JP2015164380A - Operation method for independent distributed power supply system - Google Patents

Operation method for independent distributed power supply system Download PDF

Info

Publication number
JP2015164380A
JP2015164380A JP2014039584A JP2014039584A JP2015164380A JP 2015164380 A JP2015164380 A JP 2015164380A JP 2014039584 A JP2014039584 A JP 2014039584A JP 2014039584 A JP2014039584 A JP 2014039584A JP 2015164380 A JP2015164380 A JP 2015164380A
Authority
JP
Japan
Prior art keywords
power
fuel cell
load
power generation
storage battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014039584A
Other languages
Japanese (ja)
Inventor
琴絵 水木
Kotoe Mizuki
琴絵 水木
敏 杉田
Satoshi Sugita
敏 杉田
寛也 矢島
Hiroya Yajima
寛也 矢島
晶子 高橋
Akiko Takahashi
晶子 高橋
忠利 馬場崎
Tadatoshi Babasaki
忠利 馬場崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2014039584A priority Critical patent/JP2015164380A/en
Publication of JP2015164380A publication Critical patent/JP2015164380A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an operation method including a fuel cell having high power generation efficiency in an independent distributed power supply comprising a photovoltaics, the fuel cell, and a battery.SOLUTION: An independent distributed power supply system 400 comprising a photovoltaics 102, a fuel cell 104, and a battery 108 makes output of the fuel cell be rated output when a charge rate of the battery is equal to or smaller than a prescribed value; and assigns a surplus power obtained by subtracting power consumed by a load 110 from the sum of power generated by the photovoltaics and the fuel cell for charging the battery when the surplus power is generated. The prescribed value with respect to the charge rate differs according to the power consumed by the load, and is smaller as the power consumed by the load is larger.

Description

本発明は、独立型分散電源システムの運転方法に関する。   The present invention relates to a method for operating a stand-alone distributed power supply system.

近年、太陽光発電や燃料電池、蓄電池などを組み合わせた分散型電力システムが提唱され、制御法の研究や実証試験が現在さかんに行われている(例えば、非特許文献1参照)。図1に、非特許文献1の電源システムの構成を示す。図1の電源システム100は、太陽光発電装置102(PV:photovoltaics)と燃料電池装置104(FC:Fuel cell)と蓄電池108(Batt:Battery)とを備える。   In recent years, distributed power systems combining solar power generation, fuel cells, storage batteries, and the like have been proposed, and research and demonstration tests of control methods are currently being conducted (see, for example, Non-Patent Document 1). FIG. 1 shows the configuration of the power supply system of Non-Patent Document 1. The power supply system 100 in FIG. 1 includes a photovoltaic power generation device 102 (PV: photovoltaic), a fuel cell device 104 (FC: fuel cell), and a storage battery 108 (Batt: Battery).

太陽光発電装置102(PV:photovoltaics)は、最大出力電力を調整する最大出力電制御装置(MPPT:Maximum Power Point Tracker)112を有し、MPPTを介して電力バスに接続されている。   The photovoltaic power generation device 102 (PV: photovoltaics) has a maximum output power control device (MPPT: Maximum Power Point Tracker) 112 that adjusts the maximum output power, and is connected to the power bus via the MPPT.

燃料電池装置104は、ダイオード116を介して電力バスに接続されている。これにより、MPPT112の出力電圧範囲は燃料電池装置104のそれよりも高く設定されており、MPPT112側が燃料電池装置104に対して優先的に電力が供給される。また、燃料電池装置104には、燃料を供給するLPGボンベ106が接続されている。   The fuel cell device 104 is connected to a power bus via a diode 116. As a result, the output voltage range of the MPPT 112 is set higher than that of the fuel cell device 104, and power is preferentially supplied to the fuel cell device 104 on the MPPT 112 side. Further, an LPG cylinder 106 for supplying fuel is connected to the fuel cell device 104.

蓄電池108は、ダイオード122を介して電力バスに接続されている。DC/DC変換器118の出力電圧範囲は蓄電池108のそれよりも高く設定されており、DC/DC変換器118側が蓄電池108に対して優先的に電力が供給される。また、蓄電池108には、電力バスから電力を引き込み蓄電池108の充電を制御するチャージャ120が接続されている。   The storage battery 108 is connected to the power bus via the diode 122. The output voltage range of the DC / DC converter 118 is set to be higher than that of the storage battery 108, and power is preferentially supplied to the storage battery 108 on the DC / DC converter 118 side. The storage battery 108 is connected to a charger 120 that controls the charging of the storage battery 108 by drawing power from the power bus.

電力バスには、DC/DC変換器118が備えられている。   The power bus is provided with a DC / DC converter 118.

これらの分散した電源、すなわち、太陽光発電装置102、燃料電池装置104および蓄電池108は、電源システム100において電力バスに接続され、この電力バスに接続された負荷110(Load)へ電力が供給される。例えば、太陽光発電装置が発電する電力が負荷110により消費される電力よりも小さいとき、電力バスの電圧が低下する。この電力バスの低下に応答してダイオード(116,122)に接続された燃料電池104や蓄電池108からの電力が負荷110へ供給される。このように、太陽光発電装置は、化石燃料を消費しないため、なるべく太陽光発電装置による電力を有効利用するのが望ましい。   These distributed power sources, that is, the photovoltaic power generation device 102, the fuel cell device 104, and the storage battery 108 are connected to a power bus in the power supply system 100, and power is supplied to a load 110 (Load) connected to the power bus. The For example, when the power generated by the solar power generation device is smaller than the power consumed by the load 110, the voltage of the power bus decreases. In response to the decrease in the power bus, power from the fuel cell 104 and the storage battery 108 connected to the diodes (116, 122) is supplied to the load 110. Thus, since the solar power generation device does not consume fossil fuel, it is desirable to effectively use the power from the solar power generation device as much as possible.

矢島寛也 外4名、「太陽電池と燃料電池を用いた小規模電源システム」、2013年ソサイエティ大会演論文集、 2 S-31〜32、電子情報通信学会、2013年Hiroya Yajima, 4 others, "Small-scale power supply system using solar cells and fuel cells", 2013 Society Conference Proceedings, 2 S-31-32, IEICE, 2013

しかしながら、図1に示す電源システムで一定負荷に定常的に電力を供給しようとするとき、図3に示すように、天候により太陽光発電装置の出力電力(発電電力)が負荷の要求出力(消費)に満たないことがある。このとき、上述したように他の電源より不足分の電力を供給する必要がある。例えば、燃料電池装置でこの不足分の電力を供給する方法が考えられる。   However, when the power supply system shown in FIG. 1 tries to steadily supply power to a constant load, as shown in FIG. 3, the output power (generated power) of the photovoltaic power generation device depends on the required output (consumption) ) May not be met. At this time, as described above, it is necessary to supply insufficient power from other power sources. For example, a method of supplying this shortage of power with a fuel cell device is conceivable.

しかしながら、燃料電池装置で消費する燃料の供給を、太陽光発電装置の出力変動を予測して追随させることは難しいため、予想される最大の要求出力電力を見越して予め相応の燃料を供給しておく必要がある。図2に示すように、燃料電池装置は、発電効率の出力依存性が大きい。このために、非定常出力のとき、および定格出力でないときは、時間平均の発電効率が低くなり、備蓄燃料を効率的に電力に変換できない課題があった。たとえば、図3に示すような太陽光発電装置の電力の不足分を燃料電池装置の電力で補てんする場合、燃料電池の30分間の平均発電効率は3%と低くなる。   However, since it is difficult to follow the supply of fuel consumed by the fuel cell device by predicting the output fluctuation of the photovoltaic power generation device, supply the corresponding fuel in advance in anticipation of the expected maximum required output power. It is necessary to keep. As shown in FIG. 2, the fuel cell device has a large output dependency of the power generation efficiency. For this reason, when the output is unsteady and when it is not the rated output, there is a problem that the time-average power generation efficiency is low and the stored fuel cannot be efficiently converted into electric power. For example, when the shortage of the power of the solar power generation device as shown in FIG. 3 is supplemented with the power of the fuel cell device, the average power generation efficiency for 30 minutes of the fuel cell is as low as 3%.

本発明は、このような問題に鑑みてなされたもので、その目的とするところは、太陽光発電装置と燃料電池装置と蓄電池とを備えた電源装置における、燃料電池装置の発電効率の高い運転方法を提供することにある。これにより、備蓄燃料をより効率的に電力に変換し、電源装置のより長時間の運転を実現しようとするものである。   The present invention has been made in view of such problems, and an object of the present invention is to operate the fuel cell device with high power generation efficiency in a power supply device including a solar power generation device, a fuel cell device, and a storage battery. It is to provide a method. Thereby, the stored fuel is more efficiently converted into electric power, and the operation of the power supply apparatus is realized for a longer time.

本発明の一態様は、太陽光発電装置と燃料電池装置と蓄電池とを備えた独立型分散電源システムの運転方法である。蓄電池の充電率(SOC : State of Charge)が一定以下の場合に、燃料電池装置を発電効率の高い出力領域で継続的に運転することを特徴とする。たとえば、燃料電池装置における発電効率の高い出力領域は、燃料電池装置の定格出力に近い領域である。また、太陽光発電装置と燃料電池装置が発電した電力の和の内、負荷が消費する電力より大きな余剰電力が発生した場合には、この余剰電力を蓄電池に充電することを特徴とする。これにより、より長い時間燃料電池を高効率で運転することを可能とする。   One embodiment of the present invention is a method for operating a stand-alone distributed power supply system including a solar power generation device, a fuel cell device, and a storage battery. When the state of charge (SOC) of the storage battery is below a certain level, the fuel cell device is continuously operated in an output region with high power generation efficiency. For example, the output region with high power generation efficiency in the fuel cell device is a region close to the rated output of the fuel cell device. Further, when surplus power larger than the power consumed by the load is generated in the sum of the power generated by the solar power generation device and the fuel cell device, the surplus power is charged in the storage battery. As a result, the fuel cell can be operated with high efficiency for a longer time.

以上説明したように、本発明によれば、太陽光発電装置、燃料電池装置および蓄電池を備えた独立型分散電源において、燃料電池装置の発電効率の高い運転方法を提供することができる。これにより、災害による長時間停電の際などにより長い時間の電力供給を可能とする。   As described above, according to the present invention, an operation method with high power generation efficiency of a fuel cell device can be provided in an independent distributed power source including a solar power generation device, a fuel cell device, and a storage battery. As a result, it is possible to supply power for a longer period of time due to a long-time power outage due to a disaster.

従来の独立型分散電源システムを示す図である。It is a figure which shows the conventional independent type | mold distributed power supply system. (a)は燃料電池の出力電量と発電電力および消費熱量との関係を示す図であり、(b)燃料電池の出力電量と発電効率との関係を示す図である。(A) is a figure which shows the relationship between the output electric energy of a fuel cell, generated electric power, and heat consumption, and (b) is the figure which shows the relationship between the electric energy output of a fuel cell, and electric power generation efficiency. 定常付加への電力供給時の太陽光発電の電力トレンドを示す図である。It is a figure which shows the electric power trend of the solar power generation at the time of the electric power supply to steady addition. 本発明の一実施形態に係る独立型分散電源システムを示す図である。It is a figure which shows the stand-alone distributed power supply system which concerns on one Embodiment of this invention.

以下、図面を参照しながら本発明の実施形態について詳細に説明する。なお、図面において、同一の機能を有するものは同一符号を付け、その繰り返しの説明は省略する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the drawings, components having the same function are denoted by the same reference numerals, and repeated description thereof is omitted.

図4は、本発明の実施形態の運転方法により運転される独立型分散電源システムの構成を示す図である。図4の電源システム400は、太陽光発電装置(PV)102と燃料電池装置(FC)104と蓄電池(Batt)108と備える。蓄電池108の容量は十分に大きく、かつ蓄電池の充電器(チャージャ)120の容量は負荷110の最大消費電力程度に大きいものを用いる。   FIG. 4 is a diagram showing a configuration of an independent distributed power supply system operated by the operation method of the embodiment of the present invention. The power supply system 400 of FIG. 4 includes a photovoltaic power generation device (PV) 102, a fuel cell device (FC) 104, and a storage battery (Batt) 108. The storage battery 108 has a sufficiently large capacity, and a storage battery charger (charger) 120 having a capacity as large as the maximum power consumption of the load 110 is used.

燃料電池装置(FC)104とダイオード116との間に遮断スイッチS1(405)が設けられている。   A cutoff switch S1 (405) is provided between the fuel cell device (FC) 104 and the diode 116.

電源システム400は、記憶装置404を有する制御部404を備える。記憶装置404には、運転制御に関するプログラムやデータが記憶されている。   The power supply system 400 includes a control unit 404 having a storage device 404. The storage device 404 stores programs and data related to operation control.

蓄電装置108には、充電率を計測する充電率計測装置408が設けられている。計測された蓄電装置の充電率の値は、制御部404へ供給される。また、電源システム400は、負荷110の消費電力を計測する負荷電力計測装置410を備える。計測された負荷110の消費電力の値は、制御部404へ供給される。   The power storage device 108 is provided with a charging rate measuring device 408 that measures the charging rate. The measured value of the charging rate of the power storage device is supplied to the control unit 404. The power supply system 400 also includes a load power measuring device 410 that measures the power consumption of the load 110. The measured power consumption value of the load 110 is supplied to the control unit 404.

チャージャ120の容量は、このシステム内で生じる出力変動の量と同程度の大きさを有する。チャージャ120の入力端には、遮断スイッチ(S2)406が設けられている。スイッチS2(406)は、スイッチS1(405)と共に、本実施形態の運用方法に従って、開閉する。   The capacity of the charger 120 is as large as the amount of output fluctuation that occurs in the system. At the input end of the charger 120, a cutoff switch (S2) 406 is provided. The switch S2 (406) opens and closes together with the switch S1 (405) according to the operation method of the present embodiment.

本実施形態の運転方法では、蓄電池の充電率SOCが所定の値以下である場合に、燃料電池装置104からの出力が定格出力に近い状態(発電効率の高い出力領域)で継続的に該燃料電池装置を運転し、太陽光発電装置と燃料電池装置が発電した電力の和から負荷が消費する電力を差し引いた余剰電力が発生した場合には、この余剰電力を蓄電池に充電する。蓄電池の充電率SOCにおける所定の値は、負荷の消費電力に応じて予め定められた値である。例えば、負荷の消費電力が大きい程、充電率についての所定の値は小さい。   In the operation method of the present embodiment, when the charge rate SOC of the storage battery is equal to or lower than a predetermined value, the fuel is continuously output in a state where the output from the fuel cell device 104 is close to the rated output (output region where power generation efficiency is high). When surplus power is generated by operating the battery device and subtracting the power consumed by the load from the sum of the power generated by the solar power generation device and the fuel cell device, the surplus power is charged in the storage battery. The predetermined value in the charging rate SOC of the storage battery is a value determined in advance according to the power consumption of the load. For example, the larger the power consumption of the load, the smaller the predetermined value for the charging rate.

これにより負荷110の消費電力や太陽光発電装置102の発電電力にかかわらず燃料電池装置104を発電効率の高い出力領域で運転することが可能となり、一定の燃料でより長時間発電を継続することが可能となる。   This makes it possible to operate the fuel cell device 104 in an output region with high power generation efficiency regardless of the power consumption of the load 110 or the power generation power of the solar power generation device 102, and to continue power generation for a longer time with a constant fuel. Is possible.

以下、表1に示すように運転モード1〜6を説明する。負荷の消費電力Xと蓄電池の充電率Z(負荷の消費電力に応じて異なる)にしたがって、スイッチ(S1)405、スイッチ(S2)406、燃料電池装置104の運転(発電量)が制御される。   Hereinafter, the operation modes 1 to 6 will be described as shown in Table 1. The operation (power generation amount) of the switch (S1) 405, the switch (S2) 406, and the fuel cell device 104 is controlled according to the power consumption X of the load and the charging rate Z of the storage battery (which varies depending on the power consumption of the load). .

負荷による消費電力Xの最大値は360W、太陽光発電装置102の発電量Yの最大値は190W、燃料電池装置の出力Bの最大値(定格電力)は360W、燃料電池装置の消費熱量の最小値を900ジュール/秒、燃料電池装置の消費熱量の最大値(定格電力出力時)は1100ジュール/秒である。このような特性を有する試作した電源システムで、負荷出力360Wに対して晴天時に30分間連続発電させたこところ、30分間の燃料電池装置の発電効率Dは28%となった。発電効率Dの28%という値は、従来の動作方法(発電効率3%)と比べて非常に高い値であり、燃料の電力変換効率が高められた結果を示すものである。   The maximum value of the power consumption X by the load is 360 W, the maximum value of the power generation amount Y of the photovoltaic power generation apparatus 102 is 190 W, the maximum value (rated power) of the output B of the fuel cell apparatus is 360 W, and the minimum heat consumption of the fuel cell apparatus The value is 900 joules / second, and the maximum value of heat consumption of the fuel cell device (at the time of rated power output) is 1100 joules / second. In the prototype power supply system having such characteristics, the power generation efficiency D of the fuel cell device for 30 minutes was 28% when the power was continuously generated for 30 minutes in a fine weather with respect to the load output of 360 W. The value of 28% of the power generation efficiency D is a very high value compared to the conventional operation method (power generation efficiency of 3%), and shows the result of increasing the power conversion efficiency of the fuel.

Figure 2015164380
Figure 2015164380

(モード1)
運転モード1は、太陽光発電装置102の電力Yが負荷の消費電力Xよりも小さい場合に適用される運転モードである。制御装置402は、負荷電力計測装置410および充電率計測装置408から供給される値に基づいて、負荷110の消費電力Xが比較的小さい(予め定められた値以下であり)という条件と、当該消費電力Xに対応する蓄電池の充電率Zが予め定められた値以下であるという条件とが満たされるかどうかを決定する。これらの2つの条件の双方が満たされる場合には、スイッチS1(405)とスイッチS2(406)をオンに切替え、出力Bが最大(定格電力値)となるように燃料電池装置104を運転し、太陽光発電装置102の出力を補償するとともに、チャージャ120を介して蓄電池408を充電する。このとき燃料電池装置104の発電効率は28%となる。
(Mode 1)
The operation mode 1 is an operation mode applied when the electric power Y of the photovoltaic power generation apparatus 102 is smaller than the power consumption X of the load. Based on the values supplied from the load power measuring device 410 and the charging rate measuring device 408, the control device 402 has a condition that the power consumption X of the load 110 is relatively small (below a predetermined value), and It is determined whether or not a condition that the charging rate Z of the storage battery corresponding to the power consumption X is equal to or less than a predetermined value is satisfied. When both of these two conditions are satisfied, the switch S1 (405) and the switch S2 (406) are switched on, and the fuel cell device 104 is operated so that the output B becomes maximum (rated power value). In addition to compensating the output of the solar power generation device 102, the storage battery 408 is charged via the charger 120. At this time, the power generation efficiency of the fuel cell device 104 is 28%.

(モード2)
運転モード2は、太陽光発電装置102の電力Yが負荷の消費電力Xよりも大きい場合に適用される運転モードである。制御装置402は、負荷電力計測装置410および充電率計測装置408から供給される値に基づいて、モード1に示した2つの条件の双方が満たされるかどうかを決定する。充電率Zに関する条件のみが満たされない場合には、制御装置402は、スイッチS1(405)をオンに切替え、スイッチS2(406)をオンに切替え、燃料電池装置104を待機状態で運転する。太陽光発電装置102の出力は、負荷とチャージャ120へ供給される。また、太陽光発電装置102の出力の余剰分は、太陽光発電装置102のMPTT内部で消費される。燃料電池装置104が待機状態(出力が0W)であるのにスイッチS1(405)をオンにするのは、太陽光発電装置102の電力Yが負荷110の消費電力Xよりも大きい状態が保たれるか、曇るなどして太陽光発電装置102の電力Yが低下するかの予測ができず、かつ、蓄電池108の充電率Zが予め定められた値以下であるためである。太陽光発電装置102の電力Yや蓄電池108の放電電力が短時間で低下する場合に備えて、スイッチS1(405)をオンにして燃料電池装置104を電力バス接続しておくのが望ましい。
(Mode 2)
The operation mode 2 is an operation mode applied when the electric power Y of the photovoltaic power generation apparatus 102 is larger than the power consumption X of the load. Based on the values supplied from load power measurement device 410 and charge rate measurement device 408, control device 402 determines whether or not both of the two conditions shown in mode 1 are satisfied. When only the condition relating to the charging rate Z is not satisfied, the control device 402 switches on the switch S1 (405), switches on the switch S2 (406), and operates the fuel cell device 104 in a standby state. The output of the solar power generation device 102 is supplied to the load and the charger 120. Further, the surplus output of the solar power generation device 102 is consumed inside the MPTT of the solar power generation device 102. The switch S1 (405) is turned on while the fuel cell device 104 is in the standby state (output is 0 W) because the power Y of the solar power generation device 102 is larger than the power consumption X of the load 110. This is because it is impossible to predict whether the power Y of the solar power generation device 102 will be reduced due to clouding or clouding, and the charging rate Z of the storage battery 108 is not more than a predetermined value. In preparation for a case where the power Y of the solar power generation device 102 or the discharge power of the storage battery 108 decreases in a short time, it is desirable to turn on the switch S1 (405) and connect the fuel cell device 104 to the power bus.

(モード3)
運転モード3は、太陽光発電装置102の電力Yが負荷の消費電力Xよりも小さい場合に適用される運転モードである。制御装置402は、負荷電力計測装置410および充電率計測装置408から供給される値に基づいて、モード1に示した2つの条件が満たされるかどうかを決定する。制御装置402は、負荷110の消費電力Xが比較的小さいが、当該消費電力Xに対応する蓄電池の充電率Zが予め定められた値より大きいと決定した場合、スイッチS1(405)およびスイッチS2(406)をオフに切替え、燃料電池装置104を待機状態で運転する。この場合、電力バスの電圧が低下するため、蓄電池120に蓄えられた電力が放電され、太陽光発電装置102の出力とともに負荷110へ供給される。
(Mode 3)
The operation mode 3 is an operation mode applied when the electric power Y of the photovoltaic power generation apparatus 102 is smaller than the power consumption X of the load. The control device 402 determines whether or not the two conditions shown in mode 1 are satisfied based on the values supplied from the load power measuring device 410 and the charging rate measuring device 408. When the control device 402 determines that the power consumption X of the load 110 is relatively small but the charging rate Z of the storage battery corresponding to the power consumption X is larger than a predetermined value, the switch S1 (405) and the switch S2 (406) is switched off and the fuel cell device 104 is operated in a standby state. In this case, since the voltage of the power bus decreases, the power stored in the storage battery 120 is discharged and supplied to the load 110 together with the output of the solar power generation device 102.

(モード4)
運転モード4は、太陽光発電装置102の電力Yが負荷の消費電力Xよりも大きい場合に適用される運転モードである。制御装置402は、負荷電力計測装置410および充電率計測装置408から供給される値に基づいて、モード1に示した2つの条件が満たされるかどうかを決定する。制御装置402は、負荷110の消費電力Xが比較的小さいが、当該消費電力Xに対応する蓄電池の充電率Zが予め定められた値より大きいと決定した場合、スイッチS1(405)およびスイッチS2(406)をオフに切替え、燃料電池装置104を待機状態で運転する。太陽光発電装置102の出力は、負荷110のみへ供給される。また、太陽光発電装置102の出力の余剰分は、太陽光発電装置102のMPTT内部で消費される。
(Mode 4)
The operation mode 4 is an operation mode applied when the electric power Y of the photovoltaic power generation apparatus 102 is larger than the power consumption X of the load. The control device 402 determines whether or not the two conditions shown in mode 1 are satisfied based on the values supplied from the load power measuring device 410 and the charging rate measuring device 408. When the control device 402 determines that the power consumption X of the load 110 is relatively small but the charging rate Z of the storage battery corresponding to the power consumption X is larger than a predetermined value, the switch S1 (405) and the switch S2 (406) is switched off and the fuel cell device 104 is operated in a standby state. The output of the solar power generation device 102 is supplied only to the load 110. Further, the surplus output of the solar power generation device 102 is consumed inside the MPTT of the solar power generation device 102.

(モード5)
運転モード5は、負荷110の消費電力Xが比較的大きい(モード1で説明した予め定められた値よりも大きい)場合に適用される運転モードである。
(Mode 5)
The operation mode 5 is an operation mode that is applied when the power consumption X of the load 110 is relatively large (greater than the predetermined value described in mode 1).

制御装置402は、負荷電力計測装置410および充電率計測装置408から供給される値に基づいて、負荷110の消費電力Xが比較的大きい(モード1〜4における値より大きい)という条件と、当該消費電力Xに対応する蓄電池の充電率Zが予め定められた値(モード1〜4における値よりも小さい値)以下であるという条件とが満たされるかどうかを決定する。これらの2つの条件の双方が満たされる場合には、スイッチS1(405)とスイッチS2(406)をオンに切替え、出力Bが最大(定格電力値)となるように燃料電池装置104を運転し、太陽光発電装置102の出力を補償するとともに、チャージャ120を介して蓄電池408を充電する。このとき燃料電池装置104の発電効率は28%となる。このように、負荷110の消費電力Xが大きい場合でも充電率がある程度(例えば、50%)となるように蓄電池が充電される。   Based on the values supplied from the load power measuring device 410 and the charging rate measuring device 408, the control device 402 has a condition that the power consumption X of the load 110 is relatively large (greater than the values in modes 1 to 4), and It is determined whether or not a condition that the charging rate Z of the storage battery corresponding to the power consumption X is equal to or less than a predetermined value (a value smaller than the values in modes 1 to 4) is satisfied. When both of these two conditions are satisfied, the switch S1 (405) and the switch S2 (406) are switched on, and the fuel cell device 104 is operated so that the output B becomes maximum (rated power value). In addition to compensating the output of the solar power generation device 102, the storage battery 408 is charged via the charger 120. At this time, the power generation efficiency of the fuel cell device 104 is 28%. Thus, even when the power consumption X of the load 110 is large, the storage battery is charged so that the charging rate becomes a certain level (for example, 50%).

(モード6)
モード6は、モード5と同様に、負荷110の消費電力Xが比較的大きい(モード1で説明した予め定められた値よりも大きい)場合に適用される運転モードである。
(Mode 6)
Mode 6 is an operation mode applied when the power consumption X of the load 110 is relatively large (larger than the predetermined value described in mode 1), as in mode 5.

制御装置402は、負荷電力計測装置410および充電率計測装置408から供給される値に基づいて、負荷110の消費電力Xが比較的大きい(モード1〜4における値より大きい)という条件と、当該消費電力Xに対応する蓄電池の充電率Zが予め定められた値(モード1〜4における値よりも小さい値)以下であるという条件とが満たされるかどうかを決定する。制御装置402は、負荷110の消費電力Xが比較的大きいが、当該消費電力Xに対応する蓄電池の充電率Zが予め定められた値より大きいと決定した場合、スイッチS1(405)をオンに切替え、スイッチS2(406)をオフに切替え、燃料電池装置104を運転し、太陽光発電装置102の出力を補償する。(燃料電池装置104の出力Bと燃料電池装置104の出力Yの和が負荷による消費電力Xとなるように、燃料電池装置104を運転する。)このように、負荷110の消費電力Xが大きい場合、消費電力Xが小さくなるときに備えて蓄電池の空き容量を確保する。   Based on the values supplied from the load power measuring device 410 and the charging rate measuring device 408, the control device 402 has a condition that the power consumption X of the load 110 is relatively large (greater than the values in modes 1 to 4), and It is determined whether or not a condition that the charging rate Z of the storage battery corresponding to the power consumption X is equal to or less than a predetermined value (a value smaller than the values in modes 1 to 4) is satisfied. When the control device 402 determines that the power consumption X of the load 110 is relatively large but the charging rate Z of the storage battery corresponding to the power consumption X is greater than a predetermined value, the control device 402 turns on the switch S1 (405). Switching, switch S2 (406) is turned off, fuel cell device 104 is operated, and the output of solar power generation device 102 is compensated. (The fuel cell device 104 is operated so that the sum of the output B of the fuel cell device 104 and the output Y of the fuel cell device 104 becomes the power consumption X by the load.) Thus, the power consumption X of the load 110 is large. In this case, the free capacity of the storage battery is secured in preparation for when the power consumption X becomes small.

以上、具体的な数値を例示して、本願発明を説明したが、本願発明はこれらの数値に限定されるものではない。   The present invention has been described above by exemplifying specific numerical values, but the present invention is not limited to these numerical values.

本願発明によれば、燃料電池装置の発電効率の高い運転方法を提供され、長い時間燃料電池を高効率で運転することが可能となる。   According to the present invention, an operation method with high power generation efficiency of the fuel cell device is provided, and the fuel cell can be operated with high efficiency for a long time.

100,400 独立型分散電源システム
102 太陽光発電装置
104 燃料電池装置
106 LPガスボンベ
108 蓄電池
110 負荷
112 最大出力電制御装置
116 ダイオード
405,406 スイッチ
118 DC/DC変換器
120 チャージャ
402 制御部
404 記億装置
408 充電率計測装置
410 負荷電力計測装置
100,400 Independent distributed power supply system 102 Photovoltaic power generation device 104 Fuel cell device 106 LP gas cylinder 108 Storage battery 110 Load 112 Maximum output power control device 116 Diode 405,406 Switch 118 DC / DC converter 120 Charger 402 Control unit 404 Device 408 Charging rate measuring device 410 Load power measuring device

Claims (5)

太陽光発電装置と燃料電池装置と蓄電池と備えた独立型分散電源システムの運転方法であって、
前記蓄電池の充電率が所定値以下の場合に、前記燃料電池装置を発電効率の高い出力領域で継続的に運転し、前記太陽光発電装置が発電した電力と前記燃料電池装置が発電した電力の和から前記独立分散電源システムに接続された負荷が消費する電力を差し引いた余剰電力が発生した場合には、この余剰電力を前記蓄電池の充電のための電力とすることを特徴とする独立型分散電源システムの運転方法。
An operation method of a stand-alone distributed power supply system including a solar power generation device, a fuel cell device, and a storage battery,
When the charge rate of the storage battery is less than or equal to a predetermined value, the fuel cell device is continuously operated in an output region with high power generation efficiency, and the power generated by the solar power generation device and the power generated by the fuel cell device are When surplus power is generated by subtracting power consumed by a load connected to the independent distributed power supply system from the sum, the surplus power is used as power for charging the storage battery. How to operate the power system.
前記太陽光発電装置からの電力が、前記負荷が消費する電力を下回った場合に、前記燃料電池装置の運転または前記蓄電池の放電を行うことを特徴とする請求項1に記載の運転方法。   2. The operation method according to claim 1, wherein the operation of the fuel cell device or the discharge of the storage battery is performed when the electric power from the solar power generation device falls below the electric power consumed by the load. 前記充電率についての前記所定の値は、前記負荷の消費電力に応じて予め定められた値である、ことを特徴とする請求項1または2に記載の運転方法。   The driving method according to claim 1, wherein the predetermined value for the charging rate is a value determined in advance according to power consumption of the load. 前記負荷の消費電力が大きい程、前記充電率についての前記所定の値は小さい値であることを特徴とする請求項3に記載の運転方法。   The driving method according to claim 3, wherein the predetermined value for the charging rate is smaller as the power consumption of the load is larger. 前記余剰電力の一部を前記太陽光発電装置の最大出力電制御装置で消費することを特徴とする請求項1乃至4のいずれかに記載の方法。   The method according to claim 1, wherein a part of the surplus power is consumed by a maximum output power control device of the solar power generation device.
JP2014039584A 2014-02-28 2014-02-28 Operation method for independent distributed power supply system Pending JP2015164380A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014039584A JP2015164380A (en) 2014-02-28 2014-02-28 Operation method for independent distributed power supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014039584A JP2015164380A (en) 2014-02-28 2014-02-28 Operation method for independent distributed power supply system

Publications (1)

Publication Number Publication Date
JP2015164380A true JP2015164380A (en) 2015-09-10

Family

ID=54187076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014039584A Pending JP2015164380A (en) 2014-02-28 2014-02-28 Operation method for independent distributed power supply system

Country Status (1)

Country Link
JP (1) JP2015164380A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110048400A (en) * 2019-05-14 2019-07-23 上海电力学院 The full DC micro-electric network control method of house based on photovoltaic power generation, fuel cell
WO2024095629A1 (en) * 2022-11-02 2024-05-10 パナソニックIpマネジメント株式会社 Power system operating method, and power system control device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110048400A (en) * 2019-05-14 2019-07-23 上海电力学院 The full DC micro-electric network control method of house based on photovoltaic power generation, fuel cell
WO2024095629A1 (en) * 2022-11-02 2024-05-10 パナソニックIpマネジメント株式会社 Power system operating method, and power system control device

Similar Documents

Publication Publication Date Title
KR102400502B1 (en) Energy storage system
US9851409B2 (en) Energy storage device controlling method and power management system
KR102048047B1 (en) Solar-based autonomous stand-alone micro grid system and its operation method
US10756544B2 (en) Energy storage system and management method thereof
US8253271B2 (en) Home power supply system
JP6074735B2 (en) Connection box
CN105591383B (en) A kind of direct-current micro-grid variable power control device and control method
KR101794837B1 (en) The charge and discharge of photovoltaic power generation the control unit system
TW201832442A (en) Conversion circuit device for uninterruptible power supply (ups) systems
JP2017051083A (en) Power generation system, power generation method and program
JP2024009124A (en) Power control device, storage battery system, storage battery charge power control method and program
JP2014023425A (en) Power-supply system
JP2015220889A (en) Power supply system
KR20150085227A (en) The control device and method for Energy Storage System
JP5947270B2 (en) Power supply system
JP2015164380A (en) Operation method for independent distributed power supply system
KR102537509B1 (en) Solar generating system
TW202027373A (en) Power supply system
KR101215396B1 (en) Hybrid smart grid uninterruptible power supply using discharge current control
JP2016171679A (en) Control device and power distribution system using the same
CN201616699U (en) Charger
TWI423558B (en) The output power control method of the fuel cell is designed by the auxiliary device and the auxiliary battery system
JP2016032379A (en) Power supply system
CN102148524A (en) Charger
KR101347437B1 (en) Power control system with load follow driving function and power control method therefor