon composite material according to claim 2, wherein the carbon fiber material is immersed in a glass fiber dispersion tank to adhere the glass fiber dispersion to the carbon fiber. 炭素前駆体樹脂がフェノール樹脂である請求項1〜請求項3のいずれかに記載の炭素繊維炭素複合材料。   The carbon fiber carbon composite material according to any one of claims 1 to 3, wherein the carbon precursor resin is a phenol resin. チョップドガラス繊維を炭素前駆体樹脂溶液中に分散させる請求項1〜請求項4のいずれかに記載の炭素繊維炭素複合材料の製造方法。   The manufacturing method of the carbon fiber carbon composite material in any one of Claims 1-4 which disperse | distribute chopped glass fiber in a carbon precursor resin solution. 不活性ガス雰囲気中で焼成する請求項1〜請求項5のいずれかに記載の炭素繊維炭素複合材料の製造方法。   The manufacturing method of the carbon fiber carbon composite material in any one of Claims 1-5 baked in inert gas atmosphere.
JP2014051125A 2014-03-14 2014-03-14 Manufacturing method of carbon fiber/carbon composite material Pending JP2015174784A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014051125A JP2015174784A (en) 2014-03-14 2014-03-14 Manufacturing method of carbon fiber/carbon composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014051125A JP2015174784A (en) 2014-03-14 2014-03-14 Manufacturing method of carbon fiber/carbon composite material

Publications (1)

Publication Number Publication Date
JP2015174784A true JP2015174784A (en) 2015-10-05

Family

ID=54254293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014051125A Pending JP2015174784A (en) 2014-03-14 2014-03-14 Manufacturing method of carbon fiber/carbon composite material

Country Status (1)

Country Link
JP (1) JP2015174784A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017119589A (en) * 2015-12-28 2017-07-06 イビデン株式会社 Ceramic composite material and method for producing ceramic composite material
JP2017160335A (en) * 2016-03-09 2017-09-14 学校法人同志社 Compound composite material and method for producing the same
CN112390656A (en) * 2019-08-15 2021-02-23 北京信汇碳硅科技有限公司 Method for continuously preparing ceramic matrix composite material section bar and section bar prepared by method
CN115286356A (en) * 2022-07-29 2022-11-04 江苏佳成特种纤维有限公司 Carbon fiber/glass fiber composite material and preparation method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017119589A (en) * 2015-12-28 2017-07-06 イビデン株式会社 Ceramic composite material and method for producing ceramic composite material
JP2017160335A (en) * 2016-03-09 2017-09-14 学校法人同志社 Compound composite material and method for producing the same
CN112390656A (en) * 2019-08-15 2021-02-23 北京信汇碳硅科技有限公司 Method for continuously preparing ceramic matrix composite material section bar and section bar prepared by method
CN112390656B (en) * 2019-08-15 2022-12-20 北京信汇碳硅科技有限公司 Method for continuously preparing ceramic matrix composite material section bar and section bar prepared by method
CN115286356A (en) * 2022-07-29 2022-11-04 江苏佳成特种纤维有限公司 Carbon fiber/glass fiber composite material and preparation method thereof

Similar Documents

Publication Publication Date Title
US9028914B2 (en) Method for manufacturing high-density fiber reinforced ceramic composite materials
CN108623320A (en) A kind of automobile brake C/C-SiC composite materials, preparation method and application
Savage The properties of carbon-carbon composites
JP3696942B2 (en) Fiber reinforced carbon and graphite articles
US7207424B2 (en) Manufacture of carbon/carbon composites by hot pressing
CN108516852A (en) A kind of carbon-silicon carbide double base matrix carbon fibre composite, preparation method and application
JP2015174784A (en) Manufacturing method of carbon fiber/carbon composite material
Patil et al. Rapid heating of silicon carbide fibers under radio frequency fields and application in curing preceramic polymer composites
Deng et al. Effect of brake pressure and brake speed on the tribological properties of carbon/carbon composites with different pyrocarbon textures
CN106083114A (en) A kind of C/C ZrC SiC ceramic based composites brake disc and preparation method thereof
CN103332943A (en) Microstructure design and performance control method for preparing carbon-ceramic-based composite materials based on liquid silicon melt infiltration method
Tülbez et al. Effect of CNT impregnation on the mechanical and thermal properties of C/C-SiC composites
Xu et al. Fabrication and properties of lightweight ZrB 2 and SiC-modified carbon bonded carbon fiber composites via polymeric precursor infiltration and pyrolysis
Mo et al. Mechanical and microwave absorbing properties of Tyranno® ZMI fiber annealed at elevated temperatures
CN113862773B (en) Long-life guide cylinder and preparation method thereof
Liu et al. Improving thermal shock and ablation resistance of high thermal conductivity carbon/carbon composites by introducing carbon nanotubes
CN109095929A (en) A kind of carbon pottery brake disc preparation method
JP2004244258A (en) Carbon fiber for carbon fiber reinforced carbon composite materials and method of manufacturing the same
JP6407747B2 (en) Pitch-based carbon fiber and method for producing the same
Solovei et al. Synthesis of reinforced ceramic matrix composite based on SiC and nanocarbon mesh
JP7005822B1 (en) C / C composite and its manufacturing method, heat treatment jig and its manufacturing method
Reichert et al. The evaluation of thermoplastic precursors for C/C-SiC manufactured by liquid silicon infiltration (LSI)
Serizawa et al. Internal friction and gas desorption of CC composites
Liu et al. Research on manufacturing process of carbon-carbon composites as ablation resistance materials
Otsuka et al. A multi-layer CVD-SiC coating for oxidation protection of carbon/carbon composite