JP2015164256A - Inverted l-shaped antenna - Google Patents

Inverted l-shaped antenna Download PDF

Info

Publication number
JP2015164256A
JP2015164256A JP2014039561A JP2014039561A JP2015164256A JP 2015164256 A JP2015164256 A JP 2015164256A JP 2014039561 A JP2014039561 A JP 2014039561A JP 2014039561 A JP2014039561 A JP 2014039561A JP 2015164256 A JP2015164256 A JP 2015164256A
Authority
JP
Japan
Prior art keywords
inverted
conductor plate
antenna
conductor
antenna element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014039561A
Other languages
Japanese (ja)
Other versions
JP2015164256A5 (en
JP6338401B2 (en
Inventor
光雄 田口
Mitsuo Taguchi
光雄 田口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagasaki University NUC
Original Assignee
Nagasaki University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagasaki University NUC filed Critical Nagasaki University NUC
Priority to JP2014039561A priority Critical patent/JP6338401B2/en
Publication of JP2015164256A publication Critical patent/JP2015164256A/en
Publication of JP2015164256A5 publication Critical patent/JP2015164256A5/ja
Application granted granted Critical
Publication of JP6338401B2 publication Critical patent/JP6338401B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To improve an antenna characteristic as compared to the inverted L-shaped antenna of the conventional method.SOLUTION: An inverted L-shaped antenna comprises: a ground conductor plate 10 which has a size dependent on a use frequency wavelength and which is held by ground potential; an inverted L-shaped antenna element 8 which includes an outer conductor 26, disposed on a plane in parallel with the ground conductor plate 10 and apart from the upper part of the ground conductor plate 10 with a first gap, and an inner conductor 24, a tip of which extends longer than the outer conductor 26 and which is disposed on the plane and spaced from the outer conductor 26 in a manner to be sandwiched with the outer conductor 26, and has a resonance frequency in the use frequency band; and an opposite conductor plate 17 which has a size to resonate with a resonance frequency substantially equivalent to the resonance frequency of the antenna element 8, and is disposed on a plane in parallel with the antenna element 8 apart from the upper part of the antenna element 8 with a second gap.

Description

本発明は、周波数範囲が2.40〜2.50GHzである2.45GHz帯の無線通信システムに装備される不平衡給電超低姿勢逆L型アンテナに適用して好適な逆L型アンテナの改良に関するものである。   INDUSTRIAL APPLICABILITY The present invention improves an inverted L antenna suitable for application to an unbalanced ultra low profile inverted L antenna equipped in a 2.45 GHz band wireless communication system having a frequency range of 2.40 to 2.50 GHz. It is about.

従来から、無線通信で使われている平面アンテナとしては、例えば、正方形状の誘電体基板の表面に正方形、或いは、円形などのパッチ導体を印刷したマイクロストリップアンテナ(Microstrip Antenna)が知られている。   Conventionally, as a planar antenna used in wireless communication, for example, a microstrip antenna in which a square or circular patch conductor is printed on the surface of a square dielectric substrate is known. .

図12は、従来例に係る平面アンテナ300の構成例を示す斜視図である。図12に示す平面アンテナ300はマイクロストリップアンテナを構成し、正方形の誘電体基板(以下で単に基板1という)、ほぼ同一形状の接地導体板2、この接地導体板2の約1/4の面積の正方形のパッチ導体板4及び、給電線としての同軸ケーブル5を有している。   FIG. 12 is a perspective view showing a configuration example of a planar antenna 300 according to a conventional example. A planar antenna 300 shown in FIG. 12 constitutes a microstrip antenna, and has a square dielectric substrate (hereinafter simply referred to as substrate 1), a ground conductor plate 2 having substantially the same shape, and an area of about 1/4 of the ground conductor plate 2. A square patch conductor plate 4 and a coaxial cable 5 as a feed line.

図中において、xは基板1の幅方向(x方向)であり、yは基板1の長さ方向(y方向)であり、アンテナ電流(以下で単に電流という)の流れる方向である。zは電磁波の放射方向であり、指向性利得が観測される方向である。sxは接地導体板2の幅方向の長さであり、syは接地導体板2の長さ方向の長さである。wはパッチ導体板4の幅方向の長さであり、小文字のl(エル)は接地導体板2の長さ方向の長さである。   In the figure, x is the width direction (x direction) of the substrate 1, y is the length direction (y direction) of the substrate 1, and is the direction in which the antenna current (hereinafter simply referred to as current) flows. z is the radiation direction of the electromagnetic wave, and the direction in which the directional gain is observed. sx is the length of the ground conductor plate 2 in the width direction, and sy is the length of the ground conductor plate 2 in the length direction. w is the length in the width direction of the patch conductor plate 4, and the lowercase l (el) is the length in the length direction of the ground conductor plate 2.

平面アンテナ300によれば、接地導体板2とパッチ導体板4との間に電磁界を励振させる構造を採っている。例えば、接地導体板2の1辺の長さsx及びsyは、使用周波数の約1波長(λ)に設定され、パッチ導体板4の1辺の長さw及びlは、その約半波長(λ/2)に設定される。   The planar antenna 300 employs a structure in which an electromagnetic field is excited between the ground conductor plate 2 and the patch conductor plate 4. For example, the lengths sx and sy of one side of the ground conductor plate 2 are set to about one wavelength (λ) of the operating frequency, and the lengths w and l of one side of the patch conductor plate 4 are about half a wavelength (λ). λ / 2).

接地導体板2とパッチ導体板4との間に電磁界を励振させるために、パッチ導体板4の端の開口から電磁波を放射させる構造となっている。図中、4aは給電点であり、同軸ケーブル5の内導体5aが接続される。同軸ケーブル5の外導体(図示せず)は接地導体板2に接続される。   In order to excite an electromagnetic field between the ground conductor plate 2 and the patch conductor plate 4, an electromagnetic wave is emitted from the opening at the end of the patch conductor plate 4. In the figure, 4a is a feeding point to which the inner conductor 5a of the coaxial cable 5 is connected. An outer conductor (not shown) of the coaxial cable 5 is connected to the ground conductor plate 2.

しかしながら、平面アンテナ300は、基板1の厚さが波長に比べて十分に小さいため、インピーダンス特性が狭帯域となるという問題がある。広帯域にするために厚い基板を用いた場合、接地導体板2と給電点4aの間の給電線が長くなり、そこに発生するインダクタンスにより、アンテナとしてのインピーダンス整合が取り難くなって、帯域幅が10%程度が限界となってしまうという問題がある。   However, the planar antenna 300 has a problem that the impedance characteristic becomes a narrow band because the thickness of the substrate 1 is sufficiently smaller than the wavelength. When a thick substrate is used to obtain a wide band, the feed line between the ground conductor plate 2 and the feed point 4a becomes long. Due to the inductance generated there, it is difficult to achieve impedance matching as an antenna, and the bandwidth is reduced. There is a problem that about 10% is the limit.

このインピーダンス整合の問題を改善するために、非特許文献1に見られるようなL−プローブ給電が提案されている。このL−プローブ給電のマイクロストリップアンテナによれば、接地導体板の背面から同軸ケーブルの給電線である内導体を延ばし、逆L字形に曲げて、パッチ導体と平行な部分との間の容量を作り、同軸給電線の内導体で発生するインダクタンスを打ち消す構造となっている。   In order to improve the problem of impedance matching, L-probe power feeding as shown in Non-Patent Document 1 has been proposed. According to this L-probe-fed microstrip antenna, the inner conductor, which is the feed line of the coaxial cable, is extended from the back of the ground conductor plate, bent in an inverted L shape, and the capacitance between the patch conductor and the parallel part is increased. It has a structure that cancels out the inductance generated in the inner conductor of the coaxial feeder.

またインピーダンス整合の問題を改善するために、特許文献1の逆L型アンテナが提案されている。接地電位に保持される接地導体板上に、同軸ケーブルの接地電位である外導体を接続し、上方の所定距離だけ離れた箇所で同軸ケーブルを折り曲げて、接地導体板面と近接して平行に配置し、平行部位の途中から内導体のみを露出させて更に延伸させた構造である。   In order to improve the impedance matching problem, an inverted L-type antenna of Patent Document 1 has been proposed. Connect the outer conductor, which is the ground potential of the coaxial cable, to the ground conductor plate held at the ground potential, fold the coaxial cable at a predetermined distance above and parallel to the ground conductor plate surface. It is a structure that is arranged and further extended by exposing only the inner conductor from the middle of the parallel part.

上述の非特許文献1のL−プローブ給電のマイクロストリップアンテナとは、内導体を露出させる位置が異なっている。この逆L型アンテナは、上記同軸ケーブルの平行部位の長さが約1/4波長(λ/4)、接地導体板のこの方向の長さが約半波長(λ/2)と、小型にできる利点がある。   The position where the inner conductor is exposed is different from the L-probe-fed microstrip antenna of Non-Patent Document 1 described above. The inverted L-shaped antenna is small in size, with the length of the parallel portion of the coaxial cable being approximately ¼ wavelength (λ / 4) and the length of the ground conductor plate in this direction being approximately half wavelength (λ / 2). There are advantages you can do.

特開2011−082951号公報Japanese Patent Application Laid-Open No. 2011-08951

K. M. Luk,C. L. Mak,Y. L. Chow and K. F. Lee,”Broadband microstrip patch antenna”Electronics Letters vol.34、no.15、pp.1442-1443,July 1998.K. M. Luk, C. L. Mak, Y. L. Chow and K. F. Lee, “Broadband microstrip patch antenna” Electronics Letters vol.34, no.15, pp.1442-1443, July 1998.

従来例に係る平面アンテナによれば、次のような問題がある。
i.平面アンテナ300は、上述のように帯域が狭いという問題がある。
The planar antenna according to the conventional example has the following problems.
i. The planar antenna 300 has a problem that the band is narrow as described above.

ii.平面アンテナ300も非特許文献1のL−プローブ給電マイクロストリップアンテナも、接地導体板2の1辺の長さは1波長程度が必要であり、アンテナ全体が大きくなり、小型化の妨げとなるという問題がある。   ii. Both the planar antenna 300 and the L-probe-fed microstrip antenna of Non-Patent Document 1 require that the length of one side of the ground conductor plate 2 be about one wavelength, which increases the overall antenna and prevents miniaturization. There's a problem.

iii.特許文献1の逆L型アンテナは、アンテナ素子の放射面積が線状であるため、放射方向への指向特性が良くないという問題がある。   iii. The inverted L-type antenna of Patent Document 1 has a problem that directivity characteristics in the radiation direction are not good because the radiation area of the antenna element is linear.

そこで、本発明はこれらの点に鑑みてなされたものであり、従来方式の逆L型アンテナに比べて指向特性を改善できるようにした逆L型アンテナを提供することを目的とする。   Therefore, the present invention has been made in view of these points, and an object thereof is to provide an inverted L-type antenna that can improve directivity characteristics compared to a conventional inverted L-type antenna.

上記目的を達成するため、本発明の逆L型アンテナは、請求項1に記載のように、使用周波数の波長に依存した大きさを有して接地電位に保持される接地導体板と、前記接地導体板の上部に第1の隙間だけ離れ前記接地導体板と平行な面上に配置された外導体と、当該面上にあって前記外導体で挟まれ前記外導体とは間隔を開けて配置された前記外導体よりも先端が伸びた内導体を有し、前記外導体の基端部が前記接地導体板の所定箇所に接続され、前記内導体の基端部が前記接地導体板側に設けた給電部に接続され、前記内導体に給電されて前記使用周波数の帯域に共振周波数を有する逆L状のアンテナ素子と、前記アンテナ素子の共振周波数とほぼ等しい共振周波数で共振する大きさを有して当該アンテナ素子の上部に第2の隙間だけ離れ当該アンテナ素子と平行な面上に配置された対向導体板とを備えるものである。   In order to achieve the above object, an inverted L-type antenna according to the present invention includes a ground conductor plate having a size depending on a wavelength of a use frequency and held at a ground potential, as described in claim 1, An outer conductor disposed on a surface parallel to the ground conductor plate, separated from the upper portion of the ground conductor plate by a first gap, and spaced from the outer conductor on the surface and sandwiched by the outer conductor An inner conductor whose tip extends from the arranged outer conductor; a base end portion of the outer conductor is connected to a predetermined portion of the ground conductor plate; and a base end portion of the inner conductor is on the side of the ground conductor plate An inverted L-shaped antenna element that is connected to a power supply section provided in the antenna and has a resonance frequency in the band of the use frequency that is supplied to the inner conductor, and a size that resonates at a resonance frequency substantially equal to the resonance frequency of the antenna element. With a second gap above the antenna element. Those having a counter conductor plate arranged on the antenna element plane parallel.

請求項1に係る逆L型アンテナによれば、逆L状のアンテナ素子における電磁波の放射面積を線状から面状に拡大(拡張)できるので、対向導体板が無い場合に比べて指向特性利得を最大に増加できるようになる。   According to the inverted L-shaped antenna of the first aspect, the radiation area of the electromagnetic wave in the inverted L-shaped antenna element can be expanded (expanded) from a linear shape to a planar shape. Can be increased to the maximum.

請求項2に記載の逆L型アンテナは、請求項1において、前記外導体及び内導体を有するアンテナ素子の第1の隙間が、空気よりも比誘電率の高い誘電体で形成されることを特徴とする請求項1記載の逆L型アンテナ。   According to a second aspect of the present invention, in the inverted L-shaped antenna according to the first aspect, the first gap of the antenna element having the outer conductor and the inner conductor is formed of a dielectric having a relative dielectric constant higher than that of air. The inverted L-shaped antenna according to claim 1, wherein:

請求項3記載の逆L型アンテナは、請求項2において、前記外導体及び内導体を有するアンテナ素子の第2の隙間が、空気よりも比誘電率の高い誘電体で形成されるものである。   The inverted L-type antenna according to claim 3 is the inverted L-type antenna according to claim 2, wherein the second gap of the antenna element having the outer conductor and the inner conductor is formed of a dielectric having a relative dielectric constant higher than that of air. .

請求項4に記載の逆L型アンテナは、請求項1において、前記アンテナ素子の外導体及び内導体が前記接地導体板の所定箇所から前記第1の隙間だけ離れた箇所で折り曲げられて前記接地導体板と平行に配置されるものである。   The inverted L-shaped antenna according to claim 4 is the grounded antenna according to claim 1, wherein the outer conductor and the inner conductor of the antenna element are bent at a position away from a predetermined position of the ground conductor plate by the first gap. It is arranged in parallel with the conductor plate.

請求項5に記載の逆L型アンテナは請求項4において、前記外導体と前記内導体は、同軸ケーブルの外導体及び内導体で構成したものである。   According to a fifth aspect of the present invention, in the inverted L-shaped antenna according to the fourth aspect, the outer conductor and the inner conductor are constituted by an outer conductor and an inner conductor of a coaxial cable.

請求項6に記載の逆L型アンテナは請求項2から請求項4のいずれか1項において、前記アンテナ素子が前記外導体と前記内導体とを所定の間隔を開けて配置したコプレーナ線路で構成したものである。   6. The inverted L-type antenna according to claim 6, wherein the antenna element is a coplanar line in which the outer conductor and the inner conductor are arranged at a predetermined interval in any one of claims 2 to 4. It is a thing.

本発明に係る逆L型アンテナによれば、基端が接地導体板に接続された逆L型状のアンテナ素子の共振周波数とほぼ等しい共振周波数で共振する大きさの対向導体板を備え、この対向導体板が当該アンテナ素子の上部に対向して配置されたものである。   The inverted L-type antenna according to the present invention includes an opposing conductor plate having a size that resonates at a resonance frequency substantially equal to the resonance frequency of the inverted L-shaped antenna element whose base end is connected to the ground conductor plate. A counter conductor plate is disposed to face the upper portion of the antenna element.

この構造によって、逆L状のアンテナ素子における電磁波の放射面積を線状から面状に拡大(拡張)できるので、対向導体板が無い場合に比べて指向特性利得が最大に増加できるようになる。これにより、従来方式の逆L型アンテナに比べて指向特性を改善できるようになる。しかも、従来の平面アンテナに比べて小型化が図れる。   With this structure, the radiation area of the electromagnetic wave in the inverted L-shaped antenna element can be expanded (expanded) from a linear shape to a planar shape, so that the directional characteristic gain can be increased to the maximum as compared with the case where there is no opposing conductor plate. As a result, the directivity can be improved as compared with the conventional inverted L-type antenna. In addition, the size can be reduced as compared with the conventional planar antenna.

本発明の第1の実施形態としての逆L型アンテナ100の構造例(その1)を示す斜視図である。It is a perspective view which shows the structural example (the 1) of the inverted L-type antenna 100 as the 1st Embodiment of this invention. 図1のX1−X1矢視線の構成を含む逆L型アンテナ100の構造例(その2)を示す断面図である。It is sectional drawing which shows the structural example (the 2) of the inverted L type antenna 100 containing the structure of the X1-X1 arrow line of FIG. 逆L型アンテナ100の各部の寸法例及びその放射原理を示す斜視図である。It is a perspective view which shows the example of a dimension of each part of the inverted L type antenna 100, and its radiation principle. 対向導体板17でy方向の寸法dyを変化させた場合のS11特性例を示すグラフ図である。It is a graph which shows the S11 characteristic example at the time of changing the dimension dy of ay direction with the opposing conductor board 17. FIG. (A)及び(B)は、放射電界指向性パターン例(xz面)を示すグラフ図及びアンテナ素子8の構成例を示す断面図である。(A) And (B) is sectional drawing which shows the graph figure which shows the example of a radiation electric field directivity pattern (xz surface), and the structural example of the antenna element 8. FIG. (A)及び(B)は、放射電界指向性パターン例(yz面)を示すグラフ図及びアンテナ素子8の構成例を示す断面図である。(A) and (B) are the graphs which show the example of a radiation electric field directivity pattern (yz surface), and sectional drawing which shows the structural example of the antenna element 8. FIG. 比較例としての逆L型アンテナ101の構成例を示す斜視図である。It is a perspective view which shows the structural example of the inverted L type | mold antenna 101 as a comparative example. (A)及び(B)は、逆L型アンテナ101の放射電界指向性パターン例(xz面,yz面)を示すグラフ図である。(A) And (B) is a graph which shows the example of a radiation electric field directivity pattern (xz surface, yz surface) of the inverted L type antenna 101. FIG. 逆L型アンテナ100の指向性利得特性例を示すグラフ図である。6 is a graph showing an example of directivity gain characteristics of the inverted L-type antenna 100. FIG. 第2の実施形態としての逆L型アンテナ200の構造例(その1)を示す斜視図である。It is a perspective view which shows the structural example (the 1) of the inverted L type | mold antenna 200 as 2nd Embodiment. (A)〜(C)は、逆L型アンテナ200の構造例(その2)を示す断面図である。(A)-(C) are sectional drawings which show the structural example (the 2) of the inverted L type | mold antenna 200. FIG. 従来例に係る平面アンテナ300の構成例を示す斜視図である。It is a perspective view which shows the structural example of the planar antenna 300 which concerns on a prior art example.

以下、図面を参照しながら、本発明に係る逆L型アンテナについて、その実施の形態を説明する。図1に示す第1の実施形態としての逆L型アンテナ100は、不平衡給電超低姿勢逆L型アンテナとして構成したものである。逆L型アンテナ100は接地導体板10、逆L状のアンテナ素子8及び、長方形状の対向導体板17を有している。   Embodiments of an inverted L antenna according to the present invention will be described below with reference to the drawings. The inverted L-type antenna 100 as the first embodiment shown in FIG. 1 is configured as an unbalanced feed ultra-low attitude inverted L-type antenna. The inverted L-type antenna 100 includes a ground conductor plate 10, an inverted L-shaped antenna element 8, and a rectangular opposing conductor plate 17.

図中のx方向、y方向及びz方向は三次元座標系であり、xは接地導体板10及び対向導体板17の幅方向であり、y方向と直交する方向である。yは接地導体板10及び対向導体板17の長さ方向であり、アンテナ電流の流れる方向である。zは指向性方向であり、電磁波の輻射方向である。z方向はx,y方向と直交する方向である。   In the drawing, the x direction, the y direction, and the z direction are a three-dimensional coordinate system, and x is the width direction of the ground conductor plate 10 and the opposing conductor plate 17 and is a direction orthogonal to the y direction. y is the length direction of the ground conductor plate 10 and the opposing conductor plate 17 and is the direction in which the antenna current flows. z is a directivity direction, and is a radiation direction of electromagnetic waves. The z direction is a direction orthogonal to the x and y directions.

接地導体板10は使用周波数の波長に依存した大きさ、例えば、所定サイズの四角形状(縦×横)を有した有限導体から構成され、少なくとも表面を接地電位(接地電位部)に保持して使用される。接地導体板10の具体的な寸法例については後述する。接地導体板10上の所定の位置には外導体26の基端部が接続され、内導体24に給電されるアンテナ素子8が設けられている。アンテナ素子8は逆L状を有しており、使用周波数の帯域、この例では2.45GHz帯に共振周波数を有している。アンテナ素子8の内導体24及び外導体26には特性インピーダンス50Ωのセミリジット同軸ケーブル(単に同軸ケーブル20という)が使用される。   The ground conductor plate 10 is composed of a finite conductor having a size that depends on the wavelength of the operating frequency, for example, a rectangular shape (vertical x horizontal) of a predetermined size, and holds at least the surface at the ground potential (ground potential portion). used. Specific examples of dimensions of the ground conductor plate 10 will be described later. A base end portion of the outer conductor 26 is connected to a predetermined position on the ground conductor plate 10, and an antenna element 8 that feeds power to the inner conductor 24 is provided. The antenna element 8 has an inverted L shape, and has a resonance frequency in the band of the used frequency, in this example, the 2.45 GHz band. For the inner conductor 24 and the outer conductor 26 of the antenna element 8, a semi-rigid coaxial cable (simply called the coaxial cable 20) having a characteristic impedance of 50Ω is used.

アンテナ素子8の基端部は同軸ケーブル20の外導体26が接地導体板10の所定箇所に接続されることで支持されている。内導体24は外導体26とは間隔を開けて配置され、外導体26よりも先端が伸びている。外導体26及び内導体24は、接地導体板10の所定箇所から所定距離だけ離れた箇所で折り曲げられ、接地導体板10と近接して平行に配置され、内導体24に給電される。   The base end portion of the antenna element 8 is supported by connecting the outer conductor 26 of the coaxial cable 20 to a predetermined portion of the ground conductor plate 10. The inner conductor 24 is disposed at a distance from the outer conductor 26, and the tip extends beyond the outer conductor 26. The outer conductor 26 and the inner conductor 24 are bent at a predetermined distance from the predetermined position of the ground conductor plate 10, arranged in parallel near the ground conductor plate 10, and supplied with power to the inner conductor 24.

図1に示す破線の矢印は、接地導体板10の裏面側から同軸ケーブル20の接続部21に向かっており、この裏面側から給電している状態を示している。送信時には送信信号をアンテナ素子8に供給し、受信時にはアンテナ素子8から受信信号を取り出すようになされる。   The broken-line arrows shown in FIG. 1 are directed from the back surface side of the ground conductor plate 10 toward the connection portion 21 of the coaxial cable 20, and indicate a state where power is supplied from the back surface side. A transmission signal is supplied to the antenna element 8 during transmission, and a reception signal is extracted from the antenna element 8 during reception.

このアンテナ素子8の上部には、当該アンテナ素子8を間に挟んだ形態で、接地導体板10と対向した上方の位置に対向導体板17が配設されている。対向導体板17は、アンテナ素子8の共振周波数とほぼ等しい共振周波数で共振する大きさを有しており、接地導体板10に対して絶縁性が維持されている。   On the upper portion of the antenna element 8, a counter conductor plate 17 is disposed at an upper position facing the ground conductor plate 10 with the antenna element 8 interposed therebetween. The opposing conductor plate 17 has a magnitude that resonates at a resonance frequency substantially equal to the resonance frequency of the antenna element 8, and insulation is maintained with respect to the ground conductor plate 10.

例えば、対向導体板17は、図2に示すような複数の支持部11a,11b上に架設される。支持部11a,11bは接地導体板10を保持するための、例えば、筐体11の両側に設けられる。筐体11は接地導体板10を保持する保持部11c,11dを有している。対向導体板17は接地導体板10と平行した位置で支持部11a,11b上に架設される。対向導体板17の具体的な寸法例については後述する。   For example, the opposing conductor plate 17 is constructed on a plurality of support portions 11a and 11b as shown in FIG. The support portions 11 a and 11 b are provided on both sides of the housing 11 for holding the ground conductor plate 10, for example. The housing 11 has holding portions 11 c and 11 d that hold the ground conductor plate 10. The opposing conductor plate 17 is installed on the support portions 11 a and 11 b at a position parallel to the ground conductor plate 10. Specific examples of dimensions of the opposing conductor plate 17 will be described later.

ここで、図2を参照して、逆L状のアンテナ素子8の構成例について説明する。この例で、図2において、接地導体板10の表面の所定箇所には、同軸ケーブル20の一方の端部(基端側)を接続した接続部21が設けられている。図2に示すL0は同軸ケーブル20を逆L状に曲げた部分の長さであり、L1はその外導体26のみの長さである。従って、L0−L1は内導体24が露出している部分の長さとなる。   Here, a configuration example of the inverted L-shaped antenna element 8 will be described with reference to FIG. In this example, in FIG. 2, a connection portion 21 connected to one end portion (base end side) of the coaxial cable 20 is provided at a predetermined position on the surface of the ground conductor plate 10. L0 shown in FIG. 2 is the length of the portion where the coaxial cable 20 is bent in an inverted L shape, and L1 is the length of the outer conductor 26 alone. Therefore, L0-L1 is the length of the portion where the inner conductor 24 is exposed.

すなわち、同軸ケーブル20は、中心に配置された内導体24の外側を囲むように、図中、白抜きで示す絶縁体(誘電体)25が配置してあり、その絶縁体25の外側を囲むように外導体26が配置されている。同軸ケーブル20は、接地導体板10との接続部21において、接地導体板10の表面と外導体26とを電気的に接続されており、外導体26が接地電位部となっている。   That is, the coaxial cable 20 is provided with an insulator (dielectric material) 25 shown in white in the drawing so as to surround the outside of the inner conductor 24 arranged at the center, and surrounds the outside of the insulator 25. Thus, the outer conductor 26 is arranged. The coaxial cable 20 is electrically connected between the surface of the ground conductor plate 10 and the outer conductor 26 at the connection portion 21 to the ground conductor plate 10, and the outer conductor 26 serves as a ground potential portion.

この接続部21に一方の端部が接続された同軸ケーブル20は、高さ方向に所定の長さだけ接地導体板10の表面と離れた位置で曲折箇所22として折り曲げられ、その折り曲げられた同軸ケーブル20の先端側が、接地導体板10の表面と平行になるように配置されている。図中、hは距離であり、接地導体板10の表面と同軸ケーブル20の中心との間の長さであり、距離hについては、例えば、逆L型アンテナ100で送受信する使用周波数の信号の1波長の約1/30に設定されている。   The coaxial cable 20 having one end connected to the connection portion 21 is bent as a bent portion 22 at a position away from the surface of the ground conductor plate 10 by a predetermined length in the height direction. The front end side of the cable 20 is disposed so as to be parallel to the surface of the ground conductor plate 10. In the figure, h is a distance, which is the length between the surface of the ground conductor plate 10 and the center of the coaxial cable 20. For the distance h, for example, a signal of a use frequency transmitted and received by the inverted L antenna 100 is used. It is set to about 1/30 of one wavelength.

同軸ケーブル20は、曲折箇所22で逆L状に折り曲げられて接地導体板10と平行、かつ、近接して延伸され、内導体24だけを内導体端部24aまで長さL0に伸ばしている。同軸ケーブル20の外導体26については、その長さL0よりも短い長さL1の位置を、外導体端部23としている。この外導体端部23の位置で、絶縁体25についても端部として、切断してある。この外導体26を切断した位置が、アンテナ素子8の給電点となる。   The coaxial cable 20 is bent in an inverted L shape at a bent portion 22 and is extended in parallel and close to the ground conductor plate 10, and only the inner conductor 24 is extended to the length L0 to the inner conductor end 24 a. For the outer conductor 26 of the coaxial cable 20, the position of the length L 1 shorter than the length L 0 is used as the outer conductor end 23. At the position of the outer conductor end 23, the insulator 25 is also cut as an end. The position where the outer conductor 26 is cut becomes the feeding point of the antenna element 8.

曲折箇所22から内導体端部24aまでの長さL0については、使用周波数によって決定する。例えば、逆L型アンテナ100で送受信する信号の1波長の約1/4に設定されている。このように伸ばされた内導体24と長さL1の外導体26が、この例の逆L型アンテナ100のアンテナ素子8として機能する。   The length L0 from the bent portion 22 to the inner conductor end 24a is determined by the operating frequency. For example, it is set to about ¼ of one wavelength of a signal transmitted / received by the inverted L-type antenna 100. The inner conductor 24 thus extended and the outer conductor 26 having a length L1 function as the antenna element 8 of the inverted L-type antenna 100 of this example.

外導体26の長さL1については、アンテナ素子8のインピーダンスが所望の値(ここでは特性インピーダンス:50Ω)になるように設定される。アンテナ素子8のインピーダンスは内導体24の長さL0−L1を調整することで行う。この長さL0−L1を調整することで、アンテナ素子8と給電点とのインピーダンス整合をとることができる。   The length L1 of the outer conductor 26 is set so that the impedance of the antenna element 8 becomes a desired value (here, characteristic impedance: 50Ω). The impedance of the antenna element 8 is performed by adjusting the length L0-L1 of the inner conductor 24. By adjusting this length L0-L1, impedance matching between the antenna element 8 and the feeding point can be achieved.

また、図2において、接地導体板10と同軸ケーブル20との間の接続部21には、表面から裏面まで貫通した孔20aを設けてあり、その孔20aに、同軸ケーブル20の内導体24を通過させてある。例えば、絶縁体25についても孔20aを貫通させて、内導体24が接地導体板10の表面等に電気的に接触しないような構成を採っている。   Further, in FIG. 2, a connection portion 21 between the ground conductor plate 10 and the coaxial cable 20 is provided with a hole 20a penetrating from the front surface to the back surface, and the inner conductor 24 of the coaxial cable 20 is provided in the hole 20a. It has been passed. For example, the insulator 25 is also configured to pass through the hole 20a so that the inner conductor 24 does not electrically contact the surface of the ground conductor plate 10 or the like.

この接地導体板10の裏面側に引き出された外導体26と内導体24を使って給電する。外導体26と内導体24は図2に示した信号処理回路3に接続され、信号処理回路3では、送信時、送信信号を変調したり、受信時、受信信号を復号する処理等がなされる。   Power is supplied using the outer conductor 26 and the inner conductor 24 drawn out to the back side of the ground conductor plate 10. The outer conductor 26 and the inner conductor 24 are connected to the signal processing circuit 3 shown in FIG. 2, and the signal processing circuit 3 performs a process of modulating a transmission signal at the time of transmission and a process of decoding a reception signal at the time of reception. .

次に、図3を参照して、逆L型アンテナ100の各部の寸法例及びその放射原理について説明する。図3において、pxmは同軸ケーブル20の接続部21から接地導体板10の一方の端部に至るまでの長さである。pxpはその接続部21からその他方の端部までの長さである。この例では長さpxmと長さpxpとは等しい寸法に設定されており、長さpxm+pxpは、接地導体板10のx方向(幅方向)の幅を示している。   Next, with reference to FIG. 3, the example of a dimension of each part of the inverted L type antenna 100 and its radiation principle are demonstrated. In FIG. 3, pxm is a length from the connection portion 21 of the coaxial cable 20 to one end portion of the ground conductor plate 10. pxp is the length from the connecting portion 21 to the other end. In this example, the length pxm and the length pxp are set to the same dimension, and the length pxm + pxp indicates the width of the ground conductor plate 10 in the x direction (width direction).

pymは同軸ケーブル20の接続部21から、アンテナ素子8の内導体24が伸びた反対方向の接地導体板10の端部に至るまでのy軸方向の長さである。pypはその接続部21からその内導体24が伸びた方向の接地導体板10の端部に至るまでのy軸方向の長さである。この例では、長さpymと長さpypとは異なる寸法に設定されており、長さpym+pypは、接地導体板10のy方向(長さ方向)の寸法を示している。   Pym is the length in the y-axis direction from the connecting portion 21 of the coaxial cable 20 to the end of the ground conductor plate 10 in the opposite direction in which the inner conductor 24 of the antenna element 8 extends. pyp is the length in the y-axis direction from the connecting portion 21 to the end of the ground conductor plate 10 in the direction in which the inner conductor 24 extends. In this example, the length pym and the length pyp are set to different dimensions, and the length pym + pyp indicates the dimension of the ground conductor plate 10 in the y direction (length direction).

dxは、対向導体板17のx方向の幅であり、dyは、対向導体板17のy方向の長さである。dhは、接地導体板10と対向導体板17との間の導体間距離である。長さdx,dyはアンテナ素子8の共振周波数に依存する寸法に設定される。この設定は、線状の放射面積を面状の放射面積に拡大(拡張)するためである。   dx is the width of the counter conductor plate 17 in the x direction, and dy is the length of the counter conductor plate 17 in the y direction. dh is an inter-conductor distance between the ground conductor plate 10 and the counter conductor plate 17. The lengths dx and dy are set to dimensions that depend on the resonance frequency of the antenna element 8. This setting is for expanding (expanding) the linear radiation area to the planar radiation area.

また、図3に示す実線の黒太の矢印は、接地導体板10と同軸ケーブル20を流れる電流の方向を示している。図中、I1〜I4は各部を流れる電流であり、電流I1は内導体24をy軸方向に流れる電流である。   3 indicates the direction of current flowing through the ground conductor plate 10 and the coaxial cable 20. In the figure, I1 to I4 are currents flowing through the respective parts, and the current I1 is a current flowing through the inner conductor 24 in the y-axis direction.

この例では、接地導体板10の表面上の、アンテナ素子8の長手方向と直交する方向(図3中のx軸方向)については、長さpxmと長さpxpとが等しくし設定されているので、x軸方向の電流I2が打ち消し合ってx軸方向の電流が零となり、電流I2による放射を抑制する。   In this example, the length pxm and the length pxp are set equal to each other in the direction orthogonal to the longitudinal direction of the antenna element 8 on the surface of the ground conductor plate 10 (x-axis direction in FIG. 3). Therefore, the currents I2 in the x-axis direction cancel each other, the current in the x-axis direction becomes zero, and radiation due to the current I2 is suppressed.

その上で、接地導体板10のy軸方向の長さpym,pypの設定で、導体板上のy軸方向の電流が+y軸方向に流れるように調整する。ここでの+y軸方向とは、同軸ケーブル20の接続部21から内導体端部24aに向かう方向である。すなわち、この例では、長さpymの方がpypよりも小さく設定されているので、電流I3の方が電流I4より大きくなるため、両者が逆向きに打ち消しあっても導体板上のy軸方向の電流はトータルとしては+y軸方向に流れる。そのために、内導体24を+y軸方向に流れる電流I1による放射が大きくなる。   Then, by setting the lengths pym and pyp of the ground conductor plate 10 in the y-axis direction, adjustment is made so that the current in the y-axis direction on the conductor plate flows in the + y-axis direction. Here, the + y axis direction is a direction from the connection portion 21 of the coaxial cable 20 toward the inner conductor end portion 24a. That is, in this example, since the length pym is set smaller than ypp, the current I3 is larger than the current I4. Therefore, even if both cancel each other in the opposite direction, the y-axis direction on the conductor plate The total current flows in the + y-axis direction. Therefore, the radiation by the current I1 flowing in the + y axis direction through the inner conductor 24 is increased.

送受信時の電流I1の向きについて、より詳しく説明すると、同軸ケーブル20の内部では、図2に示した内導体24と外導体26とには逆向きの電流が流れる。そして、外導体26が配置された位置の同軸ケーブル20は、その外導体26で遮蔽されているので、電磁波は放射されない。   The direction of the current I1 at the time of transmission / reception will be described in more detail. Inside the coaxial cable 20, a reverse current flows through the inner conductor 24 and the outer conductor 26 shown in FIG. And since the coaxial cable 20 of the position where the outer conductor 26 is arrange | positioned is shielded by the outer conductor 26, electromagnetic waves are not radiated | emitted.

一方、外導体端部23から内導体24を外部に延ばすことで、そこから電流I1が流れ出る。この結果、外導体端部23から電磁界が放射される。それと等量の電流I1が外導体26の表面から同軸ケーブル20の内部に流れ込む。もし、外導体端部23から内導体24が延長されていなければ、外導体端部23から放射される電磁界はほぼ零となる(放射原理)。   On the other hand, the current I1 flows out from the outer conductor end 23 by extending the inner conductor 24 to the outside. As a result, an electromagnetic field is radiated from the outer conductor end 23. An equal amount of current I 1 flows from the surface of the outer conductor 26 into the coaxial cable 20. If the inner conductor 24 is not extended from the outer conductor end 23, the electromagnetic field radiated from the outer conductor end 23 is almost zero (radiation principle).

逆L型アンテナ100で受信する場合には、外導体端部23から延長された内導体24と同軸ケーブル20の外導体26の表面に電流が流れる。両者によって、外導体端部23での内導体24と外導体26の間に電位差(電圧)が生じ、それによって、同軸ケーブル20の内部に電流I1が流れ込み、受信が行われる。   When receiving with the inverted L-shaped antenna 100, current flows on the inner conductor 24 extended from the outer conductor end 23 and the surface of the outer conductor 26 of the coaxial cable 20. As a result, a potential difference (voltage) is generated between the inner conductor 24 and the outer conductor 26 at the outer conductor end 23, whereby current I 1 flows into the coaxial cable 20 and reception is performed.

次に、図4〜図6を参照して、逆L型アンテナ100の具体的な寸法例で計算したアンテナ特性について説明をする。逆L型アンテナ100の形状パラメータとして、以下のように設定した。アンテナ素子8を構成する同軸ケーブルの半径として、接続部21から外導体端部23(給電点)までの半径を1.095mmとし、給電点から先端までの内導体24の半径を0.255mmとする。   Next, with reference to FIG. 4 to FIG. 6, antenna characteristics calculated in a specific dimension example of the inverted L-type antenna 100 will be described. The shape parameters of the inverted L antenna 100 were set as follows. As the radius of the coaxial cable constituting the antenna element 8, the radius from the connecting portion 21 to the outer conductor end 23 (feed point) is 1.095 mm, and the radius of the inner conductor 24 from the feed point to the tip is 0.255 mm. To do.

また、図1に示したx軸方向の接地導体板10の幅(pxm+pxp)としては、信号の波長λの0.36倍の幅(pxm+pxp)、すなわち、長さpxm=pxp=22mmとする。接地導体板10のy軸方向の長さとしては、信号の波長λの0.51倍の長さ(pym+pyp)、すなわち、pym=13mm、pyp=50mmとする。さらに、アンテナ素子8の長さL0,L1及び高さhとしては、各々をL0=39.8mm、L1=17mm、h=5.0mmとする。   Further, the width (pxm + pxp) of the ground conductor plate 10 in the x-axis direction shown in FIG. 1 is 0.36 times the signal wavelength λ (pxm + pxp), that is, the length pxm = pxp = 22 mm. The length of the ground conductor plate 10 in the y-axis direction is 0.51 times the signal wavelength λ (pym + pyp), that is, pym = 13 mm and yp = 50 mm. Further, the lengths L0 and L1 and the height h of the antenna element 8 are set to L0 = 39.8 mm, L1 = 17 mm, and h = 5.0 mm, respectively.

対向導体板17のx方向の幅dxは接地導体板10の幅(pxm+pxp)と同じく、dx=44mmとする。対向導体板17のy方向の長さdyは接地導体板10の長さpym+pypよりも短い、dy=51.5mmとする。接地導体板10と対向導体板17との間の導体間距離dhは信号の波長λの0.08倍のdh=10mmとする。これらの寸法を設定して逆L型アンテナ100を構成した。これらのパラメータを設定した上で、この逆L型アンテナ100が扱う中心周波数を2.45GHzとして、アンテナ特性を求めた。   The width dx in the x direction of the opposing conductor plate 17 is set to dx = 44 mm similarly to the width (pxm + pxp) of the ground conductor plate 10. The length dy in the y direction of the counter conductor plate 17 is shorter than the length pym + ypp of the ground conductor plate 10 and dy = 51.5 mm. The inter-conductor distance dh between the ground conductor plate 10 and the counter conductor plate 17 is set to dh = 10 mm, which is 0.08 times the signal wavelength λ. The inverted L-shaped antenna 100 was configured by setting these dimensions. After setting these parameters, antenna characteristics were obtained with the center frequency handled by the inverted L-type antenna 100 being 2.45 GHz.

ここで、図4を参照して、対向導体板17のy方向の寸法dyを変化させた場合のS11特性(電圧反射係数)例について説明する。図4において、縦軸は電圧反射係数S11[dB]であり、S11は等分目盛りで0,−10,−20,−30,−40,−50[dB]である。横軸は使用周波数[GHz]である。この例で使用周波数は、等分目盛りで0.1GHz刻みの2.2GHz〜3.0GHzである。この使用周波数2.2GHz〜3.0GHzの範囲で寸法dyを変化させた場合のS11特性を計算したものである。数値解析には、モーメント法に基づいた電磁界シミュレータ”WIPL-D”を用いた。   Here, an example of the S11 characteristic (voltage reflection coefficient) when the dimension dy in the y direction of the counter conductor plate 17 is changed will be described with reference to FIG. In FIG. 4, the vertical axis represents the voltage reflection coefficient S11 [dB], and S11 is an equal scale of 0, −10, −20, −30, −40, −50 [dB]. The horizontal axis represents the operating frequency [GHz]. In this example, the frequency used is 2.2 GHz to 3.0 GHz in equal divisions and in increments of 0.1 GHz. This is a calculation of the S11 characteristic when the dimension dy is changed in the operating frequency range of 2.2 GHz to 3.0 GHz. For the numerical analysis, an electromagnetic simulator "WIPL-D" based on the method of moments was used.

実線に示す曲線は、対向導体板17の寸法dyが41.5mmで、アンテナ素子8の寸法L0が30.0mmで、L1が9.0mmで、設計周波数の範囲が下限値2.37GHz〜その上限値2.53GHzの場合に、リターンロスが−10[dB]以下となるS11対周波数特性である。使用周波数2.37GHz〜2.56GHzの範囲において、小さな共振点(共振周波数2.44GHz付近)が得られ、使用周波数2.64GHz〜2.97GHzの範囲において、大きな共振点(共振周波数2.86GHz付近)が得られている。   The curve shown by the solid line is that the dimension dy of the opposing conductor plate 17 is 41.5 mm, the dimension L0 of the antenna element 8 is 30.0 mm, L1 is 9.0 mm, and the design frequency range is from the lower limit value 2.37 GHz to In the case of the upper limit value 2.53 GHz, the S11 vs. frequency characteristic has a return loss of −10 [dB] or less. A small resonance point (resonance frequency around 2.44 GHz) is obtained in the range of use frequency 2.37 GHz to 2.56 GHz, and a large resonance point (resonance frequency 2.86 GHz in the range of use frequency 2.64 GHz to 2.97 GHz. Near).

破線に示す曲線は、対向導体板17及びアンテナ素子8の寸法がdy=51.5mmで、L0=39.8mmで、L1=17.0mmで、設計周波数の範囲が2.39GHz〜2.51GHzの場合に、リターンロス=−10[dB]以下が得られるS11対周波数特性である。使用周波数2.39GHz〜2.50GHzの範囲において、大きな共振点(共振周波数2.45GHz付近)が得られている。   The curve shown by the broken line shows that the dimensions of the opposing conductor plate 17 and the antenna element 8 are dy = 51.5 mm, L0 = 39.8 mm, L1 = 17.0 mm, and the design frequency range is 2.39 GHz to 2.51 GHz. In this case, the return loss = −10 [dB] or less is S11 versus frequency characteristics. A large resonance point (around the resonance frequency of 2.45 GHz) is obtained in the operating frequency range of 2.39 GHz to 2.50 GHz.

一点鎖線に示す曲線は、同様の寸法がdy=61.5mmで、L0=34.0mmで、L1=23.5mmで、設計周波数の範囲が2.43GHz〜2.48GHzの場合に、リターンロス=−10[dB]以下が得られるS11対周波数特性である。使用周波数2.43GHz〜2.47GHzの範囲において、大きな共振点(共振周波数2.45GHz付近)が得られている。   The curve indicated by the alternate long and short dash line shows a return loss when the same dimensions are dy = 61.5 mm, L0 = 34.0 mm, L1 = 23.5 mm, and the design frequency range is 2.43 GHz to 2.48 GHz. = −10 [dB] or less is the S11 vs. frequency characteristic obtained. A large resonance point (around the resonance frequency of 2.45 GHz) is obtained in the range of the operating frequency from 2.43 GHz to 2.47 GHz.

上述の計算結果を逆L型アンテナ100(A)〜(C)に分類して表1にまとめている。   The above calculation results are classified into inverted L-type antennas 100 (A) to (C) and summarized in Table 1.

Figure 2015164256
Figure 2015164256

この表1によれば、dy=41.5mmの対向導体板17を配置した逆L型アンテナ100(A)によれば、共振周波数2.44GHz付近と共振周波数2.86GHz付近とで2つ共振が得られ、広帯域用の逆L型アンテナ100を提供できるようになる。逆L型アンテナ100(A)によれば、使用周波数2.98GHz付近で最大指向性利得=8.26[dB]が得られることがわかった。   According to Table 1, according to the inverted L-type antenna 100 (A) in which the opposing conductor plate 17 having dy = 41.5 mm is arranged, two resonances are caused around the resonance frequency of 2.44 GHz and around the resonance frequency of 2.86 GHz. Thus, it is possible to provide a wideband inverted L-type antenna 100. According to the inverted L-type antenna 100 (A), it was found that the maximum directivity gain = 8.26 [dB] was obtained near the use frequency of 2.98 GHz.

また、dy=51.5mmの対向導体板17を配置した逆L型アンテナ100(B)によれば、共振周波数2.45GHz付近で共振が得られ、狭帯域用の逆L型アンテナ100を提供できるようになる。逆L型アンテナ100(B)によれば、使用周波数2.45GHz付近で最大指向性利得=8.10[dB]が得られることがわかった。   Further, according to the inverted L-type antenna 100 (B) in which the opposing conductor plate 17 with dy = 51.5 mm is arranged, resonance is obtained in the vicinity of the resonance frequency of 2.45 GHz, and the inverted L-type antenna 100 for narrow band is provided. become able to. According to the inverted L-type antenna 100 (B), it was found that the maximum directivity gain = 8.10 [dB] was obtained near the use frequency of 2.45 GHz.

また、dy=61.5mmの対向導体板17を配置した逆L型アンテナ100(C)によれば、共振周波数2.45GHz付近で共振が得られ、狭帯域用の逆L型アンテナ100を提供できるようになる。すなわち、逆L型アンテナ100(C)によれば、接地導体板10の長さpmy+pypと、対向導体板17の長さdyとがほぼ同じ大きさになり、共振周波数がほぼ等しくなって、周波数帯域が狭帯域となる。また、逆L型アンテナ100(C)によれば、使用周波数2.19GHz付近で最大指向性利得=6.67[dB]が得られた。dyを長くし過ぎると、−z方向への放射が強くなりすぎて、最大指向性利得が低下することがわかった。   Further, according to the inverted L-type antenna 100 (C) having the opposing conductor plate 17 with dy = 61.5 mm, resonance is obtained in the vicinity of the resonance frequency of 2.45 GHz, and the inverted L-type antenna 100 for narrow band is provided. become able to. That is, according to the inverted L-type antenna 100 (C), the length pmy + pyp of the ground conductor plate 10 and the length dy of the counter conductor plate 17 are substantially the same, and the resonance frequency is substantially equal. The band becomes narrow. Further, according to the inverted L-type antenna 100 (C), the maximum directivity gain = 6.67 [dB] was obtained in the vicinity of the use frequency of 2.19 GHz. It has been found that if dy is made too long, the radiation in the −z direction becomes too strong and the maximum directivity gain decreases.

ここで、図5及び図6を参照して、逆L型アンテナ100の放射電界指向性パターン例(xz面、yz面)について説明する。図5Aに示す円形グラフにおいて、横軸はアンテナ素子8のx方向の指向特性利得[dB]であり、縦軸はそのz方向の指向特性利得[dB]である。指向特性利得は等分目盛りで−20,−10,−5,0,5,10[dB]である。図5Bに示すxz面の断面図において、アンテナ素子8上に幅dx=44mmの対向導体板17が配置されている。   Here, with reference to FIG.5 and FIG.6, the example of the radiation electric field directivity pattern (xz surface, yz surface) of the inverted L type antenna 100 is demonstrated. In the circular graph shown in FIG. 5A, the horizontal axis represents the directional characteristic gain [dB] in the x direction of the antenna element 8, and the vertical axis represents the directional characteristic gain [dB] in the z direction. The directivity gain is -20, -10, -5, 0, 5, 10 [dB] on an even scale. In the cross-sectional view of the xz plane shown in FIG. 5B, the opposing conductor plate 17 having a width dx = 44 mm is disposed on the antenna element 8.

実線の曲線はアンテナ素子8のxz面における磁気特性Eφを示す放射電界指向性パターンである。Eφの放射電界指向性パターンによれば、逆さ向きの瓢箪の形状を有しており、対向導体板17の方向に大きくが指向性が広がっている。z方向で最大指向特性利得が8[dB]となっている。   A solid curve is a radiation electric field directivity pattern showing the magnetic characteristic Eφ in the xz plane of the antenna element 8. According to the radiation electric field directivity pattern of Eφ, it has the shape of a ridge facing upside down, and the directivity is largely spread in the direction of the opposing conductor plate 17. The maximum directivity gain in the z direction is 8 [dB].

破線の曲線はアンテナ素子8のxz面における電界特性Eθを示す放射電界指向性パターンである。Eθの放射電界指向性パターンは無限大(∞)の記号に類似した形状を有している。いずれも、使用周波数2.45GHz、dy=51.5mm時のアンテナ特性である。   A broken curve is a radiation electric field directivity pattern indicating the electric field characteristic Eθ in the xz plane of the antenna element 8. The radiation field directivity pattern of Eθ has a shape similar to the symbol of infinity (∞). Both are antenna characteristics at a use frequency of 2.45 GHz and dy = 51.5 mm.

また、図6Aに示す円形グラフにおいて、横軸はアンテナ素子8のy方向の指向特性利得[dB]であり、縦軸はそのz方向の指向特性利得[dB]である。図6Bに示すyz面の断面図において、アンテナ素子8上に長さdy=51.5mmの対向導体板17が配置されている。なお、yz面においては、電界特性Eφは零である。   In the circular graph shown in FIG. 6A, the horizontal axis represents the directional characteristic gain [dB] in the y direction of the antenna element 8, and the vertical axis represents the directional characteristic gain [dB] in the z direction. In the cross-sectional view of the yz plane shown in FIG. 6B, an opposing conductor plate 17 having a length dy = 51.5 mm is disposed on the antenna element 8. In the yz plane, the electric field characteristic Eφ is zero.

破線の曲線はアンテナ素子8のyz面における電界特性Eθを示す放射電界指向性パターンである。Eθの放射電界指向性パターンは逆さ向きの瓢箪に類似した形状を有している。z軸方向に電流放射が寄与していることが分かる。いずれも、使用周波数2.45GHz時のアンテナ特性である。   A broken curve is a radiation electric field directivity pattern indicating the electric field characteristic Eθ on the yz plane of the antenna element 8. The radiated electric field directivity pattern of Eθ has a shape similar to an inverted ridge. It can be seen that current radiation contributes in the z-axis direction. Both are antenna characteristics at a use frequency of 2.45 GHz.

このように対向導体板17の長方形の縦×横の大きさである寸法dx,dyに依存する共振周波数と、逆L状のアンテナ素子8の共振周波数とを一致させることで、アンテナ素子8の電圧反射係数(|S11|)特性を最小に低減し、しかも、指向特性利得も最大に増加できるようになる。指向特性利得として8dBが得られるアンテナ素子8に関して、大きさが約6倍のマイクロストリップ形式のアンテナと同等の指向性利得を得られることが分かった。   In this way, by matching the resonance frequency depending on the dimensions dx and dy, which are the vertical and horizontal dimensions of the rectangular of the opposing conductor plate 17, with the resonance frequency of the inverted L-shaped antenna element 8, The voltage reflection coefficient (| S11 |) characteristic can be reduced to the minimum, and the directional characteristic gain can be increased to the maximum. With respect to the antenna element 8 that can obtain 8 dB as the directivity characteristic gain, it has been found that a directivity gain equivalent to that of a microstrip antenna having a size of about 6 times can be obtained.

ここで、図7及び図8を参照して、比較例としての逆L型アンテナ101と、本発明に係る逆L型アンテナ100とを比較する。この例では、図7に示すような対向導体板17が無い場合の逆L型アンテナ101と、上述した対向導体板17が有る場合の逆L型アンテナ100についてアンテナ特性を比較した。比較例としての逆L型アンテナ101の形状パラメータは、次の通りであり、逆L型アンテナ101は、逆L型アンテナ100から対向導体板17と取っただけではなく、|S11|特性が最小となり、指向特性利得が最大になるように設定したものである。   Here, with reference to FIG.7 and FIG.8, the inverted L type | mold antenna 101 as a comparative example and the inverted L type | mold antenna 100 which concern on this invention are compared. In this example, the antenna characteristics were compared between the inverted L-type antenna 101 without the opposing conductor plate 17 as shown in FIG. 7 and the inverted L-type antenna 100 with the opposing conductor plate 17 described above. The shape parameters of the inverted L-type antenna 101 as a comparative example are as follows. The inverted L-type antenna 101 is not only taken from the inverted L-type antenna 100 as the counter conductor plate 17, but also has a minimum | S11 | characteristic. Thus, the directional characteristic gain is set to be maximum.

図7に示す逆L型アンテナ101によれば、そのx軸方向の接地導体板10の幅(pxm+pxp)として、長さpxm=pxp=15mmとする。接地導体板10のy軸方向の長さとしては、長さpym=10mm、pyp=50mmとする。さらに、逆L型アンテナ101のアンテナ素子8の長さL0,L1及び高さhとしては、各々をL0=31.6mm、L1=22.8mm、h=4.0mmとする。なお、逆L型アンテナ101のアンテナ素子8を構成する同軸ケーブルについては、逆L型アンテナ100と同様なものを使用した。   According to the inverted L-shaped antenna 101 shown in FIG. 7, the length pxm = pxp = 15 mm is set as the width (pxm + pxp) of the ground conductor plate 10 in the x-axis direction. The length of the ground conductor plate 10 in the y-axis direction is set to the length pym = 10 mm and yp = 50 mm. Further, the lengths L0 and L1 and the height h of the antenna element 8 of the inverted L-type antenna 101 are L0 = 31.6 mm, L1 = 22.8 mm, and h = 4.0 mm, respectively. The coaxial cable constituting the antenna element 8 of the inverted L antenna 101 was the same as that of the inverted L antenna 100.

図8A及びBは、比較例としての図7に示した不平衡給電逆L型アンテナ101の放射電界指向パターン例(xz面)及び放射電界指向パターン例(yz面)を示すグラフ図である。図8Aにおいて、実線の曲線は逆L型アンテナ101のアンテナ素子8のxz面における電界特性Eφを示す放射電界指向性パターンである。Eφの放射電界指向性パターンによれば、若干潰れ気味ではあるが、ほぼ円形状を有しており、z方向に大きくが指向性が広がっているが、図5に示した逆L型アンテナ100のz方向での最大指向特性利得=8[dB]に比べて最大指向特性利得が4.8[dB]程度と少なくなっている。   8A and 8B are graphs showing a radiation field directivity pattern example (xz plane) and a radiation field directivity pattern example (yz plane) of the unbalanced feed inverted L-type antenna 101 shown in FIG. 7 as a comparative example. In FIG. 8A, the solid curve is a radiation electric field directivity pattern indicating the electric field characteristic Eφ in the xz plane of the antenna element 8 of the inverted L-type antenna 101. According to the radiation electric field directivity pattern of Eφ, although it is slightly crushed, it has a substantially circular shape and has a large directivity in the z direction, but the inverted L antenna 100 shown in FIG. The maximum directional characteristic gain is about 4.8 [dB] smaller than the maximum directional characteristic gain in the z direction = 8 [dB].

破線の曲線は逆L型アンテナ101のアンテナ素子8のxz面における電界特性Eθを示す放射電界指向性パターンである。Eθの放射電界指向性パターンは逆L型アンテナ100と同様にして無限大(∞)の記号の形状を有している。   The dashed curve is a radiation electric field directivity pattern indicating the electric field characteristic Eθ in the xz plane of the antenna element 8 of the inverted L-type antenna 101. The radiated electric field directivity pattern of Eθ has the shape of an infinite (∞) symbol as in the inverted L-type antenna 100.

また、図8Bに示す円形グラフにおいて、破線の曲線は逆L型アンテナ101のアンテナ素子8のyz面における電界特性Eθを示す放射電界指向性パターンである。Eθの放射電界指向性パターンは逆さ向きの瓢箪の形状を有しているが、図6に示した逆L型アンテナ100のz方向での最大指向特性利得=8[dB]に比べて最大指向特性利得が4.8[dB]程度と少なくなっている。いずれも、使用周波数2.45GHz時のアンテナ特性である。   Further, in the circular graph shown in FIG. 8B, the dashed curve is a radiation electric field directivity pattern indicating the electric field characteristic Eθ on the yz plane of the antenna element 8 of the inverted L-type antenna 101. The radiated electric field directivity pattern of Eθ has a shape of an inverted ridge, but the maximum directivity is larger than the maximum directional characteristic gain in the z direction of the inverted L-type antenna 100 shown in FIG. 6 = 8 [dB]. The characteristic gain is as low as about 4.8 [dB]. Both are antenna characteristics at a use frequency of 2.45 GHz.

両者の放射電界指向性パターンは逆L型アンテナ100に比べて一回り小さい。これは、図7に示した逆L型アンテナ101にはアンテナ素子8上に対向導体板17が無いため、送信時、放射面積が内導体24の線形状に依存して少なく、指向性が延びなかったと考えられる。   Both radiation electric field directivity patterns are slightly smaller than those of the inverted L-type antenna 100. This is because the inverted L-shaped antenna 101 shown in FIG. 7 does not have the opposing conductor plate 17 on the antenna element 8, so that the radiation area during transmission is small depending on the line shape of the inner conductor 24 and the directivity is extended. Probably not.

一方、この実施形態によれば、アンテナ素子8上に対向導体板17が存在し、送信時、放射面積が内導体24の線形状から対向導体板17の面形状に拡大されたことから、指向性が延びたものと考えられる。受信時には、逆L型アンテナ101に比べて、対向導体板17の面で捉えた逆L型アンテナ100から受信電力を効率よく取り出すことができる。   On the other hand, according to this embodiment, the opposing conductor plate 17 exists on the antenna element 8 and the radiation area is expanded from the linear shape of the inner conductor 24 to the surface shape of the opposing conductor plate 17 during transmission. It is thought that the sex was extended. At the time of reception, compared to the inverted L-type antenna 101, the received power can be efficiently extracted from the inverted L-type antenna 100 captured on the surface of the opposing conductor plate 17.

ここで、図9を参照して、逆L型アンテナ100の指向性利得特性について説明する。
図9において、縦軸は逆L型アンテナ100のz方向で測定される指向特性利得[dB]である。指向特性利得は等分目盛りで7.00〜9.00[dB]である。横軸は逆L型アンテナ100の使用周波数[GHz]である。使用周波数[GHz]は等分目盛りで0.1[GHz]刻みの2.20〜2.70[GHz]である。
Here, the directivity gain characteristic of the inverted L-type antenna 100 will be described with reference to FIG.
In FIG. 9, the vertical axis represents the directivity gain [dB] measured in the z direction of the inverted L antenna 100. The directivity gain is 7.00 to 9.00 [dB] on an even scale. The horizontal axis represents the operating frequency [GHz] of the inverted L-type antenna 100. The operating frequency [GHz] is 2.20 to 2.70 [GHz] in increments of 0.1 [GHz] on an equally divided scale.

実線の曲線は逆L型アンテナ100のz方向の指向特性利得[dB]を示す計算値をパターン化したものである(利得特性パターン)。この利得特性パターンによれば、なだらかな円弧状を有している。周波数帯域幅2.40[GHz]〜2.50[GHz]で、その中心周波数が2.45GHzで、指向特性利得が8.10[dB]以上を実現できており、アンテナ素子8のz方向での最大指向特性利得が8.10[dB]となることを示している。   The solid curve is a pattern of calculated values indicating the directional characteristic gain [dB] in the z direction of the inverted L-type antenna 100 (gain characteristic pattern). According to this gain characteristic pattern, it has a gentle arc shape. The frequency bandwidth is 2.40 [GHz] to 2.50 [GHz], the center frequency is 2.45 GHz, the directivity gain is 8.10 [dB] or more, and the antenna element 8 in the z direction. It shows that the maximum directional characteristic gain at 8 is 8.10 [dB].

このように第1の実施形態としての逆L型アンテナ100によれば、外導体26の基端が接地導体板10に接続された逆L状のアンテナ素子8の共振周波数(2.45GHz)とほぼ等しい共振周波数で共振する大きさ(dx,dy)の対向導体板17を備え、この対向導体板17が当該アンテナ素子8の上部に対向して配置されたものである。   As described above, according to the inverted L-type antenna 100 as the first embodiment, the resonance frequency (2.45 GHz) of the inverted L-shaped antenna element 8 in which the base end of the outer conductor 26 is connected to the ground conductor plate 10. A counter conductor plate 17 having a size (dx, dy) that resonates at substantially the same resonance frequency is provided, and the counter conductor plate 17 is disposed to face the upper portion of the antenna element 8.

この構造によって、逆L状のアンテナ素子8の放射面積を線状から面状に拡大(拡張)できるので、対向導体板17が無い場合に比べて指向特性利得が最大に増加できるようになる。これにより、従来方式の逆L型アンテナ101に比べて指向特性を改善できるようになった。また逆L状のアンテナ素子8を備えたことにより、接地導体板の寸法が、長手方向の長さ((pym+pyp)=63mm)が波長の約1/3、短手方向の長さ((pxm+pxp)=44mm)が波長の約1/2となり、従来の1波長x1波長の大きさの平面アンテナと比べて、面積を約1/6とすることができ、大幅に小型化できるようになった。   With this structure, the radiation area of the inverted L-shaped antenna element 8 can be expanded (expanded) from a linear shape to a planar shape, so that the directional characteristic gain can be increased to the maximum as compared with the case where the counter conductor plate 17 is not provided. As a result, the directivity characteristics can be improved as compared with the conventional inverted L-type antenna 101. Further, since the inverted L-shaped antenna element 8 is provided, the length of the ground conductor plate is about 1/3 of the length in the longitudinal direction ((pym + ypyp) = 63 mm) and the length in the short direction ((pxm + pxp). ) = 44 mm) is about ½ of the wavelength, and the area can be reduced to about 1/6 compared with a conventional flat antenna having a size of 1 wavelength × 1 wavelength, and can be greatly downsized. .

<第2の実施形態>
次に、図10及び図11を参照して、第2の実施形態としての逆L型アンテナ200の構造例(その1,2)について説明する。図10に示す逆L型アンテナ200は、導電パターンを挟んだ多層構造を成す誘電体基板(以下で単に基板28,90という)を有し、基板90の裏面91bに、接地導体板92を配置し、当該基板90の表面91a(接地導体板92から高さh’(=基板90の厚さ分)を有した位置:図11A参照)に、平坦状の導電パターン93,94,95をコプレーナ線路として配置した例としたものである。
<Second Embodiment>
Next, with reference to FIGS. 10 and 11, structural examples (Nos. 1 and 2) of the inverted L-type antenna 200 as the second embodiment will be described. An inverted L-shaped antenna 200 shown in FIG. 10 has a dielectric substrate (hereinafter simply referred to as substrates 28 and 90) having a multilayer structure with a conductive pattern interposed therebetween, and a ground conductor plate 92 is disposed on the back surface 91b of the substrate 90. Then, flat conductive patterns 93, 94, 95 are coplanar on the surface 91a of the substrate 90 (position having a height h ′ (= the thickness of the substrate 90) from the ground conductor plate 92: see FIG. 11A). The example is arranged as a track.

即ち、図10に示すように、基板90の裏面91bのほぼ全面に接地導体板92を設けている。接地導体板92のy方向の寸法は一方の端部より長さpym’、さらにy方向に長さpyp’、すなわち長さpym’+pyp’である。x方向には、中心から端部まで長さpxm’およびpxp’、すなわち長さpxm’+pxp’である。   That is, as shown in FIG. 10, the ground conductor plate 92 is provided on almost the entire back surface 91 b of the substrate 90. The dimension of the ground conductor plate 92 in the y direction is a length pym ′ from one end, and a length pyp ′ in the y direction, that is, a length pym ′ + pyp ′. In the x direction, the lengths are pxm 'and pxp' from the center to the end, that is, the length pxm '+ pxp'.

基板90の表面91aに導電パターン93,94,95を、接地導体板92の一方の端部より長さpym’の位置を基端部としてy方向に向けて平行に設けている。導電パターン93の長さはL0’、導電パターン94,95の長さはL1’である。   Conductive patterns 93, 94, 95 are provided on the surface 91 a of the substrate 90 in parallel in the y direction with the position of the length pym ′ as the base end from one end of the ground conductor plate 92. The length of the conductive pattern 93 is L0 ', and the length of the conductive patterns 94 and 95 is L1'.

x方向には、導電パターン93は接地導体板92の中心位置に、導電パターン94,95はそれに対して所定の間隔を持って配置され、コプレーナ線路となっている。導電パターン93,94,95の上部に、y方向の寸法が長さdy’、x方向の寸法が長さdx’の対向導体板47が配置されている。   In the x-direction, the conductive pattern 93 is disposed at the center position of the ground conductor plate 92, and the conductive patterns 94 and 95 are disposed with a predetermined interval therebetween to form a coplanar line. Above the conductive patterns 93, 94, and 95, an opposing conductor plate 47 having a length dy ′ in the y direction and a length dx ′ in the x direction is disposed.

導電パターン93,94,95の基端部(すなわち接地導体板92の一方の端部より長さpym’の位置)には、それぞれ、図11Bに示す貫通部103,104,105が接続されている。図11Bに示すように、貫通部104と貫通部105は、接地導体板92と接続されている。貫通部103は、接続部97と接続され、電線98が接続部97に接続されている。図11A及び図11Bにおいて、47a〜47dは基板90の周縁上下を支持する支持部である。   Through holes 103, 104, and 105 shown in FIG. 11B are connected to the base ends of the conductive patterns 93, 94, and 95 (that is, the positions having a length pym 'from one end of the ground conductor plate 92), respectively. Yes. As shown in FIG. 11B, the penetrating portion 104 and the penetrating portion 105 are connected to the ground conductor plate 92. The through portion 103 is connected to the connection portion 97, and the electric wire 98 is connected to the connection portion 97. 11A and 11B, reference numerals 47a to 47d denote support portions that support the upper and lower edges of the substrate 90.

図11Cは、図11Aの矢印Aから視た平面図の部分拡大図である。貫通部103とほぼ同心に、接続部97が形成されている。接続部97と接地導体板92は、環状の空隙によって絶縁されている。電線98は接続部97に接続されている。信号処理回路3は、電線98および接地導体板92に接続された電線99によって、逆L型アンテナ200と結線される。   FIG. 11C is a partially enlarged view of the plan view seen from the arrow A in FIG. 11A. A connection portion 97 is formed substantially concentrically with the through portion 103. The connection portion 97 and the ground conductor plate 92 are insulated by an annular gap. The electric wire 98 is connected to the connection portion 97. The signal processing circuit 3 is connected to the inverted L-type antenna 200 by the electric wire 99 connected to the electric wire 98 and the ground conductor plate 92.

逆L型アンテナ200はプリント基板技術によって製作される。基板90および基板28には、空気より比誘電率の高い誘電体であるガラスエポキシ樹脂、セラミック等が使用される。   The inverted L-shaped antenna 200 is manufactured by printed circuit board technology. For the substrate 90 and the substrate 28, glass epoxy resin, ceramic, or the like, which is a dielectric having a higher dielectric constant than air, is used.

基板90の裏面91bに、接続部97および接地導体板92から成る形状パターンを、基板90の表面91aに導電パターン93,94,95の形状パターンを形成し、貫通部103,104,105の位置でビアホールを孔明して導電材を充填し、表面と裏面を接続する貫通部103,104,105を形成する。   A shape pattern composed of the connection portion 97 and the ground conductor plate 92 is formed on the back surface 91b of the substrate 90, and a shape pattern of the conductive patterns 93, 94, and 95 is formed on the surface 91a of the substrate 90, and the positions of the through portions 103, 104, and 105 are formed. A via hole is drilled and filled with a conductive material to form through-holes 103, 104, and 105 that connect the front and back surfaces.

接地導体板92、導電パターン93,94,95の厚みは20μm程度である。また、貫通部103,104,105の電流の流れ方向に直交する断面の面積は、導電パターン93,94,95の電流の流れ方向に直交する断面の面積と略等しくなるようにする。   The thickness of the ground conductor plate 92 and the conductive patterns 93, 94, 95 is about 20 μm. Further, the area of the cross section orthogonal to the current flow direction of the through portions 103, 104, and 105 is set to be substantially equal to the area of the cross section orthogonal to the current flow direction of the conductive patterns 93, 94, and 95.

対向導体板47は、基板28の表面すなわち導電パターン93,94,95側の反対面に、所定の形状パターンで形成する。図11Aでは、基板28は、支持部47a,47b上に架設されているが、基板28の下面と導電パターン93,94,95の上面を直接固着して、構成してもよい。   The opposing conductor plate 47 is formed in a predetermined shape pattern on the surface of the substrate 28, that is, on the opposite surface to the conductive patterns 93, 94, 95 side. In FIG. 11A, the substrate 28 is constructed on the support portions 47a and 47b. However, the lower surface of the substrate 28 and the upper surfaces of the conductive patterns 93, 94, and 95 may be directly fixed.

このように第2の実施形態としての逆L型アンテナ200によれば、導電パターン94,95の基端部が接地導体板92に接続された逆L状のアンテナ素子8の共振周波数(2.45GHz)とほぼ等しい共振周波数で共振する大きさ(dx’,dy’)の対向導体板47を備え、この対向導体板47が当該アンテナ素子8の上部に対向して配置されたものである。   As described above, according to the inverted L-type antenna 200 as the second embodiment, the resonance frequency (2.P) of the inverted L-shaped antenna element 8 in which the base ends of the conductive patterns 94 and 95 are connected to the ground conductor plate 92. The counter conductor plate 47 having a size (dx ′, dy ′) that resonates at a resonance frequency substantially equal to 45 GHz) is provided, and the counter conductor plate 47 is disposed to face the upper portion of the antenna element 8.

この構造によって、逆L状のアンテナ素子8の放射面積を線状から面状に拡大(拡張)できるので、対向導体板47が無い場合に比べて指向特性利得が最大に増加できるようになる。これにより、従来方式の逆L型アンテナ101に比べて指向特性を改善できるようになる。   With this structure, the radiation area of the inverted L-shaped antenna element 8 can be expanded (expanded) from a linear shape to a planar shape, so that the directional characteristic gain can be increased to the maximum as compared with the case where the counter conductor plate 47 is not provided. As a result, the directivity can be improved as compared with the conventional inverted L-type antenna 101.

また、図10に示したように、導電パターン93の長さL0’と、導電パターン94,95の長さL1’とを調整して、インピーダンスを50Ωなど調整できる。また長さL0’は、例えば送受信する信号の1波長の約1/4より短く設定される。これは、導電パターン93と対向導体板47との間に誘電体である基板28が介在され、第1の実施形態のように空間部分を有さないためである。   Further, as shown in FIG. 10, the impedance L can be adjusted to 50Ω by adjusting the length L0 ′ of the conductive pattern 93 and the length L1 ′ of the conductive patterns 94 and 95. The length L0 'is set to be shorter than about 1/4 of one wavelength of a signal to be transmitted / received, for example. This is because the substrate 28 which is a dielectric is interposed between the conductive pattern 93 and the counter conductor plate 47 and does not have a space portion as in the first embodiment.

また、接地導体板92の各長さpym’,pyp’,pxm’,pxp’および対向導体板47の各長さdy’,dx’の設定で、良好な特性とすることができる。これらの長さは誘電体である基板90、基板28の介在によって、第1の実施形態で説明した逆L型アンテナ100に比べて小さくすることができる。更に、接地導体板92と導電パターン93,94,95の距離すなわち隙間h’および接地導体板92と対向導体板47の距離すなわち隙間dh’も小さくすることができる。   Further, by setting the lengths pym ', pyp', pxm ', pxp' of the ground conductor plate 92 and the lengths dy ', dx' of the counter conductor plate 47, good characteristics can be obtained. These lengths can be reduced as compared with the inverted L-type antenna 100 described in the first embodiment by the interposition of the substrate 90 and the substrate 28 which are dielectric materials. Further, the distance between the ground conductor plate 92 and the conductive patterns 93, 94, 95, that is, the gap h ', and the distance between the ground conductor plate 92 and the opposing conductor plate 47, that is, the gap dh' can be reduced.

したがって、アンテナの大きさと厚さを更に小さくすることができ、小型・薄型かつ高性能の不平衡給電超低姿勢逆L型アンテナを提供できるようになる。   Therefore, the size and thickness of the antenna can be further reduced, and a small, thin and high-performance unbalanced feeding ultra-low profile inverted L-type antenna can be provided.

なお、ここまで説明したそれぞれの実施の形態の例において、例えば接地導体板92の表面にスリットを設ける等して、接地導体板92上の電流を制御することで、アンテナ特性を改善するようにしてもよい。   In each of the embodiments described so far, the antenna characteristics are improved by controlling the current on the ground conductor plate 92 by providing a slit on the surface of the ground conductor plate 92, for example. May be.

本発明は、使用中心周波数が2.45GHz帯の無線通信システムや、携帯電話機、自動車のワイヤレス充電システムに装備される超低姿勢逆L型アンテナに適用して極めて好適なものである。   The present invention is extremely suitable when applied to an ultra-low profile inverted L-type antenna equipped in a wireless communication system having a use center frequency of 2.45 GHz band, a mobile phone, or a wireless charging system of an automobile.

3・・・信号処理回路、8・・・逆L状のアンテナ素子(アンテナ素子部)、10,40,80・・・接地導体板、11・・・筐体、90・・・基板(第1の誘電体基板)、17,47・・・対向導体板、20a・・・孔部、21・・・接続点、22・・・曲折箇所、23・・・外導体端部、24・・・内導体、24a・・・内導体先端部、25・・・絶縁体、26・・・外導体、28・・・基板(第2の誘電体基板)、47a〜47d・・・支持部、93,94,95・・・導電パターン、97・・・接続部、103,104,105・・・貫通部、100,200・・・逆L型アンテナ   DESCRIPTION OF SYMBOLS 3 ... Signal processing circuit, 8 ... Inverted L-shaped antenna element (antenna element part) 10, 40, 80 ... Grounding conductor plate, 11 ... Case, 90 ... Substrate (No. 1 dielectric substrate), 17, 47 ... opposing conductor plate, 20a ... hole, 21 ... connection point, 22 ... bent portion, 23 ... outer conductor end, 24 ... Inner conductor, 24a ... inner conductor tip, 25 ... insulator, 26 ... outer conductor, 28 ... substrate (second dielectric substrate), 47a-47d ... support, 93, 94, 95 ... conductive pattern, 97 ... connection part, 103, 104, 105 ... penetrating part, 100, 200 ... inverted L-type antenna

Claims (6)

使用周波数の波長に依存した大きさを有して接地電位に保持される接地導体板と、
前記接地導体板の上部に第1の隙間だけ離れ前記接地導体板と平行な面上に配置された外導体と、当該面上にあって前記外導体で挟まれ前記外導体とは間隔を開けて配置された前記外導体よりも先端が伸びた内導体を有し、前記外導体の基端部が前記接地導体板の所定箇所に接続され、前記内導体の基端部が前記接地導体板側に設けた給電部に接続され、前記内導体に給電されて前記使用周波数の帯域に共振周波数を有する逆L状のアンテナ素子と、
前記アンテナ素子の共振周波数とほぼ等しい共振周波数で共振する大きさを有して当該アンテナ素子の上部に第2の隙間だけ離れ当該アンテナ素子と平行な面上に配置された対向導体板とを備える逆L型アンテナ。
A ground conductor plate having a size depending on the wavelength of the frequency used and held at the ground potential;
An outer conductor disposed on a plane parallel to the ground conductor plate and spaced apart from the outer conductor by a first gap at an upper portion of the ground conductor plate, and the outer conductor sandwiched between the outer conductors on the surface is spaced apart from the outer conductor. An inner conductor whose tip extends beyond the outer conductor, the base end of the outer conductor is connected to a predetermined location of the ground conductor plate, and the base end of the inner conductor is the ground conductor plate An inverted L-shaped antenna element that is connected to a power feeding unit provided on the side and is fed to the inner conductor and has a resonance frequency in a band of the use frequency;
A counter conductor plate having a magnitude that resonates at a resonance frequency substantially equal to the resonance frequency of the antenna element and disposed on a plane parallel to the antenna element, separated from the antenna element by a second gap; Inverted L-shaped antenna.
前記外導体及び内導体を有するアンテナ素子の第1の隙間が、空気よりも比誘電率の高い誘電体で形成されることを特徴とする請求項1記載の逆L型アンテナ。   2. The inverted L-shaped antenna according to claim 1, wherein the first gap of the antenna element having the outer conductor and the inner conductor is formed of a dielectric having a relative dielectric constant higher than that of air. 前記外導体及び内導体を有するアンテナ素子の第2の隙間が、空気よりも比誘電率の高い誘電体で形成されることを特徴とする請求項2に記載の逆L型アンテナ。   The inverted L-shaped antenna according to claim 2, wherein the second gap of the antenna element having the outer conductor and the inner conductor is formed of a dielectric having a relative dielectric constant higher than that of air. 前記アンテナ素子の外導体及び内導体が前記接地導体板の所定箇所から前記第1の隙間だけ離れた箇所で折り曲げられて前記接地導体板と平行に配置される請求項1に記載の逆L型アンテナ。   2. The inverted L shape according to claim 1, wherein an outer conductor and an inner conductor of the antenna element are bent at a position apart from the predetermined position of the ground conductor plate by the first gap and arranged in parallel with the ground conductor plate. antenna. 前記外導体と前記内導体は、
同軸ケーブルの外導体及び内導体で構成した請求項4に記載の逆L型アンテナ。
The outer conductor and the inner conductor are
The inverted L-shaped antenna according to claim 4, wherein the inverted L-shaped antenna is configured by an outer conductor and an inner conductor of a coaxial cable.
前記アンテナ素子は、
前記外導体と前記内導体とを所定の間隔を開けて配置したコプレーナ線路で構成した請求項2から請求項4のいずれか1項に記載の逆L型アンテナ。
The antenna element is
The inverted L-shaped antenna according to any one of claims 2 to 4, wherein the inverted L-shaped antenna is configured by a coplanar line in which the outer conductor and the inner conductor are arranged with a predetermined gap therebetween.
JP2014039561A 2014-02-28 2014-02-28 Inverted L antenna Active JP6338401B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014039561A JP6338401B2 (en) 2014-02-28 2014-02-28 Inverted L antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014039561A JP6338401B2 (en) 2014-02-28 2014-02-28 Inverted L antenna

Publications (3)

Publication Number Publication Date
JP2015164256A true JP2015164256A (en) 2015-09-10
JP2015164256A5 JP2015164256A5 (en) 2017-03-23
JP6338401B2 JP6338401B2 (en) 2018-06-06

Family

ID=54187030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014039561A Active JP6338401B2 (en) 2014-02-28 2014-02-28 Inverted L antenna

Country Status (1)

Country Link
JP (1) JP6338401B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113471675A (en) * 2021-05-20 2021-10-01 南京智能高端装备产业研究院有限公司 Broadband ceramic inverted-L antenna covering Sub-6GHz frequency band

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05145329A (en) * 1991-09-26 1993-06-11 Toshiba Corp Microstrip antenna
JPH08250924A (en) * 1995-03-08 1996-09-27 Nippon Dengiyou Kosaku Kk Electromagnetic coupling antenna
US20010043157A1 (en) * 1999-01-25 2001-11-22 Luk Kwai Man Wideband patch antenna with L-shaped probe
FR2930844A1 (en) * 2008-05-05 2009-11-06 Thales Sa Active electronically scanned array aerial for airborne radar application, has supply line that is prolongation of printed circuit line of transmission and reception module and contained in plane perpendicular to plane of radiating element
JP2011082951A (en) * 2009-09-14 2011-04-21 Nagasaki Univ Inverse-l shaped antenna

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05145329A (en) * 1991-09-26 1993-06-11 Toshiba Corp Microstrip antenna
JPH08250924A (en) * 1995-03-08 1996-09-27 Nippon Dengiyou Kosaku Kk Electromagnetic coupling antenna
US20010043157A1 (en) * 1999-01-25 2001-11-22 Luk Kwai Man Wideband patch antenna with L-shaped probe
FR2930844A1 (en) * 2008-05-05 2009-11-06 Thales Sa Active electronically scanned array aerial for airborne radar application, has supply line that is prolongation of printed circuit line of transmission and reception module and contained in plane perpendicular to plane of radiating element
JP2011082951A (en) * 2009-09-14 2011-04-21 Nagasaki Univ Inverse-l shaped antenna

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
M. TAGUCHI ET AL.: "Wideband base station antenna composed of ultra low profile inverted L antenna for mobile phone", 2012 IEEE-APS TOPICAL CONFERENCE ON ANTENNAS AND PROPAGATION IN WIRELESS COMMUNICATIONS (APWC), JPN6018012179, 2 September 2012 (2012-09-02), US, pages 902 - 905, XP032456571, ISSN: 0003773035, DOI: 10.1109/APWC.2012.6324942 *
MITSUO TAGUCHI: "Compact High Gain Reception Antenna for Digital Terrestrial Television", 2011 IEEE-APS TOPICAL CONFERENCE ON ANTENNAS AND PROPAGATION IN WIRELESS COMMUNICATIONS (APWC), JPN6018012182, 12 September 2011 (2011-09-12), US, pages 394 - 397, XP032460221, ISSN: 0003773036, DOI: 10.1109/APWC.2011.6046767 *
MITUO TAGUCHI ET AL.: "Dual Band Ultra Low Profile Inverted L Antenna", 2012 INTERNATIONAL SYMPOSIUM ON ANTENNAS AND PROPAGATION (ISAP), JPN6018012176, 29 October 2012 (2012-10-29), US, pages 1417 - 1420, XP032292718, ISSN: 0003773034 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113471675A (en) * 2021-05-20 2021-10-01 南京智能高端装备产业研究院有限公司 Broadband ceramic inverted-L antenna covering Sub-6GHz frequency band

Also Published As

Publication number Publication date
JP6338401B2 (en) 2018-06-06

Similar Documents

Publication Publication Date Title
CN106410379B (en) Antenna
JP6819753B2 (en) Antenna device and wireless device
JP6490080B2 (en) Technology to adjust antenna by weak coupling of variable impedance element
JP5998974B2 (en) antenna
JP2015216577A (en) Antenna device
Hong et al. Design of a multiband antenna for LTE/GSM/UMTS band operation
TWI612726B (en) Antenna systems with proximity coupled annular rectangular patches
US20170222326A1 (en) Slotted slot antenna
JP6528496B2 (en) Antenna device
JP2005312062A (en) Small antenna
JP5715701B2 (en) antenna
JP2015211425A (en) Multiband antenna
TWI566474B (en) Multi-band antenna
JP5900660B2 (en) MIMO antenna and radio apparatus
JP6338401B2 (en) Inverted L antenna
JP6004180B2 (en) Antenna device
TW201345049A (en) Antenna
US9660329B2 (en) Directional antenna
CN113764895A (en) Slot antenna
JP2011199350A (en) Antenna
Chen et al. 2× 2 MIMO asymmetric u-shaped nonuniform slot antenna for the 4G LTE metal-housing mobile handsets
JP2003087050A (en) Slot-type bowtie antenna device, and constituting method therefor
JPWO2014203967A1 (en) ANTENNA DEVICE AND RADIO DEVICE INCLUDING THE SAME
KR102003955B1 (en) Compact Broadband Dipole Antenna
JP6197929B2 (en) antenna

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170126

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170126

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20170126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171114

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180410

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180508

R150 Certificate of patent or registration of utility model

Ref document number: 6338401

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250