JP2015172497A - Magnetic substance permeability-measuring device, and magnetic substance permeability-measuring method - Google Patents

Magnetic substance permeability-measuring device, and magnetic substance permeability-measuring method Download PDF

Info

Publication number
JP2015172497A
JP2015172497A JP2014047863A JP2014047863A JP2015172497A JP 2015172497 A JP2015172497 A JP 2015172497A JP 2014047863 A JP2014047863 A JP 2014047863A JP 2014047863 A JP2014047863 A JP 2014047863A JP 2015172497 A JP2015172497 A JP 2015172497A
Authority
JP
Japan
Prior art keywords
magnetic
permeability
magnetic field
magnetic substance
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014047863A
Other languages
Japanese (ja)
Other versions
JP6362249B2 (en
Inventor
信 薮上
Makoto Yabugami
信 薮上
宮澤 安範
Yasunori Miyazawa
安範 宮澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOHOKU Gakuin
Original Assignee
TOHOKU Gakuin
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOHOKU Gakuin filed Critical TOHOKU Gakuin
Priority to JP2014047863A priority Critical patent/JP6362249B2/en
Publication of JP2015172497A publication Critical patent/JP2015172497A/en
Application granted granted Critical
Publication of JP6362249B2 publication Critical patent/JP6362249B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a magnetic substance permeability-measuring device and a magnetic substance permeability-measuring method, that can measure a permeability of a magnetic substance of an arbitrary size and shape, and can evaluate a distribution of permeability within a wafer, in the wafer or the like on a production process line.SOLUTION: There is provided a probe including: a microstrip conductor that is configured to sandwich a dielectric body by a microstrip conductor 3 and a ground conductor 4; a magnetic substance that is caused to be tightly adhered to the microstrip conductor via an insulator; a through-hole 6 that is connected to an end part of the microstrip conductor inside the dielectric body; and an electric lead-out line connected to the through-hole 6. There is provided a magnetic substance permeability-measuring device including: the probe; a magnetic field application unit for applying a magnetic field to the magnetic substance; a signal measuring instrument that measures a difference in amplitude information or complex information on a signal depending upon presence or absence of the magnetic field application by the magnetic field application unit; and processing means that obtains, by optimization processing, a permeability of the magnetic substance from the difference in the signal measured by the signal measuring instrument.

Description

本発明は、磁性体の透磁率計測装置および磁性体の透磁率計測方法に関する。   The present invention relates to a magnetic permeability measuring apparatus and a magnetic permeability measuring method.

磁性体の高周波透磁率(通常数MHz〜数GHz)を計測する方法は1950年代ころから多数提案されているが、その全てがコイル(あるいはアンテナ)を用いる方法(例えば、非特許文献1乃至3参照)か伝送線路、導波管等(例えば、非特許文献4参照)を用いる方法に帰着される。一方、材料に短針を接触して抵抗率を測る手法(例えば、非特許文献5参照)は、普及している方法であるが、これは材料の抵抗率を測るもので、透磁率を計測するものではない。   Many methods for measuring the high-frequency magnetic permeability (usually several MHz to several GHz) of a magnetic material have been proposed since the 1950s, but all of them use a coil (or antenna) (for example, Non-Patent Documents 1 to 3). Or a transmission line, a waveguide, or the like (for example, see Non-Patent Document 4). On the other hand, the method of measuring the resistivity by contacting the material with a short needle (see, for example, Non-Patent Document 5) is a widely used method, which measures the resistivity of the material and measures the magnetic permeability. It is not a thing.

本発明者はミアンダ状のプローブを磁性薄膜へ近接配置することにより透磁率を評価可能であることを発明した(特許文献2)。しかしこの方法ではプローブから同軸ケーブルへ変換する途中の曲がり角およびスルーホールのインピーダンス不整合により、透磁率評価の上限周波数は15 GHz 程度にとどまっていた(非特許文献7)。 The inventor has invented that magnetic permeability can be evaluated by placing a meander-shaped probe close to a magnetic thin film (Patent Document 2). However, according to this method, the upper limit frequency of permeability evaluation was limited to about 15 GHz due to the bending angle during the conversion from the probe to the coaxial cable and the impedance mismatch of the through hole (Non-patent Document 7).

そこで発明者は任意の寸法の磁性体の透磁率評価に適用できる条件下で、インピーダンス不整合の要因となる導体の曲がりやスルーホールの不整合を極力抑制することを意図して、直線マイクロストリップ線路によるプローブとスルーホールおよび直角部も50Ω±1Ω以内にインピーダンス整合するプローブを開発した。これによりサンプルサイズに依存せずに30 GHzまでの広帯域透磁率測定を世界ではじめて実現した。
Therefore, the inventor intends to suppress the bending of the conductor and the mismatching of the through hole as much as possible under the conditions applicable to the magnetic permeability evaluation of a magnetic material of an arbitrary size, and to minimize the linear microstrip. We have developed a probe with impedance matching within 50Ω ± 1Ω for the through-hole probe and the right angle part. This made it possible for the first time in the world to measure broadband permeability up to 30 GHz without depending on the sample size.

特願2008-224695Japanese Patent Application No. 2008-224695 特願2010-169349Japanese Patent Application 2010-169349

P.A.Calcagno, D.A.Thompson, “Semiautomatic permeance tester for thick magnetic films”, Rev. Sci. Instrum, 1975, 46, p.904P.A.Calcagno, D.A.Thompson, “Semiautomatic permeance tester for thick magnetic films”, Rev. Sci. Instrum, 1975, 46, p.904 B.C.Webb, M.E.Re, C.V.Jahnes and M.A.Russak, “High-frequency permeability of laminated and unlaminated, narrow thin-film magnetic stripes”, J. Appl. Phys., 1991, vol 69, p.5611-5615B.C.Webb, M.E.Re, C.V.Jahnes and M.A.Russak, “High-frequency permeability of laminated and unlaminated, narrow thin-film magnetic stripes”, J. Appl. Phys., 1991, vol 69, p.5611-5615 M.Yamaguchi, S.Yabukami and K.I.Arai, “A New 1MHz-2GHz Permeance Meter For Metallic Thin Films”, IEEE Trans. Magn. , 1997, 33, p.3619M. Yamaguchi, S. Yabukami and K.I.Arai, “A New 1MHz-2GHz Permeance Meter For Metallic Thin Films”, IEEE Trans. Magn., 1997, 33, p.3619 H.B.Weir, “Automatic Measurement of Complex Dielectric Constant and Permeability at Microwave Frequencies”, Proc IEEE, 1975, 62, p.33H.B.Weir, “Automatic Measurement of Complex Dielectric Constant and Permeability at Microwave Frequencies”, Proc IEEE, 1975, 62, p.33 L.B.Valdes, “Resistivity measurements on germanium for transistors”, Proc. IRE, 1954, p.420-427L.B.Valdes, “Resistivity measurements on germanium for transistors”, Proc. IRE, 1954, p.420-427 S.Yabukami, T.Uo, M.Yamaguchi, K.I.Arai, and M.Takezawa, “High sensitivity permeability measurements of striped films obtained by input impedance”, IEEE Transactions, Magn., 2001, vol.37, p.2774-2778S.Yabukami, T.Uo, M.Yamaguchi, KIArai, and M.Takezawa, “High sensitivity permeability measurements of striped films obtained by input impedance”, IEEE Transactions, Magn., 2001, vol.37, p.2774- 2778 佐藤 彰, 薮上 信, 小澤 哲也, 宮澤 安範, 柳 邦雄, 島田 寛, 宗像 誠, 塩川 孝泰, ”マイクロストリップ型プローブによる薄膜透磁率計測の広帯域化”, Journal of the Magnetics Society of Japan Vol. 36, No. 3, pp.235-238 (2012).Akira Sato, Nobu Sugigami, Tetsuya Ozawa, Yasunori Miyazawa, Kunio Yanagi, Hiroshi Shimada, Makoto Munakata, Takayasu Shiokawa, “Broadband thin film permeability measurement using microstrip probe”, Journal of the Magnetics Society of Japan Vol. 36 , No. 3, pp.235-238 (2012). Y. Shimada, J. Numazawa, Y. Yoneda and A. Hosono: J. Magn. Soc. Jpn., 15, 327(1991).Y. Shimada, J. Numazawa, Y. Yoneda and A. Hosono: J. Magn. Soc. Jpn., 15, 327 (1991).

発明者は特許文献2においてミアンダ形状のプローブを磁性薄膜へ近接配置し、高周波インピーダンス計測から表皮効果を考慮することで磁性薄膜の複素透磁率を最適化により測定することを発明した(特許文献2)。しかしこの方法ではプローブから同軸ケーブルへ変換する途中の曲がり角、スルーホール、およびミアンダパターンのインピーダンス不整合により、透磁率評価の上限周波数は15 GHz程度にとどまっていた。
Inventor invented measuring the complex permeability of a magnetic thin film by optimizing the magnetic thin film by placing a meander-shaped probe close to the magnetic thin film in Patent Document 2 and considering the skin effect from high-frequency impedance measurement (Patent Document 2). ). However, with this method, the upper limit frequency of the permeability evaluation was limited to about 15 GHz due to the impedance mismatch of the bend, the through hole, and the meander pattern during the conversion from the probe to the coaxial cable.

本発明は、サンプルサイズに依存せずに、透磁率の上限周波数を30 GHzまで測定可能とする発明である。磁性体の透磁率測定に関わる先行例で、本特許に関わるような直線マイクロストリップ導体と引き出し線を直角に曲げた構造は皆無であり、本発明によってはじめてサンプルサイズに依存せずに30 GHzまでの透磁率評価が可能になったと考えられる。
The present invention is an invention that makes it possible to measure the upper limit frequency of magnetic permeability up to 30 GHz without depending on the sample size. In the previous example related to magnetic permeability measurement of magnetic materials, there is no structure in which the straight microstrip conductor and the lead wire are bent at right angles as in this patent, and up to 30 GHz without depending on the sample size for the first time by the present invention It is considered possible to evaluate the permeability of.

上記目的を達成するために、本発明に係るプローブは直線マイクロストリップ導体と地導体により誘電体を挟んだ直線マイクロストリップ線路と、前記マイクロストリップ導体とともに絶縁体を挟んだ磁性体と、前記誘電体内部で前記直線マイクロストリップ導体の端部に接続するスルーホールと、前記スルーホールに接続する電気引き出し線からなるプローブであることを特徴とする。   In order to achieve the above object, a probe according to the present invention includes a linear microstrip line in which a dielectric is sandwiched between a linear microstrip conductor and a ground conductor, a magnetic body in which an insulator is sandwiched together with the microstrip conductor, and the dielectric It is a probe comprising a through hole connected to an end portion of the straight microstrip conductor and an electrical lead wire connected to the through hole.

本発明に関わる磁性体の透磁率計測装置は、前記のプローブと前記磁性体に磁界を印加するための磁界印加部と、前記磁界印加部による磁界印加の有無による信号の振幅情報あるいは複素情報の差分を測定する信号計測器と、前記信号計測器で測定された信号の差分から前記磁性体の透磁率を最適化処理により求める処理手段とを有することを特徴とする。 A magnetic permeability measurement apparatus according to the present invention includes a magnetic field application unit for applying a magnetic field to the probe and the magnetic body, and amplitude information or complex information of a signal depending on whether a magnetic field is applied by the magnetic field application unit. It has a signal measuring device for measuring the difference, and a processing means for obtaining the magnetic permeability of the magnetic material from the difference between the signals measured by the signal measuring device by an optimization process.

本発明に係る磁性体の透磁率計測装置で、前記磁性体は磁性薄膜であることが好ましい。本発明に係る磁性体の透磁率計測装置は、前記マイクロストリップ導体を直線構造とし、極力導体パターンの曲がり角をもうけないように構成されていることが好ましい。   In the magnetic permeability measuring apparatus according to the present invention, the magnetic body is preferably a magnetic thin film. In the magnetic permeability measuring apparatus according to the present invention, it is preferable that the microstrip conductor has a linear structure and is configured so as not to bend the conductor pattern as much as possible.

本発明により、サンプルサイズに依存せずに、30 GHzまでの広帯域で透磁率の評価が可能になる。材料開発の観点および生産ラインの管理において、大きなメリットを有する。
The present invention makes it possible to evaluate permeability in a wide band up to 30 GHz without depending on the sample size. It has significant advantages in terms of material development and production line management.

本発明の実施の形態の磁性体の透磁率計測装置用プローブを示す斜視図である。It is a perspective view which shows the probe for magnetic permeability measurement apparatuses of the magnetic body of embodiment of this invention. 本発明の実施の形態の磁性体の透磁率計測装置用プローブおよび磁性薄膜の側面図である。1 is a side view of a magnetic permeability probe according to an embodiment of the present invention and a magnetic thin film. 本発明の実施の形態の磁性体の透磁率計測装置用プローブのマイクロストリップ導体面の上面図である。It is a top view of the microstrip conductor surface of the probe for magnetic permeability measuring apparatus of the magnetic material according to the embodiment of the present invention. 本発明の実施の形態の磁性体の透磁率計測装置用プローブの地導体面の上面図である。It is a top view of the ground conductor surface of the probe for magnetic permeability measurement apparatus of the magnetic body of the embodiment of the present invention. プローブ内部の特性インピーダンスを時間領域反射法測定装置により測定したグラフである。It is the graph which measured the characteristic impedance inside a probe with the time domain reflection measuring apparatus. 本発明の透磁率計測装置の構成である。It is a structure of the magnetic permeability measuring apparatus of this invention. 透磁率測定のフローチャートである。It is a flowchart of a magnetic permeability measurement. 磁性体の透磁率計測装置において表皮効果により電磁界が局在化される斜視図である。It is a perspective view in which an electromagnetic field is localized by the skin effect in the magnetic permeability measuring apparatus. 測定に使用したCoFeB薄膜およびFeCoB/Ru薄膜の磁化曲線である。It is the magnetization curve of the CoFeB thin film and FeCoB / Ru thin film which were used for the measurement. CoFeB薄膜(バイアス磁界なし)の磁化困難軸透磁率の測定結果である。It is a measurement result of the hard axis magnetization of a CoFeB thin film (no bias magnetic field). CoFeB薄膜(容易軸方向へバイアス磁界を500 Oe印加)の磁化困難軸透磁率の測定結果である。It is a measurement result of a hard axis magnetization of a CoFeB thin film (bias magnetic field applied to the easy axis direction of 500 Oe). CoFeB薄膜(容易軸方向へバイアス磁界を1000 Oe印加)の磁化困難軸透磁率の測定結果である。It is a measurement result of the hard axis magnetization of a CoFeB thin film (with a bias magnetic field of 1000 Oe applied in the easy axis direction). CoFeB薄膜(容易軸方向へバイアス磁界を2500 Oe印加)の磁化困難軸透磁率の測定結果である。It is a measurement result of the hard axis magnetization of a CoFeB thin film (bias magnetic field applied 2500 Oe in the direction of easy axis). CoFeB薄膜(容易軸方向へバイアス磁界を3000 Oe印加)の磁化困難軸透磁率の測定結果である。It is a measurement result of a hard axis magnetization of a CoFeB thin film (with a bias magnetic field of 3000 Oe applied in the easy axis direction). CoFeB薄膜(容易軸方向へバイアス磁界を3500 Oe印加)の磁化困難軸透磁率の測定結果である。It is a measurement result of a hard axis magnetization of a CoFeB thin film (a bias magnetic field of 3500 Oe applied in the easy axis direction). FeCoB/Ru薄膜(バイアス磁界なし)の磁化困難軸透磁率の測定結果である。It is a measurement result of the hard axis magnetization of a FeCoB / Ru thin film (no bias magnetic field). FeCoB/Ru薄膜(容易軸方向へバイアス磁界を250 Oe印加)の磁化困難軸透磁率の測定結果である。It is a measurement result of a hard axis magnetization of a FeCoB / Ru thin film (a bias magnetic field of 250 Oe applied in the easy axis direction). FeCoB/Ru薄膜(容易軸方向へバイアス磁界を500 Oe印加)の磁化困難軸透磁率の測定結果である。It is a measurement result of hard axis magnetization of a FeCoB / Ru thin film (bias magnetic field applied to the easy axis direction of 500 Oe). FeCoB/Ru薄膜(容易軸方向へバイアス磁界を750 Oe印加)の磁化困難軸透磁率の測定結果である。It is a measurement result of a hard axis magnetization of a FeCoB / Ru thin film (bias magnetic field applied to the easy axis direction is 750 Oe). FeCoB/Ru薄膜(容易軸方向へバイアス磁界を1000 Oe印加)の磁化困難軸透磁率の測定結果である。This is a measurement result of the hard axis permeability of a FeCoB / Ru thin film (applying a bias magnetic field of 1000 Oe in the easy axis direction). 磁化容易軸方向へ印加したバイアス磁界と静的透磁率の関係Relationship between bias magnetic field applied in the direction of easy axis and static permeability バイアス磁界と強磁性共鳴周波数の関係Relationship between bias magnetic field and ferromagnetic resonance frequency 特性の周波数で共振の影響により測定誤差が生じたグラフGraph in which measurement error occurs due to resonance at the characteristic frequency 磁性薄膜が近接したことによるインダクタンス成分および容量成分を含めた等価回路Equivalent circuit including inductance component and capacitance component due to close proximity of magnetic thin film 図23の透磁率測定誤差を改善したグラフGraph with improved permeability measurement error in Fig. 23 プローブとスルーホールの直角部が磁性薄膜に近接しないような配置Arrangement so that the right angle part of the probe and the through hole is not close to the magnetic thin film 直角部を曲部にすることでインピーダンスの不整合を抑制したプローブProbe that suppresses impedance mismatch by making the right-angled part curved.

以下、本発明の実施の形態として一実施例を、図1〜図27に基づいて説明する。
図1はプローブの構成を示し、図2は透磁率計測装置用プローブおよび磁性薄膜の側面図、図3はマイクロストリップ導体面の上面図、図4は地導体面の上面図を示している。プローブは直線マイクロストリップ導体、直交部、スルーホールも含めて49.5 Ω〜51.5 Ωに整合した直線マイクロストリップで構成されている。プローブはフッ素樹脂基板(中輿化成工業製CGN-500NF,比誘電率=2.3,厚み0.5 mm,銅厚さ=18 mm)をエッチングにより直線マイクロストリップ線路(長さ12.8 mm, 幅1.34 mm)に加工した。またマイクロストリップ導体端部にはリン青銅製レセプタクル(SMA)を使用して直角部において電気的に接続した。コネクタの芯線直径は1.27 mmであり、周囲の同軸構造の地導体の直径は2.9 mmとし、特性インピーダンスがほぼ50Ωとなるようにした。図5は時間領域反射法(TDR)によりプローブの特性インピーダンスを測定したものである。終端は50Ω抵抗で整合した。プローブは直交部を含めて49.5 Ω〜51.5 Ωに設定されており、多重反射が極力抑制できている。マイクロストリップ導体に流れる高周波電流は幅方向に高周波磁界を励磁するため、高周波インピーダンスは、困難軸方向の透磁率に対応する。プローブと磁性薄膜の間に絶縁体としてポリビニルフィルム(厚さ約10 μm)を挟み、磁性薄膜にミアンダ線路を押し付けることで磁性薄膜の高周波インピーダンスを計測する。なおマイクロストリップ構造に代えてコプレーナ構造にしても同様の測定が可能である。
Hereinafter, an embodiment of the present invention will be described with reference to FIGS.
FIG. 1 shows the structure of the probe, FIG. 2 shows a side view of the probe for the magnetic permeability measuring device and the magnetic thin film, FIG. 3 shows a top view of the microstrip conductor surface, and FIG. 4 shows a top view of the ground conductor surface. The probe is composed of a linear microstrip that is matched to 49.5 Ω to 51.5 Ω, including a linear microstrip conductor, orthogonal part, and through hole. The probe is a fluororesin substrate (CGN-500NF, manufactured by Nakatsukasei Kogyo Co., Ltd., dielectric constant = 2.3, thickness 0.5 mm, copper thickness = 18 mm) etched into a straight microstrip line (length 12.8 mm, width 1.34 mm) processed. In addition, a phosphor bronze receptacle (SMA) was electrically connected to the end of the microstrip conductor at a right angle. The core diameter of the connector is 1.27 mm, the diameter of the surrounding coaxial conductor is 2.9 mm, and the characteristic impedance is approximately 50Ω. FIG. 5 shows the characteristic impedance of the probe measured by the time domain reflection method (TDR). The termination was matched with a 50Ω resistor. The probe is set to 49.5 Ω to 51.5 Ω including the orthogonal part, and multiple reflections can be suppressed as much as possible. Since the high-frequency current flowing through the microstrip conductor excites a high-frequency magnetic field in the width direction, the high-frequency impedance corresponds to the permeability in the hard axis direction. A high-frequency impedance of the magnetic thin film is measured by sandwiching a polyvinyl film (thickness of about 10 μm) as an insulator between the probe and the magnetic thin film and pressing a meander line against the magnetic thin film. Note that the same measurement can be performed by using a coplanar structure instead of the microstrip structure.

図6は本計測システムの構成を示した図である。パソコン、ネットワークアナライザ(アジレントテクノロジー製 8722ES)、プローブ、ヘルムホルツコイル、直流電源から構成されており、プローブは非磁性同軸ケーブルを介してネットワークアナライザに接続する。これらの装置から磁性薄膜の透過係数(S21)を測定し、GP-IBでパソコンにデータを取り込み、最適化処理により複素透磁率を求める。 FIG. 6 is a diagram showing the configuration of this measurement system. It consists of a personal computer, network analyzer (Agilent Technologies 8722ES), probe, Helmholtz coil, and DC power supply. The probe is connected to the network analyzer via a nonmagnetic coaxial cable. The permeability coefficient (S 21 ) of the magnetic thin film is measured from these devices, the data is taken into a personal computer by GP-IB, and the complex permeability is obtained by the optimization process.

図7に計測方法のフローチャートを示す。本システムの計測手順は図6のように結線し、ローブと磁性薄膜の間にポリビニルフィルム(厚さ約10 μm)を挟んで近接させる。そして、ヘルムホルツコイルの中に入れ約5000 Oeの直流磁界を加えて磁性薄膜を飽和させ、ネットワークアナライザでキャリブレーションする。そうすることで、プローブおよびケーブルの電気長、磁性薄膜の直流的なインピーダンス、非磁性信号等を除去する。その後、直流磁界を解除して磁性薄膜の寄与分の透過係数(S21)を測定し、(1)式により磁性薄膜のインピーダンスを求める。図8は評価試料の形状であり、周波数が高くなるほど表皮効果により薄膜の表面にのみ電流が流れるようになる。図8のように膜厚方向へ電流が表皮効果で偏ることでインピーダンスZが決定されることを仮定し、(2)〜(4)式を用いてNewton-Raphson法により複素透磁率を最適化する。 FIG. 7 shows a flowchart of the measurement method. The measurement procedure of this system is connected as shown in Fig. 6, and a polyvinyl film (thickness of about 10 μm) is sandwiched between the lobe and the magnetic thin film. Then, the magnetic thin film is saturated by applying a DC magnetic field of about 5000 Oe in a Helmholtz coil and calibrated with a network analyzer. By doing so, the electrical length of the probe and cable, the DC impedance of the magnetic thin film, the nonmagnetic signal, etc. are removed. Thereafter, the DC magnetic field is released, the transmission coefficient (S 21 ) of the contribution of the magnetic thin film is measured, and the impedance of the magnetic thin film is obtained by the equation (1). FIG. 8 shows the shape of the evaluation sample. As the frequency increases, the current flows only on the surface of the thin film due to the skin effect. As shown in Fig. 8, assuming that the impedance Z is determined by biasing the current in the film thickness direction due to the skin effect, the complex permeability is optimized by the Newton-Raphson method using equations (2) to (4). To do.

図9は評価を行ったCoFeB薄膜(45 mm × 25 mm, 0.5 mm厚)およびFeCoB/Ru薄膜((50 mm × 40 mm,厚み0.2 mm))のM-Hループの測定結果である。それぞれ300 Oe程度の強い一軸異方性が付与されており、強磁性共鳴周波数は6 GHz以上に高周波化している。
Figure 9 shows the measurement results of the MH loops of the evaluated CoFeB thin film (45 mm × 25 mm, 0.5 mm thickness) and FeCoB / Ru thin film ((50 mm × 40 mm, thickness 0.2 mm)). Each has strong uniaxial anisotropy of about 300 Oe, and the ferromagnetic resonance frequency is higher than 6 GHz.

図10〜図15はCoFeB薄膜(45 mm×25 mm, 0.5 mm厚)の磁化困難軸方向の複素透磁率の評価結果である。図10はバイアスなし、図11〜図15はそれぞれ500 Oe、1000 Oe、2500 Oe、3000 Oe、3500 Oeの直流磁界を磁化容易軸へ印加した際の磁化困難軸透磁率を表している。●□は実測値であり、実線および破線は非特許文献8に基づく強磁性共鳴と渦電流を考慮した計算値である。評価結果は大まかに理論値と対応しており、30 GHzまで広帯域に透磁率が測定できていることがわかる。これは本発明におけるプローブ内部の特性インピーダンス整合が効果的であることを表している。なお30 GHzの上限周波数は約5000 Oeの直流磁界を印加しバックグラウンド測定をした際の強磁性共鳴周波数で決まっていることから、バックグラウンド測定時の磁界強度を強くすることで、測定帯域はさらに高周波化可能である。
10 to 15 show the evaluation results of the complex permeability of the CoFeB thin film (45 mm × 25 mm, 0.5 mm thickness) in the hard axis direction. FIG. 10 shows no bias, and FIGS. 11 to 15 show hard axis permeability when a DC magnetic field of 500 Oe, 1000 Oe, 2500 Oe, 3000 Oe, and 3500 Oe is applied to the easy axis. ● □ are measured values, and solid and broken lines are calculated values in consideration of ferromagnetic resonance and eddy current based on Non-Patent Document 8. The evaluation results roughly correspond to the theoretical values, indicating that the permeability can be measured over a wide band up to 30 GHz. This indicates that the characteristic impedance matching inside the probe in the present invention is effective. Since the upper limit frequency of 30 GHz is determined by the ferromagnetic resonance frequency when a DC magnetic field of about 5000 Oe is applied and the background measurement is performed, the measurement band is increased by increasing the magnetic field strength during background measurement. Further, the frequency can be increased.

図16〜図20はFeCoB/Ru薄膜(50 mm×40 mm, 0.2 mm厚)の磁化困難軸方向の複素透磁率の評価結果である。図16はバイアスなし、図17〜図20はそれぞれ250 Oe、500 Oe、750 Oe、1000 Oeの直流磁界を磁化容易軸へ印加した際の磁化困難軸透磁率を表している。●□は実測値であり、実線および破線は非特許文献8に基づく強磁性共鳴と渦電流を考慮した計算値である。評価結果は大まかに理論値と対応している。CoFeB薄膜の測定結果に比較してSN比が悪い理由は膜厚が0.2 mmと約40%程度に薄くなっているためである。また測定帯域がCoFeB薄膜の測定結果に比較して低周波である理由はサンプルが大きいために、ヘルムホルツコイルと組み合わせた鉄ヨークのギャップを大きく設定する必要があり、そのためバックグラウンドの磁界が5000 Oeよりも小さくなったためである。
16 to 20 show the evaluation results of the complex permeability in the hard axis direction of the FeCoB / Ru thin film (50 mm x 40 mm, 0.2 mm thickness). FIG. 16 shows no bias, and FIGS. 17 to 20 show hard axis permeability when a DC magnetic field of 250 Oe, 500 Oe, 750 Oe, and 1000 Oe is applied to the easy axis. ● □ are measured values, and solid and broken lines are calculated values in consideration of ferromagnetic resonance and eddy current based on Non-Patent Document 8. The evaluation results roughly correspond to the theoretical values. The reason why the SN ratio is worse than the measurement result of the CoFeB thin film is that the film thickness is 0.2 mm, which is about 40% thinner. The reason why the measurement band is lower than the measurement result of CoFeB thin film is that the sample is large, so it is necessary to set the gap of the iron yoke combined with the Helmholtz coil so that the background magnetic field is 5000 Oe. This is because it has become smaller.

図21は磁化容易軸方向へ印加したバイアス磁界と静的透磁率の関係を示したものである。●□は図10〜図20から抽出したものであり、実線および破線は非特許文献8に基づく強磁性共鳴と渦電流を考慮した計算値である。CoFeB薄膜およびFeCoB/Ru薄膜について実測値と理論値はほぼ対応しており、正確に透磁率が測定されていることが了解される。図22はバイアス磁界と強磁性共鳴周波数の関係を示したものである。●□は図10〜図20から抽出したものであり、実線および破線は非特許文献8に基づく強磁性共鳴と渦電流を考慮した計算値である。CoFeB薄膜およびFeCoB/Ru薄膜について実測値と理論値はほぼ対応しており、正確に透磁率が測定されていることが了解される。
FIG. 21 shows the relationship between the bias magnetic field applied in the direction of the easy axis and the static permeability. ● □ is extracted from FIGS. 10 to 20, and the solid line and the broken line are calculated values in consideration of ferromagnetic resonance and eddy current based on Non-Patent Document 8. It is understood that the measured values and the theoretical values of the CoFeB thin film and the FeCoB / Ru thin film almost correspond to each other, and the magnetic permeability is accurately measured. FIG. 22 shows the relationship between the bias magnetic field and the ferromagnetic resonance frequency. ● □ is extracted from FIGS. 10 to 20, and the solid line and the broken line are calculated values in consideration of ferromagnetic resonance and eddy current based on Non-Patent Document 8. It is understood that the measured values and the theoretical values of the CoFeB thin film and the FeCoB / Ru thin film almost correspond to each other, and the magnetic permeability is accurately measured.

本発明の手法は大口径ウエハへも適用可能であることから、プローブに試料を近接することにより、プローブのインダクタンスとプローブ導体と試料との容量結合により特定の周波数で共振が生じて、測定帯域が狭まることがある。図23はこのような代表的な例を表したものである。約5 GHz付近において透磁率の計測の際に誤差が生じている。これは約5 GHz付近で磁性膜の寄与を含めたインダクタンスとプローブと試料との間の静電容量により共振しているためと考えられる。この場合、インダクタンスと静電容量をあらかじめ見積もっておいて、図24に記載する等価回路に基づき(5)式により、インピーダンスを求める際に、LC共振の影響分を補正することでLC共振の影響を低減でき、広帯域に透磁率を計測することが可能である。図24において、Rは磁性薄膜の寄与分の抵抗、Lは磁性薄膜の寄与分のインダクタンス、Cは磁性薄膜とマイクロストリップ導体の静電容量、Zは磁性薄膜の寄与分のリアクタンス、YはCのアドミタンスである。図25は図24および(5)式を用いてLC共振の寄与分を除去して最適化した透磁率の評価結果を表している。比透磁率の実数部および虚数部ともに約5 GHz付近の誤差が低減できており、理論値に近い値が得られている。
Since the method of the present invention can also be applied to a large-diameter wafer, when the sample is brought close to the probe, resonance occurs at a specific frequency due to capacitive coupling between the probe inductance, the probe conductor, and the sample, and the measurement band. May narrow. FIG. 23 shows such a typical example. There is an error when measuring permeability around 5 GHz. This is thought to be due to resonance at about 5 GHz due to the inductance between the magnetic film and the capacitance between the probe and the sample, including the contribution of the magnetic film. In this case, the inductance and capacitance are estimated in advance, and the LC resonance effect is corrected by correcting the effect of the LC resonance when calculating the impedance using Equation (5) based on the equivalent circuit shown in FIG. And the permeability can be measured over a wide band. In FIG. 24, R is the resistance of the magnetic thin film contribution, L is the inductance of the magnetic thin film contribution, C is the capacitance of the magnetic thin film and the microstrip conductor, Z is the reactance of the magnetic thin film contribution, and Y is C Admittance. FIG. 25 shows the permeability evaluation result optimized by removing the LC resonance contribution using FIG. 24 and equation (5). Both the real part and the imaginary part of the relative permeability can reduce the error around 5 GHz, and a value close to the theoretical value is obtained.

別の解決方法としては図26に示すようにプローブとスルーホールの直交部が磁性薄膜に近接しないような配置にすることで、インピーダンスの不整合の誤差を低減することが可能である。これは2つの直交部のうちの一つのみを磁性薄膜に近接させないことでも共振の抑制に効果がある。また図27に示すように、例えばフレキシブル基板等によりプローブを構成し、プローブの導体を下に凸の曲線とし、プローブ導体を磁性薄膜に近接させつつ、2つの直交部を磁性薄膜からやや離すことによりインピーダンス不整合を抑制することによっても広帯域化の効果がある。


Figure 2015172497
(1)


Figure 2015172497
(2)

Figure 2015172497
(3)

Figure 2015172497
(4)

ただし、ρは抵抗率、lは試料長さ、wは試料幅、tは膜厚、fは周波数、μrは複素比透磁率である。

Figure 2015172497
(5)


As another solution, as shown in FIG. 26, it is possible to reduce the error of impedance mismatch by arranging the orthogonal portion of the probe and the through hole so as not to be close to the magnetic thin film. This is also effective in suppressing resonance by not allowing only one of the two orthogonal portions to be close to the magnetic thin film. As shown in FIG. 27, for example, the probe is formed of a flexible substrate, the probe conductor is curved downward, and the two orthogonal portions are slightly separated from the magnetic thin film while the probe conductor is close to the magnetic thin film. By suppressing the impedance mismatch, there is an effect of widening the band.


Figure 2015172497
(1)


Figure 2015172497
(2)

Figure 2015172497
(3)

Figure 2015172497
(4)

However, [rho is resistivity, l is the sample length, w is sample width, t is the film thickness, f is the frequency, mu r is the complex relative permeability.

Figure 2015172497
(5)


1 磁性薄膜
2 誘電体(フッ素樹脂基板)
3 マイクロストリップ導体
4 地導体(地導体面)
5 絶縁体
6 スルーホール
7 直角部
8 コネクタ
9 プローブ
10 同軸ケーブル
11 ネットワークアナライザ
12 制御用パソコン
13 心線
14 磁界
15 電流
16 基板
17 電源
18 ヘルムホルツコイル
19 渦電流
20 曲部





1 Magnetic thin film 2 Dielectric (Fluororesin substrate)
3 Microstrip conductor 4 Ground conductor (ground conductor surface)
5 Insulator 6 Through Hole 7 Right Angle 8 Connector 9 Probe 10 Coaxial Cable 11 Network Analyzer 12 Control PC 13 Core Wire 14 Magnetic Field 15 Current 16 Board
17 Power supply 18 Helmholtz coil 19 Eddy current 20 Curve





Claims (3)

直線マイクロストリップ導体と地導体により誘電体を挟んだ直線マイクロストリップ線路と、
前記マイクロストリップ導体とともに絶縁体を挟んだ磁性体と、
前記誘電体内部で前記直線マイクロストリップ導体の端部に接続するスルーホールと、
前記スルーホールに接続する電気引き出し線からなるプローブ
A linear microstrip line with a dielectric sandwiched between a linear microstrip conductor and a ground conductor;
A magnetic body sandwiching an insulator together with the microstrip conductor;
A through hole connected to the end of the straight microstrip conductor within the dielectric;
Probe comprising an electrical lead wire connected to the through hole
請求項1に記載するプローブと
請求項1に記載の磁性体に磁界を印加するための磁界印加部と、
前記磁界印加部による磁界印加の有無による信号の振幅情報あるいは複素情報の差分を測定する信号計測器と、
前記信号計測器で測定された信号の差分から請求項1記載の磁性体の透磁率を最適化処理により求める処理手段とを、
有することを特徴とする磁性体の透磁率計測装置。
A magnetic field application unit for applying a magnetic field to the probe according to claim 1 and the magnetic body according to claim 1;
A signal measuring instrument for measuring a difference in amplitude information or complex information of a signal depending on presence / absence of magnetic field application by the magnetic field application unit;
The processing means for obtaining the magnetic permeability of the magnetic body according to claim 1 by an optimization process from a difference between signals measured by the signal measuring instrument,
A magnetic permeability measuring apparatus comprising a magnetic material.
前記磁性体は磁性薄膜であることを特徴とする請求項1記載の磁性体の透磁率計測装置。



2. The magnetic permeability measuring apparatus according to claim 1, wherein the magnetic body is a magnetic thin film.



JP2014047863A 2014-03-11 2014-03-11 Magnetic body permeability measuring device and magnetic body permeability measuring method Active JP6362249B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014047863A JP6362249B2 (en) 2014-03-11 2014-03-11 Magnetic body permeability measuring device and magnetic body permeability measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014047863A JP6362249B2 (en) 2014-03-11 2014-03-11 Magnetic body permeability measuring device and magnetic body permeability measuring method

Publications (2)

Publication Number Publication Date
JP2015172497A true JP2015172497A (en) 2015-10-01
JP6362249B2 JP6362249B2 (en) 2018-07-25

Family

ID=54259923

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014047863A Active JP6362249B2 (en) 2014-03-11 2014-03-11 Magnetic body permeability measuring device and magnetic body permeability measuring method

Country Status (1)

Country Link
JP (1) JP6362249B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020521968A (en) * 2017-05-26 2020-07-27 アレグロ・マイクロシステムズ・エルエルシー Magnetic field sensor with error calculation function
WO2020194786A1 (en) * 2019-03-27 2020-10-01 国立研究開発法人産業技術総合研究所 Permeability measurement jig, permeability measurement device, and permeability measurement method
JP2021043008A (en) * 2019-09-09 2021-03-18 国立研究開発法人産業技術総合研究所 Magnetic permeability measurement jig, magnetic permeability measurement device, and magnetic permeability measurement method
EP4130773A4 (en) * 2020-03-30 2023-09-13 Tohoku University Permeability measuring probe and permeability measuring device
JP7448898B2 (en) 2020-03-31 2024-03-13 国立大学法人東北大学 Magnetic permeability measurement probe and magnetic permeability measurement device using the same
WO2024095616A1 (en) * 2022-10-31 2024-05-10 国立大学法人東北大学 Magnetic susceptibility measurement device and magnetic susceptibility measurement method
JP7489011B2 (en) 2020-03-30 2024-05-23 国立大学法人東北大学 Magnetic permeability measuring probe and magnetic permeability measuring device using the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11573277B2 (en) 2019-12-18 2023-02-07 Industrial Technology Research Institute Electromagnetic property measuring device, electromagnetic property measuring system and electromagnetic property measuring method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5744972A (en) * 1996-04-05 1998-04-28 Lucent Technologies Inc. Device and method to measure the complex permeability of thin films at ultra-high frequencies
JP2002368517A (en) * 2001-06-08 2002-12-20 Hitachi Metals Ltd Surface-mounting type antenna and communication equipment mounted with the same
JP2012032165A (en) * 2010-07-28 2012-02-16 Makoto Yabugami Apparatus and method for measuring permeability of magnetic substance

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5744972A (en) * 1996-04-05 1998-04-28 Lucent Technologies Inc. Device and method to measure the complex permeability of thin films at ultra-high frequencies
JP2002368517A (en) * 2001-06-08 2002-12-20 Hitachi Metals Ltd Surface-mounting type antenna and communication equipment mounted with the same
JP2012032165A (en) * 2010-07-28 2012-02-16 Makoto Yabugami Apparatus and method for measuring permeability of magnetic substance

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020521968A (en) * 2017-05-26 2020-07-27 アレグロ・マイクロシステムズ・エルエルシー Magnetic field sensor with error calculation function
JP7087001B2 (en) 2017-05-26 2022-06-20 アレグロ・マイクロシステムズ・エルエルシー Magnetic field sensor with error calculation function
WO2020194786A1 (en) * 2019-03-27 2020-10-01 国立研究開発法人産業技術総合研究所 Permeability measurement jig, permeability measurement device, and permeability measurement method
JP2020159886A (en) * 2019-03-27 2020-10-01 国立研究開発法人産業技術総合研究所 Jig, device, and method for measuring permeability
JP7162344B2 (en) 2019-03-27 2022-10-28 国立研究開発法人産業技術総合研究所 Magnetic permeability measuring jig, magnetic permeability measuring device and magnetic permeability measuring method
JP2021043008A (en) * 2019-09-09 2021-03-18 国立研究開発法人産業技術総合研究所 Magnetic permeability measurement jig, magnetic permeability measurement device, and magnetic permeability measurement method
JP7258349B2 (en) 2019-09-09 2023-04-17 国立研究開発法人産業技術総合研究所 Magnetic permeability measuring jig, magnetic permeability measuring device and magnetic permeability measuring method
EP4130773A4 (en) * 2020-03-30 2023-09-13 Tohoku University Permeability measuring probe and permeability measuring device
JP7489011B2 (en) 2020-03-30 2024-05-23 国立大学法人東北大学 Magnetic permeability measuring probe and magnetic permeability measuring device using the same
JP7448898B2 (en) 2020-03-31 2024-03-13 国立大学法人東北大学 Magnetic permeability measurement probe and magnetic permeability measurement device using the same
WO2024095616A1 (en) * 2022-10-31 2024-05-10 国立大学法人東北大学 Magnetic susceptibility measurement device and magnetic susceptibility measurement method

Also Published As

Publication number Publication date
JP6362249B2 (en) 2018-07-25

Similar Documents

Publication Publication Date Title
JP6362249B2 (en) Magnetic body permeability measuring device and magnetic body permeability measuring method
Vlaminck et al. Spin-wave transduction at the submicrometer scale: Experiment and modeling
Ding et al. A coplanar waveguide permeameter for studying high-frequency properties of soft magnetic materials
US8577632B2 (en) System and method for identification of complex permittivity of transmission line dielectric
JP2016053569A (en) Device and method for measuring magnetic material
JP2012032165A (en) Apparatus and method for measuring permeability of magnetic substance
US20230094478A1 (en) Measurement Device and Measurement Method for Measuring Permeability and Permittivity
CN106018973B (en) A kind of micro-strip test nano thin-film Micro-wave low-noise transistor device
JP2010060367A (en) Permeability measurement device of magnetic substance and permeability measurement method of magnetic substance
US10001521B1 (en) Transistor test fixture with integrated couplers and method
US9568568B2 (en) Apparatus and method of measuring permeability of a sample across which a DC voltage is being applied
Yabukami et al. Impact of complex permeability measurements up to millimeter-wave frequency range
Gonzalez et al. Broadband ferromagnetic resonance measurements in thin-film structures for magnetoimpedance sensors
Kimura et al. Permeability measurements of magnetic thin film with microstrip probe
JP7489011B2 (en) Magnetic permeability measuring probe and magnetic permeability measuring device using the same
JP7448898B2 (en) Magnetic permeability measurement probe and magnetic permeability measurement device using the same
US20230025196A1 (en) Permeability Measuring Probe and Permeability Measuring Device
Stulle et al. Goubau Line Beam Instrumentation Testing the Benefits
Lepetit et al. Accurate characterization of both thin and thick magnetic films using a shorted microstrip
Sievers et al. Towards wafer scale inductive determination of magnetostatic and dynamic parameters of magnetic thin films and multilayers
US11726062B2 (en) Magnetic layer characterization system and method
Ciureanu et al. Circumferential and longitudinal 1 GHz permeabilities in Co-rich melt-extracted amorphous wires
Narampanawe et al. An empirical characterization of a flexible current probe for in-circuit impedance measurement
Yamaguchi RF Soft Magnetic Applications as Integrated Passives
Bartran Measurement of magnetic permeability using a differentially excited loop

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171024

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171225

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20171225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180529

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180625

R150 Certificate of patent or registration of utility model

Ref document number: 6362249

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250