JP2015172403A - Channel selector valve and water heater equipped with same - Google Patents

Channel selector valve and water heater equipped with same Download PDF

Info

Publication number
JP2015172403A
JP2015172403A JP2014048459A JP2014048459A JP2015172403A JP 2015172403 A JP2015172403 A JP 2015172403A JP 2014048459 A JP2014048459 A JP 2014048459A JP 2014048459 A JP2014048459 A JP 2014048459A JP 2015172403 A JP2015172403 A JP 2015172403A
Authority
JP
Japan
Prior art keywords
hot water
flow path
pressure
valve body
path switching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014048459A
Other languages
Japanese (ja)
Other versions
JP6244552B2 (en
Inventor
柳澤 忠
Tadashi Yanagisawa
忠 柳澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2014048459A priority Critical patent/JP6244552B2/en
Publication of JP2015172403A publication Critical patent/JP2015172403A/en
Application granted granted Critical
Publication of JP6244552B2 publication Critical patent/JP6244552B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Sliding Valves (AREA)
  • Multiple-Way Valves (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a channel selector valve excellent in pressure resistance and a water heater equipped with the same.SOLUTION: A channel selector valve comprises: a body 19 including at least one inlet port 20 and a plurality of outlet ports 21 and 22; a shut-off valve 23 including a through-hole 27 and communicating the inlet port 20 with at least one of the outlet ports 21 and 22 by rotation operation; and a drive unit 25 driving the shut-off valve 23 to perform rotation operation about a predetermined axis Z. The shut-off valve 23 moves in a direction of the axis Z in response to an internal pressure of the body 19. Owing to this, even if an excessive pressure is generated in the channel selector valve, the pressure can be released and pressure resistance can be improved.

Description

本発明は、流路切替弁及びそれを備えた給湯装置に関するものである。   The present invention relates to a flow path switching valve and a hot water supply device including the same.

従来、この種の給湯装置に用いられている流路切替手段として、ボール形状の弁体を用いたものがある(例えば、特許文献1参照)。   Conventionally, as a flow path switching means used in this type of hot water supply apparatus, there is one using a ball-shaped valve element (see, for example, Patent Document 1).

この流路切替手段は、図7に示すように、弁体であるボール29と、このボール29を内蔵し、かつ、3つの流路口であるAポート30、Bポート31、Cポート32を持つ弁本体33と、ボール29を回転させるための電動モーターを有した駆動部25とで構成される。   As shown in FIG. 7, the flow path switching means has a ball 29 that is a valve body, a ball 29 that contains the ball 29, and an A port 30, a B port 31, and a C port 32 that are three flow path ports. The valve body 33 and the drive unit 25 having an electric motor for rotating the ball 29 are configured.

弁本体33は、ボール29を回転自在に収容するための弁室34を有し、この弁室34に連通するようにAポート30、Bポート31、Cポート32が形成されている。Aポート30、Bポート31とCポート32は互いに90度の間隔で配置され、Aポート30とBポート31は互いに対向するように配置されている。   The valve body 33 has a valve chamber 34 for rotatably accommodating the ball 29, and an A port 30, a B port 31, and a C port 32 are formed so as to communicate with the valve chamber 34. The A port 30, the B port 31, and the C port 32 are arranged at intervals of 90 degrees, and the A port 30 and the B port 31 are arranged to face each other.

駆動部25は、ボール29をAポート30に対して平行な軸周りに回転するための軸部35を有し、この軸部35が弁本体33の開口を挿通してボール29に接続されている。ボール29とAポート30および、ボール29とBポート31の間には、パッキン36が設置されており、パッキン36の中央には孔があいており、この孔の形状とボール29に開けられた第1の孔37および第2の孔39とは一致するようになっている。   The drive unit 25 has a shaft portion 35 for rotating the ball 29 around an axis parallel to the A port 30, and this shaft portion 35 is inserted through the opening of the valve body 33 and connected to the ball 29. Yes. A packing 36 is installed between the ball 29 and the A port 30 and between the ball 29 and the B port 31, and a hole is formed in the center of the packing 36. The shape of the hole and the ball 29 are opened. The first hole 37 and the second hole 39 coincide with each other.

パッキン36は、ボール29と弁本体33とで圧縮されているため、ボール29の外周を通じて、流路内の流体が漏れるのを防いでいる。ボール29には流路切替手段下部のCポート32に相対するように下部貫通孔38が開いている。図8に流路切替手段の横断面図を示す。図8に記載しているように、ボール29の水平方向には、Aポート30およびBポート31に相対するように、それぞれ第1の孔37および第2の孔39が開いており、第1の孔37と第2の孔39は互いに90度に設置されている。図8に示した位置にボール29が停止している場合、Cポート32から流入した流体はAポート30を通り流出するが、図9に示すようにボール29を時計回りに90度回転させれば流路が切り替わり、Cポート32から流入した流体はBポート31を通り流出する。   Since the packing 36 is compressed by the ball 29 and the valve main body 33, the fluid in the flow path is prevented from leaking through the outer periphery of the ball 29. A lower through hole 38 is opened in the ball 29 so as to face the C port 32 below the flow path switching means. FIG. 8 shows a cross-sectional view of the flow path switching means. As shown in FIG. 8, in the horizontal direction of the ball 29, a first hole 37 and a second hole 39 are opened so as to face the A port 30 and the B port 31, respectively. The hole 37 and the second hole 39 are disposed at 90 degrees with respect to each other. When the ball 29 is stopped at the position shown in FIG. 8, the fluid flowing in from the C port 32 flows out through the A port 30, but the ball 29 can be rotated 90 degrees clockwise as shown in FIG. The flow path is switched, and the fluid flowing in from the C port 32 flows out through the B port 31.

特開2012−17902号公報JP 2012-17902 A

しかしながら、前記従来の構成では、弁体(ボール)に設けられた孔によって連通していないポートに過大な圧力がかかった場合、その過大圧力が逃げる場所がなく、その結果、流路切替え手段を破損させてしまう場合があるという課題を有していた。   However, in the conventional configuration, when an excessive pressure is applied to a port that is not communicated by a hole provided in the valve body (ball), there is no place for the excessive pressure to escape. It had the subject that it might be damaged.

例えば、給湯装置を長期間使用しない場合には、給湯装置内の凍結破壊を防ぐために給湯装置内の湯水を抜くことが必要である。しかしながら前記従来の流路切替手段では、弁体(ボール)に設けられた孔によって連通していないポートから、水は抜けないので、水が凍結した場合には、配管及び流路切替手段内に過大な圧力が生じ、流路切替手段が破損
してしまう場合があるという課題があった。
For example, when the hot water supply device is not used for a long period of time, it is necessary to remove the hot water from the hot water supply device in order to prevent freezing and breaking in the hot water supply device. However, in the conventional flow path switching means, water does not escape from a port that is not communicated by a hole provided in the valve body (ball). There was a problem that excessive pressure was generated and the flow path switching means might be damaged.

本発明は、前記従来の課題を解決するもので、耐圧性に優れた流路切替弁及びそれを備えた給湯装置を提供することを目的とする。   This invention solves the said conventional subject, and it aims at providing the flow-path switching valve excellent in pressure | voltage resistance, and a hot-water supply apparatus provided with the same.

前記従来の課題を解決するために、本発明の流路切替弁は、少なくとも1つの流入ポート、複数の流出ポート、を有する本体と、貫通孔を有し、回転動作により、前記流入ポートと前記複数の流出ポートの少なくとも1つとを連通させる閉止弁体と、前記閉止弁体を、所定の軸の周りに回転動作させる駆動部と、を備え、前記閉止弁体は、前記本体の内部の圧力に応じて、前記軸の方向に移動することを特徴とするものである。   In order to solve the conventional problem, the flow path switching valve of the present invention includes a main body having at least one inflow port and a plurality of outflow ports, a through hole, and the inflow port and the A closing valve body that communicates with at least one of the plurality of outflow ports; and a drive unit that rotates the closing valve body around a predetermined axis, wherein the closing valve body is a pressure inside the main body. In accordance with the above, it moves in the direction of the axis.

これにより、閉止弁体が、本体の内部の圧力に応じて移動するので、流路切替弁が配置された配管経路内部で過大な圧力が生じても、その圧力を逃がすことができる。したがって、例えば、給湯装置において、長期不使用時で配管内部の水が凍結した場合でも、配管内部で生じた過大圧力を逃がすことができる。   Thereby, since a closing valve body moves according to the pressure inside a main body, even if an excessive pressure arises inside the piping path | route where the flow-path switching valve is arrange | positioned, the pressure can be released. Therefore, for example, in a hot water supply device, even when the water inside the pipe freezes when not in use for a long time, the excessive pressure generated inside the pipe can be released.

本発明によれば、耐圧性に優れた流路切替弁及びそれを備えた給湯装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the flow-path switching valve excellent in pressure | voltage resistance and the hot water supply apparatus provided with the same can be provided.

本発明の実施の形態1における流路切替弁を備えた給湯装置の概略構成図1 is a schematic configuration diagram of a hot water supply device including a flow path switching valve according to Embodiment 1 of the present invention. 同流路切替弁が流出ポート側に移動している状態を示す断面図Sectional drawing which shows the state which the flow-path switching valve is moving to the outflow port side (a)同流路切替弁の閉止弁体の下面図、(b)同流路切替弁の閉止弁体の正面図(A) Bottom view of closing valve body of same flow path switching valve, (b) Front view of closing valve body of same flow path switching valve 同流路切替弁が貯湯下流路に切替っているときの下面図Bottom view when the flow path switching valve is switched to the hot water storage lower flow path 同流路切替弁が貯湯下流路に切替っているときの上面図Top view when the flow path switching valve is switched to the hot water storage lower flow path 同流路切替弁が流入ポート側に移動している状態を示す断面図Sectional drawing which shows the state which the flow-path switching valve is moving to the inflow port side 従来の流路切替弁の断面図Sectional view of a conventional flow path switching valve 同流路切替弁を下方から見た際の断面図Sectional view when the flow path switching valve is viewed from below 同流路切替弁を下方から見た際の他の断面図Another sectional view of the flow path switching valve when viewed from below

本発明は、少なくとも1つの流入ポート、複数の流出ポート、を有する本体と、貫通孔を有し、回転動作により、前記流入ポートと前記複数の流出ポートの少なくとも1つとを連通させる閉止弁体と、前記閉止弁体を、所定の軸の周りに回転動作させる駆動部と、を備え、前記閉止弁体は、前記本体の内部の圧力に応じて、前記軸の方向に移動することを特徴とする流路切替弁である。   The present invention provides a main body having at least one inflow port and a plurality of outflow ports, a closing valve body having a through-hole and communicating the at least one of the inflow ports and the plurality of outflow ports by a rotation operation. A drive unit that rotates the closing valve body around a predetermined axis, and the closing valve body moves in the direction of the shaft according to the pressure inside the main body. This is a flow path switching valve.

これにより、閉止弁体が、本体の内部の圧力に応じて移動するので、流路切替弁が配置された配管経路内部で過大な圧力が生じても、その圧力を逃がすことができる。したがって、例えば、給湯装置において、長期不使用時で配管内部の水が凍結した場合でも、配管内部で生じた過大圧力を逃がすことができる。その結果、耐圧性に優れた流路切替弁及びそれを備えた給湯装置を提供することができる。   Thereby, since a closing valve body moves according to the pressure inside a main body, even if an excessive pressure arises inside the piping path | route where the flow-path switching valve is arrange | positioned, the pressure can be released. Therefore, for example, in a hot water supply device, even when the water inside the pipe freezes when not in use for a long time, the excessive pressure generated inside the pipe can be released. As a result, it is possible to provide a flow path switching valve excellent in pressure resistance and a hot water supply device including the same.

第2の発明は、前記閉止弁体は、前記流入ポート側に露出した第1の受圧面の面積をS1、前記流出ポート側に露出した第2の受圧面の面積をS2としたとき、S1>S2であることを特徴とするものである。   According to a second aspect of the present invention, in the closing valve body, when the area of the first pressure receiving surface exposed to the inflow port side is S1, and the area of the second pressure receiving surface exposed to the outflow port side is S2, S1 > S2.

閉止弁体を軸方向に移動させる力は、閉止弁体の受圧面に生じる圧力と、受圧面の面積との積によって定まる。ここで、第1の受圧面の面積S1が第2の受圧面29bの面積S2よりも大きいので、第1の受圧面側に生じた圧力が小さくても、閉止弁体を軸方向に移動させることができる。一方、第2の受圧面の面積S2は相対的に小さいので、第2の受圧面側に生じる圧力が一定の圧力にならなければ、閉止弁体は移動しない。   The force for moving the closing valve body in the axial direction is determined by the product of the pressure generated on the pressure receiving surface of the closing valve body and the area of the pressure receiving surface. Here, since the area S1 of the first pressure receiving surface is larger than the area S2 of the second pressure receiving surface 29b, the closing valve body is moved in the axial direction even if the pressure generated on the first pressure receiving surface side is small. be able to. On the other hand, since the area S2 of the second pressure receiving surface is relatively small, the closing valve body does not move unless the pressure generated on the second pressure receiving surface side becomes a constant pressure.

したがって、流入ポート側に接続される配管内の通常圧力、または、流入ポート側から流入する流体の通常圧力で閉止弁体が移動し、一方、流出ポート側に接続される配管内で生じた過大な圧力に対応して閉止弁体が移動する。すなわち、本体(本体に接続される配管内)で生じる過大圧力に応じて、ばね等の弾性体を用いることなく、閉止弁体が受動的に移動する。その結果、過大圧力を逃がすことができ、耐圧性を向上させることができる。   Therefore, the closing valve body moves at the normal pressure in the pipe connected to the inflow port side or the normal pressure of the fluid flowing in from the inflow port side. On the other hand, the excessive pressure generated in the pipe connected to the outflow port side The closing valve body moves in response to various pressures. That is, the closing valve body moves passively without using an elastic body such as a spring in response to excessive pressure generated in the main body (in the pipe connected to the main body). As a result, excessive pressure can be released and pressure resistance can be improved.

第3の発明は、湯水と貯留する貯湯槽と、前記貯湯槽に給水する給水管と、前記給水管に設けられた減圧弁と、前記湯水を加熱する加熱手段と、前記貯湯槽の下部の湯水を、前記加熱手段を介して、前記貯湯槽の上部または下部へと戻す加熱回路と、を備え、前記請求項1または2に記載の流路切替弁を前記加熱回路に設け、前記流路切替弁により、前記湯水を前記貯湯槽の上部または下部へ戻すかを切替えることを特徴とする給湯装置である。   According to a third aspect of the present invention, there is provided a hot water storage tank for storing hot water, a water supply pipe for supplying water to the hot water storage tank, a pressure reducing valve provided in the water supply pipe, a heating means for heating the hot water, and a lower part of the hot water storage tank. A heating circuit for returning hot water to the upper or lower part of the hot water storage tank via the heating means, the flow path switching valve according to claim 1 or 2 is provided in the heating circuit, and the flow path The hot water supply apparatus is characterized in that the hot water is returned to the upper or lower part of the hot water storage tank by a switching valve.

これにより、閉塞されている流路切替弁の流出ポート側に接続された配管から過大水圧が印加された場合でも、閉止弁体が軸方向に移動して開弁し、圧力を逃すことが可能となる。また、流路切替弁の流出ポート側に接続された配管内の湯水を、閉止弁体を介して機器外の排出することが可能となる。その結果、長期不使用時で配管内の湯水が凍結しても流路切替弁が破損することを防ぐことができる。   As a result, even when an excessive water pressure is applied from the pipe connected to the outflow port side of the closed flow path switching valve, the closing valve body moves in the axial direction to open and release the pressure. It becomes. Moreover, the hot water in the pipe connected to the outflow port side of the flow path switching valve can be discharged out of the device through the closing valve body. As a result, it is possible to prevent the flow path switching valve from being damaged even if hot water in the pipe is frozen when not in use for a long time.

第4の発明は、前記閉止弁体は、前記流入ポート側の内圧が0kPaより大きく前記減圧弁の設定圧以下のいずれかの値で、前記軸に対して前記流入ポートとは反対方向に移動するように、前記第1の受圧面の面積が調整されていることを特徴とするものである。   According to a fourth aspect of the present invention, the closing valve body moves in a direction opposite to the inflow port with respect to the shaft at an internal pressure on the inflow port side greater than 0 kPa and not more than a set pressure of the pressure reducing valve. As described above, the area of the first pressure receiving surface is adjusted.

これにより、流路切替手段の流路内の内圧が、一般的に貯湯式給湯装置に設置されている減圧弁の設定圧より低い圧力で閉止機能が働くため、通常使用する際には閉弁機能を有し、貯湯槽内の湯水を抜く場合などで内圧が下降した場合に、閉止弁体が開弁して、閉塞されていた流路切替弁の流出ポート側の配管内の湯水が閉止弁体を介して機器外に排出されることが可能となる。   As a result, the closing function works when the internal pressure in the flow path of the flow path switching means is generally lower than the set pressure of the pressure reducing valve installed in the hot water storage hot water supply device. When the internal pressure drops, for example, when the hot water in the hot water storage tank is drained, the shut-off valve body opens and the hot water in the pipe on the outflow port side of the closed channel switching valve is closed. It can be discharged out of the device through the valve body.

以下、本発明の実施例について図面を参照して説明する。なお、この実施の形態によって本発明が限定されるものではない。   Embodiments of the present invention will be described below with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1は、本発明の実施の形態1における流路切替弁を備えた給湯装置の概略構成図である。図1において、給湯装置は、貯湯槽1と、加熱手段としてのヒートポンプ熱源2を備える。給水源から供給された水は、給水管3と減圧弁4を通り、貯湯槽1の下部と給湯混合弁5に分岐され、貯湯槽1の下部から入水された水は貯湯槽1に貯まる。
(Embodiment 1)
FIG. 1 is a schematic configuration diagram of a hot water supply apparatus including a flow path switching valve according to Embodiment 1 of the present invention. In FIG. 1, the hot water supply apparatus includes a hot water tank 1 and a heat pump heat source 2 as heating means. The water supplied from the water supply source passes through the water supply pipe 3 and the pressure reducing valve 4, branches to the lower part of the hot water tank 1 and the hot water supply mixing valve 5, and the water introduced from the lower part of the hot water tank 1 is stored in the hot water tank 1.

貯湯槽1の下部とヒートポンプ熱源2とは沸き上げポンプ6を介してヒートポンプ往き管7で接続されている。ヒートポンプ熱源2内には圧縮機8が内蔵され、ヒートポンプ熱源2に入水された湯水と熱交換して温度を上げて、ヒートポンプ戻り管9と貯湯槽下戻り管10を通って、貯湯槽1の下部に戻るようになっている。ヒートポンプ戻り管9と貯湯槽下戻り管10の間には流路切替弁11が設けられている。   The lower part of the hot water tank 1 and the heat pump heat source 2 are connected by a heat pump forward pipe 7 via a boiling pump 6. A compressor 8 is built in the heat pump heat source 2, and heat is exchanged with hot water introduced into the heat pump heat source 2 to raise the temperature, and the heat pump return pipe 9 and the hot water tank lower return pipe 10 are passed through. It is designed to return to the bottom. A flow path switching valve 11 is provided between the heat pump return pipe 9 and the hot water tank lower return pipe 10.

沸き上げ初期にはヒートポンプ熱源2から戻ってくる湯温は低く(例えば、60℃未満)、その場合には流路切替弁11の流路は沸き上げた湯を、貯湯槽下戻り管10を通り貯湯槽1の下部に供給するようになっている。ヒートポンプ熱源2から戻ってくる湯温が高くなった場合(例えば、60℃以上)には、流路切替弁11の流路は、貯湯槽上戻り管12を通り、貯湯槽1の上部に戻すようになっている。すなわち、ヒートポンプ往き管7、ヒートポンプ戻り管9、貯湯槽下戻り管10または貯湯槽上戻り管12が互いに接続されて、貯湯槽1の下部の湯水が貯湯槽1の上部に向かって流れ、貯湯槽1内の湯水を加熱する加熱回路が形成される。   In the initial stage of boiling, the temperature of the hot water returning from the heat pump heat source 2 is low (for example, less than 60 ° C.). In this case, the flow path of the flow path switching valve 11 is used to boil the hot water. It supplies to the lower part of the street hot water tank 1. When the hot water temperature returned from the heat pump heat source 2 becomes high (for example, 60 ° C. or higher), the flow path of the flow path switching valve 11 passes through the hot water tank return pipe 12 and returns to the upper part of the hot water tank 1. It is like that. That is, the heat pump forward pipe 7, the heat pump return pipe 9, the hot water tank lower return pipe 10 or the hot water tank upper return pipe 12 are connected to each other, and the hot water in the lower part of the hot water tank 1 flows toward the upper part of the hot water tank 1, A heating circuit for heating the hot water in the tank 1 is formed.

貯湯槽1の上部に貯えられた湯と給水管3から分岐された水は給湯混合弁5で混合され、給湯温度センサ16、流量センサ17を通り蛇口18から出湯される。ヒートポンプ熱源2の入口には入水温度を測温する入水温度センサ13と、出口にはヒートポンプ熱源2からの出湯温度を検出する出湯温度センサ14が設けられており、検出された温度データは制御基板15に送られる。検出された温度は圧縮機8の出力を調整するために用いられ、出湯温度センサ14の温度情報により流路切替弁11が制御される。   The hot water stored in the upper part of the hot water tank 1 and the water branched from the water supply pipe 3 are mixed by the hot water supply mixing valve 5 and discharged from the faucet 18 through the hot water temperature sensor 16 and the flow rate sensor 17. An inlet water temperature sensor 13 for measuring the incoming water temperature is provided at the inlet of the heat pump heat source 2, and a hot water temperature sensor 14 for detecting the outlet temperature of the hot water from the heat pump heat source 2 is provided at the outlet. 15 is sent. The detected temperature is used to adjust the output of the compressor 8, and the flow path switching valve 11 is controlled by the temperature information of the hot water temperature sensor 14.

図2に、本実施の形態1の流路切替弁11の断面図を示す。図2において、流路切替弁11の本体19内には、少なくとも1つの流入路(流入ポート20)と、複数の流出路(流出ポート21、22)が設けられている。本実施の形態では、本体19内には、少なくとも3方向の流路が設けられており、流入ポート20側には、ヒートポンプ戻り管9に接続され、ヒートポンプ熱源2により加熱された温水が戻ってくるヒートポンプ戻り流路を構成する。第1の流出ポート21側には、貯湯槽上戻り管12が接続されており、貯湯槽1の上部に湯水を送る貯湯槽上流路を構成する、第2の流出ポート22側には、貯湯槽下戻り管10が接続されており、貯湯槽1の下部に湯水を送る貯湯槽下流路を構成する。なお、本実施の形態において、本体19は一体に構成されているが、本体19は、上述の少なくとも3方向の流路を有していれば、複数の部材を組み合わせて構成されているものであってもかまわない。   FIG. 2 shows a cross-sectional view of the flow path switching valve 11 of the first embodiment. In FIG. 2, at least one inflow path (inflow port 20) and a plurality of outflow paths (outflow ports 21 and 22) are provided in the main body 19 of the flow path switching valve 11. In the present embodiment, at least three flow paths are provided in the main body 19, and the hot water heated by the heat pump heat source 2 is returned to the inflow port 20 side by being connected to the heat pump return pipe 9. The heat pump return flow path is configured. A hot water tank upper return pipe 12 is connected to the first outflow port 21 side, and constitutes a hot water tank upper flow path for sending hot water to the upper part of the hot water tank 1. A tank lower return pipe 10 is connected to form a hot water tank lower flow path for sending hot water to the lower part of the hot water tank 1. In the present embodiment, the main body 19 is integrally formed. However, the main body 19 is configured by combining a plurality of members as long as the main body 19 has the flow paths in at least the three directions described above. It does not matter.

流路切替弁11の本体19の内部には、回転式の閉止弁体23が設置されており、回転式の閉止弁体23の回転軸24を、電動モーターを有した駆動部25で駆動させることにより、回転式の閉止弁体23が軸Z周りに回転して、流路が切り替わるようになっている。回転軸24の周囲にはOリング26が配置されており、流路切替弁11の本体19内の流体が外部に漏れるのを防いでいる。また、これにより、閉止弁体23は本体19に軸支されている。また、後述のように、閉止弁体23は、本体19に沿ってZ軸の方向に摺動(移動)する。図3は、閉止弁体23の下面図と正面図を示す。図3に示すように、閉止弁体23に貫通孔27が設けられている。貫通孔27は流路切替弁11の本体19に開けられている第1流出ポート(貯湯槽下流路)21への流出口、第2流出ポート(貯湯槽上流路)22への流出口と一致する開口形状となっていることが好ましい。   A rotary closing valve body 23 is installed inside the main body 19 of the flow path switching valve 11, and the rotating shaft 24 of the rotary closing valve body 23 is driven by a drive unit 25 having an electric motor. Accordingly, the rotary closing valve body 23 rotates around the axis Z, and the flow path is switched. An O-ring 26 is disposed around the rotary shaft 24 to prevent the fluid in the main body 19 of the flow path switching valve 11 from leaking to the outside. Thereby, the shut-off valve body 23 is pivotally supported by the main body 19. Further, as will be described later, the shut-off valve body 23 slides (moves) along the main body 19 in the Z-axis direction. FIG. 3 shows a bottom view and a front view of the closing valve body 23. As shown in FIG. 3, the closing valve body 23 is provided with a through hole 27. The through hole 27 coincides with the outlet to the first outlet port (hot water tank lower channel) 21 opened in the body 19 of the channel switching valve 11 and the outlet to the second outlet port (hot water tank upper channel) 22. It is preferable to have an opening shape.

図4に流路切替弁11が貯湯槽下流路21側に切替っているときの下面図を示す。流路切替弁11の本体19内の回転式の閉止弁体23に開けられた貫通孔27と、貯湯槽下流路21への流出口が一致し、ヒートポンプ戻り管9から流出した湯水が流路切替弁11の流入ポート20から流入し、貯湯槽下流路21を介して貯湯槽下戻り管10へと流入する。その後、貯湯槽1の下部から貯湯槽1内に供給される。   FIG. 4 shows a bottom view when the flow path switching valve 11 is switched to the hot water tank lower flow path 21 side. The through hole 27 opened in the rotary closing valve body 23 in the main body 19 of the flow path switching valve 11 and the outlet to the hot water tank lower flow path 21 coincide with each other, and the hot water flowing out from the heat pump return pipe 9 flows through the flow path. It flows from the inflow port 20 of the switching valve 11 and flows into the hot water tank lower return pipe 10 via the hot water tank lower flow path 21. Thereafter, the hot water is supplied from the lower part of the hot water tank 1 into the hot water tank 1.

図5に流路切替弁11が貯湯槽上流路22側に切替っているときの下面図を示す。流路切替弁11の本体19内の回転式の閉止弁体23に開けられた貫通孔27と貯湯槽上流路22が一致し、ヒートポンプ戻り管9から流出した湯水が、流路切替弁11の流入ポート20から流入して、貯湯槽上流路22を介して貯湯槽上戻り管12に流入する。その後、
貯湯槽1の上部から貯湯槽1内に供給される。ヒートポンプ戻り管9から流入した湯水の流出先を貯湯槽上流路22から貯湯槽下流路21に切替えるには、駆動部25を駆動させて回転式の閉止弁体23を所定角度(本実施の形態では180度)回転することによって実現できる。
FIG. 5 shows a bottom view when the flow path switching valve 11 is switched to the hot water tank upper flow path 22 side. The through hole 27 opened in the rotary closing valve body 23 in the main body 19 of the flow path switching valve 11 and the hot water storage tank upper flow path 22 coincide with each other, and the hot water flowing out from the heat pump return pipe 9 flows into the flow path switching valve 11. It flows in from the inflow port 20 and flows into the hot water tank upper return pipe 12 through the hot water tank upper flow path 22. after that,
It is supplied into the hot water tank 1 from the upper part of the hot water tank 1. In order to switch the outlet of the hot water flowing in from the heat pump return pipe 9 from the hot water tank upper flow path 22 to the hot water tank lower flow path 21, the drive unit 25 is driven to rotate the rotary shut-off valve body 23 at a predetermined angle (this embodiment). This can be realized by rotating 180 degrees.

次に作用を説明する。貯湯槽1への湯の貯湯は、流路切替弁11を、流入ポート20から流入した湯水が貯湯槽上流路22へと流れるように、回転式の閉止弁体23の位置を設定する。これにより、貯湯槽1の上部に湯が貯湯されるようにする。貯湯槽1への湯の貯湯が終了したら、流路切替弁11を、流入ポート20から流入した湯水が、貯湯槽下流路21へと流れるように、回転式の閉止弁体23を所定角度(本実施の形態では180度)回転させる。これによって、貯湯槽上流路22が回転式の閉止弁体23によって閉塞され、貯湯槽1の上部に貯湯された湯が貯湯槽下部に対流することを防ぐ。   Next, the operation will be described. For hot water storage in the hot water tank 1, the position of the rotary closing valve body 23 is set so that the hot water flowing from the inflow port 20 flows to the hot water tank upper flow path 22 through the flow path switching valve 11. Thereby, hot water is stored in the upper part of the hot water tank 1. When hot water storage in the hot water storage tank 1 is completed, the rotary closing valve body 23 is set at a predetermined angle (so that hot water flowing from the inflow port 20 flows into the hot water tank lower flow path 21 through the flow path switching valve 11. In this embodiment, it is rotated 180 degrees. As a result, the hot water tank upper flow path 22 is closed by the rotary closing valve body 23 to prevent the hot water stored in the upper part of the hot water tank 1 from being convected to the lower part of the hot water tank.

図6は、流路切替弁11の流出ポート(21、22)側に接続された配管内で過大な圧力が生じた状態の流路切替弁11の断面を示す。貯湯槽1への湯の供給が終了したら、貯湯槽上流路22は回転式の閉止弁体23によって閉塞されているので、貯湯槽上戻り管12内の圧力が凍結等により上昇した場合、回転式の閉止弁体23は、流路切替弁11の下方に動き、スキマ28を発生させる。これにより、その時点で閉塞されている流出ポート(貯湯槽上流路22)が開放されて、複数の流出ポート(21、22)が連通するため、貯湯槽上戻り管12内の圧力上昇が解消され、流路切替弁11の破損を防ぐことができる。   FIG. 6 shows a cross section of the flow path switching valve 11 in a state where excessive pressure is generated in the pipe connected to the outflow port (21, 22) side of the flow path switching valve 11. When the supply of hot water to the hot water tank 1 is completed, the hot water tank upper flow path 22 is closed by the rotary closing valve body 23, so that if the pressure in the hot water tank upper return pipe 12 rises due to freezing or the like, it rotates. The closed valve body 23 of the type moves below the flow path switching valve 11 and generates a clearance 28. As a result, the outflow port (hot water tank upper flow path 22) closed at that time is opened and the plurality of outflow ports (21, 22) communicate with each other, so that the pressure increase in the hot water tank upper return pipe 12 is eliminated. Thus, the flow path switching valve 11 can be prevented from being damaged.

また、給湯装置を長期間使用しないために貯湯槽1の湯水を抜く際には、流路切替弁11の内圧(特に、流入ポート20側の内圧)が大気圧と同程度になり、流入ポート20側の内圧と流出ポート(21、22)側の内圧との圧力差が増大するので、貯湯槽上流路22を閉塞していた回転式の閉止弁体23の閉弁機能が減少、または、喪失する。よって、貯湯槽上戻り管12内の湯水が閉止弁体23、ヒートポンプ戻り管9を通り、給湯装置外に排出されるので、特に、貯湯槽上戻り管12内の残水の凍結による流路切替弁11の破損を防ぐことができる。   Further, when hot water is drawn out from the hot water tank 1 so that the hot water supply device is not used for a long period of time, the internal pressure of the flow path switching valve 11 (particularly, the internal pressure on the inflow port 20 side) becomes approximately the same as the atmospheric pressure. Since the pressure difference between the internal pressure on the 20 side and the internal pressure on the outflow port (21, 22) side increases, the valve closing function of the rotary closing valve body 23 that has closed the hot water tank upper flow path 22 decreases, or To lose. Therefore, the hot water in the hot water tank return pipe 12 passes through the shut-off valve body 23 and the heat pump return pipe 9 and is discharged outside the hot water supply device. Breakage of the switching valve 11 can be prevented.

また、流路切替弁11の閉止弁体23は、流入ポート20側に露出した受圧面の面積S1が、流出ポート(21、22)側に露出した受圧面S2(S2´またはS2´´)よりも大きくなるように構成されている。閉止弁体23を軸方向に移動させる力は、閉止弁体23の受圧面に生じる圧力と、受圧面の面積との積によって定まる。ここで、第1の受圧面29aの面積S1が第2の受圧面29bの面積S2よりも大きいので、第1の受圧面29a側に生じた圧力が小さくても、閉止弁体を軸方向(流出ポート21、22側を閉塞する方向)に移動させることができる。一方、第2の受圧面29bの面積S2は相対的に小さいので、第2の受圧面29b側に生じる圧力が一定の圧力にならなければ、閉止弁体は、流入ポート20側へ移動しない。   Further, the shut-off valve body 23 of the flow path switching valve 11 has a pressure receiving surface S2 (S2 ′ or S2 ″) in which the area S1 of the pressure receiving surface exposed on the inflow port 20 side is exposed on the outflow port (21, 22) side. It is comprised so that it may become larger. The force for moving the closing valve body 23 in the axial direction is determined by the product of the pressure generated on the pressure receiving surface of the closing valve body 23 and the area of the pressure receiving surface. Here, since the area S1 of the first pressure receiving surface 29a is larger than the area S2 of the second pressure receiving surface 29b, even if the pressure generated on the first pressure receiving surface 29a side is small, the closing valve body can be moved in the axial direction ( In the direction of closing the outflow ports 21 and 22 side). On the other hand, since the area S2 of the second pressure receiving surface 29b is relatively small, the closing valve body does not move to the inflow port 20 side unless the pressure generated on the second pressure receiving surface 29b side becomes a constant pressure.

したがって、流入ポート20側に接続される配管内の通常圧力、または、流入ポート20側から流入する流体の通常圧力で閉止弁体23が移動して、流出ポート(21、22)を閉塞するので、流出ポート(21、22)が連通してしまい、双方の間で湯水が流動してしまうことを防止するので、沸き上げ運転を実行することができ、また、沸き上げ運転後にも、加熱回路内で湯水が流動することを防ぐことができる。   Therefore, the closing valve body 23 is moved by the normal pressure in the pipe connected to the inflow port 20 side or the normal pressure of the fluid flowing in from the inflow port 20 side, thereby closing the outflow ports (21, 22). Since the outflow ports (21, 22) communicate with each other and hot water does not flow between the two, the boiling operation can be performed, and the heating circuit is also provided after the boiling operation. It is possible to prevent hot water from flowing inside.

一方、流出ポート(21、22)側に接続される配管内で生じた過大な圧力に対応して閉止弁体23が移動する。すなわち、本体19(また、本体19に接続される配管内)で生じる過大圧力に応じて、ばね等の弾性体を用いることなく、閉止弁体23が受動的に移動する。その結果、過大圧力を逃がすことができ、耐圧性を向上させることができる。   On the other hand, the closing valve body 23 moves in response to an excessive pressure generated in the pipe connected to the outflow port (21, 22) side. That is, the closing valve body 23 passively moves without using an elastic body such as a spring in accordance with an excessive pressure generated in the main body 19 (also in the pipe connected to the main body 19). As a result, excessive pressure can be released and pressure resistance can be improved.

また、流路切替弁11の回転式の閉止弁体23は、流路切替弁11の内圧上昇に伴って上方向に移動するが、そのときに上昇力は、閉止弁体23の回転軸24の大気開放部の受圧面にかかる圧力によって求めることが可能である。これにより、流路切替弁11の流出ポート(21、22)を閉塞する方向に力がかかる。ここで、給湯装置に一般的に設置されている減圧弁4の設定圧が170kPaであり、また、閉止弁体23の大気開放側の受圧面S2の面積を60mm^2とすると、閉止弁体23にかかる閉止力(流出ポート21、22側を閉塞するために必要な上昇力)Fは、F=170kPa×60mm^2/1000=10.2N、となる。   Further, the rotary closing valve body 23 of the flow path switching valve 11 moves upward as the internal pressure of the flow path switching valve 11 increases. At that time, the rising force is applied to the rotating shaft 24 of the closing valve body 23. It can be determined by the pressure applied to the pressure-receiving surface of the atmosphere opening portion. Thereby, force is applied in the direction of closing the outflow ports (21, 22) of the flow path switching valve 11. Here, when the set pressure of the pressure reducing valve 4 generally installed in the hot water supply device is 170 kPa and the area of the pressure receiving surface S2 on the atmosphere opening side of the closing valve body 23 is 60 mm ^ 2, the closing valve body The closing force applied to 23 (the rising force necessary to close the outflow ports 21 and 22) F is F = 170 kPa × 60 mm ^ 2/1000 = 10.2 N.

閉止弁体23の摺動に必要な力は、Oリング26の摺動抵抗によって支配されており、Oリング26の摺動に必要な力は、Oリング26の圧縮率を高くすると上昇する。ここで、前記Oリングの摺動力を10.2N以下に設定すると、減圧弁4の設定圧170kPaで流路切替弁11の流出ポート(21、22)側を閉塞することが可能となる。一方、Oリング26の摺動力を10.2N以上に設定すると、減圧弁4の設定圧力では流路切替弁11の流出ポート(21、22)を閉塞することはできず、閉止弁体23から漏れが発生し、貯湯槽1に湯を貯湯している際に貯湯槽1の下部へ湯が流入してしまい、貯湯槽1の下部に流入した温度が高い湯水が、貯湯槽1の下部から加熱回路を介してヒートポンプ熱源2へと流れる。これは、ヒートポンプ熱源2における熱交換効率を低下させる原因となる。   The force required for sliding the closing valve body 23 is governed by the sliding resistance of the O-ring 26, and the force required for sliding the O-ring 26 increases as the compression ratio of the O-ring 26 increases. Here, when the sliding force of the O-ring is set to 10.2 N or less, it becomes possible to close the outflow port (21, 22) side of the flow path switching valve 11 with the set pressure 170 kPa of the pressure reducing valve 4. On the other hand, if the sliding force of the O-ring 26 is set to 10.2 N or more, the set pressure of the pressure reducing valve 4 cannot close the outflow ports (21, 22) of the flow path switching valve 11, and the closing valve body 23 When leakage occurs and hot water is stored in the hot water tank 1, the hot water flows into the lower part of the hot water tank 1, and hot water flowing into the lower part of the hot water tank 1 flows from the lower part of the hot water tank 1. It flows to the heat pump heat source 2 through the heating circuit. This becomes a cause of reducing the heat exchange efficiency in the heat pump heat source 2.

また、貯湯槽1に湯を貯湯しない際にも、貯湯槽上流路22の閉弁機能が低いため、貯湯槽上戻り管12の湯がヒートポンプ戻り管9を通って、貯湯槽1の下部へ対流する現象が生じる。これにより貯湯槽1の上部と下部で湯水が混ざり、貯湯槽1の湯水の積層構造が崩れるため、ヒートポンプ熱源2に温度の高い湯水が流れ、熱交換効率が低下することになる。よって、減圧弁4の設定圧以下の内圧で閉止弁体23が閉弁することが必要となる。なお、本実施の形態において、閉止弁体23は、流入ポート20側の内圧が0kPaよりも大きく減圧弁4の設定圧(例えば、170kPa)以下の値で、流出ポート(21、22)側を閉塞するように構成されているが、閉塞する際の圧力が小さいことは、開弁する際の圧力も小さいことを示す。したがって、閉止弁体23は、流入ポート20側の内圧が100kPaよりも大きく減圧弁4の設定圧(例えば、170kPa)以下の値で、流出ポート20側を閉塞するように構成されていることがより好ましい。   Even when hot water is not stored in the hot water tank 1, the hot water in the hot water tank upper return pipe 12 passes through the heat pump return pipe 9 to the lower part of the hot water tank 1 because the valve closing function of the hot water tank upper flow path 22 is low. A convection phenomenon occurs. As a result, hot water is mixed in the upper and lower parts of the hot water tank 1 and the laminated structure of the hot water in the hot water tank 1 is destroyed, so hot hot water flows through the heat pump heat source 2 and the heat exchange efficiency is lowered. Therefore, it is necessary for the closing valve body 23 to close at an internal pressure equal to or lower than the set pressure of the pressure reducing valve 4. In the present embodiment, the closing valve body 23 has an inner pressure on the inflow port 20 side that is larger than 0 kPa and lower than a set pressure (for example, 170 kPa) of the pressure reducing valve 4, and has an outlet port (21, 22) side. Although it is configured to close, a low pressure when closing indicates a low pressure when opening. Therefore, the shut-off valve body 23 is configured to close the outflow port 20 side at a value where the internal pressure on the inflow port 20 side is larger than 100 kPa and lower than the set pressure (for example, 170 kPa) of the pressure reducing valve 4. More preferred.

また、減圧弁4の設定圧を上げた場合、前述の回転式の閉止弁体23にかかる上昇力Fが上昇するので、閉止弁体23の閉弁性能は向上するが、閉止弁体23と流路切替弁11の本体19とが強固に当接し、摩擦抵抗が上昇するため、駆動部25の駆動トルクを上げなければならず、それに伴い閉止弁体23の回転軸24の強度を増す必要があり、軸径の拡大や高強度の材質への変更など、流路切替弁11の大型化、消費電力の増大およびコストUPにつながる。よって、一般的な給湯装置の減圧弁4の設定圧170kPa以下で閉止弁体23が貯湯槽1の上部または下部へ送る流路を閉塞するように構成することによって、消費電力、サイズ、コストの最適化が図れる。   Further, when the set pressure of the pressure reducing valve 4 is increased, the ascending force F applied to the rotary closing valve body 23 increases, so that the closing performance of the closing valve body 23 is improved. Since the main body 19 of the flow path switching valve 11 is firmly in contact and the frictional resistance is increased, the driving torque of the driving unit 25 must be increased, and accordingly, the strength of the rotary shaft 24 of the closing valve body 23 needs to be increased. This leads to an increase in the size of the flow path switching valve 11, an increase in power consumption, and an increase in cost, such as expansion of the shaft diameter and change to a high-strength material. Therefore, it is possible to reduce power consumption, size, and cost by configuring the shutoff valve body 23 to close the flow path to the upper or lower part of the hot water tank 1 at a set pressure 170 kPa or less of the pressure reducing valve 4 of a general hot water supply device. Optimization can be achieved.

以上のように、本発明の流路切替弁11は、閉止弁体23が、能動的に駆動する第1の方向と、受動的に移動する第2の方向とのそれぞれに動作することを特徴とする。すなわち、本実施の形態の閉止弁体23は、流路を切替るための能動的な動作として、駆動部25によって回転動作を行う。さらに、閉止弁体23は、本体19の内部の圧力に応じた受動的な動作として、回転軸の方向に摺動動作を行う。この摺動動作により、流入ポート20及び流出ポート(21、22)が互いに連通して、それぞれのポート内で生じる過大圧力を逃がすことで耐圧性を向上させることができる。   As described above, the flow path switching valve 11 of the present invention is characterized in that the closing valve body 23 operates in each of the first direction in which it is actively driven and the second direction in which it is passively moved. And That is, the closing valve body 23 of the present embodiment performs a rotating operation by the driving unit 25 as an active operation for switching the flow path. Further, the closing valve body 23 performs a sliding operation in the direction of the rotation shaft as a passive operation corresponding to the pressure inside the main body 19. With this sliding operation, the inflow port 20 and the outflow ports (21, 22) communicate with each other, and the pressure resistance can be improved by releasing the excessive pressure generated in each port.

なお、閉止弁体23の動作は、回転動作と直線動作との組み合わせに限定されない。例えば、本実施の形態の直線動作を、流路を切替えるための能動的な動作として用い、本体19の内部の圧力に応じた受動的な動作として回転動作を用いてもよい。また、複数の動作のいずれも直線動作としてもよく、また、いずれも回転動作としてもよい。すなわち、物が動作する方向として、3軸周りの回転動作と、3軸方向の直線動作との計6つ動作のうち、任意の2つの動作を選択して、一方を能動的な動作として、他方を受動的な動作として選択すればよい。   The operation of the closing valve body 23 is not limited to the combination of the rotation operation and the linear operation. For example, the linear motion of the present embodiment may be used as an active motion for switching the flow path, and a rotational motion may be used as a passive motion according to the pressure inside the main body 19. Further, any of the plurality of operations may be a linear operation, or any of them may be a rotation operation. That is, as the direction in which the object moves, any two movements are selected from a total of six movements of the rotation movement around the three axes and the linear movement in the three axis directions, and one of them is set as an active movement. The other may be selected as a passive operation.

なお、本実施の形態の流路切替弁11は、ばねなどの弾性体によって閉止弁体23が付勢される必要がなく、閉止弁体23自体が動作するものである。例えば周知の圧力逃がし弁には、本体内に、任意の復元力の弾性体を組み込むことで弁体を付勢し、これによって、過大圧力に対応したものもあるが、構造が複雑となり、弁自体が大型化してしまう。しかしながら、本実施の形態の流路切替弁11は、内部に弾性体を組み込むことなく、簡易な構成で過大圧力に対応することができる。   The flow path switching valve 11 of the present embodiment does not require the closing valve body 23 to be urged by an elastic body such as a spring, and the closing valve body 23 itself operates. For example, some well-known pressure relief valves energize the valve body by incorporating an elastic body of an arbitrary restoring force into the main body, and some of them respond to excessive pressure, but the structure becomes complicated and the valve The size itself increases. However, the flow path switching valve 11 of the present embodiment can cope with an excessive pressure with a simple configuration without incorporating an elastic body inside.

本発明によれば、配管内で生じる過大圧力を逃がすことが可能な耐圧性に優れた流路切替弁を実現することができ、業務用、家庭用の給湯装置として用いることができる。   ADVANTAGE OF THE INVENTION According to this invention, the flow-path switching valve excellent in the pressure | voltage resistance which can release the excessive pressure which arises in piping can be implement | achieved, and it can be used as a hot water supply apparatus for business and household use.

1 貯湯槽
2 ヒートポンプ熱源(加熱手段)
3 給水管
4 減圧弁
5 給湯混合弁
6 沸き上げポンプ
7 ヒートポンプ往き管
8 圧縮機
9 ヒートポンプ戻り管
10 貯湯槽下戻り管
11 流路切替弁
12 貯湯槽上戻り管
13 入水温度センサ
14 出湯温度センサ
15 制御基板
16 給湯温度センサ
17 流量センサ
18 蛇口
19 本体
20 ヒートポンプ戻り流路(流入ポート)
21 貯湯槽下流路(第1の流出ポート)
22 貯湯槽上流路(第2の流出ポート)
23 閉止弁体
24 回転軸
25 駆動部
26 Oリング
27 貫通孔
28 スキマ
1 Hot water tank 2 Heat pump heat source (heating means)
DESCRIPTION OF SYMBOLS 3 Water supply pipe 4 Pressure reducing valve 5 Hot water supply mixing valve 6 Boiling pump 7 Heat pump forward pipe 8 Compressor 9 Heat pump return pipe 10 Hot water tank lower return pipe 11 Flow path switching valve 12 Hot water tank upper return pipe 13 Incoming water temperature sensor 14 Hot water temperature sensor 15 Control board 16 Hot water supply temperature sensor 17 Flow rate sensor 18 Faucet 19 Main body 20 Heat pump return flow path (inflow port)
21 Hot water storage tank lower flow path (first outflow port)
22 Hot water tank upper flow path (second outflow port)
23 Closing valve body 24 Rotating shaft 25 Drive unit 26 O-ring 27 Through hole 28 Clearance

Claims (4)

少なくとも1つの流入ポート、複数の流出ポート、を有する本体と、
貫通孔を有し、回転動作により、前記流入ポートと前記複数の流出ポートの少なくとも1つとを連通させる閉止弁体と、
前記閉止弁体を、所定の軸の周りに回転動作させる駆動部と、を備え、
前記閉止弁体は、前記本体の内部の圧力に応じて、前記軸の方向に移動することを特徴とする流路切替弁。
A body having at least one inlet port, a plurality of outlet ports;
A closing valve body having a through-hole and communicating with at least one of the inflow port and the plurality of outflow ports by a rotation operation;
A drive section for rotating the stop valve body around a predetermined axis,
The flow path switching valve, wherein the closing valve body moves in the direction of the shaft according to the pressure inside the main body.
前記閉止弁体は、前記流入ポート側に露出した第1の受圧面の面積をS1、前記流出ポート側に露出した第2の受圧面の面積をS2としたとき、S1>S2であることを特徴とする請求項1に記載の流路切替弁。 When the area of the first pressure receiving surface exposed on the inflow port side is S1 and the area of the second pressure receiving surface exposed on the outflow port side is S2, the closing valve body satisfies S1> S2. The flow path switching valve according to claim 1, wherein: 湯水と貯留する貯湯槽と、
前記貯湯槽に給水する給水管と、
前記給水管に設けられた減圧弁と、
前記湯水を加熱する加熱手段と、
前記貯湯槽の下部の湯水を、前記加熱手段を介して、前記貯湯槽の上部または下部へと戻す加熱回路と、を備え、
前記請求項1または2に記載の流路切替弁を前記加熱回路に設け、
前記流路切替弁により、前記湯水を前記貯湯槽の上部または下部へ戻すかを切替えることを特徴とする給湯装置。
Hot water and hot water storage tank,
A water supply pipe for supplying water to the hot water storage tank;
A pressure reducing valve provided in the water supply pipe;
Heating means for heating the hot water;
A heating circuit for returning hot water in the lower part of the hot water tank to the upper or lower part of the hot water tank through the heating means,
The flow path switching valve according to claim 1 or 2 is provided in the heating circuit,
A hot water supply apparatus that switches whether the hot water is returned to an upper part or a lower part of the hot water storage tank by the flow path switching valve.
前記閉止弁体は、前記流入ポート側の内圧が0kPaより大きく前記減圧弁の設定圧以下のいずれかの値で、前記軸に対して前記流入ポートとは反対方向に移動するように、前記第1の受圧面の面積が調整されていることを特徴とする請求項3に記載の給湯装置。 The closing valve body is configured to move in the direction opposite to the inflow port with respect to the shaft at an internal pressure on the inflow port side greater than 0 kPa and less than or equal to a set pressure of the pressure reducing valve. The hot water supply apparatus according to claim 3, wherein an area of the pressure receiving surface of 1 is adjusted.
JP2014048459A 2014-03-12 2014-03-12 Flow path switching valve and hot water supply device including the same Active JP6244552B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014048459A JP6244552B2 (en) 2014-03-12 2014-03-12 Flow path switching valve and hot water supply device including the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014048459A JP6244552B2 (en) 2014-03-12 2014-03-12 Flow path switching valve and hot water supply device including the same

Publications (2)

Publication Number Publication Date
JP2015172403A true JP2015172403A (en) 2015-10-01
JP6244552B2 JP6244552B2 (en) 2017-12-13

Family

ID=54259846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014048459A Active JP6244552B2 (en) 2014-03-12 2014-03-12 Flow path switching valve and hot water supply device including the same

Country Status (1)

Country Link
JP (1) JP6244552B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160079649A (en) * 2014-12-26 2016-07-06 가부시기가이샤 후지고오키 Channel switch valve
JP2020115043A (en) * 2019-04-05 2020-07-30 株式会社不二工機 Flow channel change-over valve

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01105073A (en) * 1987-10-16 1989-04-21 Matsushita Electric Ind Co Ltd Valve device
JP2001173812A (en) * 1999-12-20 2001-06-29 Saginomiya Seisakusho Inc Flow passage switching valve
JP2006017417A (en) * 2004-07-05 2006-01-19 Matsushita Electric Ind Co Ltd Storage water heater

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01105073A (en) * 1987-10-16 1989-04-21 Matsushita Electric Ind Co Ltd Valve device
JP2001173812A (en) * 1999-12-20 2001-06-29 Saginomiya Seisakusho Inc Flow passage switching valve
JP2006017417A (en) * 2004-07-05 2006-01-19 Matsushita Electric Ind Co Ltd Storage water heater

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160079649A (en) * 2014-12-26 2016-07-06 가부시기가이샤 후지고오키 Channel switch valve
JP2016125574A (en) * 2014-12-26 2016-07-11 株式会社不二工機 Flow channel change-over valve
KR102324891B1 (en) 2014-12-26 2021-11-12 가부시기가이샤 후지고오키 Channel switch valve
JP2020115043A (en) * 2019-04-05 2020-07-30 株式会社不二工機 Flow channel change-over valve

Also Published As

Publication number Publication date
JP6244552B2 (en) 2017-12-13

Similar Documents

Publication Publication Date Title
JP5217715B2 (en) Water heater
JP6510810B2 (en) Flow path switching valve
CA2780364A1 (en) Purge/fill valve
JP6244552B2 (en) Flow path switching valve and hot water supply device including the same
JP6064115B2 (en) Flow rate detection unit and hot water supply system
JP6011280B2 (en) Hot water storage water heater
JP5345231B2 (en) Check valve and hot water storage type water heater using the same
JP5903825B2 (en) Multi-way valve and hot water storage water heater
JP2007107750A (en) Heat pump water heater
JP2013068384A (en) Water heater
JP6988766B2 (en) Flow path switching valve and hot water storage type water heater
JP6187274B2 (en) Multi-way valve and hot water storage water heater
JP5104897B2 (en) Flow rate adjusting valve and water heater provided with the same
JP5423558B2 (en) Hot water storage water heater
JP6620310B2 (en) Flow path switching valve and hot water supply device including the same
JP2020115043A (en) Flow channel change-over valve
JP2012184857A (en) Hot water storage type water heater
JP2012017906A (en) Storage type hot water supply system
JP2009216346A (en) Hot water storage type hot water supply system
JP2014115061A (en) Water heater and valve unit
JP6428530B2 (en) Switching valve and water heater
US20200263804A1 (en) Three-way valve drivable by a pump
JP2014047860A (en) Check valve
JP6709477B2 (en) Flow path switching valve
JP2011196563A (en) Water heater

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20160519

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160822

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170711

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171016

R151 Written notification of patent or utility model registration

Ref document number: 6244552

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151