JP2015171254A - auxiliary capacitor charge control device - Google Patents

auxiliary capacitor charge control device Download PDF

Info

Publication number
JP2015171254A
JP2015171254A JP2014045332A JP2014045332A JP2015171254A JP 2015171254 A JP2015171254 A JP 2015171254A JP 2014045332 A JP2014045332 A JP 2014045332A JP 2014045332 A JP2014045332 A JP 2014045332A JP 2015171254 A JP2015171254 A JP 2015171254A
Authority
JP
Japan
Prior art keywords
voltage
capacitor
auxiliary capacitor
circuit
charging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014045332A
Other languages
Japanese (ja)
Inventor
峻一 澤野
Shunichi Sawano
峻一 澤野
勝也 生田
Katsuya Ikuta
勝也 生田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Wiring Systems Ltd
AutoNetworks Technologies Ltd
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Wiring Systems Ltd
AutoNetworks Technologies Ltd
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Wiring Systems Ltd, AutoNetworks Technologies Ltd, Sumitomo Electric Industries Ltd filed Critical Sumitomo Wiring Systems Ltd
Priority to JP2014045332A priority Critical patent/JP2015171254A/en
Publication of JP2015171254A publication Critical patent/JP2015171254A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide an auxiliary capacitor charge control device for a vehicle, capable of continuously performing the variable control of charging voltage of an auxiliary capacitor according to an ambient temperature, to suppress the deterioration of the auxiliary capacitor without causing wasteful component cost.SOLUTION: The auxiliary capacitor charge control device for controlling to charge an auxiliary capacitor C is provided on a vehicle power supply in which a generator 8, interlocked with an engine 9, generates electricity to charge a main capacitor B and the auxiliary capacitor C and feeds power to a plurality of load 3 from the generator 8, the main capacitor B, and the auxiliary capacitor C. The auxiliary capacitor charge control device includes: a switch T1 provided among the generator 8, the main capacitor B, and the auxiliary capacitor C; voltage division circuits R1, R2 for dividing a charge voltage to the auxiliary capacitor C; temperature correction circuits Rt, R3 for correcting each charge voltage value obtained by the division by the voltage division circuits R1, R2, according to the ambient temperature of the auxiliary capacitor C; and a switch on/off control circuit 5 for controlling the switch T1 to switch on/off when the charge voltage value corrected by the temperature correction circuits Rt, R3 is lower/higher than a predetermined voltage value.

Description

本発明は、車両に搭載された発電機が発電して主蓄電器及び補助蓄電器へ充電し、発電機、主蓄電器及び補助蓄電器から複数の負荷へ給電する車両用電源装置に備えられ、補助蓄電器への充電を制御する補助蓄電器充電制御装置に関するものである。   The present invention provides a power supply device for a vehicle that generates power from a generator mounted on a vehicle, charges the main capacitor and the auxiliary capacitor, and supplies power to the plurality of loads from the generator, the main capacitor, and the auxiliary capacitor. The present invention relates to an auxiliary capacitor charge control device that controls the charging of the battery.

近年、燃費を向上させる為に、ハイブリッドカー及び電気自動車の開発が進められ、また、ガソリンエンジン車においてもアイドリングストップ等を実施することにより、燃費向上が図られている。
しかし、アイドリングストップでは、一旦、エンジンが停止した後で、再度、エンジンが点火される際に、スタータへの突入電流により、エンジンのクランキングに伴ってバッテリ電圧が急激に低下する。
In recent years, in order to improve fuel efficiency, development of hybrid cars and electric cars has been promoted, and fuel efficiency has been improved by performing idling stop and the like in gasoline engine cars.
However, in the idling stop, when the engine is ignited again after the engine is once stopped, the battery voltage rapidly decreases with the cranking of the engine due to the inrush current to the starter.

バッテリ電圧が急激に低下した場合、例えば、ボディECU(Electronic Control Unit)等が誤って低電圧リセットをかけてしまう虞がある。その為、アイドリングストップ車では、バッテリ(主蓄電器)とは別に大容量キャパシタ等の補助蓄電器を備えて、クランキングに伴うバッテリ電圧の急激な低下に対処する方法が取られている。
また、補助蓄電器は、車両衝突等によりバッテリを喪失した場合の、ドアロック解除用の電源としても使用される。
When the battery voltage rapidly decreases, for example, a body ECU (Electronic Control Unit) or the like may erroneously perform a low voltage reset. Therefore, in an idling stop vehicle, an auxiliary capacitor such as a large-capacitance capacitor is provided in addition to the battery (main capacitor), and a method of dealing with a sudden drop in battery voltage due to cranking is taken.
The auxiliary capacitor is also used as a power source for unlocking the door when the battery is lost due to a vehicle collision or the like.

キャパシタは、長年使用され続けると劣化が進み、容量が減少したり、内部抵抗が上昇したりする。この劣化の進み具合は、一般的に「アレニウス則」の10℃2倍則に則っている。
また、キャパシタの劣化の進み方に影響するものとして「充電電圧」も挙げられる。環境温度が一定であるとすると、充電電圧が低い程、劣化が進み難い。
その為、大容量キャパシタを使用した補助蓄電器回路で、キャパシタの劣化を抑制しながら、環境温度の変化に対応して、必要な電力を供給する電源装置が提案されている。
Capacitors deteriorate over time if they are used for many years, and the capacitance decreases or the internal resistance increases. The degree of progress of this deterioration generally conforms to the 10 ° C. double rule of the “Arrhenius rule”.
In addition, “charging voltage” can also be mentioned as an influence on how the deterioration of the capacitor proceeds. Assuming that the environmental temperature is constant, the lower the charging voltage, the more difficult the deterioration proceeds.
Therefore, there has been proposed a power supply device that supplies necessary power in response to a change in environmental temperature while suppressing deterioration of the capacitor in an auxiliary capacitor circuit using a large-capacity capacitor.

特許文献1には、複数のキャパシタからなるキャパシタユニットと、複数のキャパシタの少なくとも1つに接続され、そのキャパシタの両端をショートするバイパススイッチと、キャパシタユニット近傍の温度を測定する温度センサとを備えた電源装置が開示されている。制御部は、キャパシタユニットに充電する際に、温度センサの検出温度が既定温度以下であれば、バイパススイッチをオンにして、バイパススイッチが接続されたキャパシタには充電せず、検出温度が既定温度を上回っていれば、バイパススイッチをオフにして、バイパススイッチが接続されたキャパシタも含めて充電する。   Patent Document 1 includes a capacitor unit including a plurality of capacitors, a bypass switch that is connected to at least one of the plurality of capacitors and shorts both ends of the capacitor, and a temperature sensor that measures the temperature in the vicinity of the capacitor unit. A power supply device is disclosed. When charging the capacitor unit, if the detected temperature of the temperature sensor is equal to or lower than the predetermined temperature, the controller turns on the bypass switch and does not charge the capacitor to which the bypass switch is connected. If it exceeds, the bypass switch is turned off and the capacitor including the bypass switch is charged.

特開2008−5662号公報Japanese Patent Laid-Open No. 2008-5562

上述した特許文献1に開示された電源装置では、バイパススイッチのオン/オフという2段階にしか制御できない為、温度閾値の設定が大まかになって難しい、また、環境温度によって、使用しないキャパシタが有って、無駄が多く、部品コスト的に不利である、という問題がある。   Since the power supply device disclosed in Patent Document 1 described above can be controlled only in two stages of ON / OFF of the bypass switch, it is difficult to set the temperature threshold roughly, and there are capacitors that are not used depending on the environmental temperature. Therefore, there is a problem that it is wasteful and disadvantageous in terms of component costs.

本発明は、上述したような事情に鑑みてなされたものであり、周辺温度に応じて補助蓄電器への充電電圧を連続的に可変制御して、補助蓄電器の劣化を抑制でき、部品コスト的に無駄が生じない車両用電源装置の補助蓄電器充電制御装置を提供することを目的とする。   The present invention has been made in view of the above-described circumstances, and can continuously and variably control the charging voltage to the auxiliary capacitor according to the ambient temperature to suppress the deterioration of the auxiliary capacitor. It is an object of the present invention to provide an auxiliary capacitor charging control device for a vehicle power supply device that does not cause waste.

第1発明に係る補助蓄電器充電制御装置は、エンジンに連動する発電機が発電して主蓄電器及び補助蓄電器へ充電し、前記発電機、主蓄電器及び補助蓄電器から複数の負荷へ給電する車両用電源装置に備えられ、前記補助蓄電器への充電を制御する補助蓄電器充電制御装置において、前記発電機及び主蓄電器並びに補助蓄電器間に設けられたスイッチと、前記補助蓄電器への充電電圧を分圧する分圧回路と、該分圧回路が分圧した充電電圧値を、前記補助蓄電器の周辺温度に応じて補正する温度補正回路と、該温度補正回路が補正した充電電圧値が所定電圧値より低い/高いときに、前記スイッチをオン/オフに制御するオン/オフ制御回路とを備えることを特徴とする。   An auxiliary capacitor charging control device according to a first aspect of the present invention is a vehicle power supply that generates power from a generator linked to an engine and charges the main capacitor and the auxiliary capacitor, and supplies power to a plurality of loads from the generator, the main capacitor, and the auxiliary capacitor. In the auxiliary capacitor charging control device that is provided in the device and controls charging to the auxiliary capacitor, a switch provided between the generator, the main capacitor, and the auxiliary capacitor, and a voltage dividing voltage for charging the auxiliary capacitor A circuit, a temperature correction circuit that corrects the charging voltage value divided by the voltage dividing circuit according to the ambient temperature of the auxiliary capacitor, and the charging voltage value corrected by the temperature correction circuit is lower / higher than a predetermined voltage value And an on / off control circuit for controlling the switch on / off.

この補助蓄電器充電制御装置では、エンジンに連動する発電機が発電して主蓄電器及び補助蓄電器へ充電し、発電機、主蓄電器及び補助蓄電器から複数の負荷へ給電する車両用電源装置に備えられ、補助蓄電器への充電を制御する。スイッチが、発電機及び主蓄電器並びに補助蓄電器間に設けられ、分圧回路が、補助蓄電器への充電電圧を分圧する。温度補正回路が、分圧回路が分圧した充電電圧値を、周辺温度に応じて補正し、オン/オフ制御回路が、温度補正回路が補正した充電電圧値が所定電圧値より低い/高いときに、スイッチをオン/オフに制御する。   In this auxiliary storage battery charging control device, a generator linked to the engine generates power and charges the main storage battery and the auxiliary storage battery, and is provided in a vehicle power supply device that supplies power to a plurality of loads from the generator, the main storage battery and the auxiliary storage battery, Controls charging to the auxiliary capacitor. A switch is provided between the generator, the main capacitor, and the auxiliary capacitor, and a voltage dividing circuit divides the charging voltage to the auxiliary capacitor. When the temperature correction circuit corrects the charging voltage value divided by the voltage dividing circuit according to the ambient temperature, and the on / off control circuit corrects the charging voltage value corrected by the temperature correction circuit to be lower / higher than the predetermined voltage value In addition, the switch is controlled to be turned on / off.

第2発明に係る補助蓄電器充電制御装置は、前記分圧回路は、高圧側抵抗及び低圧側抵抗により分圧しており、前記温度補正回路は、NTCサーミスタ及び抵抗の直列回路を前記高圧側抵抗に並列に接続してあることを特徴とする。   In the auxiliary storage battery charging control device according to the second aspect of the invention, the voltage dividing circuit divides the voltage by a high-voltage side resistor and a low-voltage side resistor, and the temperature correction circuit uses a series circuit of an NTC thermistor and a resistor as the high-voltage side resistor. It is connected in parallel.

この補助蓄電器充電制御装置では、分圧回路が、補助蓄電器への充電電圧を高圧側抵抗及び低圧側抵抗により分圧しており、温度補正回路は、NTCサーミスタ及び抵抗の直列回路を分圧回路の高圧側抵抗に並列に接続してある。   In this auxiliary capacitor charging control device, the voltage dividing circuit divides the charging voltage to the auxiliary capacitor by the high-voltage side resistor and the low-voltage side resistor, and the temperature correction circuit converts the series circuit of the NTC thermistor and the resistor to the voltage dividing circuit. It is connected in parallel to the high-voltage side resistor.

第3発明に係る補助蓄電器充電制御装置は、エンジンに連動する発電機が発電して主蓄電器及び補助蓄電器へ充電し、前記発電機、主蓄電器及び補助蓄電器から複数の負荷へ給電する車両用電源装置に備えられ、前記補助蓄電器への充電を制御する補助蓄電器充電制御装置において、前記発電機及び主蓄電器並びに補助蓄電器間に設けられたスイッチと、前記補助蓄電器への充電電圧を分圧する分圧回路と、所定の基準電圧値を前記補助蓄電器の周辺温度に応じて補正して出力する基準電圧回路と、前記分圧回路が分圧した充電電圧値が、前記基準電圧回路が出力した基準電圧値より低い/高いときに、前記スイッチをオン/オフに制御するオン/オフ制御回路とを備えることを特徴とする。   According to a third aspect of the present invention, there is provided an auxiliary storage battery charge control device, wherein a power generator for a vehicle that generates power from a generator linked to an engine and charges the main storage battery and the auxiliary storage battery and supplies power to a plurality of loads from the generator, the main storage battery, and the auxiliary storage battery. In the auxiliary capacitor charging control device that is provided in the device and controls charging to the auxiliary capacitor, a switch provided between the generator, the main capacitor, and the auxiliary capacitor, and a voltage dividing voltage for charging the auxiliary capacitor A reference voltage circuit that corrects and outputs a predetermined reference voltage value according to the ambient temperature of the auxiliary capacitor, and a charging voltage value divided by the voltage dividing circuit is a reference voltage output by the reference voltage circuit. And an on / off control circuit for controlling the switch on / off when the value is lower / higher than the value.

この補助蓄電器充電制御装置では、エンジンに連動する発電機が発電して主蓄電器及び補助蓄電器へ充電し、発電機、主蓄電器及び補助蓄電器から複数の負荷へ給電する車両用電源装置に備えられ、補助蓄電器への充電を制御する。スイッチが、発電機及び主蓄電器並びに補助蓄電器間に設けられ、分圧回路が、補助蓄電器への充電電圧を分圧する。基準電圧回路が、所定の基準電圧値を周辺温度に応じて補正して出力し、オン/オフ制御回路が、分圧回路が分圧した充電電圧値が、基準電圧回路が出力した基準電圧値より低い/高いときに、スイッチをオン/オフに制御する。   In this auxiliary storage battery charging control device, a generator linked to the engine generates power and charges the main storage battery and the auxiliary storage battery, and is provided in a vehicle power supply device that supplies power to a plurality of loads from the generator, the main storage battery and the auxiliary storage battery, Controls charging to the auxiliary capacitor. A switch is provided between the generator, the main capacitor, and the auxiliary capacitor, and a voltage dividing circuit divides the charging voltage to the auxiliary capacitor. The reference voltage circuit corrects and outputs a predetermined reference voltage value according to the ambient temperature, and the on / off control circuit outputs the charging voltage value divided by the voltage dividing circuit as the reference voltage value output by the reference voltage circuit. Control the switch on / off when lower / higher.

第4発明に係る補助蓄電器充電制御装置は、前記基準電圧回路は、定電圧源が出力した所定電圧値を高圧側抵抗及び低圧側抵抗により分圧して出力しており、NTCサーミスタ及び抵抗の直列回路を前記低圧側抵抗に並列に接続してあることを特徴とする。   In the auxiliary storage battery charge control device according to a fourth aspect of the invention, the reference voltage circuit divides and outputs a predetermined voltage value output from the constant voltage source by a high-voltage side resistor and a low-voltage side resistor, and an NTC thermistor and a resistor are connected in series. A circuit is connected in parallel to the low-voltage side resistor.

この補助蓄電器充電制御装置では、基準電圧回路が、定電圧源が出力した所定電圧値を高圧側抵抗及び低圧側抵抗により分圧して出力しており、NTCサーミスタ及び抵抗の直列回路を基準電圧回路の低圧側抵抗に並列に接続してある。   In this auxiliary capacitor charging control device, the reference voltage circuit divides and outputs the predetermined voltage value output from the constant voltage source by the high-voltage side resistor and the low-voltage side resistor, and the series circuit of the NTC thermistor and the resistor is the reference voltage circuit. Is connected in parallel to the low-voltage side resistor.

本発明に係る補助蓄電器充電制御装置によれば、周辺温度に応じて補助蓄電器への充電電圧を連続的に可変制御して、補助蓄電器の劣化を抑制でき、部品コスト的に無駄が生じない車両用電源装置の補助蓄電器充電制御装置を実現することができる。   According to the auxiliary storage battery charging control device according to the present invention, the charging voltage to the auxiliary storage battery can be continuously variably controlled according to the ambient temperature, the deterioration of the auxiliary storage battery can be suppressed, and parts cost is not wasted. An auxiliary capacitor charging control device for a power supply device can be realized.

本発明に係る補助蓄電器充電制御装置の実施の形態の要部構成を示すブロック図である。It is a block diagram which shows the principal part structure of embodiment of the auxiliary storage battery charge control apparatus which concerns on this invention. 大容量キャパシタの周辺温度と充電電圧との関係の例を示す特性図である。It is a characteristic view which shows the example of the relationship between the ambient temperature of a large capacity capacitor, and a charging voltage. 本発明に係る補助蓄電器充電制御装置の実施の形態の要部構成を示すブロック図である。It is a block diagram which shows the principal part structure of embodiment of the auxiliary storage battery charge control apparatus which concerns on this invention.

以下に、本発明に係る補助蓄電器充電制御装置をその実施の形態を示す図面に基づき説明する。
(実施の形態1)
図1は、本発明に係る補助蓄電器充電制御装置の実施の形態1の要部構成を示すブロック図である。
この補助蓄電器充電制御装置は、エンジン9に連動してオルタネータ(発電機、交流発電機)8が発電し整流した電力を、バッテリ(主蓄電器)B及び大容量キャパシタ(補助蓄電器、電気二重層キャパシタ)Cへ充電し、オルタネータ8、バッテリB及び大容量キャパシタCから負荷群3へ給電する車両用電源装置内に設けられている。
Hereinafter, an auxiliary storage battery charge control device according to the present invention will be described with reference to the drawings showing embodiments thereof.
(Embodiment 1)
FIG. 1 is a block diagram showing the main configuration of Embodiment 1 of an auxiliary storage battery charging control device according to the present invention.
This auxiliary storage battery charge control device is connected to an engine 9 by an alternator (generator, AC generator) 8 to generate and rectify the electric power from a battery (main storage battery) B and a large capacity capacitor (auxiliary storage battery, electric double layer capacitor). ) It is provided in a vehicle power supply device that charges C and supplies power to the load group 3 from the alternator 8, the battery B, and the large-capacitance capacitor C.

オルタネータ8及びバッテリBが出力した電力は、ヒューズF2及びダイオードD2を通じて、負荷群3に与えられる。
オルタネータ8及びバッテリBが出力した電力は、また、イグニッションリレー1、ヒューズF1、ダイオードD1、Pチャンネル型MOSFET(金属酸化膜半導体電界効果トランジスタ)T1、及び充電電流を制限する抵抗R4を通じて、大容量キャパシタCへ充電される。大容量キャパシタCは、例えば、電気二重層キャパシタが4つ直列に接続されている。
The electric power output from the alternator 8 and the battery B is given to the load group 3 through the fuse F2 and the diode D2.
The power output from the alternator 8 and the battery B is also large in capacity through the ignition relay 1, the fuse F1, the diode D1, the P-channel type MOSFET (metal oxide semiconductor field effect transistor) T1, and the resistor R4 that limits the charging current. The capacitor C is charged. For example, four large-capacity capacitors C are connected in series with four electric double layer capacitors.

大容量キャパシタCへ充電された電力は、昇圧回路2で昇圧された後、ダイオードD3を通じて、負荷群3へ給電される。
大容量キャパシタCの充電電圧Vchは、充電電圧制御部6により分圧されると共に周辺温度に応じて補正される。
充電電圧制御部6は、大容量キャパシタCの入出力端子及び接地端子間に、抵抗(高圧側抵抗)R1及び抵抗(低圧側抵抗)R2が直列に接続された分圧回路と、大容量キャパシタC周辺に設けられたNTCサーミスタRt及び抵抗R3の直列回路が、分圧回路の高圧側抵抗R1に並列に接続された温度補正回路とを備えている。
The power charged in the large-capacitance capacitor C is boosted by the booster circuit 2 and then supplied to the load group 3 through the diode D3.
The charging voltage Vch of the large-capacity capacitor C is divided by the charging voltage control unit 6 and is corrected according to the ambient temperature.
The charging voltage control unit 6 includes a voltage dividing circuit in which a resistor (high-voltage side resistor) R1 and a resistor (low-voltage side resistor) R2 are connected in series between an input / output terminal and a ground terminal of the large-capacity capacitor C, and a large-capacity capacitor A series circuit of an NTC thermistor Rt and a resistor R3 provided around C includes a temperature correction circuit connected in parallel to the high-voltage side resistor R1 of the voltage dividing circuit.

NTCサーミスタRtは、大容量キャパシタCの周辺温度が高い程、抵抗値が低下する。
NTCサーミスタRtの抵抗値Rtは、(1)式で表される。
Rt=Rt0×exp(B((1/Tt)−(1/Tt0))) (1)
Rt0;基準温度(例えば25℃)の抵抗値(Ω)
Tt;任意の温度(K)
Tt0;基準温度(例えば25℃=298K)(K)
B;サーミスタ係数
The resistance value of the NTC thermistor Rt decreases as the ambient temperature of the large-capacitance capacitor C increases.
The resistance value Rt of the NTC thermistor Rt is expressed by equation (1).
Rt = Rt0 × exp (B ((1 / Tt) − (1 / Tt0))) (1)
Rt0: resistance value (Ω) at a reference temperature (for example, 25 ° C.)
Tt: arbitrary temperature (K)
Tt0: reference temperature (for example, 25 ° C. = 298 K) (K)
B: Thermistor coefficient

充電電圧制御部6の分圧回路R1,R2により分圧され、温度補正回路Rt,R3により補正された、大容量キャパシタCの充電電圧Vpcは、コンパレータ4の反転入力端子に与えられる。
ここで、分圧され補正された充電電圧Vpcは、(2)式で表される。
Vpc=Vch・R2(Rt+R1+R3)/
(Rt(R1+R2)+R1R2+R2R3+R1R3) (2)
尚、充電電圧制御部6は、外部の温度検出器が検出した大容量キャパシタCの周辺温度を与えられ、与えられた周辺温度に応じて、分圧回路R1,R2による分圧を補正するようにしても良い。
The charging voltage Vpc of the large-capacitance capacitor C that has been divided by the voltage dividing circuits R1 and R2 of the charging voltage control unit 6 and corrected by the temperature correction circuits Rt and R3 is applied to the inverting input terminal of the comparator 4.
Here, the divided and corrected charging voltage Vpc is expressed by equation (2).
Vpc = Vch · R2 (Rt + R1 + R3) /
(Rt (R1 + R2) + R1R2 + R2R3 + R1R3) (2)
The charging voltage control unit 6 is given the ambient temperature of the large-capacitance capacitor C detected by the external temperature detector, and corrects the voltage division by the voltage dividing circuits R1 and R2 according to the given ambient temperature. Anyway.

コンパレータ4は、制御電源Pから電圧値Vcの電源を与えられ、定電圧源7から抵抗R6を通じて所定電圧値Vsが非反転入力端子に与えられる。
コンパレータ4は、抵抗R7により正帰還がかけられ、出力端子は、Nチャンネル型MOSFETT2のゲートに接続されると共に、抵抗R8を通じて、制御電源Pによりプルアップされている。
The comparator 4 is supplied with a power supply having a voltage value Vc from the control power supply P, and a predetermined voltage value Vs is supplied from the constant voltage source 7 to the non-inverting input terminal through the resistor R6.
The comparator 4 is positively fed back by the resistor R7, the output terminal is connected to the gate of the N-channel MOSFET T2, and is pulled up by the control power source P through the resistor R8.

コンパレータ4は、Vh=(Vc−0)×R6/(R6+R7)=Vc×R6/(R6+R7)で算出される不感帯Vhを、所定電圧値Vsを中心に有し、ヒステリシスを有している。
つまり、大容量キャパシタCの充電電圧Vchの、充電電圧制御部6により分圧され補正された電圧値Vpcが低い値から上昇する場合、コンパレータ4は、Vpc=Vs+Vh/2=Vs+Vc×R6/2(R6+R7)でマイナス反転する。また、電圧値Vpcが高い値から下降する場合、コンパレータ4は、Vpc=Vs−Vh/2=Vs−Vc×R6/2(R6+R7)でプラス反転する。
The comparator 4 has a dead zone Vh calculated by Vh = (Vc−0) × R6 / (R6 + R7) = Vc × R6 / (R6 + R7) with a predetermined voltage value Vs as the center, and has hysteresis.
That is, when the voltage value Vpc divided and corrected by the charging voltage control unit 6 of the charging voltage Vch of the large-capacity capacitor C rises from a low value, the comparator 4 determines that Vpc = Vs + Vh / 2 = Vs + Vc × R6 / 2. Negative inversion at (R6 + R7). Further, when the voltage value Vpc falls from a high value, the comparator 4 is positively inverted by Vpc = Vs−Vh / 2 = Vs−Vc × R6 / 2 (R6 + R7).

FETT2のドレインは、抵抗R5を通じて、FETT1のゲートに接続され、FETT2のソースは接地されている。
コンパレータ4、コンパレータ4の付属回路、FETT1,T2及び抵抗R5は、充電オン/オフ回路(オン/オフ制御回路)5を構成している。
制御電源Pには、ダイオードD4,D5の各カソードが接続され、ダイオードD4のアノードはダイオードD1のアノードに、ダイオードD5のアノードは大容量キャパシタCの入出力端子にそれぞれ接続されている。これにより、制御電源Pは、バッテリB側及び大容量キャパシタC側の両方から電源を得ることができる。
The drain of the FET T2 is connected to the gate of the FET T1 through the resistor R5, and the source of the FET T2 is grounded.
The comparator 4, the circuit attached to the comparator 4, the FETs T <b> 1 and T <b> 2, and the resistor R <b> 5 constitute a charging on / off circuit (on / off control circuit) 5.
The cathodes of the diodes D4 and D5 are connected to the control power source P. The anode of the diode D4 is connected to the anode of the diode D1, and the anode of the diode D5 is connected to the input / output terminal of the large-capacitance capacitor C. Thereby, the control power supply P can obtain power from both the battery B side and the large-capacitance capacitor C side.

以下に、このような構成の補助蓄電器充電制御装置の動作を説明する。
イグニッションリレー1がオフであり、エンジン9が停止している場合、オルタネータ8も停止しており、バッテリBの出力電力が、ヒューズF2及びダイオードD2を通じて、負荷群3に与えられる。
イグニッションリレー1がオンであり、エンジン9が駆動している場合、オルタネータ8は発電可能であり(バッテリBへの充電制御により停止するときがある)、オルタネータ8の出力電力が、バッテリBを充電すると共に、ヒューズF2及びダイオードD2を通じて、負荷群3に与えられる。また、オルタネータ8及びバッテリBの出力電力は、イグニッションリレー1、ヒューズF1、ダイオードD1、FETT1及び抵抗R4を通じて、大容量キャパシタCへ充電される。
Below, operation | movement of the auxiliary | assistant capacitor | condenser charging control apparatus of such a structure is demonstrated.
When the ignition relay 1 is off and the engine 9 is stopped, the alternator 8 is also stopped, and the output power of the battery B is supplied to the load group 3 through the fuse F2 and the diode D2.
When the ignition relay 1 is on and the engine 9 is driven, the alternator 8 can generate power (may be stopped by charging control to the battery B), and the output power of the alternator 8 charges the battery B. And supplied to the load group 3 through the fuse F2 and the diode D2. The output power of the alternator 8 and the battery B is charged to the large-capacity capacitor C through the ignition relay 1, the fuse F1, the diode D1, the FET T1, and the resistor R4.

アイドリングストップ等の停止状態からエンジン9が起動し、図示しないスタータへの突入電流が発生したとき、又は車両の衝突によりバッテリBを喪失したとき等、負荷群3側の電圧が急激に低下すると、昇圧回路2が作動し、昇圧された大容量キャパシタCの出力電力が、ダイオードD3を通じて、負荷群3に与えられる。   When the engine 9 is started from a stopped state such as an idling stop and an inrush current to a starter (not shown) occurs, or when the battery B is lost due to a vehicle collision, the voltage on the load group 3 side suddenly decreases. The booster circuit 2 operates, and the boosted output power of the large-capacity capacitor C is given to the load group 3 through the diode D3.

イグニッションリレー1がオンであり、オルタネータ8及びバッテリBの出力電力が、大容量キャパシタCへ充電される場合、充電の開始時で、充電電圧Vchが低下していれば、充電電圧制御部6で分圧され補正された充電電圧Vpcは、Vs+Vh/2より低く、コンパレータ4は電圧Vcを出力し、FETT2をオンにする。これにより、FETT1は、ゲートが接地されて(ゲート・ソース間電圧が大きくなって)オンになり、大容量キャパシタCは充電される。   When the ignition relay 1 is on and the output power of the alternator 8 and the battery B is charged to the large-capacity capacitor C, if the charging voltage Vch is reduced at the start of charging, the charging voltage control unit 6 The divided and corrected charging voltage Vpc is lower than Vs + Vh / 2, and the comparator 4 outputs the voltage Vc to turn on the FET T2. As a result, the FET T1 is turned on with the gate grounded (the gate-source voltage is increased), and the large-capacitance capacitor C is charged.

大容量キャパシタCへの充電が進み、充電電圧Vchが上昇し、充電電圧制御部6で分圧され補正された充電電圧Vpcが、Vs+Vh/2に達すると、コンパレータ4は0Vを出力し、FETT2をオフにする。これにより、FETT1は、ゲート電圧が上昇して(ゲート・ソース間電圧が小さくなって)オフになり、大容量キャパシタCへの充電は停止される。   When charging to the large-capacitance capacitor C proceeds, the charging voltage Vch rises, and when the charging voltage Vpc divided and corrected by the charging voltage control unit 6 reaches Vs + Vh / 2, the comparator 4 outputs 0 V, and FETT2 Turn off. As a result, the FET T1 is turned off with the gate voltage rising (the gate-source voltage is reduced), and charging of the large-capacitance capacitor C is stopped.

大容量キャパシタCからの放電が進み、充電電圧Vchが低下し、充電電圧制御部6で分圧され補正された充電電圧Vpcが、Vs−Vh/2まで低下すると、コンパレータ4は電圧Vcを出力し、FETT2をオンにする。これにより、FETT1は、ゲートが接地されて(ゲート・ソース間電圧が大きくなって)オンになり、大容量キャパシタCは充電される。   When discharging from the large-capacity capacitor C proceeds, the charging voltage Vch decreases, and when the charging voltage Vpc divided and corrected by the charging voltage control unit 6 decreases to Vs−Vh / 2, the comparator 4 outputs the voltage Vc. Then, FETT2 is turned on. As a result, the FET T1 is turned on with the gate grounded (the gate-source voltage is increased), and the large-capacitance capacitor C is charged.

以上のように、充電電圧制御部6で分圧され補正された充電電圧Vpcが、Vs±Vh/2間で保持されることにより、大容量キャパシタCの充電電圧Vchは、
Vs=Vch・R2(Rt+R1+R3)/
(Rt(R1+R2)+R1R2+R2R3+R1R3) (2)
より、
Vch=Vs・(Rt(R1+R2)+R1R2+R2R3+R1R3)
/R2(Rt+R1+R3)
前後の電圧値に保持される。
As described above, the charging voltage Vpc divided and corrected by the charging voltage control unit 6 is held between Vs ± Vh / 2, so that the charging voltage Vch of the large-capacitance capacitor C is
Vs = Vch · R2 (Rt + R1 + R3) /
(Rt (R1 + R2) + R1R2 + R2R3 + R1R3) (2)
Than,
Vch = Vs · (Rt (R1 + R2) + R1R2 + R2R3 + R1R3)
/ R2 (Rt + R1 + R3)
It is held at the voltage value before and after.

ここで、NTCサーミスタRtは、大容量キャパシタCの周辺温度に従って、(1)式のように変化するので、例えば、R1=10kΩ、R2=4.7kΩ、R3=47kΩ、Rt=47kΩ(@25℃)、サーミスタ係数B=4050、所定電圧値Vs=2.32Vとすると、大容量キャパシタCの充電電圧Vchは、周辺温度に従って、図2に示すように変化する。充電電圧Vchは、周辺温度が高くなる程、低い電圧値に保持される。   Here, the NTC thermistor Rt changes according to the ambient temperature of the large-capacitance capacitor C as shown in the equation (1). For example, R1 = 10 kΩ, R2 = 4.7 kΩ, R3 = 47 kΩ, Rt = 47 kΩ (@ 25 C), thermistor coefficient B = 4050, and predetermined voltage value Vs = 2.32 V, the charging voltage Vch of the large-capacitance capacitor C changes as shown in FIG. 2 according to the ambient temperature. The charging voltage Vch is held at a lower voltage value as the ambient temperature becomes higher.

(実施の形態2)
図3は、本発明に係る補助蓄電器充電制御装置の実施の形態2の要部構成を示すブロック図である。
この補助蓄電器充電制御装置は、大容量キャパシタCの入出力端子及び接地端子間に接続された分圧回路R1,抵抗R2に、NTCサーミスタRtは接続されていない。
(Embodiment 2)
FIG. 3 is a block diagram showing a main configuration of Embodiment 2 of the auxiliary storage battery charging control apparatus according to the present invention.
In this auxiliary capacitor charging control device, the NTC thermistor Rt is not connected to the voltage dividing circuit R1 and the resistor R2 connected between the input / output terminal of the large-capacitance capacitor C and the ground terminal.

充電オン/オフ回路(オン/オフ制御回路)5aは、分圧回路R1,R2により分圧された、大容量キャパシタCの充電電圧Vpが、コンパレータ4の反転入力端子に与えられる。
コンパレータ4は、制御電源Pから電圧値Vcの電源を与えられ、定電圧源7から抵抗(高圧側抵抗)R6を通じて所定電圧値Vsが非反転入力端子に与えられる。
コンパレータ4は、抵抗R7により正帰還がかけられ、出力端子は、Nチャンネル型MOSFETT2のゲートに接続されると共に、抵抗R8を通じて、制御電源Pによりプルアップされている。
In the charge on / off circuit (on / off control circuit) 5 a, the charge voltage Vp of the large-capacitance capacitor C divided by the voltage dividing circuits R 1 and R 2 is applied to the inverting input terminal of the comparator 4.
The comparator 4 is supplied with a power supply having a voltage value Vc from the control power supply P, and a predetermined voltage value Vs is supplied from the constant voltage source 7 to the non-inverting input terminal through a resistor (high-voltage side resistor) R6.
The comparator 4 is positively fed back by the resistor R7, the output terminal is connected to the gate of the N-channel MOSFET T2, and is pulled up by the control power source P through the resistor R8.

充電オン/オフ回路5aは、基準電圧回路10を備えており、基準電圧回路10は、大容量キャパシタC周辺に設けられたNTCサーミスタRt1及び抵抗R9の直列回路と、抵抗(低圧側抵抗)R10と、抵抗R6及び定電圧源7の直列回路とが並列に接続されている。基準電圧回路10は、定電圧源7が出力する所定電圧値Vsを、大容量キャパシタCの周辺温度に応じて補正して出力する。その他の要部構成は、上述した実施の形態1の要部構成と同様であるので、説明を省略する。   The charging on / off circuit 5a includes a reference voltage circuit 10. The reference voltage circuit 10 includes a series circuit of an NTC thermistor Rt1 and a resistor R9 provided around the large-capacitance capacitor C, and a resistor (low-voltage side resistor) R10. And a series circuit of the resistor R6 and the constant voltage source 7 are connected in parallel. The reference voltage circuit 10 corrects and outputs the predetermined voltage value Vs output from the constant voltage source 7 according to the ambient temperature of the large-capacitance capacitor C. Since the other principal part structure is the same as that of the principal part structure of Embodiment 1 mentioned above, description is abbreviate | omitted.

以下に、このような構成の補助蓄電器充電制御装置の動作を説明する。
NTCサーミスタRt1は、大容量キャパシタCの周辺温度に従って、(1)式のように変化するので、周辺温度が高くなる程、抵抗値Rt1が低くなる。抵抗値Rt1が低くなると、定電圧源7が出力する所定電圧値Vsも、低めに補正される。その結果、充電電圧Vchは、大容量キャパシタCの周辺温度が高くなる程、低い電圧値に保持され、図2に示す充電電圧と同様に、周辺温度に応じて変化する。その他の動作は、上述した実施の形態1の動作と同様であるので、説明を省略する。
Below, operation | movement of the auxiliary | assistant capacitor | condenser charging control apparatus of such a structure is demonstrated.
Since the NTC thermistor Rt1 changes as shown in the equation (1) according to the ambient temperature of the large-capacitance capacitor C, the resistance value Rt1 decreases as the ambient temperature increases. When the resistance value Rt1 decreases, the predetermined voltage value Vs output from the constant voltage source 7 is also corrected to be lower. As a result, the charging voltage Vch is held at a lower voltage value as the ambient temperature of the large-capacitance capacitor C becomes higher, and changes according to the ambient temperature in the same manner as the charging voltage shown in FIG. Other operations are the same as the operations of the first embodiment described above, and thus description thereof is omitted.

尚、以上の実施の形態1,2では、キャパシタ(補助蓄電器)の電圧を昇圧して負荷群へ給電する昇圧方式の車両用電源装置への適用として説明したが、1次電源電圧を降圧してキャパシタ(補助蓄電器)を充電する降圧方式の車両用電源装置におけるキャパシタ充電についても、本発明を適用できることはいうまでもない。   Although the first and second embodiments have been described as applied to a booster type vehicle power supply device that boosts the voltage of the capacitor (auxiliary capacitor) and supplies power to the load group, the primary power supply voltage is stepped down. Needless to say, the present invention can also be applied to capacitor charging in a step-down vehicle power supply device that charges a capacitor (auxiliary capacitor).

1 イグニッションリレー
3 負荷群
4 コンパレータ
5,5a 充電オン/オフ回路(オン/オフ制御回路)
6 充電電圧制御部
7 定電圧源
8 オルタネータ(発電機、交流発電機)
9 エンジン
10 基準電圧回路
B バッテリ(主蓄電器)
C 大容量キャパシタ(補助蓄電器、電気二重層キャパシタ)
T1 FET(スイッチ)
T2 FET
R1 抵抗(高圧側抵抗、分圧回路)
R2 抵抗(低圧側抵抗、分圧回路)
R3 抵抗(温度補正回路)
R6 抵抗(高圧側抵抗)
R9 抵抗
R10 抵抗(低圧側抵抗)
Rt NTCサーミスタ(温度補正回路)
Rt1 NTCサーミスタ
1 Ignition Relay 3 Load Group 4 Comparator 5, 5a Charging On / Off Circuit (On / Off Control Circuit)
6 Charging voltage controller 7 Constant voltage source 8 Alternator (generator, AC generator)
9 Engine 10 Reference voltage circuit B Battery (main battery)
C Large capacity capacitor (auxiliary capacitor, electric double layer capacitor)
T1 FET (switch)
T2 FET
R1 resistance (high voltage side resistance, voltage divider circuit)
R2 resistance (low voltage side resistance, voltage divider circuit)
R3 resistance (temperature correction circuit)
R6 resistance (high voltage side resistance)
R9 resistance R10 resistance (low-voltage side resistance)
Rt NTC thermistor (temperature correction circuit)
Rt1 NTC thermistor

Claims (4)

エンジンに連動する発電機が発電して主蓄電器及び補助蓄電器へ充電し、前記発電機、主蓄電器及び補助蓄電器から複数の負荷へ給電する車両用電源装置に備えられ、前記補助蓄電器への充電を制御する補助蓄電器充電制御装置において、
前記発電機及び主蓄電器並びに補助蓄電器間に設けられたスイッチと、前記補助蓄電器への充電電圧を分圧する分圧回路と、該分圧回路が分圧した充電電圧値を、前記補助蓄電器の周辺温度に応じて補正する温度補正回路と、該温度補正回路が補正した充電電圧値が所定電圧値より低い/高いときに、前記スイッチをオン/オフに制御するオン/オフ制御回路とを備えることを特徴とする補助蓄電器充電制御装置。
A generator linked to the engine generates power to charge the main capacitor and the auxiliary capacitor, and is provided in a vehicle power supply device that supplies power to a plurality of loads from the generator, the main capacitor and the auxiliary capacitor, and charges the auxiliary capacitor. In the auxiliary capacitor charging control device to control,
A switch provided between the generator, the main capacitor, and the auxiliary capacitor; a voltage dividing circuit that divides a charging voltage to the auxiliary capacitor; and a charging voltage value divided by the voltage dividing circuit, A temperature correction circuit for correcting the temperature according to the temperature; and an on / off control circuit for controlling the switch on / off when the charging voltage value corrected by the temperature correction circuit is lower / higher than a predetermined voltage value. An auxiliary capacitor charge control device characterized by the above.
前記分圧回路は、高圧側抵抗及び低圧側抵抗により分圧しており、前記温度補正回路は、NTCサーミスタ及び抵抗の直列回路を前記高圧側抵抗に並列に接続してある請求項1記載の補助蓄電器充電制御装置。   2. The auxiliary circuit according to claim 1, wherein the voltage dividing circuit divides the voltage by a high voltage side resistor and a low voltage side resistor, and the temperature correction circuit has a series circuit of an NTC thermistor and a resistor connected in parallel to the high voltage side resistor. Capacitor charge control device. エンジンに連動する発電機が発電して主蓄電器及び補助蓄電器へ充電し、前記発電機、主蓄電器及び補助蓄電器から複数の負荷へ給電する車両用電源装置に備えられ、前記補助蓄電器への充電を制御する補助蓄電器充電制御装置において、
前記発電機及び主蓄電器並びに補助蓄電器間に設けられたスイッチと、前記補助蓄電器への充電電圧を分圧する分圧回路と、所定の基準電圧値を前記補助蓄電器の周辺温度に応じて補正して出力する基準電圧回路と、前記分圧回路が分圧した充電電圧値が、前記基準電圧回路が出力した基準電圧値より低い/高いときに、前記スイッチをオン/オフに制御するオン/オフ制御回路とを備えることを特徴とする補助蓄電器充電制御装置。
A generator linked to the engine generates power to charge the main capacitor and the auxiliary capacitor, and is provided in a vehicle power supply device that supplies power to a plurality of loads from the generator, the main capacitor and the auxiliary capacitor, and charges the auxiliary capacitor. In the auxiliary capacitor charging control device to control,
A switch provided between the generator, the main capacitor, and the auxiliary capacitor, a voltage dividing circuit that divides the charging voltage to the auxiliary capacitor, and a predetermined reference voltage value is corrected according to the ambient temperature of the auxiliary capacitor. An output reference voltage circuit and an on / off control for controlling the switch on / off when a charging voltage value divided by the voltage dividing circuit is lower / higher than a reference voltage value output by the reference voltage circuit And an auxiliary storage battery charge control device.
前記基準電圧回路は、定電圧源が出力した所定電圧値を高圧側抵抗及び低圧側抵抗により分圧して出力しており、NTCサーミスタ及び抵抗の直列回路を前記低圧側抵抗に並列に接続してある請求項3記載の補助蓄電器充電制御装置。   The reference voltage circuit divides and outputs a predetermined voltage value output from a constant voltage source by a high-voltage side resistor and a low-voltage side resistor, and a series circuit of an NTC thermistor and a resistor is connected in parallel to the low-voltage side resistor. The auxiliary capacitor charging control device according to claim 3.
JP2014045332A 2014-03-07 2014-03-07 auxiliary capacitor charge control device Pending JP2015171254A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014045332A JP2015171254A (en) 2014-03-07 2014-03-07 auxiliary capacitor charge control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014045332A JP2015171254A (en) 2014-03-07 2014-03-07 auxiliary capacitor charge control device

Publications (1)

Publication Number Publication Date
JP2015171254A true JP2015171254A (en) 2015-09-28

Family

ID=54203538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014045332A Pending JP2015171254A (en) 2014-03-07 2014-03-07 auxiliary capacitor charge control device

Country Status (1)

Country Link
JP (1) JP2015171254A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017070057A (en) * 2015-09-29 2017-04-06 パナソニックIpマネジメント株式会社 Backup power supply device and vehicle using backup power supply device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0370437A (en) * 1989-08-04 1991-03-26 Matsushita Electric Ind Co Ltd Constant-voltage charger
JPH0391036U (en) * 1989-12-26 1991-09-17
JPH0622468A (en) * 1992-07-03 1994-01-28 Nippon Thermostat Kk Charging circuit of battery for vehicle
JPH06165408A (en) * 1992-11-20 1994-06-10 Fuji Electric Co Ltd Charging device of nickel-cadmium battery
JPH06197466A (en) * 1992-12-22 1994-07-15 Sanyo Electric Co Ltd Charging apparatus
JPH11187584A (en) * 1997-12-18 1999-07-09 Tamura Electric Works Ltd Portable terminal
JP2013126313A (en) * 2011-12-15 2013-06-24 Panasonic Corp Capacitor device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0370437A (en) * 1989-08-04 1991-03-26 Matsushita Electric Ind Co Ltd Constant-voltage charger
JPH0391036U (en) * 1989-12-26 1991-09-17
JPH0622468A (en) * 1992-07-03 1994-01-28 Nippon Thermostat Kk Charging circuit of battery for vehicle
JPH06165408A (en) * 1992-11-20 1994-06-10 Fuji Electric Co Ltd Charging device of nickel-cadmium battery
JPH06197466A (en) * 1992-12-22 1994-07-15 Sanyo Electric Co Ltd Charging apparatus
JPH11187584A (en) * 1997-12-18 1999-07-09 Tamura Electric Works Ltd Portable terminal
JP2013126313A (en) * 2011-12-15 2013-06-24 Panasonic Corp Capacitor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017070057A (en) * 2015-09-29 2017-04-06 パナソニックIpマネジメント株式会社 Backup power supply device and vehicle using backup power supply device

Similar Documents

Publication Publication Date Title
US10668825B2 (en) Engine start and battery support module
US10232735B2 (en) Control device for power supply system
JP5942083B2 (en) Capacitor device
JP6878782B2 (en) Power control unit and power system
US20150251543A1 (en) Vehicle controlling system
US20150288211A1 (en) Linear Current Regulator For High Voltage Bus Precharging
JP4468708B2 (en) Power supply
WO2016052163A1 (en) Charge-discharge control circuit
JP2009293474A (en) Ignition device for internal combustion engine
JP6112004B2 (en) Auxiliary power supply
JP5975068B2 (en) Vehicle power supply
JP2015171254A (en) auxiliary capacitor charge control device
US20120075763A1 (en) Sensor device with current limiter unit
JP6587794B2 (en) Discharge control circuit and battery unit
JP2017163713A (en) Charge-discharge device and power supply device
JP6587432B2 (en) Alternator power generation control device
JP2016054628A (en) Power supply and power supply charging method
WO2017168776A1 (en) Load-driving device for internal combustion engine, and ignition device for internal combustion engine
US10840901B2 (en) Semiconductor device and control device
JP2017147887A (en) Power source system
US10821840B2 (en) Power supply arrangement with an interface for operation of a multi-voltage system
US10744891B2 (en) Voltage control for alternator mode in electrified vehicles
RU2555323C2 (en) Device to compensate self-discharge of accumulator batteries
WO2016093170A1 (en) Charging control circuit
US9982650B2 (en) Ignition apparatus and ignition control method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160705

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170328

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20171003