JP2015172598A - Precise noise meter - Google Patents

Precise noise meter Download PDF

Info

Publication number
JP2015172598A
JP2015172598A JP2015112951A JP2015112951A JP2015172598A JP 2015172598 A JP2015172598 A JP 2015172598A JP 2015112951 A JP2015112951 A JP 2015112951A JP 2015112951 A JP2015112951 A JP 2015112951A JP 2015172598 A JP2015172598 A JP 2015172598A
Authority
JP
Japan
Prior art keywords
effective value
square
value
target
noise
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015112951A
Other languages
Japanese (ja)
Inventor
川上 福司
Fukuji Kawakami
福司 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2015112951A priority Critical patent/JP2015172598A/en
Publication of JP2015172598A publication Critical patent/JP2015172598A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To achieve measurement to an ultra-low sound pressure level by removing the influence of a background noise n(x).SOLUTION: A non-voice state is achieved by a dummy microphone cartridge configured only by an anechoic chamber, anechoic box or a capacitor only whose capacity is equal to that of a microphone cartridge 12. A correction value B of DC correction 24 is adjusted so that an output P of a square root arithmetic circuit 28 can be set to 0, and the adjusted DC correction value B is stored in a memory such as an EEPROM. Then, a signal s(x) is input as an object sound to the microphone cartridge 12, and an effective value Sof a synthetic signal S(x)≡s(x)+n(x) of the signal s(x) and a background noise n(x) is calculated by an effective value arithmetic circuit 18. A difference between the effective value Sand the correction value B is calculated by a subtracter 20, the sum of the effective value Sand the correction value B is calculated by an adder 22, and the arithmetic result of the both values, that is, the product of the both values is calculated by a multiplier 26 to display this value on a display unit 32 as a measurement result of the signal s(x).

Description

本発明は、精密測定を可能とするセンサに係り、特に測定対象物理量の測定結果がノイズの影響を受けやすいセンサに関するものである。さらに詳しくは、本発明は、自己雑音補正機能を有する精密騒音計に関するものである。   The present invention relates to a sensor that enables precise measurement, and more particularly to a sensor in which a measurement result of a measurement target physical quantity is susceptible to noise. More specifically, the present invention relates to a precision sound level meter having a self-noise correction function.

従来の騒音計として、例えば、図12に示すように、マイクロホン100、プリアンプ102、周波数補正回路104、帯域フィルタ106、実効値検波・動特性回路108、ピーク検波回路110、対数演算回路112、表示器114を備えたものが知られている。この騒音計は、測定対象の音をマイクロホン100で電気信号に変換し、この電気信号をプリアンプ102で増幅し、増幅された信号の周波数を補正カーブに従って聴感補正(A−、またはC−カーブ)し、補正された信号、またはSW1により補正を省略した直接信号を1/1オクターブまたは1/3オクターブの帯域フィルタ106に印加して通過させ、帯域フィルタ106の出力信号、またはSW2により補正を省略した、周波数補正回路104の直接出力信号、の実効値を実効値検波・動特性回路108で求め、また必要に応じて、ピーク値をピーク検波回路110で求め、実効値検波・動特性回路108とピーク検波回路110の出力信号を(表示器の機能に応じて必要なら)対数演算回路112で対数圧縮し、対数圧縮された信号を各帯域の計測結果として表示器114に表示するようになっている。   As a conventional sound level meter, for example, as shown in FIG. 12, a microphone 100, a preamplifier 102, a frequency correction circuit 104, a band filter 106, an effective value detection / dynamic characteristic circuit 108, a peak detection circuit 110, a logarithmic operation circuit 112, a display A device provided with a device 114 is known. This sound level meter converts the sound to be measured into an electric signal by the microphone 100, amplifies the electric signal by the preamplifier 102, and corrects the frequency of the amplified signal according to the correction curve (A- or C-curve). Then, the corrected signal or the direct signal omitted by SW1 is applied to the 1/1 octave or 1/3 octave bandpass filter 106 and passed, and the correction is omitted by the output signal of the bandpass filter 106 or SW2. The effective value of the direct output signal of the frequency correction circuit 104 is obtained by the effective value detection / dynamic characteristic circuit 108, and if necessary, the peak value is obtained by the peak detection circuit 110, and the effective value detection / dynamic characteristic circuit 108 is obtained. And the output signal of the peak detection circuit 110 are logarithmically compressed by the logarithmic arithmetic circuit 112 (if necessary depending on the function of the display), and the logarithmically compressed signal The so as to display on the display unit 114 as the measurement result of each band.

従来の騒音計では、測定対象の音が小さくなると、マイクロホン100のマイクカートリッジによる自己雑音や後段に繋がるアンプやフィルタなどの電気回路のバックグラウンドノイズなどのため、実際の信号がマスクされてしまい、正しい値を得ることができない。これを避けるために、マイクカートリッジとして、出力の大きな、つまり、1/2インチあるは1/1インチなどの大口径のマイクカートリッジを用いても、従来の精密騒音計で計測できる騒音レベルはせいぜい20〜30dB−SPL程度までであった。   In the conventional sound level meter, when the sound to be measured is reduced, the actual signal is masked due to self-noise caused by the microphone cartridge of the microphone 100 and background noise of an electric circuit such as an amplifier and a filter connected to the subsequent stage. The correct value cannot be obtained. In order to avoid this, even if a microphone cartridge having a large output, that is, a large-diameter microphone cartridge such as 1/2 inch or 1/1 inch is used as the microphone cartridge, the noise level that can be measured with a conventional precision sound level meter is at most. It was about 20-30 dB-SPL.

一般に、観測される暗騒音は低音域でレベルが大きく、高音域になるほど小さくなる。これに対して、マイクカートリッジの自己雑音は、熱雑音の一種であって、高音域になるほど単位帯域幅(単位オクターブ)当たりのレベルが大きくなるため、高音域ほど測定対象音がマスクされてしまいがちである。すなわち、従来の精密騒音計では、測定下限が騒音計自体のシステムノイズ、あるいはシステムノイズや測定場所の暗騒音などを含む測定系全体のバックグランドノイズ(BGN)などにより上昇しても、このノイズを除去することには配慮されていないので、測定範囲(測定のダイナミックレンジ)はかなり制約を受けることになる。   In general, the background noise that is observed has a high level in the low sound range, and it becomes smaller as the sound becomes higher. On the other hand, the self-noise of the microphone cartridge is a kind of thermal noise, and the higher the high frequency range, the higher the level per unit bandwidth (unit octave). Tend to. That is, in the conventional precision sound level meter, even if the measurement lower limit increases due to the system noise of the sound level meter itself or the background noise (BGN) of the entire measurement system including system noise and background noise at the measurement location, this noise Therefore, the measurement range (dynamic range of measurement) is considerably restricted.

本発明は、前記従来技術の課題に鑑みて為されたものであり、その目的は、バックグランドノイズの影響を除去し、超低音圧レベルまでの計測を可能にすることにある。   The present invention has been made in view of the above-described problems of the prior art, and an object of the present invention is to eliminate the influence of background noise and enable measurement to an ultra-low sound pressure level.

本発明は、マイクカートリッジの自己雑音や回路を含むシステムノイズがエルゴートプロセス(定常不規則過程)に従う定常雑音(stationary noise)であることに着目し、これらを予め測定して記憶し、実際の対象音の測定において、入力信号に対して、記憶した情報を基に補正して、その影響を除去するようにしたものである。   The present invention pays attention to the fact that the system noise including the self-noise and circuit of the microphone cartridge is stationary noise following the ergodic process (stationary irregular process), and these are measured and stored in advance, and the actual object In the sound measurement, the input signal is corrected based on the stored information to remove the influence.

すなわち、本発明は、以下の点を前提として、対象音の測定を行うこととしている。   That is, according to the present invention, the target sound is measured based on the following points.

1)自己雑音n(x)が定常雑音であること。n(x)が定常雑音であれば、その実効値は殆どレベル変化の無い直流となる。このことは、異なる温湿度で無音時の騒音計出力を記録した際に、その変化が僅少であることが確認できる。参考までに図1に1/2インチコンデンサーマイクの出力を、プリアンプを介してレベルレコーダに記録した結果を示す.上段は実験室の暗騒音s(x):(NC-40程度)、下段はマイクを夜間の無響室(NC−10以下)に置いた時ものでマイクの自己雑音出力n(x)に相当する。後者はほとんど一定であり、マイクの自己雑音は一般に温湿度の影響を受けず、時間変化もほとんどないことが分かる。   1) Self noise n (x) is stationary noise. If n (x) is stationary noise, its effective value is a direct current with almost no level change. This can be confirmed that when the sound level meter output during silence at different temperatures and humidity is recorded, the change is slight. For reference, Fig. 1 shows the result of recording the output of a 1/2 inch condenser microphone on a level recorder via a preamplifier. The upper row is the background noise s (x) in the laboratory: (about NC-40), and the lower row is when the microphone is placed in an anechoic room at night (NC-10 or lower). Equivalent to. The latter is almost constant, and it can be seen that the self-noise of the microphone is generally not affected by temperature and humidity, and hardly changes over time.

2)測定対象音s(x)と自己雑音n(x)が独立であること(直交関数)。測定対象音s(x)と自己雑音n(x)が互いに独立であれば、「直交関数の積の積分はゼロ」という統計的性質を利用することが可能である。すなわち、図1の太線(積分結果)SSに示すように、測定対象音s(x)と自己雑音n(x)との積を積分し結果を積分時間Tで除す(1/T)と、ゼロに漸近する。しかも、異常な環状下の測定でない限り、両者間に相関、或いは何らかの脈絡などは無く、その独立性はほとんど保証されている。   2) The measurement target sound s (x) and the self-noise n (x) are independent (orthogonal function). If the measurement target sound s (x) and the self-noise n (x) are independent from each other, it is possible to use a statistical property that “integration of products of orthogonal functions is zero”. That is, as shown by the thick line (integration result) SS in FIG. 1, the product of the measurement target sound s (x) and the self noise n (x) is integrated and the result is divided by the integration time T (1 / T). Asymptotically approaching zero. Moreover, there is no correlation or any kind of correlation between the two unless it is an abnormal under-circular measurement, and its independence is almost guaranteed.

そこで、本発明は、対象音を電気信号に変換してその実効値を算出する実効値算出手段と、前記実効値算出手段の算出による実効値のうち前記対象音を無音としたときの実効値を前記実効値算出手段のバックグラウンドノイズを含む補正値として記憶する記憶手段と、前記実効値算出手段の算出による実効値のうち前記対象音を対象騒音としたときの実効値と前記補正値との和と差を演算し、各演算結果の積を演算する演算手段とを備えてなる精密騒音計を構成することした。   Accordingly, the present invention provides an effective value calculation means for converting the target sound into an electrical signal and calculating an effective value thereof, and an effective value when the target sound is silent among the effective values calculated by the effective value calculation means. Is stored as a correction value including background noise of the effective value calculating means, and the effective value and the correction value when the target sound is the target noise among the effective values calculated by the effective value calculating means, A precision sound level meter is provided that includes a calculation means for calculating the sum and difference of the calculation results and calculating the product of the calculation results.

また同様の結果を別手段で得る方法として、本発明は、対象音を電気信号に変換してその自乗実効値を算出する自乗実効値算出手段と、前記自乗実効値算出手段の算出による自乗実効値のうち前記対象音を無音としたときの自乗実効値を前記自乗実効値算出手段のバックグラウンドノイズを含む補正値として記憶する記憶手段と、前記自乗実効値算出手段の算出による自乗実効値のうち前記対象音を対象騒音としたときの自乗実効値から前記補正値を減算しながら積分する演算手段とを備えてなる精密騒音計を構成したものである。   Further, as a method of obtaining the same result by another means, the present invention includes a square effective value calculation means for converting a target sound into an electric signal and calculating a square effective value thereof, and a square effective value by calculation of the square effective value calculation means. Storage means for storing a square effective value when the target sound is silent among the values as a correction value including background noise of the square effective value calculating means, and a square effective value calculated by the square effective value calculating means. Of these, a precision sound level meter is provided that includes a calculation means that integrates while subtracting the correction value from the squared effective value when the target sound is the target noise.

更に、前記各精密騒音計を構成するに際しては、前記記憶手段に記憶された補正値を手動または自動で更新する更新手段を備えることができる。この手段によれば、測定下限に制限を与えるバックグラウンドノイズについて、マイクの自己雑音や室の暗騒音など、それらの種類を一切問わず、対象音(騒音)が入力する前に、観測する全てのノイズをバックグラウンドノイズとして除去することができる。   Further, when configuring each precision sound level meter, it is possible to provide an updating means for manually or automatically updating the correction value stored in the storage means. According to this measure, all of the background noise that limits the lower limit of measurement, such as microphone self-noise and room background noise, are observed before the target sound (noise) is input, regardless of their type. Noise can be removed as background noise.

具体的には、これらの手段により0dB−SPL、あるいはそれ以下の超低音圧レベルまでの測定が可能であり、一般的には上述のようにマイクの自己雑音が定常雑音であるが故に、測定下限を大幅に拡大できる。また、補正のための特別な調整操作は不要であり、必要に応じて任意の時点での校正が自動または手動で可能である。さらに、遮音測定などにおいて、室(特に受音室側)の暗騒音をバックグラウンドノイズに含めることにより、高度な遮音度の測定が可能となる。   Specifically, it is possible to measure to 0 dB-SPL or very low sound pressure level by these means. Generally, since the microphone self-noise is stationary noise as described above, measurement is performed. The lower limit can be greatly expanded. Further, no special adjustment operation for correction is required, and calibration at an arbitrary time can be automatically or manually performed as necessary. Furthermore, in the sound insulation measurement and the like, by including the background noise of the room (particularly the sound receiving room side) in the background noise, a high degree of sound insulation can be measured.

また、本発明は、対象音を電気信号に変換してその実効値を算出し、前記算出した実効値のうち前記対象音を無音(入力ゼロ)としたときの実効値をバックグラウンドノイズを、含む補正値として記憶し、前記算出した実効値のうち前記対象音を対象騒音としたときの実効値と前記補正値との和と差を演算し、各演算結果の積を演算する騒音計測方法を採用したものである。   Further, the present invention calculates the effective value by converting the target sound into an electrical signal, and the effective value when the target sound is silent (input zero) among the calculated effective values, the background noise, A noise measurement method for storing a correction value, calculating a sum and a difference between an effective value of the calculated effective value when the target sound is the target noise and the correction value, and calculating a product of the calculation results Is adopted.

さらに、本発明は、対象音を電気信号に変換してその自乗実効値を算出し、前記算出した自乗実効値のうち前記対象音を無音としたときの自乗実効値を、バックグラウンドノイズを含む補正値として記憶し、前記算出した自乗実効値のうち前記対象音を対象騒音としたときの自乗実効値から前記補正値を減算しながら積分する騒音計測方法を採用したものである。   Furthermore, the present invention converts the target sound into an electrical signal to calculate its square effective value, and the square effective value when the target sound is silent among the calculated square effective values includes background noise. A noise measurement method is adopted in which the noise is stored as a correction value and integrated while subtracting the correction value from the square effective value when the target sound is the target noise among the calculated square effective values.

さらに、本発明に係る測定対象を既述音以外の他の物理量の計測に拡張することができる。この種の測定対象物理量としては、振動振幅(加速度・速度・変位)を始めとして、特に微小信号を扱う必要のある、地盤の歪・照度・電波強度・臭い・風力・圧力、などがある。   Furthermore, the measurement object according to the present invention can be extended to measurement of physical quantities other than the above-mentioned sound. This kind of physical quantity to be measured includes vibration amplitude (acceleration, velocity, displacement), ground distortion, illuminance, radio wave intensity, odor, wind force, pressure, etc. that need to handle particularly minute signals.

本発明によれば、対象騒音に対して超低音圧レベルまでの計測が可能になる。   According to the present invention, it is possible to measure the target noise up to an ultra-low sound pressure level.

測定対象音s(x)と自己雑音n(x)との積を積分したときの波形図。The waveform diagram when integrating the product of the measurement target sound s (x) and the self-noise n (x). 本発明に係る精密騒音計の基本構成を示す回路図。The circuit diagram which shows the basic composition of the precision sound level meter which concerns on this invention. 図2に示す精密騒音計の各部の波形図。The wave form diagram of each part of the precision sound level meter shown in FIG. 本発明に係る精密騒音計の他の基本構成を示す回路図。The circuit diagram which shows the other basic composition of the precision sound level meter which concerns on this invention. 和差積算法を採用した精密騒音計の実施例を示す回路図。The circuit diagram which shows the Example of the precision sound level meter which employ | adopted the sum-and-difference integration method. 和差積算法を採用した精密騒音計の他の実施例を示す回路図。The circuit diagram which shows the other Example of the precision sound level meter which employ | adopted the sum-and-difference integration method. (a)NC曲線とマイクカートリッジの自己雑音を示す特性図、(b)NC曲線とマイクカートリッジおよびプリアンプの出力レベルの実測データを示す特性図。(A) Characteristic diagram showing self-noise of NC curve and microphone cartridge, (b) Characteristic diagram showing actually measured data of NC curve and output level of microphone cartridge and preamplifier. 自乗差分法を採用した精密騒音計の実施例を示す回路図。The circuit diagram which shows the Example of the precision sound level meter which employ | adopted the square difference method. 遮音測定において、室間遮音度が大きいときの測定法を説明するための図。The figure for demonstrating the measuring method when the sound insulation degree between rooms is large in sound insulation measurement. 本発明に係る精密騒音計本体の一実施例を示す斜視図。The perspective view which shows one Example of the precision sound level meter main body which concerns on this invention. 本発明に係る精密騒音計本体の他の実施例を示す斜視図。The perspective view which shows the other Example of the precision sound level meter main body which concerns on this invention. 従来例の回路図。The circuit diagram of a prior art example.

以下、本発明の実施の形態を図面に基づいて説明する。まず、本発明に係る精密騒音計の基本構成について説明する。本発明に係る精密騒音計においては、実効値のみを処理対象とするときには、(仮称)和差積算法(AZC:Adaptive Zero Calibration)を採用し、実効値を得るために、自乗積分回路を含むときには、(仮称)自乗差分法(SNS:Squared Noise Subtrauction)を採用することとしている。前者は、実効値回路に市販の実効値LSIやサブルーチン(ディジタル処理・ソフトウエアによる場合)を含む場合に有利な処理法であり、後者は、定義どおりの実効値演算を行う自乗積分回路を含む場合に有利な処理法である。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. First, the basic configuration of the precision sound level meter according to the present invention will be described. In the precision sound level meter according to the present invention, when only the effective value is to be processed, a (provisional name) sum-of-difference integration method (AZC: Adaptive Zero Calibration) is adopted, and a square integration circuit is included to obtain an effective value. In some cases, the (tentative name) square difference method (SNS: Squared Noise Subtraction) is adopted. The former is an advantageous processing method when a commercially available RMS LSI or a subroutine (in the case of digital processing / software) is included in the RMS circuit, and the latter includes a square integration circuit that performs an RMS calculation as defined. This is an advantageous treatment method.

次に、和差積算法を採用した精密騒音計10の具体的構成を図2に示す。この精密騒音計10は、マイクカートリッジ12、プリアンプ14、A/D変換器16、実効値演算回路18、減算器20、加算器22、直流補正(B)24、掛算器26、平方根回路28、D/A変換器30、表示器32、スイッチ34、36を備え、対象音(入力信号)の実効値Seffに直流補正±Bを加えて、両者の積をとるように構成されている。 Next, FIG. 2 shows a specific configuration of the precision sound level meter 10 adopting the sum-and-difference integration method. This precision sound level meter 10 includes a microphone cartridge 12, a preamplifier 14, an A / D converter 16, an effective value calculation circuit 18, a subtractor 20, an adder 22, a DC correction (B) 24, a multiplier 26, a square root circuit 28, A D / A converter 30, a display 32, and switches 34 and 36 are provided, and a DC correction ± B is added to the effective value S eff of the target sound (input signal) to obtain the product of both.

対象音(入力信号)はマイクカートリッジ12で電気信号に変換され、この電気信号はプリアンプ14で増幅され、増幅された電気信号(アナログ信号)はA/D変換器16でディジタル信号に変換される。この変換されたディジタル信号を基に実効値演算回路18で対象音に関する実効値が演算されるようになっている。この実効値と補正値Bとの差と和がそれぞれ減算器20と加算器22で求められ、両者の積が掛算器26で求められ、掛算器26の出力からその平方根が平方根回路28で求められる。平方根回路28の出力PはD/A変換器30でアナログ信号に変換され、このアナログ信号の値は(必要に応じて対数圧縮などの変換回路を経て)計測結果として表示器32に表示されるようになっている。   The target sound (input signal) is converted into an electric signal by the microphone cartridge 12, this electric signal is amplified by the preamplifier 14, and the amplified electric signal (analog signal) is converted into a digital signal by the A / D converter 16. . Based on the converted digital signal, an effective value calculation circuit 18 calculates an effective value related to the target sound. The difference and sum of the effective value and the correction value B are obtained by the subtracter 20 and the adder 22, respectively, the product of both is obtained by the multiplier 26, and the square root is obtained by the square root circuit 28 from the output of the multiplier 26. It is done. The output P of the square root circuit 28 is converted into an analog signal by the D / A converter 30, and the value of this analog signal is displayed on the display 32 as a measurement result (via a conversion circuit such as logarithmic compression if necessary). It is like that.

具体的には、スイッチ34、36を「1」にしマイク前面を密閉するか、あるいは、容量だけがダイヤフラムに等しいコンデンサ(ダミーマイクカートリッジ)に置き換えるか、或いはまた、マイクを十分な静寂さが確保された無響室・無響箱に設置するか、などにより無音状態(対象音をゼロとした無入力信号状態)を実現する。このとき、平方根演算回路28の出力Pが0となるように、直流補正24の補正値Bを調整し、調整された補正値BをEEPROMなどのメモリ(記憶手段)に記憶する。   Specifically, the switches 34 and 36 are set to “1” and the front of the microphone is sealed, or the capacitor is replaced with a capacitor (dummy microphone cartridge) whose capacity is equal to that of the diaphragm, or the microphone is sufficiently quiet. It can be installed in an anechoic room or anechoic box, etc. to achieve a silent state (non-input signal state where the target sound is zero). At this time, the correction value B of the DC correction 24 is adjusted so that the output P of the square root calculation circuit 28 becomes 0, and the adjusted correction value B is stored in a memory (storage means) such as an EEPROM.

次に、スイッチ34、36を「2」にして、本来の状態のマイクカートリッジ12に対象音として、信号s(x)を入力し、ノイズn(x)を含んだ信号の実効値Seffを実効値演算回路18で演算する(図3(a)参照)。この後、図3(b)、(c)に示すように、減算器20において、実効値Seffと補正値Bとの差を演算し、加算器22において、実効値Seffと補正値Bとの和を演算し、両者の演算結果から、両者の積を掛算器26により求める。この結果として、表示器32には、マイクの自己雑音や測定系のバックグラウンドノイズの影響を受けない、信号s(x)の正確なレベルが表示される。この場合、全段をアナログ処理とすれば、A/D変換器16とD/A変換器30は省略できる。 Next, the switches 34 and 36 are set to “2”, the signal s (x) is input as the target sound to the microphone cartridge 12 in the original state, and the effective value S eff of the signal including the noise n (x) is set. The calculation is performed by the effective value calculation circuit 18 (see FIG. 3A). Thereafter, as shown in FIGS. 3B and 3C, the subtracter 20 calculates the difference between the effective value S eff and the correction value B, and the adder 22 calculates the effective value S eff and the correction value B. Is calculated, and the product of the two is obtained by the multiplier 26 from the calculation result of both. As a result, the display 32 displays an accurate level of the signal s (x) that is not affected by the self noise of the microphone or the background noise of the measurement system. In this case, if all stages are analog processing, the A / D converter 16 and the D / A converter 30 can be omitted.

次に、自乗差分法を採用した精密騒音計10の具体的構成を図4に示す。この精密騒音計10は、マイクカートリッジ12、プリアンプ14、A/D変換器16、自乗器38、減算器20、積分器40、定数回路42、44、RAM46、D/A変換器30、表示器32、スイッチ34、36を備え、対象音(入力信号)の自乗積分の過程で補正処理を施し、バックグラウンドノイズの影響を排除するようになっている。すなわち、バックグラウンドノイズの自乗実効値を予め記憶し、積分の過程でこれを減算しながら処理するようになっている。この場合も、全段をアナログ処理とすれば、A/D変換器16とD/A変換器30は省略できる。   Next, a specific configuration of the precision sound level meter 10 employing the square difference method is shown in FIG. The precision sound level meter 10 includes a microphone cartridge 12, a preamplifier 14, an A / D converter 16, a squarer 38, a subtractor 20, an integrator 40, constant circuits 42 and 44, a RAM 46, a D / A converter 30, and a display. 32 and switches 34 and 36, and correction processing is performed in the process of square integration of the target sound (input signal) to eliminate the influence of background noise. In other words, the square root effective value of the background noise is stored in advance and processed while being subtracted during the integration process. Also in this case, the A / D converter 16 and the D / A converter 30 can be omitted if all stages are analog processes.

具体的には、スイッチ34、36を「1」にし、無響室・無響箱で、或いはカートリッジ部分12に容量の等しいダミーマイクカートリッジを用い、上述した無音状態(無入力信号状態)を実現する。このとき、自乗器38で自己雑音の自乗実効値を計算し、その結果を記憶手段としてのRAM(一時記憶メモリー)46に記憶する。   Specifically, the switches 34 and 36 are set to “1”, and the above-described silent state (no input signal state) is realized by using a dummy microphone cartridge having an equal capacity in the anechoic chamber / anechoic box or in the cartridge part 12. To do. At this time, the squared effective value of the self-noise is calculated by the squarer 38, and the result is stored in a RAM (temporary storage memory) 46 as a storage means.

次に、スイッチ34、36を「2」にしてカートリッジ部分を開放し、マイクカートリッジ12に対象音として信号s(x)を入力し、そのときの自乗実効値を自乗器38で計算し、この計算結果から自己雑音の自乗実効値を減算器20で減算し、この減算結果を積分器40で積分する。この積分結果を定数回路42の時定数Tで割り算し、この値をアナログ信号に変換して表示器32に出力する。この結果、表示器32には、信号s(x)に対する計測結果として、対象音の自乗実効値として正しいseff 2が表示される。なお、Seff 2は、ノイズ成分n(x)を含んだ信号の自乗実効値であり、seff 2は、ノイズ成分を含まない真の値の自乗実効値である。 Next, the switches 34 and 36 are set to “2” to open the cartridge portion, the signal s (x) is input as the target sound to the microphone cartridge 12, and the square effective value at that time is calculated by the square unit 38. The square root-mean-square value of self-noise is subtracted from the calculation result by the subtracter 20, and the subtraction result is integrated by the integrator 40. This integration result is divided by the time constant T of the constant circuit 42, and this value is converted into an analog signal and output to the display 32. As a result, correct s eff 2 is displayed as the square root effective value of the target sound as a measurement result for the signal s (x) on the display 32. S eff 2 is a square effective value of the signal including the noise component n (x), and s eff 2 is a true square effective value not including the noise component.

次に、和差積算法(AZC)を採用し、実際の騒音計として実現するときの実施例を図5に従って説明する。この精密騒音計10は、マイクカートリッジ12、プリアンプ14、周波数補正器48、1/1・1/3オクターブフィルタ50、スイッチ52、実効値回路・動特性回路54、減算器20、加算器22、補正回路(B)24、掛算器26、対数圧縮器56、表示器32を備え、対象音(入力信号)の実効値Seffに補正値±Bを加えて、両者の積をとるように構成されている。 Next, an embodiment in which the sum-difference integration method (AZC) is adopted and realized as an actual sound level meter will be described with reference to FIG. This precision sound level meter 10 includes a microphone cartridge 12, a preamplifier 14, a frequency corrector 48, a 1/1/1/3 octave filter 50, a switch 52, an effective value circuit / dynamic characteristic circuit 54, a subtracter 20, an adder 22, A correction circuit (B) 24, a multiplier 26, a logarithmic compressor 56, and a display 32 are provided, and a correction value ± B is added to the effective value S eff of the target sound (input signal) to obtain the product of both. Has been.

対象音(入力信号)はマイクカートリッジ12で電気信号に変換され、この電気信号はプリアンプ14で増幅され、増幅された電気信号(アナログ信号)は周波数補正器48で所定の周波数成分が補正され、補正された信号がスイッチ52を介して実効値回路・動特性回路54に入力されるようになっている。或いは、各帯域ごとの数値が必要な場合は、補正回路に替えスイッチ52により1/1・1/3オクターブフィルタ50の出力が実効値回路・動特性回路54に入力されるようになっている。実効値・動特性回路54では対象音に関する実効値が演算される。この実効値と補正値Bとの差と和がそれぞれ減算器20と加算器22で求められ、両者の積が掛算器26で求められ、掛算器26の出力からその平方根が対数圧縮器56で求められ、この平方根が計測結果として表示器32に表示される。   The target sound (input signal) is converted into an electric signal by the microphone cartridge 12, this electric signal is amplified by the preamplifier 14, and a predetermined frequency component of the amplified electric signal (analog signal) is corrected by the frequency corrector 48, The corrected signal is input to the effective value circuit / dynamic characteristic circuit 54 via the switch 52. Alternatively, when a numerical value for each band is required, the output of the 1/1/1/3 octave filter 50 is input to the effective value circuit / dynamic characteristic circuit 54 by the switch 52 instead of the correction circuit. . The effective value / dynamic characteristic circuit 54 calculates an effective value related to the target sound. The difference and sum of the effective value and the correction value B are obtained by the subtracter 20 and the adder 22, respectively, the product of both is obtained by the multiplier 26, and the square root is obtained from the output of the multiplier 26 by the logarithmic compressor 56. This square root is obtained and displayed on the display 32 as a measurement result.

具体的には、スイッチ52を「a」または「b」にし、無響室・無響箱あるいは、容量だけが等しいコンデンサのみで構成されたダミーマイクカートリッジ12により、無音状態(無入力信号状態)を実現する。このとき、掛算器26の出力Pが0(ゼロ)となるように、直流補正24の補正値Bを調整し、調整された補正値BをEEPROM(リライタブル不揮発性メモリー)などのメモリ(記憶手段・素子・回路)に記憶する。因みに、Bはバックグラウンドノイズn(x)の実効値に相当する。   Specifically, the switch 52 is set to “a” or “b”, and a silent state (no input signal state) is caused by the dummy microphone cartridge 12 constituted only by an anechoic chamber / anechoic box or a capacitor having only the same capacity. Is realized. At this time, the correction value B of the DC correction 24 is adjusted so that the output P of the multiplier 26 becomes 0 (zero), and the adjusted correction value B is stored in a memory (storage means) such as an EEPROM (rewritable nonvolatile memory). • Store in (element / circuit). Incidentally, B corresponds to the effective value of the background noise n (x).

次に、マイクカートリッジ12に対象音として、信号s(x)を入力し、そのときの実効値と調整された直流補正値Bとの和と差を演算し、両者の積を掛算器26により求める。この結果、表示器32には、バックグラウンドノイズn(x)の影響を受けない信号s(x)の正確なレベルが表示される。   Next, the signal s (x) is input as the target sound to the microphone cartridge 12, the sum and difference between the effective value at that time and the adjusted DC correction value B are calculated, and the product of the two is multiplied by the multiplier 26. Ask. As a result, the display 32 displays the accurate level of the signal s (x) that is not affected by the background noise n (x).

前記実施例において、プリアンプ14がマイクカートリッジ12と一体になっている場合、演算処理をディジタル/ソフトウエアで行う場合、あるいは表示器32の目盛が対数圧縮されている場合などには、図6に示すように、A/D変換器16、D/A変換器30を追加し、対数圧縮器56の代わりに、平方根回路28を用いるような変形構成を採用することもできる。   In the above embodiment, when the preamplifier 14 is integrated with the microphone cartridge 12, when the arithmetic processing is performed by digital / software, or when the scale of the display 32 is logarithmically compressed, FIG. As shown, a modified configuration in which an A / D converter 16 and a D / A converter 30 are added and a square root circuit 28 is used instead of the logarithmic compressor 56 may be employed.

和差積算法を採用した精密騒音計10の場合において、補正信号(補正値)Bの算出に適応処理を用いる場合は、無信号時にP点出力であるバックグラウンドノイズn(x)の実効値neff(neff≡(A)1/2(Aはnに上線バーが付されたもの・・上線バーは時間平均値)が0(ゼロ)になるように、補正信号(補正値)Bが自動調整され記憶される。 In the case of the precision sound level meter 10 employing the sum-and-difference integration method, when adaptive processing is used to calculate the correction signal (correction value) B, the effective value of the background noise n (x) that is the P-point output when there is no signal n eff (n eff ≡ (A) 1/2 (A is the one with an overline bar attached to n 2 ..., and the overline bar is the time average value) 0 (zero) so that the correction signal (correction value) B is automatically adjusted and stored.

つまり、無信号入力時には、0=[neff−B]・[neff+B]より、B≒±neff 、即ち、B≧0によりB≒neffとなる。 In other words, at the time of no input-signal, 0 = from [n eff -B] · [n eff + B], B ≒ ± n eff, i.e., the B ≒ n eff by B ≧ 0.

次に、バックグラウンドノイズ:n(x)を含む対象信号s(x)を含む入力信号S(x)=s(x)+n(x)が加えられたときには、P点の出力Xは、和差出力の積として、
X=[Seff−B]・[Seff+B]=Seff 2−neff 2≒seff 2 、即ちほぼ正確なs(x)の自乗実効値となる。
Next, when the input signal S (x) = s (x) + n (x) including the target signal s (x) including the background noise: n (x) is added, the output X at the point P is given by As the product of sum and difference outputs,
X = [S eff −B] · [S eff + B] = S eff 2 −n eff 2 ≈s eff 2 , that is, an approximately square effective value of s (x).

結局、平方根をとると、(X)1/2=seffとなり、合理的にs(x)の実効値が求められる。 After all, taking the square root, (X) 1/2 = s eff , and the effective value of s (x) can be reasonably obtained.

ここに、Seff 2は、以下の式で表わせる。 Here, S eff 2 can be expressed by the following equation.

次に、高域のバックグラウンドノイズのみを処理すれば良い理由について述べる。   Next, the reason why only the high-frequency background noise should be processed will be described.

バックグラウンドノイズn(x)の主体を成すマイクカートリッジの自己雑音は高域を主成分とするほぼ定常的なノイズ、すなわち定常雑音であるので、以下の点を考慮することで、大きな補正効果が期待できる。   Since the self-noise of the microphone cartridge, which is the main component of the background noise n (x), is a substantially stationary noise whose main component is a high frequency, that is, a stationary noise, a large correction effect can be obtained by considering the following points. I can expect.

1)室の暗騒音は通常、低音域で大きなエネルギーを有する。(騒音許容基準のNC曲線もこの事実に沿って決められている.図7(a)のNC曲線参照。)
2)バックグラウンドノイズは、特にその主要部分を占めるマイクカートリッジの自己雑音は、高域ほどエネルギーが大きくなる。このため、静かな室の暗騒音測定では2kHzが測定限界となり、それ以上の帯域はバックグラウンドノイズによりマスクされ測定不可となる(図7(a)の最下部の実線参照)。
1) The background noise of a room usually has a large energy in a low sound range. (The NC curve of the noise tolerance standard is also determined along this fact. See the NC curve in Fig. 7 (a).)
2) The background noise, in particular, the self noise of the microphone cartridge that occupies the main part of the background noise, the higher the frequency, the greater the energy. For this reason, in the background noise measurement of a quiet room, 2 kHz becomes a measurement limit, and the band beyond it is masked by background noise and cannot be measured (see the solid line at the bottom of FIG. 7A).

3)そこで、高音域でのバックグラウンドノイズの経時変化特性を把握して効果的に補正することが可能となる。   3) Therefore, it is possible to grasp the background noise variation characteristic in the high sound range and effectively correct it.

高音域でのバックグラウンドノイズの経時変化としては、例えば、長時間のバックグラウンドノイズとして、マイクカートリッジとプリアンプの出力レベルの変動を計測すると図7(b)のようになる。即ち、騒音計のLinear(Overall)レンジでは低音域の(室)暗騒音のため、変動が大きい(b−1)。これに対して、b−2に示すように、Aカーブで補正し低音域の影響を除去した結果はほとんどマイクの自己雑音であり、大きなレベル変動や時間変化は見られずほぼ一定であることから、当該発明の補正法が立脚する事実の妥当性を示唆している。   For example, FIG. 7B shows the change in the output level of the microphone cartridge and the preamplifier as the background noise in the high sound range over time. That is, in the linear (overall) range of the sound level meter, the fluctuation is large (b-1) due to the (room) background noise in the low sound range. On the other hand, as shown in b-2, the result of correcting with the A curve and removing the influence of the low frequency range is almost self-noise of the microphone, and it is almost constant with no significant level fluctuation or time change. This suggests the validity of the fact that the correction method of the present invention is based on.

次に、自乗差分法を採用し、実際の騒音計として実現するときの実施例を図8に従って説明する。この精密騒音計10は、マイクカートリッジ12、周波数補正器48、1/1・1/3オクターブフィルタ50、スイッチ52、自乗器38、減算器20、スイッチ36、RAM46、時定数τ=RCの積分回路58、時定数τ’=R’C’の積分回路60、対数圧縮器56、表示器32を備え、対象音(入力信号)の自乗積分の過程で補正処理を施し、バックグラウンドノイズの影響を排除するようになっている。すなわち、バックグラウンドノイズの自乗実効値を予め記憶し、積分の過程でこれを減算しながら処理するようになっている。   Next, an embodiment when the square difference method is adopted and realized as an actual sound level meter will be described with reference to FIG. This precision sound level meter 10 includes a microphone cartridge 12, a frequency corrector 48, a 1/1/1/3 octave filter 50, a switch 52, a squarer 38, a subtracter 20, a switch 36, a RAM 46, and an integral of a time constant τ = RC. A circuit 58, an integration circuit 60 with a time constant τ ′ = R′C ′, a logarithmic compressor 56, and a display 32 are provided, and correction processing is performed in the process of square integration of the target sound (input signal) to influence the background noise. Is supposed to be eliminated. In other words, the square root effective value of the background noise is stored in advance and processed while being subtracted during the integration process.

具体的には、スイッチ52を「a」または「b」にし、スイッチ36を「1」にして、電源投入直後に、無音状態(無入力信号状態)を実現する(和差積法に準ずる)。このとき、自乗器38で自己雑音の自乗実効値n2を計算し、その結果をRAM(書き換え可能・自己保持型ROMであるEEPROM)46に記憶する。 Specifically, the switch 52 is set to “a” or “b” and the switch 36 is set to “1” to realize a silent state (no input signal state) immediately after the power is turned on (according to the sum-and-difference product method). . At this time, the square effective value n 2 of the self noise is calculated by the square unit 38, and the result is stored in a RAM (an EEPROM that is a rewritable and self-holding ROM) 46.

次に、スイッチ36を「2」にして、マイクカートリッジ12に対象音として、信号s(x)を入力し、そのときのノイズn(x)を含む合成信号S(x)≡s(x)+n(x)の自乗実効値を自乗器38で計算し、この計算結果から自己雑音の自乗実効値neff 2≡A(Aはnに上線バーが付されたもの)を減算器20で減算し、この減算結果を積分回路58で積分する。この積分結果を積分時定数Tで割り算し、この値を(必要に応じて)対数圧縮器56でdB−SPL値に変換して表示器32に出力する。この結果、表示器32には出力として、対象音s(x)の正確な実効値レベル、或いは自乗実効値Seff 2≡B(Bはsに上線バーが付されたもの)が表示される。 Next, the switch 36 is set to “2”, the signal s (x) is input as the target sound to the microphone cartridge 12, and the combined signal S (x) ≡s (x) including the noise n (x) at that time The square effective value of + n (x) is calculated by the squarer 38, and the squared effective value n eff 2 ≡A (A is obtained by adding an overline bar to n 2 ) from the calculation result by the subtractor 20. Subtraction is performed, and the subtraction result is integrated by the integration circuit 58. The integration result is divided by the integration time constant T, and this value is converted into a dB-SPL value by the logarithmic compressor 56 (if necessary) and output to the display 32. As a result, the accurate effective value level of the target sound s (x) or the squared effective value S eff 2 ≡B (B is obtained by adding an overline bar to s 2 ) is displayed on the display 32 as an output. The

ここで、s(x)を対象音信号(室内の楽器音など)とし、n(x)を騒音計10の自己雑音、或いは測定系のバックグラウンドノイズとし、neff 2≡をその自乗実効値とし、演算処理系への入力信号をS(x)≡s(x)+n(x)とすると、自己雑音の自乗実効値は次の数2のように計算される。 Here, s (x) is the target sound signal (indoor musical instrument sound, etc.), n (x) is the self noise of the sound level meter 10 or the background noise of the measurement system, and n eff 2 ≡ is its square effective value. Assuming that the input signal to the arithmetic processing system is S (x) ≡s (x) + n (x), the square root-mean-square value of the self-noise is calculated as

従って、積分回路58の出力は次の数3で表わされ、バックグラウンドノイズの影響が除去されることになる。   Therefore, the output of the integrating circuit 58 is expressed by the following equation 3, and the influence of background noise is removed.

また、遮音測定などにおいて測定のレンジ拡大を狙う場合などにおいては、バックグラウンドノイズを、室内暗騒音n’(x)とn(x)の合成信号N(x)と読み替えて同様の処理を行えば良い。   Also, when aiming to expand the measurement range in sound insulation measurement, etc., the background noise is replaced with the indoor background noise n ′ (x) and the combined signal N (x) of n (x) and the same processing is performed. Just do it.

すなわち、遮音測定において、室間遮音度NIFが大きい場合、受音室側のレベルL1(dB−SPL)は、図9に示すように、暗騒音n’(x)のため、正確に測れない。   That is, in the sound insulation measurement, when the sound insulation degree NIF between the rooms is large, the level L1 (dB-SPL) on the sound receiving room side cannot be accurately measured because of the background noise n ′ (x) as shown in FIG. .

そこで、予めN(x)の自乗実効値Neff 2≡C(CはNに上線バーが付されたもの)を求め、A(Aはnに上線バーが付されたもの)の場合と同様に、自乗音圧領域で減算しながら積分すると、N(x)は、次の数4で表わせるので、騒音計の出力は、次の数5のように計算される。 Therefore, the square effective value N eff 2 ≡C (C is obtained by adding an overline bar to N 2 ) in advance, and A (A is the one obtained by adding an overline bar to n 2 ). Similarly to the above, when integration is performed while subtracting in the squared sound pressure region, N (x) can be expressed by the following equation (4), so the output of the sound level meter is calculated as the following equation (5).

ここに、n’(x)は受音室暗騒音、n(x)はマイクカートリッジの自己雑音を含む騒音計のバックグラウンドノイズである。   Here, n '(x) is background noise of the receiving room, and n (x) is background noise of the sound level meter including self-noise of the microphone cartridge.

つまり、n’(x)とn(x)は、ひとまとめのノイズ成分として、同時に除去・補正され、レベルの小さなL1が正確に計測できるので、大きな遮音度の測定、即ち遮音測定のレンジ拡大が可能になる。   In other words, n '(x) and n (x) are simultaneously removed and corrected as a group of noise components, and L1 with a small level can be accurately measured. It becomes possible.

次に、実際の騒音計10として構成する場合、図10、図11に示すように、騒音計10本体に校正中に点灯する表示LED62、補正値Bを校正するための校正スイッチ64を設けることができる。また、補正に必要な無音状態を実現するには、静寂が確保された無響室・無響箱に騒音計を持ち込んだり、マイクカートリッジ12に音響入力を阻止するキャップ66を装着したり、することができる。マイクカートリッジ12に替えてカートリッジの容量と同じコンデンサから成る校正用ダミーカートリッジを用いる場合、無響室やキャップ66は不要であり、本体側の操作だけで、簡単に校正を行うことができる。   Next, when configured as an actual sound level meter 10, as shown in FIGS. 10 and 11, the main body of the sound level meter 10 is provided with a display LED 62 that is lit during calibration and a calibration switch 64 for calibrating the correction value B. Can do. In order to realize the silent state necessary for correction, a noise meter is brought into an anechoic room or anechoic box in which silence is ensured, or a cap 66 for blocking sound input is attached to the microphone cartridge 12. be able to. In the case of using a dummy cartridge for calibration consisting of a capacitor having the same capacity as the cartridge instead of the microphone cartridge 12, the anechoic chamber and the cap 66 are unnecessary, and calibration can be easily performed only by operation on the main body side.

本実施例によれば、バックグランドノイズの影響が除去され、超低音圧レベル(0dB−SPL、あるいはそれ以下)の測定が可能となり、大幅に測定下限を拡大できることになる。加えて、特に低音圧領域の測定精度の向上が可能となる。   According to the present embodiment, the influence of the background noise is removed, the ultra-low sound pressure level (0 dB-SPL or less) can be measured, and the measurement lower limit can be greatly expanded. In addition, it is possible to improve the measurement accuracy especially in the low sound pressure region.

バックグランドノイズA(Aはnに上線バーが付されたもの)の校正は容易に行うことができる。例えば、電源を入れるごとに、バックグランドノイズを測定・更新するなど、補正は自動化でき、特別な調整操作は不要である。また、必要に応じて任意の時点で補正値を手動で更新することも可能である。 Calibration of background noise A (A is an n 2 with an overline bar) can be easily performed. For example, every time the power is turned on, the background noise is measured and updated, and thus correction can be automated, and no special adjustment operation is required. Further, it is possible to manually update the correction value at an arbitrary time as required.

さらに、遮音測定において、測定レンジを拡大することも可能である。例えば、遮音測定において、予め受音室側の暗騒音を含めてバックグラウンドノイズとし本手法で除去・補正すれば、音源室から漏れてくる対象音だけを精度良く測定することができる。   Furthermore, it is also possible to expand the measurement range in sound insulation measurement. For example, in sound insulation measurement, if the background noise including background noise in the sound receiving room side is used as background noise and removed and corrected by this method, only the target sound leaking from the sound source room can be accurately measured.

10 精密騒音計
12 マイクカートリッジ
14 プリアンプ
16 A/D変換器
18 実効値回路
20 減算器
22 加算器
24 補正回路
26 掛算器
28 平方根回路
30 D/A変換器
32 表示器
38 自乗器
40 積分器
46 RAM
48 周波数補正回路
50 1/1・1/3オクターブフィルタ
54 実効値回路・動特性回路
56 対数圧縮器
56、58 積分回路
DESCRIPTION OF SYMBOLS 10 Precision sound level meter 12 Microphone cartridge 14 Preamplifier 16 A / D converter 18 RMS circuit 20 Subtractor 22 Adder 24 Correction circuit 26 Multiplier 28 Square root circuit 30 D / A converter 32 Display 38 Squarer 40 Integrator 46 RAM
48 Frequency Correction Circuit 50 1/1/1/3 Octave Filter 54 Effective Value Circuit / Dynamic Characteristic Circuit 56 Logarithmic Compressors 56, 58 Integration Circuit

Claims (10)

対象音を電気信号に変換してその実効値を算出する実効値算出手段と、前記実効値算出手段の算出による実効値のうち前記対象音を無音としたときの実効値を前記実効値算出手段のバックグラウンドノイズを含む補正値として記憶する記憶手段と、前記実効値算出手段の算出による実効値のうち前記対象音を対象騒音としたときの実効値と前記補正値との和と差を演算し、各演算結果の積を演算する演算手段とを備えてなる精密騒音計。   An effective value calculating means for converting the target sound into an electrical signal and calculating an effective value thereof; and an effective value when the target sound is silent among the effective values calculated by the effective value calculating means. Storage means for storing as a correction value including the background noise, and calculating the sum and difference between the effective value and the correction value when the target sound is the target noise among the effective values calculated by the effective value calculation means And a precision sound level meter including a calculation means for calculating a product of each calculation result. 対象音を電気信号に変換してその自乗実効値を算出する自乗実効値算出手段と、前記自乗実効値算出手段の算出による自乗実効値のうち前記対象音を無音としたときの自乗実効値を前記自乗実効値算出手段のバックグラウンドノイズを含む補正値として記憶する記憶手段と、前記自乗実効値算出手段の算出による自乗実効値のうち前記対象音を対象騒音としたときの自乗実効値から前記補正値を減算しながら積分する演算手段とを備えてなる精密騒音計。   A square effective value calculation means for converting the target sound into an electrical signal and calculating a square effective value thereof, and a square effective value when the target sound is silent among the square effective values calculated by the square effective value calculation means. The storage means for storing the correction value including the background noise of the square effective value calculation means, and the square effective value when the target sound is the target noise among the square effective values calculated by the square effective value calculation means. A precision sound level meter provided with a calculation means for integrating while subtracting the correction value. 請求項1または2に記載の精密騒音計において、前記記憶手段に記憶された補正値を手動または自動で更新する更新手段を備えてなることを特徴とする精密騒音計。   3. The precision sound level meter according to claim 1, further comprising an update means for manually or automatically updating the correction value stored in the storage means. 対象音を電気信号に変換してその実効値を算出し、前記算出した実効値のうち前記対象音を無音としたときの実効値を、バックグラウンドノイズを含む補正値として記憶し、前記算出した実効値のうち前記対象音を対象騒音としたときの実効値と前記補正値との和と差を演算し、各演算結果の積を演算する騒音計測方法。   The target sound is converted into an electric signal to calculate its effective value, and the effective value when the target sound is silent among the calculated effective values is stored as a correction value including background noise, and the calculated A noise measurement method that calculates a sum and a difference between an effective value and a correction value when the target sound is the target noise among the effective values, and calculates a product of the calculation results. 対象音を電気信号に変換してその自乗実効値を算出し、前記算出した自乗実効値のうち前記対象音を無音としたときの自乗実効値を、バックグラウンドノイズを含む補正値として記憶し、前記算出した自乗実効値のうち前記対象音を対象騒音としたときの自乗実効値から前記補正値を減算しながら積分する騒音計測方法。   The target sound is converted into an electrical signal to calculate its square effective value, and the square effective value when the target sound is silenced among the calculated square effective values is stored as a correction value including background noise, A noise measurement method in which integration is performed while subtracting the correction value from a square effective value when the target sound is set as a target noise among the calculated square effective values. 測定対象物理量を電気信号に変換してその実効値を算出する実効値算出手段と、前記実効値算出手段の算出による実効値のうち前記対象物理量を無としたときの実効値を前記実効値算出手段のバックグラウンドノイズを含む補正値として記憶する記憶手段と、前記実効値算出手段の算出による実効値のうち前記対象物理量を対象ノイズとしたときの実効値と前記補正値との和と差を演算し、各演算結果の積を演算する演算手段とを備えてなる精密センサ。   An effective value calculating means for converting a physical quantity to be measured into an electrical signal and calculating an effective value thereof, and an effective value when the target physical quantity is omitted among the effective values calculated by the effective value calculating means. Storage means for storing as a correction value including background noise of the means, and the sum and difference between the effective value and the correction value when the target physical quantity is the target noise among the effective values calculated by the effective value calculation means A precision sensor comprising arithmetic means for calculating and calculating a product of each calculation result. 測定対象物理量を電気信号に変換してその自乗実効値を算出する自乗実効値算出手段と、前記自乗実効値算出手段の算出による自乗実効値のうち前記対象物理量を無としたときの自乗実効値を前記自乗実効値算出手段のバックグラウンドノイズを含む補正値として記憶する記憶手段と、前記自乗実効値算出手段の算出による自乗実効値のうち前記対象物理量を対象ノイズとしたときの自乗実効値から前記補正値を減算しながら積分する演算手段とを備えてなる精密センサ。   A square effective value calculation means for converting a measurement target physical quantity into an electric signal and calculating a square effective value thereof, and a square effective value when the target physical quantity is not included in the square effective value calculated by the square effective value calculation means. Is stored as a correction value including background noise of the square effective value calculation means, and the square effective value when the target physical quantity is the target noise among the square effective values calculated by the square effective value calculation means. A precision sensor comprising a calculation means for integrating while subtracting the correction value. 請求項6または7に記載の精密センサにおいて、前記記憶手段に記憶された補正値を手動または自動で更新する更新手段を備えてなることを特徴とする精密センサ。   8. The precision sensor according to claim 6, further comprising an update means for manually or automatically updating the correction value stored in the storage means. 測定対象物理量を電気信号に変換してその実効値を算出し、前記算出した実効値のうち前記対象物理量を無としたときの実効値を、バックグラウンドノイズを含む補正値として記憶し、前記算出した実効値のうち前記対象物理量を対象ノイズとしたときの実効値と前記補正値との和と差を演算し、各演算結果の積を演算する、計測方法。   The measurement target physical quantity is converted into an electrical signal to calculate its effective value, and the effective value when the target physical quantity is not included in the calculated effective value is stored as a correction value including background noise, and the calculation is performed. A measurement method of calculating a sum and a difference between an effective value and the correction value when the target physical quantity is set as target noise among the calculated effective values, and calculating a product of each calculation result. 測定対象物理量を電気信号に変換してその自乗実効値を算出し、前記算出した自乗実効値のうち前記対象物理量を無としたときの自乗実効値をバックグラウンドノイズを含む補正値として記憶し、前記算出した自乗実効値のうち前記対象部塵量を対象ノイズとしたときの自乗実効値から前記補正値を減算しながら積分する、計測方法。   The measurement target physical quantity is converted into an electrical signal to calculate its square effective value, and the square effective value when the target physical quantity is not included in the calculated square effective value is stored as a correction value including background noise, A measurement method in which integration is performed while subtracting the correction value from a square effective value when the target part dust amount is set as a target noise among the calculated square effective values.
JP2015112951A 2015-06-03 2015-06-03 Precise noise meter Pending JP2015172598A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015112951A JP2015172598A (en) 2015-06-03 2015-06-03 Precise noise meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015112951A JP2015172598A (en) 2015-06-03 2015-06-03 Precise noise meter

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2011249128A Division JP6129469B2 (en) 2011-11-14 2011-11-14 Precision sound level meter

Publications (1)

Publication Number Publication Date
JP2015172598A true JP2015172598A (en) 2015-10-01

Family

ID=54259985

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015112951A Pending JP2015172598A (en) 2015-06-03 2015-06-03 Precise noise meter

Country Status (1)

Country Link
JP (1) JP2015172598A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018119903A (en) * 2017-01-27 2018-08-02 住友電気工業株式会社 Oscillation sensor system, oscillation measurement method and oscillation measurement program
JP2018179913A (en) * 2017-04-20 2018-11-15 パナソニックIpマネジメント株式会社 Computation system and measurement system
JP7452951B2 (en) 2018-03-27 2024-03-19 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Guides, sensor devices and methods

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06194219A (en) * 1992-10-01 1994-07-15 Yamaha Corp Measurement method for sound absorption of hall chairs seated and dummy sound absorber
JP2003083763A (en) * 2001-09-10 2003-03-19 Rion Co Ltd Correcting method for self noise and device using the same
JP4892229B2 (en) * 2005-11-15 2012-03-07 福司 川上 Precision sound level meter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06194219A (en) * 1992-10-01 1994-07-15 Yamaha Corp Measurement method for sound absorption of hall chairs seated and dummy sound absorber
JP2003083763A (en) * 2001-09-10 2003-03-19 Rion Co Ltd Correcting method for self noise and device using the same
JP4892229B2 (en) * 2005-11-15 2012-03-07 福司 川上 Precision sound level meter

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018119903A (en) * 2017-01-27 2018-08-02 住友電気工業株式会社 Oscillation sensor system, oscillation measurement method and oscillation measurement program
JP2018179913A (en) * 2017-04-20 2018-11-15 パナソニックIpマネジメント株式会社 Computation system and measurement system
JP7452951B2 (en) 2018-03-27 2024-03-19 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Guides, sensor devices and methods

Similar Documents

Publication Publication Date Title
US6792114B1 (en) Integrated hearing aid performance measurement and initialization system
US20140358317A1 (en) Output value correction method for physical quantity sensor apparatus, output correction method for physical quantity sensor, physical quantity sensor apparatus and output value correction apparatus for physical quantity sensor
JP2015172598A (en) Precise noise meter
EP2456229A1 (en) Loudspeaker system and control method
US20160219385A1 (en) Sound field measuring device, method and program
JP4440865B2 (en) Measuring device
JP4892229B2 (en) Precision sound level meter
JP5627440B2 (en) Acoustic apparatus, control method therefor, and program
JP6129469B2 (en) Precision sound level meter
JP2003083763A (en) Correcting method for self noise and device using the same
JP2007158589A (en) Sound field correction method and device, and audio device
JP6612667B2 (en) Acoustic calibrator
WO2018225681A1 (en) Acoustic characteristic evaluation method
WO2015053068A1 (en) Sound field measurement device, sound field measurement method, and sound field measurement program
CN116348030A (en) Electronic device and control method thereof
EP3579582B1 (en) Automatic characterization of perceived transducer distortion
RU59244U1 (en) NOISE DOSIMETER
CN110402585B (en) Indoor low-frequency sound power optimization method and device
JP2005024524A (en) Creep error compensation device and compensation method of weight signal
CN111998938B (en) Acoustic sensor sensitivity correction method
WO2023120332A1 (en) Noise level meter
JP2012095254A (en) Volume adjustment device, volume adjustment method, volume adjustment program and acoustic equipment
JP2005049688A (en) Sound adjusting apparatus
WO2020143473A1 (en) Audio device and electronics apparatus
US20210400386A1 (en) Correction method of acoustic characteristics, acoustic characteristic correction device and non-transitory storage medium

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150703

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150703

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151001

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20160506

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20160704

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170228

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20170501

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170829