JP2015163056A - Intracellular introduction agent of target protein, nucleic acid, and intracellular introduction method of target protein - Google Patents

Intracellular introduction agent of target protein, nucleic acid, and intracellular introduction method of target protein Download PDF

Info

Publication number
JP2015163056A
JP2015163056A JP2014039644A JP2014039644A JP2015163056A JP 2015163056 A JP2015163056 A JP 2015163056A JP 2014039644 A JP2014039644 A JP 2014039644A JP 2014039644 A JP2014039644 A JP 2014039644A JP 2015163056 A JP2015163056 A JP 2015163056A
Authority
JP
Japan
Prior art keywords
amino acid
acid sequence
target protein
seq
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014039644A
Other languages
Japanese (ja)
Other versions
JP6304683B2 (en
Inventor
隆史 上野
Takashi Ueno
隆史 上野
央 稲葉
Hiroshi Inaba
央 稲葉
俊宏 深井
Toshihiro Fukai
俊宏 深井
文雄 有坂
Fumio Arisaka
文雄 有坂
周司 金丸
Shuji Kanamaru
周司 金丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Institute of Technology NUC
Original Assignee
Tokyo Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Institute of Technology NUC filed Critical Tokyo Institute of Technology NUC
Priority to JP2014039644A priority Critical patent/JP6304683B2/en
Publication of JP2015163056A publication Critical patent/JP2015163056A/en
Application granted granted Critical
Publication of JP6304683B2 publication Critical patent/JP6304683B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Peptides Or Proteins (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an intracellular introduction agent of target protein which has low toxicity to a cell, has a high introduction efficiency of a target protein into a cell, and can readily release the target protein from a carrier (intracellular introduction agent) after the intracellular introduction of the target protein, to provide a nucleic acid encoding the intracellular introduction agent, and to provide an intracellular introduction method of the target protein using the intracellular introduction agent.SOLUTION: The invention provides an intracellular introduction agent of a target protein consisting of a polypeptide consisting of an amino acid sequence of a formula (1), or a variant thereof; a nucleic acid encoding the intracellular introduction agent; and an intracellular introduction method of the target protein using the intracellular introduction agent. Amino acid sequence: X-Y-Z...(1) (X, Y, and Z represent each independently a specific amino acid sequence, and n is integer of 1-8)

Description

本発明は、標的タンパク質の細胞内導入剤、当該細胞内導入剤をコードする核酸及び標的タンパク質の細胞内導入方法に関する。   The present invention relates to an intracellular introduction agent for a target protein, a nucleic acid encoding the intracellular introduction agent, and a method for introducing the target protein into the cell.

タンパク質は、酵素反応やシグナル伝達、遺伝子発現の調整等の細胞の機能制御に重要な役割を果たしている。このため、細胞内へのタンパク質導入技術の開発が求められている。   Proteins play an important role in controlling cellular functions such as enzyme reactions, signal transduction, and regulation of gene expression. For this reason, development of protein introduction technology into cells is required.

例えば、非特許文献1には、ポリエチレンイミンを用いてタンパク質を細胞内に導入したことが記載されている。   For example, Non-Patent Document 1 describes that a protein is introduced into cells using polyethyleneimine.

一方、バクテリオファージT4由来の針タンパク質は、宿主である大腸菌の細胞膜を透過することが知られている(例えば、非特許文献2を参照)。   On the other hand, it is known that a needle protein derived from bacteriophage T4 permeates the cell membrane of Escherichia coli as a host (see, for example, Non-Patent Document 2).

Futami J, et al., J. Biosci. Bioeng., 99, 95-103, 2005Futami J, et al., J. Biosci. Bioeng., 99, 95-103, 2005 N. Yokoi et al., Small, 6, 1873-1879, 2010N. Yokoi et al., Small, 6, 1873-1879, 2010

しかしながら、従来の標的タンパク質の細胞内導入技術では、細胞に対する毒性が高い場合があった。また、細胞内への標的タンパク質の導入効率が十分でない場合があった。また、標的タンパク質の細胞内導入後に、担体から標的タンパク質を放出させることが困難である場合があった。   However, the conventional technique for introducing a target protein into a cell may be highly toxic to cells. Moreover, the introduction efficiency of the target protein into the cell may not be sufficient. Moreover, it may be difficult to release the target protein from the carrier after the intracellular introduction of the target protein.

そこで、本発明は、細胞に対する毒性が低く、細胞内への標的タンパク質の導入効率が高く、標的タンパク質の細胞内導入後に、担体(細胞内導入剤)からの標的タンパク質の放出が容易な、標的タンパク質の細胞内導入剤を提供することを目的とする。本発明はまた、当該細胞内導入剤をコードする核酸及び当該細胞内導入剤を用いた標的タンパク質の細胞内導入方法を提供することを目的とする。   Therefore, the present invention has a low target cell toxicity, high efficiency of target protein introduction into the cell, and easy release of the target protein from the carrier (intracellular introduction agent) after introduction of the target protein into the cell. It is an object to provide a protein intracellular introduction agent. Another object of the present invention is to provide a nucleic acid encoding the intracellular introduction agent and a method for introducing a target protein into the cell using the intracellular introduction agent.

本発明は以下の通りである。
[i]以下の(a)又は(b)のアミノ酸配列からなるポリペプチドからなる標的タンパク質の細胞内導入剤。
(a)下記式(1):
−Y−Z …(1)
(式中、Xは配列番号1のアミノ酸配列を示し、Yは配列番号2〜5のアミノ酸配列からなる群より選択されるアミノ酸配列を示し、Zは配列番号6〜9のアミノ酸配列からなる群より選択されるアミノ酸配列を示し、nは1〜8の整数である。)のアミノ酸配列、
(b)前記(a)のアミノ酸配列において、1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列であって、かつ下記式(2):
[(X’−Y’−Z’) …(2)
(式中、X’、Y’、Z’は、それぞれ、前記式(1)のX、Y、Zで示されるアミノ酸配列において、0個以上のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列を示す。)で示されるポリペプチド複合体が細胞内移行活性を有する、アミノ酸配列。
The present invention is as follows.
[I] An agent for introducing a target protein into a cell comprising a polypeptide having the following amino acid sequence (a) or (b):
(A) The following formula (1):
Xn -YZ (1)
(In the formula, X represents the amino acid sequence of SEQ ID NO: 1, Y represents an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 2 to 5, and Z represents the group consisting of amino acid sequences of SEQ ID NOs: 6 to 9). An amino acid sequence selected from the above, wherein n is an integer of 1 to 8.)
(B) an amino acid sequence in which one or several amino acids are deleted, substituted or added in the amino acid sequence of (a), and the following formula (2):
[(X ′ n −Y′−Z ′) 3 ] 2 (2)
(In the formula, X ′, Y ′, and Z ′ are amino acid sequences in which 0 or more amino acids are deleted, substituted, or added in the amino acid sequence represented by X, Y, and Z in the formula (1), respectively. An amino acid sequence in which the polypeptide complex represented by (2) has an intracellular translocation activity.

[ii]以下の(c)又は(d)のポリペプチド複合体からなる標的タンパク質の細胞内導入剤。
(c)下記式(3):
[(X−Y−Z) …(3)
(式中、Xは配列番号1のアミノ酸配列を示し、Yは配列番号2〜5のアミノ酸配列からなる群より選択されるアミノ酸配列を示し、Zは配列番号6〜9のアミノ酸配列からなる群より選択されるアミノ酸配列を示し、nは1〜8の整数である。)で示されるポリペプチド複合体、
(d)前記(c)のポリペプチド複合体において、1若しくは数個のアミノ酸が欠失、置換若しくは付加され、かつ細胞内移行活性を有するポリペプチド複合体。
[Ii] An agent for introducing a target protein into the cell comprising the polypeptide complex of (c) or (d) below.
(C) The following formula (3):
[(X n -YZ) 3 ] 2 (3)
(In the formula, X represents the amino acid sequence of SEQ ID NO: 1, Y represents an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 2 to 5, and Z represents the group consisting of amino acid sequences of SEQ ID NOs: 6 to 9). A polypeptide complex represented by the following: n represents an amino acid sequence selected from the above, and n is an integer of 1 to 8.
(D) A polypeptide complex in which one or several amino acids are deleted, substituted or added in the polypeptide complex of (c) and have intracellular translocation activity.

[iii]以下の(e)又は(f)のアミノ酸配列からなるポリペプチドをコードする核酸。
(e)下記式(1):
−Y−Z …(1)
(式中、Xは配列番号1のアミノ酸配列を示し、Yは配列番号2〜5のアミノ酸配列からなる群より選択されるアミノ酸配列を示し、Zは配列番号6〜9のアミノ酸配列からなる群より選択されるアミノ酸配列を示し、nは1〜8の整数である。)のアミノ酸配列、
(f)前記(e)のアミノ酸配列において、1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列であって、かつ下記式(2):
[(X’−Y’−Z’) …(2)
(式中、X’、Y’、Z’は、それぞれ、前記式(1)のX、Y、Zで示されるアミノ酸配列において、0個以上のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列を示す。)で示されるポリペプチド複合体が細胞内移行活性を有する、アミノ酸配列。
[Iii] A nucleic acid encoding a polypeptide having the following amino acid sequence (e) or (f):
(E) The following formula (1):
Xn -YZ (1)
(In the formula, X represents the amino acid sequence of SEQ ID NO: 1, Y represents an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 2 to 5, and Z represents the group consisting of amino acid sequences of SEQ ID NOs: 6 to 9). An amino acid sequence selected from the above, wherein n is an integer of 1 to 8.)
(F) An amino acid sequence in which one or several amino acids are deleted, substituted or added in the amino acid sequence of (e), and the following formula (2):
[(X ′ n −Y′−Z ′) 3 ] 2 (2)
(In the formula, X ′, Y ′, and Z ′ are amino acid sequences in which 0 or more amino acids are deleted, substituted, or added in the amino acid sequence represented by X, Y, and Z in the formula (1), respectively. An amino acid sequence in which the polypeptide complex represented by (2) has an intracellular translocation activity.

[iv]以下の(g)又は(h)のアミノ酸配列からなるポリペプチドからなる標的タンパク質の細胞内導入剤。
(g)下記式(4):
−X−Y−Z−V …(4)
(式中、W及びVは、標的タンパク質のアミノ酸配列を示し、Xは配列番号1のアミノ酸配列を示し、Yは配列番号2〜5のアミノ酸配列からなる群より選択されるアミノ酸配列を示し、Zは配列番号6〜9のアミノ酸配列からなる群より選択されるアミノ酸配列を示し、nは1〜8の整数であり、A及びBは0又は1の整数であり、かつA及びBが同時に0になることはない。)のアミノ酸配列、
(h)前記(g)のアミノ酸配列において、1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列であって、かつ下記式(5):
[(W−X’−Y’−Z’−V …(5)
(式中、W及びVは、標的タンパク質のアミノ酸配列を示し、X’、Y’、Z’は、それぞれ、前記式(4)のX、Y、Zで示されるアミノ酸配列において、0個以上のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列を示し、A及びBは0又は1の整数であり、かつA及びBが同時に0になることはない。)で示されるポリペプチド複合体が細胞内移行活性を有する、アミノ酸配列。
[Iv] An agent for introducing a target protein into a cell comprising a polypeptide having the following amino acid sequence (g) or (h):
(G) The following formula (4):
W A -X n -Y-Z- V B ... (4)
(Wherein W and V represent the amino acid sequence of the target protein, X represents the amino acid sequence of SEQ ID NO: 1, Y represents the amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 2 to 5, Z represents an amino acid sequence selected from the group consisting of amino acid sequences of SEQ ID NOs: 6 to 9, n is an integer of 1 to 8, A and B are integers of 0 or 1, and A and B are simultaneously An amino acid sequence of 0)
(H) An amino acid sequence in which one or several amino acids are deleted, substituted or added in the amino acid sequence of (g), and the following formula (5):
[(W A -X 'n -Y' -Z'-V B) 3] 2 ... (5)
(Wherein, W and V represent the amino acid sequence of the target protein, and X ′, Y ′, and Z ′ are 0 or more in the amino acid sequence represented by X, Y, and Z in Formula (4), respectively. Wherein A and B are integers of 0 or 1, and A and B are not 0 at the same time.) An amino acid sequence having intracellular translocation activity.

[v]以下の(i)又は(j)の融合タンパク質複合体からなる標的タンパク質の細胞内導入剤。
(i)下記式(6):
[(W−X−Y−Z−V …(6)
(式中、W及びVは、標的タンパク質のアミノ酸配列を示し、Xは配列番号1のアミノ酸配列を示し、Yは配列番号2〜5のアミノ酸配列からなる群より選択されるアミノ酸配列を示し、Zは配列番号6〜9のアミノ酸配列からなる群より選択されるアミノ酸配列を示し、nは1〜8の整数であり、A及びBは0又は1の整数であり、かつA及びBが同時に0になることはない。)で示される融合タンパク質複合体、
(j)前記式(6)のX−Y−Zで示されるアミノ酸配列において、1若しくは数個のアミノ酸が欠失、置換若しくは付加された融合タンパク質複合体であって、かつ細胞内移行活性を有する融合タンパク質複合体。
[V] A target protein intracellular introduction agent comprising the fusion protein complex of (i) or (j) below.
(I) The following formula (6):
[(W A -X n -Y- Z-V B) 3] 2 ... (6)
(Wherein W and V represent the amino acid sequence of the target protein, X represents the amino acid sequence of SEQ ID NO: 1, Y represents the amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 2 to 5, Z represents an amino acid sequence selected from the group consisting of amino acid sequences of SEQ ID NOs: 6 to 9, n is an integer of 1 to 8, A and B are integers of 0 or 1, and A and B are simultaneously A fusion protein complex represented by:
(J) a fusion protein complex in which one or several amino acids are deleted, substituted or added in the amino acid sequence represented by X n -YZ in the above formula (6), and its intracellular translocation activity A fusion protein complex having:

[vi]前記標的タンパク質が、分子量30kDa以下のタンパク質である、[iv]又は[v]に記載の標的タンパク質の細胞内導入剤。 [Vi] The target protein intracellular introduction agent according to [iv] or [v], wherein the target protein is a protein having a molecular weight of 30 kDa or less.

[vii][iv]〜[vi]のいずれか一項に記載の標的タンパク質の細胞内導入剤を対象細胞に接触させる工程を含む、標的タンパク質の細胞内導入方法。 [Vii] A method for intracellularly introducing a target protein, comprising the step of bringing the target protein intracellularly introducing agent according to any one of [iv] to [vi] into contact with a target cell.

本発明によれば、細胞に対する毒性が低く、細胞内への標的タンパク質の導入効率が高く、標的タンパク質の細胞内導入後に、担体(細胞内導入剤)からの標的タンパク質の放出が容易な、標的タンパク質の細胞内導入剤を提供することができる。本発明はまた、当該細胞内導入剤をコードする核酸及び当該細胞内導入剤を用いた標的タンパク質の細胞内導入方法を提供することができる。   According to the present invention, the target has low toxicity to cells, high efficiency of introducing the target protein into the cell, and easy release of the target protein from the carrier (intracellular introduction agent) after the target protein is introduced into the cell. An agent for introducing a protein into a cell can be provided. The present invention can also provide a nucleic acid encoding the intracellular introduction agent and a method for intracellular introduction of a target protein using the intracellular introduction agent.

図1は、GFP−gp5fの超遠心分析の結果を示す。FIG. 1 shows the results of ultracentrifugation analysis of GFP-gp5f. 図2は、[(GFP−gp5f)]の融合タンパク質複合体を導入したHeLa細胞の蛍光顕微鏡写真を示す。「N」はHoechst 33342で染色した核を示し、「G」はGFPの蛍光を示す。FIG. 2 shows a fluorescence micrograph of HeLa cells into which a fusion protein complex of [(GFP-gp5f) 3 ] 2 was introduced. “N” indicates nuclei stained with Hoechst 33342, and “G” indicates GFP fluorescence. 図3は、実験例2の結果を示すグラフである。(a)は、[(GFP−gp5f)]のみをゲル濾過解析した結果を示し、(b)は[(GFP−gp5f)]をHeLa細胞に導入してから24時間後の解析結果を示し、(c)は[(GFP−gp5f)]をHeLa細胞に導入してから48時間後の解析結果を示し、(d)はHeLa細胞のみの解析結果を示す。FIG. 3 is a graph showing the results of Experimental Example 2. (A) shows the result of gel filtration analysis of only [(GFP-gp5f) 3 ] 2 , and (b) shows the analysis 24 hours after introducing [(GFP-gp5f) 3 ] 2 into HeLa cells. The results are shown, (c) shows the analysis results 48 hours after [(GFP-gp5f) 3 ] 2 was introduced into HeLa cells, and (d) shows the analysis results of HeLa cells only. 図4(A)は、マウス胎児の顕微鏡写真(明視野観察)であり、(B)は、マウス胎児の顕微鏡写真(GFPの蛍光観察)であり、(C)は、DAPIで染色したマウス脳の組織切片の顕微鏡写真(蛍光観察)であり、(D)は、マウス脳の組織切片の顕微鏡写真(GFPの蛍光観察)である。4A is a micrograph (bright field observation) of a mouse fetus, (B) is a micrograph of a mouse fetus (GFP fluorescence observation), and (C) is a mouse brain stained with DAPI. 2D is a photomicrograph (fluorescence observation) of a tissue section of a mouse brain. 図5は、実施例2の結果を示す原子間力顕微鏡(AFM)観察画像である。(a)はnが1である細胞内導入剤のAFM観察画像であり、(b)はnが5である細胞内導入剤のAFM観察画像であり、(c)はnが8である細胞内導入剤のAFM観察画像である。FIG. 5 is an atomic force microscope (AFM) observation image showing the results of Example 2. (A) is an AFM observation image of an intracellular introduction agent where n is 1, (b) is an AFM observation image of an intracellular introduction agent where n is 5, and (c) is a cell where n is 8. It is an AFM observation image of an internally introduced agent.

《標的タンパク質の細胞内導入剤》
バクテリオファージは、細菌や動物細胞に、核酸とともに必要なタンパク質を注入する。本発明の標的タンパク質の細胞内導入剤は、バクテリオファージが核酸やタンパク質を細胞に導入する機構を応用したものである。
《Target protein intracellular introduction agent》
Bacteriophages inject bacteria and animal cells with necessary proteins along with nucleic acids. The target protein intracellular introduction agent of the present invention applies a mechanism by which bacteriophages introduce nucleic acids and proteins into cells.

1実施形態に係る標的タンパク質の細胞内導入剤は、下記式(1)のアミノ酸配列からなるポリペプチドからなる。
−Y−Z …(1)
式(1)中、Xは配列番号1のアミノ酸配列を示し、Yは配列番号2〜5のアミノ酸配列からなる群より選択されるアミノ酸配列を示し、Zは配列番号6〜9のアミノ酸配列からなる群より選択されるアミノ酸配列を示し、nは1〜8の整数である。
The target protein intracellular introduction agent according to one embodiment comprises a polypeptide consisting of an amino acid sequence of the following formula (1).
Xn -YZ (1)
In formula (1), X represents the amino acid sequence of SEQ ID NO: 1, Y represents an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 2 to 5, and Z represents the amino acid sequence of SEQ ID NOs: 6 to 9. An amino acid sequence selected from the group consisting of n is an integer of 1-8.

式(1)で示されるアミノ酸配列からなるポリペプチドは、バクテリオファージの尾(Tail)の針部分(細胞内導入部)に基づいて設計されたものである。このポリペプチドは、後述するように安定な6量体を形成する。この6量体は、細胞にダメージを与えることなく細胞膜を貫通することができる。さらに、この6量体は、100℃の温度環境下、pH2〜11の環境下、有機溶媒を50〜70容量%含む溶媒中等の環境下でも非常に安定である。   The polypeptide having the amino acid sequence represented by the formula (1) is designed based on the needle portion (intracellular introduction portion) of the bacteriophage tail. This polypeptide forms a stable hexamer as described below. This hexamer can penetrate the cell membrane without damaging the cells. Furthermore, this hexamer is very stable even under an environment such as a temperature environment of 100 ° C., an environment of pH 2 to 11, and an environment containing 50 to 70% by volume of an organic solvent.

式(1)中、XはバクテリオファージT4の三重らせんβヘリックスの部分のアミノ酸配列であり、この配列を繰り返すことにより、式(1)で示されるアミノ酸配列からなるポリペプチドの長さを調節することができる。ポリペプチドが長くなると、その分修飾可能な領域を増加させることができ、例えば金属錯体や蛍光色素等の追加的な機能を付加することが可能になる。Xのアミノ酸配列としては、配列番号1のアミノ酸配列が挙げられる。配列番号1のアミノ酸配列をコードする塩基配列を配列番号11に示す。   In formula (1), X is the amino acid sequence of the triple helix β helix part of bacteriophage T4, and by repeating this sequence, the length of the polypeptide comprising the amino acid sequence represented by formula (1) is regulated. be able to. When the polypeptide becomes longer, the region that can be modified can be increased accordingly, and for example, an additional function such as a metal complex or a fluorescent dye can be added. The amino acid sequence of X includes the amino acid sequence of SEQ ID NO: 1. The base sequence encoding the amino acid sequence of SEQ ID NO: 1 is shown in SEQ ID NO: 11.

式(1)中、Xにおけるnは繰り返しの数を示す。例えば、n=2の場合、式(1)のアミノ酸配列は「X−X−Y−Z」のアミノ酸配列を意味する。 In formula (1), n in Xn represents the number of repetitions. For example, when n = 2, the amino acid sequence of the formula (1) means an amino acid sequence of “XXYZ”.

式(1)中、Yはバクテリオファージのニードル蛋白質のC末端部分のアミノ酸配列である。Yに使用可能なアミノ酸配列としては、例えば、バクテリオファージT4のgp5のアミノ酸配列、バクテリオファージP2のgpVのアミノ酸配列、バクテリオファージMuのgp45のアミノ酸配列、バクテリオファージφ92のgp138のアミノ酸配列が挙げられる。より具体的には、バクテリオファージT4のgp5のアミノ酸配列として配列番号2のアミノ酸配列が、バクテリオファージP2のgpVのアミノ酸配列として配列番号3のアミノ酸配列が、バクテリオファージMuのgp45のアミノ酸配列として配列番号4のアミノ酸配列が、バクテリオファージφ92のgp138のアミノ酸配列として配列番号5のアミノ酸配列が挙げられる。配列番号2〜5のアミノ酸配列をコードする塩基配列をそれぞれ配列番号12〜15に示す。   In formula (1), Y is the amino acid sequence of the C-terminal part of the bacteriophage needle protein. Examples of amino acid sequences that can be used for Y include the gp5 amino acid sequence of bacteriophage T4, the gpV amino acid sequence of bacteriophage P2, the gp45 amino acid sequence of bacteriophage Mu, and the gp138 amino acid sequence of bacteriophage φ92. . More specifically, the amino acid sequence of SEQ ID NO: 2 as the gp5 amino acid sequence of bacteriophage T4, the amino acid sequence of SEQ ID NO: 3 as the amino acid sequence of gpV of bacteriophage P2, and the amino acid sequence of gp45 of bacteriophage Mu As the amino acid sequence of No. 4, the amino acid sequence of SEQ ID No. 5 is exemplified as the amino acid sequence of gp138 of bacteriophage φ92. The nucleotide sequences encoding the amino acid sequences of SEQ ID NOs: 2 to 5 are shown in SEQ ID NOs: 12 to 15, respectively.

式(1)中、ZはバクテリオファージT4のfoldonと呼ばれる領域のアミノ酸配列、又は、バクテリオファージP2若しくはバクテリオファージMu若しくはバクテリオファージφ92のtipと呼ばれる領域のアミノ酸配列である。   In formula (1), Z is the amino acid sequence of the region called foldon of bacteriophage T4, or the amino acid sequence of the region called tip of bacteriophage P2 or bacteriophage Mu or bacteriophage φ92.

foldon又はtipは、バクテリオファージのフィブリチンと呼ばれる構造体の3量体化を促進する領域である。foldon又はtipのアミノ酸配列を有することにより、式(1)のアミノ酸配列からなるポリペプチドは、3量体化して安定化すると考えられる。   Foldon or tip is a region that promotes trimerization of a structure called bacteriophage fibrin. By having the amino acid sequence of foldon or tip, it is considered that the polypeptide consisting of the amino acid sequence of formula (1) is trimerized and stabilized.

バクテリオファージT4のfoldonのアミノ酸配列を配列番号6に、foldonをコードする塩基配列を配列番号16に示す。バクテリオファージP2のtipのアミノ酸配列を配列番号7に、バクテリオファージP2のtipをコードする塩基配列を配列番号17に示す。バクテリオファージMuのtipのアミノ酸配列を配列番号8に、バクテリオファージMuのtipをコードする塩基配列を配列番号18に示す。バクテリオファージφ92のtipのアミノ酸配列を配列番号9に、バクテリオファージφ92のtipをコードする塩基配列を配列番号19に示す。   The amino acid sequence of foldon of bacteriophage T4 is shown in SEQ ID NO: 6, and the nucleotide sequence encoding foldon is shown in SEQ ID NO: 16. The amino acid sequence of the tip of bacteriophage P2 is shown in SEQ ID NO: 7, and the nucleotide sequence encoding the tip of bacteriophage P2 is shown in SEQ ID NO: 17. The amino acid sequence of the bacteriophage Mu tip is shown in SEQ ID NO: 8, and the base sequence encoding the bacteriophage Mu tip is shown in SEQ ID NO: 18. The amino acid sequence of the tip of bacteriophage φ92 is shown in SEQ ID NO: 9, and the base sequence encoding the tip of bacteriophage φ92 is shown in SEQ ID NO: 19.

式(1)のアミノ酸配列からなるポリペプチドは、目的とする活性、すなわち、後述する6量体を形成した場合に、細胞内移行活性、すなわち、細胞膜を通過して細胞内に移行する活性を有している限り、変異を有していてもよい。例えば、式(1)で示されるアミノ酸配列において、1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列であってもよい。ここで、1若しくは数個とは、1〜15個、好ましくは1〜10個、より好ましくは1〜5個を意味する。ここで、上記6量体はホモ6量体であってもヘテロ6量体であってもよい。   The polypeptide consisting of the amino acid sequence of formula (1) has a target activity, that is, an intracellular translocation activity, that is, an activity to migrate into the cell through the cell membrane when a hexamer described later is formed. As long as it has, you may have a variation | mutation. For example, the amino acid sequence represented by the formula (1) may be an amino acid sequence in which one or several amino acids are deleted, substituted or added. Here, 1 or several means 1 to 15, preferably 1 to 10, more preferably 1 to 5. Here, the hexamer may be a homo hexamer or a hetero hexamer.

1実施形態において、本発明は、式(1)のアミノ酸配列からなるポリペプチドをコードする核酸を提供する。式(1)のアミノ酸配列からなるポリペプチドは、これをコードする核酸を遺伝子組換え技術により連結し、大腸菌、酵母、昆虫細胞、動物細胞等の宿主細胞内で、あるいは大腸菌抽出液、ウサギ網状赤血球抽出液、小麦胚芽抽出液等の無細胞発現系で発現させることにより製造することができる。ここで、発現後に精製を容易にするために、ポリペプチドのN末端側又はC末端側にヒスチジンタグ、GSTタグ、FLAGタグ等のペプチド鎖を付加してもよい。   In one embodiment, the present invention provides a nucleic acid encoding a polypeptide consisting of the amino acid sequence of formula (1). A polypeptide consisting of the amino acid sequence of formula (1) is obtained by linking nucleic acids encoding the polypeptide by genetic recombination technology, in a host cell such as E. coli, yeast, insect cell, animal cell, etc. It can be produced by expressing it in a cell-free expression system such as erythrocyte extract or wheat germ extract. Here, in order to facilitate purification after expression, a peptide chain such as a histidine tag, GST tag, or FLAG tag may be added to the N-terminal side or C-terminal side of the polypeptide.

《6量体》
式(1)のアミノ酸配列からなるポリペプチドは、その構造特性に基づいて、自発的に3量体化する。さらにこの3量体2分子がN末端側で会合して6量体を形成する。ここで、式(1)のアミノ酸配列からなるポリペプチドが形成した3量体を、式(7):
(X−Y−Z) …(7)
のように示し、この3量体2分子がN末端側で会合して形成した6量体を式(3):
[(X−Y−Z)] …(3)
のように示す。上述したように、式(1)のアミノ酸配列からなるポリペプチドは変異を有していてもよい。また、上記の6量体はホモ6量体であってもヘテロ6量体であってもよい。以下の実施例で示すように、式(1)のアミノ酸配列からなるポリペプチドを発現させると、このポリペプチドは自然に自己会合して上記式(3)で示される6量体を形成する。この6量体のポリペプチド複合体は、細胞内移行活性、すなわち、細胞膜を通過して細胞内に移行する活性を有する。このため、このポリペプチド複合体に標的タンパク質を結合させることにより、標的タンパク質を対象細胞の細胞内に導入することが可能となる。
<< hexamer >>
A polypeptide consisting of the amino acid sequence of formula (1) spontaneously trimers based on its structural characteristics. Furthermore, these 2 molecules of trimer associate on the N-terminal side to form a hexamer. Here, a trimer formed by a polypeptide having the amino acid sequence of formula (1) is represented by formula (7):
( Xn -YZ) 3 ... (7)
A hexamer formed by associating two molecules of this trimer on the N-terminal side is represented by the formula (3):
[(X n -YZ) 3 ] 2 (3)
As shown. As described above, the polypeptide consisting of the amino acid sequence of formula (1) may have a mutation. The hexamer may be a homo hexamer or a hetero hexamer. As shown in the following examples, when a polypeptide consisting of the amino acid sequence of the formula (1) is expressed, the polypeptide spontaneously self-associates to form a hexamer represented by the formula (3). This hexameric polypeptide complex has an intracellular translocation activity, that is, an activity of translocating into the cell through the cell membrane. Therefore, the target protein can be introduced into the target cell by binding the target protein to the polypeptide complex.

1実施形態において、標的タンパク質の細胞内導入剤は、上記式(3)で示されるポリペプチド複合体からなる。   In one embodiment, the intracellular introduction agent of the target protein consists of a polypeptide complex represented by the above formula (3).

《標的タンパク質の細胞内導入剤への結合》
1実施形態において、細胞内導入剤への標的タンパク質の結合は、遺伝子組み換えにより、上述した式(1)のアミノ酸配列からなるポリペプチドと標的タンパク質との融合タンパク質をコードする核酸を作製して発現させることによって行うことができる。ここで、核酸としては、上記の融合タンパク質を発現させることができる限り、使用する発現系に応じてDNAであってもRNAであってもよい。
<Binding of target protein to intracellular agent>
In one embodiment, binding of a target protein to an intracellular introduction agent is performed by producing a nucleic acid encoding a fusion protein of a polypeptide consisting of the amino acid sequence of formula (1) and the target protein by genetic recombination. Can be done. Here, the nucleic acid may be DNA or RNA depending on the expression system used as long as the above fusion protein can be expressed.

標的タンパク質としては、分子量30kDa以下のタンパク質;GFP(緑色蛍光タンパク質)、YFP(黄色蛍光タンパク質)、BFP(青色蛍光タンパク質)、CFP(シアン蛍光タンパク質)等の蛍光タンパク質;Ascl1、Atoh1等の転写因子タンパク質が挙げられる。   Target proteins include proteins with a molecular weight of 30 kDa or less; fluorescent proteins such as GFP (green fluorescent protein), YFP (yellow fluorescent protein), BFP (blue fluorescent protein), CFP (cyan fluorescent protein); transcription factors such as Ascl1 and Atoh1 Examples include proteins.

標的タンパク質は、細胞内導入剤のN末端に結合してもC末端に結合してもよい。また、N末端とC末端の両方に結合してもよく、N末端とC末端の両方に、それぞれ異なる標的タンパク質を結合してもよい。細胞導入剤と標的タンパク質は、リンカーを介して結合してもよい。リンカーとしては、例えばアミノ酸配列「SSVPP」、「DVED」等からなるリンカーが挙げられる。   The target protein may be bound to the N-terminus or C-terminus of the intracellular introduction agent. Moreover, you may couple | bond with both N terminal and C terminal, and you may couple | bond different target proteins with both N terminal and C terminal, respectively. The cell introduction agent and the target protein may be bound via a linker. Examples of the linker include linkers composed of amino acid sequences “SSVPP”, “DVED” and the like.

例えば、標的タンパク質が結合した細胞内導入剤のアミノ酸配列は、下記式(4)で示されるものであってよい。
−X−Y−Z−V …(4)
For example, the amino acid sequence of the intracellular introduction agent to which the target protein is bound may be represented by the following formula (4).
W A -X n -Y-Z- V B ... (4)

式(4)中、X−Y−Zで示される部分については、上述した通りである。式(4)中、Wは細胞内導入剤のN末端側に結合された標的タンパク質のアミノ酸配列を示し、Vは細胞内導入剤のC末端側に結合された標的タンパク質のアミノ酸配列を示す。式(4)において、A及びBは0又は1の整数であり、かつA及びBが同時に0になることはない。すなわち、少なくとも細胞内導入剤のN末端側とC末端側のいずれか一方には標的タンパク質のアミノ酸配列が結合されている。 In formula (4), the part represented by X n -YZ is as described above. In formula (4), W represents the amino acid sequence of the target protein bound to the N-terminal side of the intracellular introduction agent, and V represents the amino acid sequence of the target protein bound to the C-terminal side of the intracellular introduction agent. In formula (4), A and B are integers of 0 or 1, and A and B are not 0 at the same time. That is, the amino acid sequence of the target protein is bound to at least one of the N-terminal side and the C-terminal side of the intracellular introduction agent.

1実施形態において、標的タンパク質の細胞内導入剤は、上記式(4)のアミノ酸配列からなるポリペプチドからなる。   In one embodiment, the intracellular introduction agent of the target protein consists of a polypeptide consisting of the amino acid sequence of the above formula (4).

式(4)のアミノ酸配列をコードする核酸は、例えば、大腸菌、酵母、昆虫細胞、動物細胞等の宿主細胞内で、あるいは大腸菌抽出液、ウサギ網状赤血球抽出液、小麦胚芽抽出液等の無細胞発現系で発現させることができる。式(4)のアミノ酸配列をコードする核酸の発現用ベクターとしては、各発現系に応じたものを用いることができ、例えば大腸菌発現用のpET、酵母発現用のpAUR、昆虫細胞発現用のpIEx−1、動物細胞発現用のpBApo−CMV、小麦胚芽抽出液発現用のpF3A等が挙げられる。ここで、発現後に精製を容易にするために、ポリペプチドのN末端側又はC末端側にヒスチジンタグ、GSTタグ、FLAGタグ等のペプチド鎖を付加してもよい。   The nucleic acid encoding the amino acid sequence of the formula (4) can be used in a host cell such as Escherichia coli, yeast, insect cell, animal cell, or cell-free such as Escherichia coli extract, rabbit reticulocyte extract, wheat germ extract, etc. It can be expressed in an expression system. As a vector for expression of a nucleic acid encoding the amino acid sequence of formula (4), a vector suitable for each expression system can be used, for example, pET for expression of E. coli, pAUR for expression of yeast, pIEx for expression of insect cells. -1, pBApo-CMV for animal cell expression, pF3A for wheat germ extract expression, and the like. Here, in order to facilitate purification after expression, a peptide chain such as a histidine tag, GST tag, or FLAG tag may be added to the N-terminal side or C-terminal side of the polypeptide.

標的タンパク質が結合した細胞内導入剤である融合タンパク質は、上述したいずれかの発現系で発現させると、自然に自己会合して、下記式(6)で示される6量体を形成する。式(6)中、W−X−Y−Z−Vで示される部分については上述した通りである。この融合タンパク質の複合体を、対象細胞への標的タンパク質の導入に使用することができる。
[(W−X−Y−Z−V …(6)
When expressed in any of the expression systems described above, the fusion protein, which is an intracellular introduction agent to which the target protein is bound, spontaneously self-associates to form a hexamer represented by the following formula (6). In the formula (6) is as described above for the moiety represented by W A -X n -Y-Z- V B. This fusion protein complex can be used to introduce a target protein into a target cell.
[(W A -X n -Y- Z-V B) 3] 2 ... (6)

1実施形態において、標的タンパク質の細胞内導入剤は、上記式(6)で示される融合タンパク質の複合体からなる。   In one embodiment, the intracellular introduction agent of the target protein consists of a complex of the fusion protein represented by the above formula (6).

1実施形態において、細胞内導入剤への標的タンパク質の結合は、化学修飾により行ってもよい。例えば、細胞内導入剤上のリシン残基又はシステイン残基と、標的タンパク質上のリシン残基又はシステイン残基とを、スクシンイミド基又はマレイミド基を有するリンカーによって連結する等の方法により、標的タンパク質を化学修飾で細胞内導入剤に結合させることができる。   In one embodiment, binding of the target protein to the intracellular introduction agent may be performed by chemical modification. For example, the target protein can be obtained by linking a lysine residue or cysteine residue on the intracellular introduction agent to a lysine residue or cysteine residue on the target protein with a linker having a succinimide group or a maleimide group. It can be bound to an intracellular introduction agent by chemical modification.

《標的タンパク質の細胞内導入方法》
1実施形態において、標的タンパク質の細胞内導入方法は、標的タンパク質が結合した細胞内導入剤である、上記式(6)で示される融合タンパク質の複合体を、対象細胞に接触させる工程を含む。
<Intracellular introduction method of target protein>
In one embodiment, the method for introducing a target protein into a cell includes a step of contacting a target cell with a complex of a fusion protein represented by the above formula (6), which is an intracellular introduction agent to which the target protein is bound.

対象細胞は、インビトロで培養された培養細胞であっても、生体内の細胞であってもよい。1実施形態において、生体はヒト以外の動物である。   The target cell may be a cultured cell cultured in vitro or an in vivo cell. In one embodiment, the living body is a non-human animal.

1実施形態において、対象細胞に融合タンパク質の複合体を接触させる工程は、対象細胞である培養細胞の培地に上述の融合タンパク質の複合体を添加することによって行うことができる。例えば、融合タンパク質の複合体は、好ましくは終濃度0.5〜1.0μM、より好ましくは終濃度1.0〜5.0μMの濃度で培地中に添加すればよい。   In one embodiment, the step of bringing the fusion protein complex into contact with the target cell can be performed by adding the above-described fusion protein complex to the culture medium of the cultured cell that is the target cell. For example, the fusion protein complex is preferably added to the medium at a final concentration of 0.5 to 1.0 μM, more preferably at a final concentration of 1.0 to 5.0 μM.

1実施形態において、対象細胞に融合タンパク質の複合体を接触させる工程は、対象細胞が存在する動物の組織に、融合タンパク質の複合体の懸濁液を注入することによって行うことができる。注入量は、対象細胞が存在する動物の組織に応じて適宜調整すればよい。例えば、マウス胎児の脳に注入する場合、1〜10μMの融合タンパク質の複合体を0.5〜1.0μL注入すればよい。   In one embodiment, the step of bringing the fusion protein complex into contact with the target cells can be performed by injecting a suspension of the fusion protein complex into the tissue of an animal in which the target cells are present. The injection amount may be appropriately adjusted according to the animal tissue in which the target cells are present. For example, when injecting into the brain of a mouse fetus, 0.5 to 1.0 μL of a 1 to 10 μM fusion protein complex may be injected.

《標的タンパク質の細胞内での放出》
後述するように、本実施形態の方法により細胞内に導入された標的タンパク質は、細胞内で、容易に細胞内導入剤から開裂させ、放出することができる。例えば、上記式(4)のWで示される標的タンパク質のアミノ酸配列中に、プロテアーゼにより切断されやすいアミノ酸配列を導入してもよい。このようなアミノ酸配列として、具体的には、SSVPP、DVED等のアミノ酸配列が挙げられる。アミノ酸配列「SSVPP」は、キモトリプシンで切断することができる。また、アミノ酸配列「DVED」は、カスパーゼ3で切断することができる。細胞内導入剤から切断され、放出された標的タンパク質は、細胞内で標的タンパク質本来の機能を発揮することができる。
<< Release of target protein in cells >>
As described later, the target protein introduced into the cell by the method of the present embodiment can be easily cleaved and released from the intracellular introduction agent in the cell. For example, an amino acid sequence that is easily cleaved by a protease may be introduced into the amino acid sequence of the target protein represented by W in the above formula (4). Specific examples of such amino acid sequences include amino acid sequences such as SSVPP and DVED. The amino acid sequence “SSVPP” can be cleaved with chymotrypsin. The amino acid sequence “DVED” can be cleaved with caspase-3. The target protein cleaved and released from the intracellular introduction agent can exert its original function in the cell.

ところで、例えばアミノ酸配列「SSVPP」は、キモトリプシンにより切断されるが、サーモリシンでは切断されない。そこで、このようなプロテアーゼ特異的なアミノ酸配列を導入することにより、標的タンパク質の放出に酵素選択性を付与することもできる。   By the way, for example, the amino acid sequence “SSVPP” is cleaved by chymotrypsin, but is not cleaved by thermolysin. Therefore, by introducing such a protease-specific amino acid sequence, enzyme selectivity can be imparted to the release of the target protein.

次に実施例を示して本発明をさらに詳細に説明するが、本発明は以下の実施例に限定されるものではない。   EXAMPLES Next, although an Example is shown and this invention is demonstrated further in detail, this invention is not limited to a following example.

(実施例1)
<「GFP−gp5−foldon」発現用プラスミドの作製>
「GFP−gp5−foldon」(以下、「GFP−gp5f」という場合がある。)発現用プラスミドを作製した。ここで、「GFP−gp5f」とは、下記式(4)
−X−Y−Z−V …(4)
において、A及びnが1であり、Bが0であり、Wが標的タンパク質のアミノ酸配列、すなわち、「GFP(緑色蛍光タンパク質)のアミノ酸配列(配列番号10)」であり、Xが配列番号1のアミノ酸配列であり、Yが「gp5のアミノ酸配列(配列番号2)」であり、Zが「foldonのアミノ酸配列(配列番号6)」であるポリペプチドである。なお、配列番号10に示すGFPのアミノ酸配列のC末端側には、プロテアーゼにより切断されやすいアミノ酸配列「SSVPP」が導入されている。配列番号10のアミノ酸配列をコードする塩基配列を配列番号20に示す。
Example 1
<Preparation of “GFP-gp5-foldon” expression plasmid>
An expression plasmid for “GFP-gp5-foldon” (hereinafter sometimes referred to as “GFP-gp5f”) was prepared. Here, “GFP-gp5f” means the following formula (4)
W A -X n -Y-Z- V B ... (4)
, A and n are 1, B is 0, W is the amino acid sequence of the target protein, ie, “GFP (green fluorescent protein) amino acid sequence (SEQ ID NO: 10)”, and X is SEQ ID NO: 1 A polypeptide in which Y is “amino acid sequence of gp5 (SEQ ID NO: 2)” and Z is “amino acid sequence of foldon (SEQ ID NO: 6)”. An amino acid sequence “SSVPP” that is easily cleaved by protease is introduced into the C-terminal side of the amino acid sequence of GFP shown in SEQ ID NO: 10. The base sequence encoding the amino acid sequence of SEQ ID NO: 10 is shown in SEQ ID NO: 20.

より具体的には、次のようにして、GFP−gp5f発現用プラスミドを作製した。まず、T4ファージのwac蛋白質の461から484残基目に対応する遺伝子をT4ファージゲノムよりPCRで増幅してpUC18にクローニングし、foldonをコードする遺伝子を得た。続いて、このプラスミドを制限酵素EcoRI及びSalIで切断し、EcoRIとXhoIで処理したプラスミドpET29b(Novagen)に挿入し、プラスミドpMTf1−3を得た。また、T4ファージのgp5の474から575残基目に対応する遺伝子をT4ファージゲノムよりPCRにより増幅してpUC18にクローニングし、gp5をコードする遺伝子を得た。続いて、このプラスミドを制限酵素EcoRI及びSalIで切断し、EcoRIとXhoIで処理した上述のプラスミドpMTf1−3に挿入し、プラスミドpKA176を得た。また、群馬大・高橋より提供されたGFP発現ベクターを制限酵素NdeI及びEcoRIで切断し、GFPをコードする遺伝子を得、制限酵素NdeI及びEcoRIで処理した上述のプラスミドpKA176に組み込み、プラスミドpKN1−1(GFP−gp5f発現用プラスミド)を得た。   More specifically, a GFP-gp5f expression plasmid was prepared as follows. First, a gene corresponding to residues 461 to 484 of the Tac phage wac protein was amplified by PCR from the T4 phage genome and cloned into pUC18 to obtain a gene encoding foldon. Subsequently, this plasmid was cleaved with restriction enzymes EcoRI and SalI and inserted into plasmid pET29b (Novagen) treated with EcoRI and XhoI to obtain plasmid pMTf1-3. Further, a gene corresponding to residues 474 to 575 of gp5 of T4 phage was amplified from the T4 phage genome by PCR and cloned into pUC18 to obtain a gene encoding gp5. Subsequently, this plasmid was cleaved with restriction enzymes EcoRI and SalI and inserted into the above-described plasmid pMTf1-3 treated with EcoRI and XhoI to obtain plasmid pKA176. Further, the GFP expression vector provided by Gunma University and Takahashi was cleaved with restriction enzymes NdeI and EcoRI to obtain a gene encoding GFP, which was incorporated into the above-described plasmid pKA176 treated with the restriction enzymes NdeI and EcoRI, and the plasmid pKN1-1 (GFP-gp5f expression plasmid) was obtained.

<GFP−gp5fの発現及び精製>
作製したGFP−gp5fの発現用プラスミドを大腸菌に導入して大量に発現させて精製し、以下の実験に用いた。
<Expression and purification of GFP-gp5f>
The prepared GFP-gp5f expression plasmid was introduced into Escherichia coli, expressed in large quantities and purified, and used in the following experiments.

<GFP−gp5fの超遠心分析>
上述のようにして調製したGFP−gp5fの超遠心分析を行った。より具体的には、1.2μMのGFP−gp5fを0.1Mリン酸ナトリウム緩衝液(pH7.0)で透析し、Optimal XL−I analytical ultracentrifuge (Beckman)を用いて500,000rpm、20℃で分析を行った。
<Ultracentrifugation analysis of GFP-gp5f>
Ultracentrifugation analysis of GFP-gp5f prepared as described above was performed. More specifically, 1.2 μM GFP-gp5f was dialyzed with 0.1 M sodium phosphate buffer (pH 7.0), and Optimal XL-I analytical ultrafuge (Beckman) was used at 500,000 rpm at 20 ° C. Analysis was carried out.

図1にGFP−gp5fの分析結果を示す。その結果、融合タンパク質GFP−gp5fは、そのほとんどが自然に自己会合して、GFP−gp5fの3量体(GFP−gp5f)が2個会合した6量体[(GFP−gp5f)]の形態で存在していることが確認された。 FIG. 1 shows the analysis result of GFP-gp5f. As a result, most of the fusion protein GFP-gp5f spontaneously self-associates, and a hexamer [(GFP-gp5f) 3 ] 2 in which two GFP-gp5f trimers (GFP-gp5f) 3 are associated. It was confirmed to exist in the form of

(実験例1)
<標的タンパク質の細胞への導入及び担体(細胞内導入剤)からの標的タンパク質の放出>
実施例1で調製した[(GFP−gp5f)]の融合タンパク質複合体を、HeLa細胞の培地に0.8μMの濃度で添加した。融合タンパク質複合体の添加12時間後の細胞中のGFPの蛍光を蛍光顕微鏡で観察した。図2に蛍光顕微鏡写真を示す。図2中、「N」はHoechst 33342で染色した核を示し、「G」はGFPの蛍光を示す。以上の結果から、GFPが効率よくHeLa細胞の細胞内に導入されたことが確認された。
(Experimental example 1)
<Introduction of target protein into cells and release of target protein from carrier (intracellular introduction agent)>
The fusion protein complex of [(GFP-gp5f) 3 ] 2 prepared in Example 1 was added to the medium of HeLa cells at a concentration of 0.8 μM. The fluorescence of GFP in the cells 12 hours after the addition of the fusion protein complex was observed with a fluorescence microscope. FIG. 2 shows a fluorescence micrograph. In FIG. 2, “N” indicates a nucleus stained with Hoechst 33342, and “G” indicates fluorescence of GFP. From the above results, it was confirmed that GFP was efficiently introduced into the cells of HeLa cells.

(実験例2)
<[(GFP−gp5f)]の融合タンパク質複合体の細胞内での開裂>
実施例1で調製した[(GFP−gp5f)]の融合タンパク質複合体を、実験例1と同様にしてHeLa細胞の培地に添加し、細胞内に導入した。続いて、HPLC(高速液体クロマトグラフィー)を用いたゲル濾過解析により、細胞内に導入した[(GFP−gp5f)]の融合タンパク質複合体の分子量の変化を経時的に解析した。具体的には、HeLa細胞の培地に1.7μMの濃度で[(GFP−gp5f)]を添加し、24時間後及び48時間後に細胞を回収した。続いて、10%Triton X−100で細胞膜を破壊し、得られた溶液をHPLCで解析した。カラムにはGF−510 HQ(Asahipak)を使用した。
(Experimental example 2)
<Intracellular cleavage of [(GFP-gp5f) 3 ] 2 fusion protein complex>
The fusion protein complex of [(GFP-gp5f) 3 ] 2 prepared in Example 1 was added to the HeLa cell medium in the same manner as in Experimental Example 1 and introduced into the cells. Subsequently, changes in the molecular weight of the fusion protein complex of [(GFP-gp5f) 3 ] 2 introduced into the cells were analyzed over time by gel filtration analysis using HPLC (high performance liquid chromatography). Specifically, [(GFP-gp5f) 3 ] 2 was added to the HeLa cell culture medium at a concentration of 1.7 μM, and the cells were collected after 24 and 48 hours. Subsequently, the cell membrane was disrupted with 10% Triton X-100, and the resulting solution was analyzed by HPLC. GF-510 HQ (Asahipak) was used for the column.

図3は、HPLCを用いたゲル濾過解析の結果を示すグラフである。図3中、横軸は溶出時間(分)を示し、縦軸は励起波長485nm、蛍光波長510nmの蛍光強度を示す。(a)は、[(GFP−gp5f)]の融合タンパク質複合体のみをゲル濾過解析した結果を示し、(b)は[(GFP−gp5f)]をHeLa細胞に導入してから24時間後の解析結果を示し、(c)は[(GFP−gp5f)]をHeLa細胞に導入してから48時間後の解析結果を示し、(d)はHeLa細胞のみの解析結果を示す。溶出時間12分付近のピークは[(GFP−gp5f)]であり、溶出時間15分付近のピークはGFPである。細胞内に導入された[(GFP−gp5f)]の融合タンパク質は、経時的に担体(細胞内導入剤)から開裂し、ほぼ48時間後に完全に開裂したことが明らかとなった。この結果は、担体からの標的タンパク質の放出が容易であることを示す。 FIG. 3 is a graph showing the results of gel filtration analysis using HPLC. In FIG. 3, the horizontal axis indicates the elution time (min), and the vertical axis indicates the fluorescence intensity at an excitation wavelength of 485 nm and a fluorescence wavelength of 510 nm. (A) from the introduction to the [(GFP-gp5f) 3] Only 2 of the fusion protein complex shows the results of gel filtration analysis, (b) is [(GFP-gp5f) 3] 2 HeLa cells The analysis results after 24 hours are shown, (c) shows the analysis results after 48 hours from the introduction of [(GFP-gp5f) 3 ] 2 into HeLa cells, and (d) shows the analysis results of only HeLa cells. Show. The peak around the elution time 12 minutes is [(GFP-gp5f) 3 ] 2 and the peak around the elution time 15 minutes is GFP. It was revealed that the fusion protein of [(GFP-gp5f) 3 ] 2 introduced into the cells was cleaved from the carrier (intracellular introduction agent) with time, and completely cleaved after about 48 hours. This result shows that the release of the target protein from the carrier is easy.

(実験例3)
<動物実験>
実験例1で調製した[(GFP−gp5f)]の融合タンパク質複合体を、マウス胎児に注入し、GFPの蛍光を観察した。具体的には、E13.5でマウス胎児を子宮内から取り出し、側脳室に10μMの[(GFP−gp5f)を1μL注射し、子宮内へと戻した。続いて24時間後に胎児を取り出し、蛍光顕微鏡による解析を行った。図4に、顕微鏡写真を示す。図4(A)は、マウス胎児の明視野観察の写真であり、(B)は、GFPの蛍光観察(励起波長485nm、蛍光波長510nm)の写真であり、(C)は、核染色試薬であるDAPIで染色したマウス脳の組織切片の蛍光観察(励起波長402nm、蛍光波長450nm)の写真であり、(D)は、マウス脳の組織切片におけるGFPの蛍光観察(励起波長485nm、蛍光波長510nm)の写真である。この結果、マウスの脳内の細胞にGFPが均一に導入されたことが明らかとなった。脳内の細胞にこのように均一にタンパク質を導入することは通常困難である。[(GFP−gp5f)]の融合タンパク質複合体の細胞内への導入効率が非常に高いことが確認された。
(Experimental example 3)
<Animal experiment>
The fusion protein complex of [(GFP-gp5f) 3 ] 2 prepared in Experimental Example 1 was injected into a mouse fetus, and GFP fluorescence was observed. Specifically, the mouse fetus was removed from the uterus at E13.5, and 1 μL of 10 μM [(GFP-gp5f) 3 ] 2 was injected into the lateral ventricle and returned into the uterus. Then, 24 hours later, the fetus was taken out and analyzed by a fluorescence microscope. FIG. 4 shows a photomicrograph. FIG. 4A is a photograph of bright field observation of a mouse fetus, FIG. 4B is a photograph of fluorescence observation of GFP (excitation wavelength 485 nm, fluorescence wavelength 510 nm), and FIG. 4C is a nuclear staining reagent. It is the photograph of the fluorescence observation (excitation wavelength 402nm, fluorescence wavelength 450nm) of the mouse brain tissue section dye | stained with a certain DAPI, (D) is the fluorescence observation (excitation wavelength 485nm, fluorescence wavelength 510nm) in the mouse brain tissue section. ) As a result, it was revealed that GFP was uniformly introduced into cells in the mouse brain. It is usually difficult to introduce proteins uniformly in this way into cells in the brain. It was confirmed that the efficiency of introducing the fusion protein complex of [(GFP-gp5f) 3 ] 2 into cells was very high.

(実施例2)
<長さの異なる細胞内導入剤の作製および確認>
実施例1と同様にして、長さの異なる細胞内導入剤を作製し、原子間力顕微鏡(AFM)で観察した。より具体的には、下記式(1):
−Y−Z …(1)
において、Xが配列番号1のアミノ酸配列であり、Yが「gp5のアミノ酸配列(配列番号2)」であり、Zが「foldonのアミノ酸配列(配列番号6)」であるポリペプチドであって、nが1、5及び8であるポリペプチドの発現用プラスミドをそれぞれ作製し、大腸菌で発現させた。得られた各長さのタンパク質(細胞内導入剤)を2μg/mLの濃度で20mMグリシン緩衝液(pH3.0)に懸濁した。これらの各溶液をマイカ基板に載せ、4時間放置後に溶液中AFMによる観察を行った。結果を図5に示す。(a)はnが1である細胞内導入剤のAFM観察画像であり、(b)はnが5である細胞内導入剤のAFM観察画像であり、(c)はnが8である細胞内導入剤のAFM観察画像である。上記式(1)のXで示されるアミノ酸配列の繰り返し数を増加させることにより、細胞内導入剤の長さの伸長が確認された。
(Example 2)
<Preparation and confirmation of intracellular introduction agents with different lengths>
In the same manner as in Example 1, intracellular introduction agents having different lengths were prepared and observed with an atomic force microscope (AFM). More specifically, the following formula (1):
Xn -YZ (1)
Wherein X is the amino acid sequence of SEQ ID NO: 1, Y is the “amino acid sequence of gp5 (SEQ ID NO: 2)”, and Z is the “amino acid sequence of foldon (SEQ ID NO: 6)”, Plasmids for expressing polypeptides with n of 1, 5 and 8 were prepared and expressed in E. coli. The obtained proteins (intracellular introduction agents) of each length were suspended in 20 mM glycine buffer (pH 3.0) at a concentration of 2 μg / mL. Each of these solutions was placed on a mica substrate and allowed to stand for 4 hours, and then observed with AFM in the solution. The results are shown in FIG. (A) is an AFM observation image of an intracellular introduction agent where n is 1, (b) is an AFM observation image of an intracellular introduction agent where n is 5, and (c) is a cell where n is 8. It is an AFM observation image of an internally introduced agent. The increase in the length of the intracellular introduction agent was confirmed by increasing the number of repetitions of the amino acid sequence represented by X in the above formula (1).

本発明によれば、細胞に対する毒性が低く、細胞内への標的タンパク質の導入効率が高く、標的タンパク質の細胞内導入後に、担体(細胞内導入剤)からの標的タンパク質の放出が容易な、標的タンパク質の細胞内導入剤を提供することができる。本発明はまた、当該細胞内導入剤をコードする核酸及び当該細胞内導入剤を用いた標的タンパク質の細胞内導入方法を提供することができる。   According to the present invention, the target has low toxicity to cells, high efficiency of introducing the target protein into the cell, and easy release of the target protein from the carrier (intracellular introduction agent) after the target protein is introduced into the cell. An agent for introducing a protein into a cell can be provided. The present invention can also provide a nucleic acid encoding the intracellular introduction agent and a method for intracellular introduction of a target protein using the intracellular introduction agent.

Claims (7)

以下の(a)又は(b)のアミノ酸配列からなるポリペプチドからなる標的タンパク質の細胞内導入剤。
(a)下記式(1):
−Y−Z …(1)
(式中、Xは配列番号1のアミノ酸配列を示し、Yは配列番号2〜5のアミノ酸配列からなる群より選択されるアミノ酸配列を示し、Zは配列番号6〜9のアミノ酸配列からなる群より選択されるアミノ酸配列を示し、nは1〜8の整数である。)のアミノ酸配列、
(b)前記(a)のアミノ酸配列において、1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列であって、かつ下記式(2):
[(X’−Y’−Z’) …(2)
(式中、X’、Y’、Z’は、それぞれ、前記式(1)のX、Y、Zで示されるアミノ酸配列において、0個以上のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列を示す。)で示されるポリペプチド複合体が細胞内移行活性を有する、アミノ酸配列。
An agent for intracellularly introducing a target protein comprising a polypeptide comprising the following amino acid sequence (a) or (b):
(A) The following formula (1):
Xn -YZ (1)
(In the formula, X represents the amino acid sequence of SEQ ID NO: 1, Y represents an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 2 to 5, and Z represents the group consisting of amino acid sequences of SEQ ID NOs: 6 to 9). An amino acid sequence selected from the above, wherein n is an integer of 1 to 8.)
(B) an amino acid sequence in which one or several amino acids are deleted, substituted or added in the amino acid sequence of (a), and the following formula (2):
[(X ′ n −Y′−Z ′) 3 ] 2 (2)
(In the formula, X ′, Y ′, and Z ′ are amino acid sequences in which 0 or more amino acids are deleted, substituted, or added in the amino acid sequence represented by X, Y, and Z in the formula (1), respectively. An amino acid sequence in which the polypeptide complex represented by (2) has an intracellular translocation activity.
以下の(c)又は(d)のポリペプチド複合体からなる標的タンパク質の細胞内導入剤。
(c)下記式(3):
[(X−Y−Z) …(3)
(式中、Xは配列番号1のアミノ酸配列を示し、Yは配列番号2〜5のアミノ酸配列からなる群より選択されるアミノ酸配列を示し、Zは配列番号6〜9のアミノ酸配列からなる群より選択されるアミノ酸配列を示し、nは1〜8の整数である。)で示されるポリペプチド複合体、
(d)前記(c)のポリペプチド複合体において、1若しくは数個のアミノ酸が欠失、置換若しくは付加され、かつ細胞内移行活性を有するポリペプチド複合体。
A target protein intracellular introduction agent comprising the following polypeptide complex (c) or (d).
(C) The following formula (3):
[(X n -YZ) 3 ] 2 (3)
(In the formula, X represents the amino acid sequence of SEQ ID NO: 1, Y represents an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 2 to 5, and Z represents the group consisting of amino acid sequences of SEQ ID NOs: 6 to 9). A polypeptide complex represented by the following: n represents an amino acid sequence selected from the above, and n is an integer of 1 to 8.
(D) A polypeptide complex in which one or several amino acids are deleted, substituted or added in the polypeptide complex of (c) and have intracellular translocation activity.
以下の(e)又は(f)のアミノ酸配列からなるポリペプチドをコードする核酸。
(e)下記式(1):
−Y−Z …(1)
(式中、Xは配列番号1のアミノ酸配列を示し、Yは配列番号2〜5のアミノ酸配列からなる群より選択されるアミノ酸配列を示し、Zは配列番号6〜9のアミノ酸配列からなる群より選択されるアミノ酸配列を示し、nは1〜8の整数である。)のアミノ酸配列、
(f)前記(e)のアミノ酸配列において、1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列であって、かつ下記式(2):
[(X’−Y’−Z’) …(2)
(式中、X’、Y’、Z’は、それぞれ、前記式(1)のX、Y、Zで示されるアミノ酸配列において、0個以上のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列を示す。)で示されるポリペプチド複合体が細胞内移行活性を有する、アミノ酸配列。
A nucleic acid encoding a polypeptide comprising the following amino acid sequence (e) or (f):
(E) The following formula (1):
Xn -YZ (1)
(In the formula, X represents the amino acid sequence of SEQ ID NO: 1, Y represents an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 2 to 5, and Z represents the group consisting of amino acid sequences of SEQ ID NOs: 6 to 9). An amino acid sequence selected from the above, wherein n is an integer of 1 to 8.)
(F) An amino acid sequence in which one or several amino acids are deleted, substituted or added in the amino acid sequence of (e), and the following formula (2):
[(X ′ n −Y′−Z ′) 3 ] 2 (2)
(In the formula, X ′, Y ′, and Z ′ are amino acid sequences in which 0 or more amino acids are deleted, substituted, or added in the amino acid sequence represented by X, Y, and Z in the formula (1), respectively. An amino acid sequence in which the polypeptide complex represented by (2) has an intracellular translocation activity.
以下の(g)又は(h)のアミノ酸配列からなるポリペプチドからなる標的タンパク質の細胞内導入剤。
(g)下記式(4):
−X−Y−Z−V …(4)
(式中、W及びVは、標的タンパク質のアミノ酸配列を示し、Xは配列番号1のアミノ酸配列を示し、Yは配列番号2〜5のアミノ酸配列からなる群より選択されるアミノ酸配列を示し、Zは配列番号6〜9のアミノ酸配列からなる群より選択されるアミノ酸配列を示し、nは1〜8の整数であり、A及びBは0又は1の整数であり、かつA及びBが同時に0になることはない。)のアミノ酸配列、
(h)前記(g)のアミノ酸配列において、1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列であって、かつ下記式(5):
[(W−X’−Y’−Z’−V …(5)
(式中、W及びVは、標的タンパク質のアミノ酸配列を示し、X’、Y’、Z’は、それぞれ、前記式(4)のX、Y、Zで示されるアミノ酸配列において、0個以上のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列を示し、A及びBは0又は1の整数であり、かつA及びBが同時に0になることはない。)で示されるポリペプチド複合体が細胞内移行活性を有する、アミノ酸配列。
A target protein intracellular introduction agent comprising a polypeptide comprising the following amino acid sequence (g) or (h):
(G) The following formula (4):
W A -X n -Y-Z- V B ... (4)
(Wherein W and V represent the amino acid sequence of the target protein, X represents the amino acid sequence of SEQ ID NO: 1, Y represents the amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 2 to 5, Z represents an amino acid sequence selected from the group consisting of amino acid sequences of SEQ ID NOs: 6 to 9, n is an integer of 1 to 8, A and B are integers of 0 or 1, and A and B are simultaneously An amino acid sequence of 0)
(H) An amino acid sequence in which one or several amino acids are deleted, substituted or added in the amino acid sequence of (g), and the following formula (5):
[(W A -X 'n -Y' -Z'-V B) 3] 2 ... (5)
(Wherein, W and V represent the amino acid sequence of the target protein, and X ′, Y ′, and Z ′ are 0 or more in the amino acid sequence represented by X, Y, and Z in Formula (4), respectively. Wherein A and B are integers of 0 or 1, and A and B are not 0 at the same time.) An amino acid sequence having intracellular translocation activity.
以下の(i)又は(j)の融合タンパク質複合体からなる標的タンパク質の細胞内導入剤。
(i)下記式(6):
[(W−X−Y−Z−V …(6)
(式中、W及びVは、標的タンパク質のアミノ酸配列を示し、Xは配列番号1のアミノ酸配列を示し、Yは配列番号2〜5のアミノ酸配列からなる群より選択されるアミノ酸配列を示し、Zは配列番号6〜9のアミノ酸配列からなる群より選択されるアミノ酸配列を示し、nは1〜8の整数であり、A及びBは0又は1の整数であり、かつA及びBが同時に0になることはない。)で示される融合タンパク質複合体、
(j)前記式(6)のX−Y−Zで示されるアミノ酸配列において、1若しくは数個のアミノ酸が欠失、置換若しくは付加された融合タンパク質複合体であって、かつ細胞内移行活性を有する融合タンパク質複合体。
A target protein intracellular introduction agent comprising the following fusion protein complex (i) or (j):
(I) The following formula (6):
[(W A -X n -Y- Z-V B) 3] 2 ... (6)
(Wherein W and V represent the amino acid sequence of the target protein, X represents the amino acid sequence of SEQ ID NO: 1, Y represents the amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOs: 2 to 5, Z represents an amino acid sequence selected from the group consisting of amino acid sequences of SEQ ID NOs: 6 to 9, n is an integer of 1 to 8, A and B are integers of 0 or 1, and A and B are simultaneously A fusion protein complex represented by:
(J) a fusion protein complex in which one or several amino acids are deleted, substituted or added in the amino acid sequence represented by X n -YZ in the above formula (6), and its intracellular translocation activity A fusion protein complex having:
前記標的タンパク質が、分子量30kDa以下のタンパク質である、請求項4又は5に記載の標的タンパク質の細胞内導入剤。   The agent for intracellular introduction of a target protein according to claim 4 or 5, wherein the target protein is a protein having a molecular weight of 30 kDa or less. 請求項4〜6のいずれか一項に記載の標的タンパク質の細胞内導入剤を対象細胞に接触させる工程を含む、標的タンパク質の細胞内導入方法。   A method for introducing a target protein into a cell, comprising the step of contacting the target cell with the agent for introducing a target protein into the cell according to any one of claims 4 to 6.
JP2014039644A 2014-02-28 2014-02-28 Intracellular introduction agent for target protein and method for intracellular introduction of target protein Active JP6304683B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014039644A JP6304683B2 (en) 2014-02-28 2014-02-28 Intracellular introduction agent for target protein and method for intracellular introduction of target protein

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014039644A JP6304683B2 (en) 2014-02-28 2014-02-28 Intracellular introduction agent for target protein and method for intracellular introduction of target protein

Publications (2)

Publication Number Publication Date
JP2015163056A true JP2015163056A (en) 2015-09-10
JP6304683B2 JP6304683B2 (en) 2018-04-04

Family

ID=54186340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014039644A Active JP6304683B2 (en) 2014-02-28 2014-02-28 Intracellular introduction agent for target protein and method for intracellular introduction of target protein

Country Status (1)

Country Link
JP (1) JP6304683B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018074558A1 (en) 2016-10-23 2018-04-26 デンカ株式会社 Composite polypeptide monomer, aggregate of said composite polypeptide monomer having cell penetration function, and norovirus component vaccine for subcutaneous, intradermal, percutaneous, or intramuscular administration and having said aggregate as effective component thereof
WO2021039873A1 (en) 2019-08-27 2021-03-04 国立大学法人東京工業大学 Composite protein monomer having non-structural protein of virus supported thereon, aggregate of composite protein monomer, and component vaccine comprising aggregate as active ingredient

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CHEMICAL COMMUNICATIONS, vol. Vol.47, JPN6017040362, 2011, pages 2074 - 2076 *
DALTON TRANSACTIONS, vol. Vol.41, JPN6017040361, 2012, pages 11424 - 11427 *
SMALL, vol. 6, no. 17, JPN6017040359, 2010, pages 1873 - 1879 *
日本化学会第93春季年会(2013)講演予稿集IV, JPN6017040360, 2013, pages p.1308, 2 E3-13 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018074558A1 (en) 2016-10-23 2018-04-26 デンカ株式会社 Composite polypeptide monomer, aggregate of said composite polypeptide monomer having cell penetration function, and norovirus component vaccine for subcutaneous, intradermal, percutaneous, or intramuscular administration and having said aggregate as effective component thereof
JPWO2018074558A1 (en) * 2016-10-23 2019-11-07 デンカ株式会社 Complex polypeptide monomer, aggregate of monomer of complex polypeptide having cell permeation function, and norovirus component vaccine for subcutaneous, intradermal, transdermal or intramuscular administration comprising the aggregate as an active ingredient
EP3530674A4 (en) * 2016-10-23 2020-05-27 Denka Company Limited Composite polypeptide monomer, aggregate of said composite polypeptide monomer having cell penetration function, and norovirus component vaccine for subcutaneous, intradermal, percutaneous, or intramuscular administration and having said aggregate as effective component thereof
JP7062595B2 (en) 2016-10-23 2022-05-06 デンカ株式会社 A norovirus component vaccine for subcutaneous, intradermal, transdermal or intramuscular administration containing a complex polypeptide monomer, an aggregate of the complex polypeptide monomer having a cell permeation function, and the aggregate as an active ingredient.
US11517616B2 (en) 2016-10-23 2022-12-06 Denka Company Limited Composite polypeptide monomer, aggregate of said composite polypeptide monomer having cell penetration function, and norovirus component vaccine for subcutaneous, intradermal, percutaneous, or intramuscular administration and having said aggregate as effective component thereof
WO2021039873A1 (en) 2019-08-27 2021-03-04 国立大学法人東京工業大学 Composite protein monomer having non-structural protein of virus supported thereon, aggregate of composite protein monomer, and component vaccine comprising aggregate as active ingredient

Also Published As

Publication number Publication date
JP6304683B2 (en) 2018-04-04

Similar Documents

Publication Publication Date Title
Cassidy-Amstutz et al. Identification of a minimal peptide tag for in vivo and in vitro loading of encapsulin
Li Split-inteins and their bioapplications
Schröder et al. Peptoidic amino-and guanidinium-carrier systems: targeted drug delivery into the cell cytosol or the nucleus
JP7278027B2 (en) Gene editing by microfluidic delivery
Rurup et al. Self-sorting of foreign proteins in a bacterial nanocompartment
JP4262778B2 (en) Protein fragment complementation assay to detect biomolecular interactions
JP7449646B2 (en) Vector-free delivery of gene editing proteins and compositions to cells and tissues
KR20190071725A (en) RNA-guided nucleic acid modification enzymes and methods for their use
JP2022521049A (en) Means and Methods for Preparing Target Proteins Manipulated by Genetic Code Expansion in a Selective Mode of Target Proteins
JP2021531038A (en) Systems and methods for regulating stress granule assembly
JP2019534700A (en) Compositions and methods for protein expression and delivery
Somiya et al. Engineering of extracellular vesicles for small molecule-regulated cargo loading and cytoplasmic delivery of bioactive proteins
Schoonen et al. Modular, bioorthogonal strategy for the controlled loading of cargo into a protein nanocage
Carter et al. Coupling Strategies for the Synthesis of Peptide‐Oligonucleotide Conjugates for Patterned Synthetic Biomineralization
JP6304683B2 (en) Intracellular introduction agent for target protein and method for intracellular introduction of target protein
US20220098251A1 (en) Peptide tags for ligand induced degradation of fusion proteins
Bowen et al. Discovery of membrane-permeating cyclic peptides via mRNA display
Lee et al. Screening of cell‐penetrating peptides using mRNA display
CN110551193B (en) Novel tag protein for protein enrichment expression and intracellular localization and application thereof
Brodyagin et al. Cellular uptake of 2‐aminopyridine‐modified peptide nucleic acids conjugated with cell‐penetrating peptides
Tran et al. Evaluation of efficient non-reducing enzymatic and chemical ligation strategies for complex disulfide-rich peptides
WO2015133613A1 (en) Hepatitis b virus reporter vector, hepatitis b virus-like particles, and screening method for hepatitis b drug using same
Juillot et al. Signalling to the nucleus under the control of light and small molecules
Bachmann et al. Chemical-tag labeling of proteins using fully recombinant split inteins
CA3130645A1 (en) Use of an improved sleeping beauty transposase with increased solubility to facilitate and control transfection of a target cell with a transgene

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171024

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180227

R150 Certificate of patent or registration of utility model

Ref document number: 6304683

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250