JP2015162290A - battery module - Google Patents

battery module Download PDF

Info

Publication number
JP2015162290A
JP2015162290A JP2014035578A JP2014035578A JP2015162290A JP 2015162290 A JP2015162290 A JP 2015162290A JP 2014035578 A JP2014035578 A JP 2014035578A JP 2014035578 A JP2014035578 A JP 2014035578A JP 2015162290 A JP2015162290 A JP 2015162290A
Authority
JP
Japan
Prior art keywords
bottom wall
electrode assembly
cooling mechanism
cooling
case
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014035578A
Other languages
Japanese (ja)
Other versions
JP6164119B2 (en
Inventor
厚志 南形
Atsushi MINAGATA
厚志 南形
元章 奥田
Motoaki Okuda
元章 奥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2014035578A priority Critical patent/JP6164119B2/en
Publication of JP2015162290A publication Critical patent/JP2015162290A/en
Application granted granted Critical
Publication of JP6164119B2 publication Critical patent/JP6164119B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a battery module which inhibits uneven cooling of an electrode assembly caused by a cooling mechanism.SOLUTION: A battery cell 11 forming a battery module 10 has a case 12 in which an electrode assembly 20 is stored. A case body 13 of the case 12 is formed by a bottom wall 13b, and side walls 13c, 13d, 13e, 13f erected on the bottom wall 13b. The bottom wall 13b of the case body 13 has a cooling mechanism. A thickness of a thinnest portion of the bottom wall 13b is set larger than thicknesses of the side walls 13c, 13d, 13e, 13f.

Description

本発明は、複数の電池セルを有する電池モジュールに関する。   The present invention relates to a battery module having a plurality of battery cells.

特許文献1に記載の電池モジュールは、複数の電池セルが並設されている。こうした特許文献1に記載の電池モジュールでは、電池セルの温度低下を図るべく電池セルのケースの底壁に冷却機構が設けられている。   The battery module described in Patent Document 1 has a plurality of battery cells arranged in parallel. In the battery module described in Patent Document 1, a cooling mechanism is provided on the bottom wall of the battery cell case in order to lower the temperature of the battery cell.

特開平06−73864号公報Japanese Patent Laid-Open No. 06-73864

ところで、特許文献1に記載の電池モジュールでは、冷却機構の性能や配置位置等により、複数の電池セル間での冷却むらが生じると、電極組立体の冷却むらが生じることとなるため、この点で改善の余地があった。   By the way, in the battery module described in Patent Document 1, if uneven cooling occurs between the plurality of battery cells due to the performance or arrangement position of the cooling mechanism, uneven cooling of the electrode assembly occurs. There was room for improvement.

この発明は、このような従来の技術に存在する問題点に着目してなされたものであり、その目的は、冷却機構による電極組立体の冷却むらを抑制することができる電池モジュールを提供することにある。   This invention was made paying attention to the problem which exists in such a prior art, The objective is to provide the battery module which can suppress the cooling nonuniformity of the electrode assembly by a cooling mechanism. It is in.

以下、上記目的を達成するための手段及びその作用効果について記載する。
上記課題を解決する電池モジュールは、電極組立体及び電解液がケースに収容されて構成された電池セルを複数備えるものである。そして、ケースを構成するケース壁は、底壁と底壁に立設する側壁とを含み、複数の電池セルの底壁を冷却する冷却機構が設けられ、底壁のうち厚みの最も小さい部分の厚みは、側壁の厚みよりも大きい。
In the following, means for achieving the above object and its effects are described.
A battery module that solves the above problems includes a plurality of battery cells that are configured by accommodating an electrode assembly and an electrolyte in a case. The case wall constituting the case includes a bottom wall and a side wall standing on the bottom wall, and a cooling mechanism for cooling the bottom wall of the plurality of battery cells is provided. The thickness is greater than the thickness of the sidewall.

上記構成によれば、底壁の厚みが大きいことにより、冷却機構による冷却効果が底壁に均一に作用するため、底壁を介して電極組立体を均一に冷却することができる。したがって、冷却機構による電極組立体の冷却むらを抑制することができる。   According to the above configuration, since the thickness of the bottom wall is large, the cooling effect by the cooling mechanism acts uniformly on the bottom wall, so that the electrode assembly can be uniformly cooled through the bottom wall. Therefore, uneven cooling of the electrode assembly due to the cooling mechanism can be suppressed.

底壁は、例えばその内面が傾斜していて、冷却機構による底壁の冷却効果が大きい部分では、底壁の内面と電極組立体との間隙が大きく、冷却機構による底壁の冷却効果が小さい部分では、底壁の内面と電極組立体との間隙が小さいものが好ましい。   For example, in the portion where the inner surface of the bottom wall is inclined and the cooling effect of the bottom wall by the cooling mechanism is large, the gap between the inner surface of the bottom wall and the electrode assembly is large, and the cooling effect of the bottom wall by the cooling mechanism is small. The portion preferably has a small gap between the inner surface of the bottom wall and the electrode assembly.

上記構成では、底壁の内面の位置によって、底壁と電極組立体との隙間の大きさに差が生じることとなる。このため、冷却機構による冷却効果が得やすい位置では上記隙間の大きさが大きくなるように、また、冷却機構による冷却効果が得にくい位置では上記隙間の大きさが小さくなるように、底壁の内面を傾斜させれば、電極組立体の冷却むらをさらに抑制することができる。   In the above configuration, a difference occurs in the size of the gap between the bottom wall and the electrode assembly depending on the position of the inner surface of the bottom wall. For this reason, the size of the gap is increased at a position where the cooling effect by the cooling mechanism is easily obtained, and the size of the gap is reduced at a position where the cooling effect by the cooling mechanism is difficult to obtain. If the inner surface is inclined, uneven cooling of the electrode assembly can be further suppressed.

電極組立体としては、例えば正極電極と負極電極との間にセパレータを介在させて層状をなす積層型が挙げられる。   As the electrode assembly, for example, a laminated type in which a separator is interposed between a positive electrode and a negative electrode to form a layer shape can be mentioned.

本発明によれば、冷却機構による電極組立体の冷却むらを抑制することができる。   According to the present invention, uneven cooling of the electrode assembly due to the cooling mechanism can be suppressed.

電池モジュールを示す斜視図。The perspective view which shows a battery module. 電池モジュールを示す分解斜視図。The disassembled perspective view which shows a battery module. 電池モジュールの側部を示す平面図。The top view which shows the side part of a battery module. 電極組立体の構成要素を示す斜視図。The perspective view which shows the component of an electrode assembly. 図2の5−5線断面図。FIG. 5 is a sectional view taken along line 5-5 of FIG.

以下、蓄電装置を具体化した一実施形態を図1〜図5にしたがって説明する。
図1に示すように、電池モジュール10は、二次電池としての角型の電池セル11が、その厚み方向に並設されることで構成されている。
Hereinafter, an embodiment embodying a power storage device will be described with reference to FIGS.
As shown in FIG. 1, the battery module 10 is configured by arranging rectangular battery cells 11 as secondary batteries in the thickness direction.

電池モジュール10において、電池セル11の並設方向の両端部には、アルミニウム製のエンドプレート18,19が設けられている。そして、電池モジュール10は、エンドプレート18,19に挿通されるボルトB1が、ナットNに螺合されることで組み付けられている。これにより、電池セル11は、エンドプレート18,19によって電池セル11の並設方向の両側から挟持されている。   In the battery module 10, aluminum end plates 18 and 19 are provided at both ends of the battery cells 11 in the juxtaposed direction. And the battery module 10 is assembled | attached by the bolt B1 penetrated by the end plates 18 and 19 being screwed together by the nut N. As shown in FIG. Thereby, the battery cell 11 is clamped by the end plates 18 and 19 from both sides of the battery cell 11 in the juxtaposition direction.

図2に示すように、電池モジュール10では、隣り合う電池セル11の間にアルミニウム製の伝熱プレート30が介装されている。伝熱プレート30は、電池セル11の間に配置される矩形平板状の吸熱部31と、吸熱部31の長手方向の一端から電池セル11に沿ってその並設方向に延びる放熱部32とを有している。放熱部32の延設長さは、電池セル11の厚み、すなわち電池セル11の並設方向に沿う大きさと同程度に設定されている。   As shown in FIG. 2, in the battery module 10, an aluminum heat transfer plate 30 is interposed between adjacent battery cells 11. The heat transfer plate 30 includes a rectangular flat plate-shaped heat absorbing portion 31 disposed between the battery cells 11 and a heat radiating portion 32 extending in the juxtaposed direction along the battery cells 11 from one end in the longitudinal direction of the heat absorbing portion 31. Have. The extending length of the heat dissipating part 32 is set to be approximately the same as the thickness of the battery cell 11, that is, the size along the direction in which the battery cells 11 are arranged in parallel.

図3に示すように、伝熱プレート30は、電池セル11と接触した状態で配設されることにより、熱的に電池セル11と接合されることとなる。そして、伝熱プレート30の放熱部32が、吸熱部31で電池セル11から吸収した熱を電池セル11外に放熱する。   As shown in FIG. 3, the heat transfer plate 30 is thermally bonded to the battery cell 11 by being disposed in contact with the battery cell 11. The heat radiating portion 32 of the heat transfer plate 30 radiates the heat absorbed from the battery cell 11 by the heat absorbing portion 31 to the outside of the battery cell 11.

図2に示すように、電池セル11は、ケース12に電極組立体20が収容されている。ケース12は、電極組立体20を収容する有底四角筒状のケース本体13と、ケース本体13の開口部13aを閉塞する矩形平板状の蓋体14とからなる。蓋体14には、正極端子16と負極端子17の各一部分がケース12外に突出している。ケース本体13を構成するケース壁は、開口部13aと対向する底壁13bと、底壁13bの四辺に立設する側壁13c,13d,13e,13fとを有する。図5に示すように、ケース本体13の底壁13bは、その両面13g,13hのうち、ケース12の外側に位置する外面13hが平坦な形状である一方、ケース12の内側に位置する内面13gが傾斜している。底壁13bは、底壁13bのうち、側壁13d,13fとの接続部分の厚みが最も大きくなるように、また側壁13dの接続部分と側壁13fの接続部分との中間部分の厚みが最も小さくなるように、その内面13gが傾斜している。また、底壁13bは、底壁13bのうちで厚みの最も小さい部分、すなわち上記の中間部分の厚みT1が、側壁13c,13d,13e,13fの厚みT2よりも大きく設定されている。なお、図5には側壁13c,13d,13e,13fのうち、側壁13d,13fのみが図示されているが、これ以外の側壁13c,13eの厚みも同様に厚みT2に設定されている。また、ケース本体13と蓋体14とは、いずれも金属製(例えば、ステンレス製やアルミニウム製)である。この実施形態の電池セル11は、リチウムイオン二次電池である。   As shown in FIG. 2, in the battery cell 11, the electrode assembly 20 is accommodated in the case 12. The case 12 includes a bottomed square cylindrical case main body 13 that houses the electrode assembly 20, and a rectangular flat plate-shaped lid body 14 that closes the opening 13 a of the case main body 13. Each part of the positive electrode terminal 16 and the negative electrode terminal 17 protrudes from the case 12 to the lid body 14. The case wall constituting the case body 13 includes a bottom wall 13b that faces the opening 13a, and side walls 13c, 13d, 13e, and 13f that are provided upright on four sides of the bottom wall 13b. As shown in FIG. 5, the bottom wall 13b of the case body 13 has an outer surface 13h positioned on the outer side of the case 12 out of both surfaces 13g and 13h, and an inner surface 13g positioned on the inner side of the case 12. Is inclined. Of the bottom wall 13b, the bottom wall 13b has the smallest thickness at the connection portion between the side walls 13d and 13f and the middle portion between the connection portion between the side wall 13d and the connection portion between the side walls 13f. As shown, the inner surface 13g is inclined. In addition, the bottom wall 13b is set such that the portion of the bottom wall 13b having the smallest thickness, that is, the thickness T1 of the intermediate portion is larger than the thickness T2 of the side walls 13c, 13d, 13e, and 13f. 5 shows only the side walls 13d and 13f out of the side walls 13c, 13d, 13e and 13f, the thicknesses of the other side walls 13c and 13e are also set to the thickness T2. The case body 13 and the lid body 14 are both made of metal (for example, made of stainless steel or aluminum). The battery cell 11 of this embodiment is a lithium ion secondary battery.

図4に示すように、電極組立体20は、正極電極21、負極電極25、及び正極電極21と負極電極25とを絶縁するセパレータ29を有する。正極電極21は、正極金属箔22(アルミニウム箔)と、正極金属箔22の両面に設けられた正極活物質層23とを有する。正極電極21の端部21aには、正極タブ24が突出して設けられている。負極電極25は、負極金属箔26(銅箔)と、負極金属箔26の両面に設けられた負極活物質層27とを有する。負極電極25の端部25aには、負極タブ28が突出して設けられている。負極電極25は、正極電極21よりも一回り大きく形成されている。また、セパレータ29は、負極電極25よりも一回り大きく形成されている。   As shown in FIG. 4, the electrode assembly 20 includes a positive electrode 21, a negative electrode 25, and a separator 29 that insulates the positive electrode 21 from the negative electrode 25. The positive electrode 21 includes a positive metal foil 22 (aluminum foil) and a positive electrode active material layer 23 provided on both surfaces of the positive metal foil 22. A positive electrode tab 24 protrudes from the end 21 a of the positive electrode 21. The negative electrode 25 has a negative electrode metal foil 26 (copper foil) and a negative electrode active material layer 27 provided on both surfaces of the negative electrode metal foil 26. A negative electrode tab 28 protrudes from the end 25 a of the negative electrode 25. The negative electrode 25 is formed to be slightly larger than the positive electrode 21. The separator 29 is formed to be slightly larger than the negative electrode 25.

電極組立体20は、複数の正極電極21と複数の負極電極25を交互に積層するとともに、両電極21,25の間にセパレータ29を介在した積層型とされている。各電極21,25は、各タブ24,28が同一極性同士でそれぞれ列状に配置されるように重なっている。正極タブ24は、同一極性同士で集められた状態で正極端子16に電気的に接続されている。負極タブ28は、同一極性同士で集められた状態で負極端子17に電気的に接続されている。   The electrode assembly 20 is a stacked type in which a plurality of positive electrodes 21 and a plurality of negative electrodes 25 are alternately stacked, and a separator 29 is interposed between the electrodes 21 and 25. The electrodes 21 and 25 are overlapped so that the tabs 24 and 28 are arranged in rows with the same polarity. The positive electrode tab 24 is electrically connected to the positive electrode terminal 16 in a state of being collected with the same polarity. The negative electrode tab 28 is electrically connected to the negative electrode terminal 17 in a state of being collected with the same polarity.

図5に示すように、ケース12のケース本体13に電極組立体20が収容された状態では、電極組立体20の積層方向の両端がケース12のケース本体13の側壁13d,13fと面している。また、上記の通り、各電極21,25及びセパレータ29は異なる大きさに形成されている。このため、仮にそのうち大きさの最も大きいセパレータ29とケース本体13の底壁13bの内面13gとが近接するように電極組立体20をケース本体13に収容したとしても、各電極21,25と底壁13bの内面13gとの間には隙間が生じることとなる。また、ケース本体13に電極組立体20が収容された状態で、ケース本体13に電解液が界面Lまで収容されている。   As shown in FIG. 5, when the electrode assembly 20 is housed in the case body 13 of the case 12, both ends of the electrode assembly 20 in the stacking direction face the side walls 13 d and 13 f of the case body 13 of the case 12. Yes. As described above, the electrodes 21 and 25 and the separator 29 are formed in different sizes. Therefore, even if the electrode assembly 20 is accommodated in the case body 13 so that the separator 29 having the largest size and the inner surface 13g of the bottom wall 13b of the case body 13 are close to each other, the electrodes 21, 25 and the bottom A gap is generated between the inner surface 13g of the wall 13b. Further, the electrolytic solution is accommodated in the case body 13 up to the interface L in a state where the electrode assembly 20 is accommodated in the case body 13.

ケース12のケース本体13の底壁13bには、冷却機構35が設けられている。冷却機構35は、電池モジュール10として並設された複数の電池セル11におけるケース本体13の底壁13bにそれぞれ設けられている。本実施形態の冷却機構35は水冷式であり、冷却機構35の内部を冷却水が通過することにより電池セル11が冷却される。また、冷却機構35は、底壁13bのうち、側壁13dの接続部分と側壁13fの接続部分との中間部分に配設されている。この冷却機構35によってケース本体13の内部の電解液が冷却されることにより、電極組立体20が冷却される。   A cooling mechanism 35 is provided on the bottom wall 13 b of the case body 13 of the case 12. The cooling mechanism 35 is provided on the bottom wall 13 b of the case body 13 in each of the plurality of battery cells 11 arranged in parallel as the battery module 10. The cooling mechanism 35 of the present embodiment is a water-cooled type, and the battery cell 11 is cooled when the cooling water passes through the inside of the cooling mechanism 35. Moreover, the cooling mechanism 35 is arrange | positioned among the bottom walls 13b in the intermediate part of the connection part of the side wall 13d, and the connection part of the side wall 13f. The electrode assembly 20 is cooled by cooling the electrolyte inside the case body 13 by the cooling mechanism 35.

次に、電池モジュール10の作用について説明する。
ケース12のケース本体13に電極組立体20が収容された状態では、電極21,25の大きさが異なることや、電極21,25の積層ずれ等により、電極21,25毎で、電極21,25とケース本体13の底壁13bとの間の隙間が異なることとなる。
Next, the operation of the battery module 10 will be described.
In a state where the electrode assembly 20 is accommodated in the case body 13 of the case 12, the electrodes 21, 25 are different for each electrode 21, 25 due to the size of the electrodes 21, 25 being different, the stacking displacement of the electrodes 21, 25, etc. The clearance gap between 25 and the bottom wall 13b of the case main body 13 will differ.

冷却機構35からケース本体13の底壁13bを冷却し、底壁13bを介してケース12内の電解液が冷却される。ケース本体13では、電解液が底壁13bの内面13gから界面Lまで収容されている。このため、底壁13bを介してケース本体13内部の電解液が冷却され、冷却された電解液によって電極組立体20の各電極21,25が冷却される。したがって、電極21,25毎で電極21,25とケース本体13の底壁13bとの間の隙間が異なっていても、各電極21,25を冷却することができる。   The bottom wall 13b of the case body 13 is cooled from the cooling mechanism 35, and the electrolyte in the case 12 is cooled via the bottom wall 13b. In the case main body 13, the electrolytic solution is accommodated from the inner surface 13g of the bottom wall 13b to the interface L. For this reason, the electrolyte solution inside the case body 13 is cooled via the bottom wall 13b, and the electrodes 21 and 25 of the electrode assembly 20 are cooled by the cooled electrolyte solution. Therefore, even if the gaps between the electrodes 21 and 25 and the bottom wall 13b of the case body 13 are different for each of the electrodes 21 and 25, the electrodes 21 and 25 can be cooled.

ケース本体13の底壁13bは、底壁13bのうちで厚みの最も小さい中央部分の厚みT1が、側壁13c,13d,13e,13fの厚みT2よりも大きく設定されている。こうした底壁13bの厚みによれば、冷却機構35によって底壁13bが冷却される際に、冷却機構35による冷却効果が底壁13bに均一に作用するようになる。   The bottom wall 13b of the case body 13 is set such that the thickness T1 of the central portion having the smallest thickness among the bottom walls 13b is larger than the thickness T2 of the side walls 13c, 13d, 13e, and 13f. According to the thickness of the bottom wall 13b, when the bottom wall 13b is cooled by the cooling mechanism 35, the cooling effect by the cooling mechanism 35 acts on the bottom wall 13b uniformly.

なお、ケース本体13を構成するケース壁は、電池セル11の容量の増加や小型化を図るために可能な限り厚みが小さいことが好ましい。また、ケース本体13では、電解液が底壁13bの内面13gから界面Lまで収容されているため、電解液の冷却には冷却機構35による底壁13bの冷却程度が最も影響することとなる。このため、仮にケース本体13の底壁13bの厚みを小さくすると、底壁13bに生じる冷却むらによって、電解液の冷却にむらが生じるおそれがある。本実施形態では、ケース本体13を構成するケース壁のうち、側壁13c,13d,13e,13fの厚みT2を小さいままとして、底壁13bの厚みT1のみを大きくしている。これにより、上述の通り冷却機構35による冷却効果を底壁13bに均一に作用させることができる。   The case wall constituting the case body 13 is preferably as thin as possible in order to increase the capacity of the battery cell 11 and to reduce the size thereof. Further, in the case main body 13, since the electrolytic solution is accommodated from the inner surface 13 g of the bottom wall 13 b to the interface L, the cooling degree of the bottom wall 13 b by the cooling mechanism 35 has the most influence on the cooling of the electrolytic solution. For this reason, if the thickness of the bottom wall 13b of the case body 13 is reduced, uneven cooling may occur in the electrolyte due to uneven cooling generated in the bottom wall 13b. In the present embodiment, the thickness T2 of the side walls 13c, 13d, 13e, and 13f among the case walls constituting the case body 13 is kept small, and only the thickness T1 of the bottom wall 13b is increased. Thereby, the cooling effect by the cooling mechanism 35 can be made to act uniformly on the bottom wall 13b as described above.

冷却機構35は、底壁13bのうち、側壁13dの接続部分と側壁13fの接続部分との中間部分に配設されている。このため、冷却機構35による底壁13bの冷却効果は、底壁13bのうち、中間部分で最も大きく、中間部分から側壁13dの接続部分や側壁13fの接続部分に近づくにつれて小さくなる。また、ケース本体13の底壁13bは、底壁13bのうち、側壁13d,13fとの接続部分の厚みが最も大きくなるように、また側壁13dの接続部分と側壁13fの接続部分との中間部分の厚みが最も小さくなるように、その内面13gが傾斜している。このため、底壁13bの中間部分では、冷却機構35による底壁13bの冷却効果は最も大きいものの、底壁13bの内面13gと電極組立体20との間隙が大きいことによって底壁13bから電解液を介して電極組立体20が冷却されにくくなる。また、底壁13bのうちで、側壁13d,13fの接続部分では、冷却機構35による底壁13bの冷却効果は最も小さいものの、底壁13bの内面13gと電極組立体20との間隙が小さいことによって底壁13bから電解液を介して電極組立体20が冷却されやすくなる。したがって、電極組立体20全体をむらなく冷却することができる。   The cooling mechanism 35 is disposed in an intermediate portion of the bottom wall 13b between the connection portion of the side wall 13d and the connection portion of the side wall 13f. For this reason, the cooling effect of the bottom wall 13b by the cooling mechanism 35 is the largest in the middle portion of the bottom wall 13b, and becomes smaller as it approaches the connecting portion of the side wall 13d and the connecting portion of the side wall 13f from the middle portion. Further, the bottom wall 13b of the case body 13 has an intermediate portion between the connecting portion of the side wall 13d and the connecting portion of the side wall 13f so that the thickness of the connecting portion with the side walls 13d and 13f of the bottom wall 13b is maximized. The inner surface 13g is inclined so that the thickness of the inner wall is the smallest. For this reason, in the middle portion of the bottom wall 13b, the cooling effect of the bottom wall 13b by the cooling mechanism 35 is the greatest, but due to the large gap between the inner surface 13g of the bottom wall 13b and the electrode assembly 20, the electrolyte solution from the bottom wall 13b. It becomes difficult for the electrode assembly 20 to be cooled through the gap. Of the bottom wall 13b, at the connection portion between the side walls 13d and 13f, the cooling effect of the bottom wall 13b by the cooling mechanism 35 is the smallest, but the gap between the inner surface 13g of the bottom wall 13b and the electrode assembly 20 is small. Thus, the electrode assembly 20 is easily cooled from the bottom wall 13b through the electrolytic solution. Therefore, the entire electrode assembly 20 can be cooled evenly.

また、ケース本体13の底壁13bの厚みを大きくすることにより、冷却機構35の当接位置である底壁13bの上記の中間部分から側壁13d,13fの接続部分への熱伝導が行われやすくなる。このため、底壁13bの厚みを小さくする場合と比較して、底壁13b全体での熱交換量を大きくすることができる。   Further, by increasing the thickness of the bottom wall 13b of the case body 13, heat conduction from the intermediate portion of the bottom wall 13b, which is the contact position of the cooling mechanism 35, to the connecting portions of the side walls 13d and 13f is easily performed. Become. For this reason, compared with the case where the thickness of the bottom wall 13b is made small, the heat exchange amount in the whole bottom wall 13b can be enlarged.

したがって、本実施形態によれば、以下に示す効果を得ることができる。
(1)底壁13bの厚みが大きいことにより、冷却機構35による冷却効果が底壁13bに均一に作用するため、底壁13bを介して電極組立体20を均一に冷却することができる。したがって、冷却機構35による電極組立体20の冷却むらを抑制することができる。
Therefore, according to the present embodiment, the following effects can be obtained.
(1) Since the thickness of the bottom wall 13b is large, the cooling effect by the cooling mechanism 35 acts uniformly on the bottom wall 13b, so that the electrode assembly 20 can be uniformly cooled via the bottom wall 13b. Therefore, uneven cooling of the electrode assembly 20 by the cooling mechanism 35 can be suppressed.

(2)底壁13bの内面13gを傾斜させているため、底壁13bの内面13gの位置によって、底壁13bと電極組立体20との隙間の大きさに差が生じることとなる。また、冷却機構35による冷却効果が得やすい底壁13bの中間部分では上記隙間の大きさが大きくなるように、冷却機構35による冷却効果が得にくい底壁13bにおける側壁13d,13fの接続部分では上記隙間の大きさが小さくなるように、底壁13bの内面13gを傾斜させている。このため、電極組立体20の冷却むらをさらに抑制することができる。   (2) Since the inner surface 13g of the bottom wall 13b is inclined, the size of the gap between the bottom wall 13b and the electrode assembly 20 varies depending on the position of the inner surface 13g of the bottom wall 13b. Further, in the intermediate portion of the bottom wall 13b where the cooling effect by the cooling mechanism 35 is easily obtained, the size of the gap is increased. The inner surface 13g of the bottom wall 13b is inclined so that the size of the gap is reduced. For this reason, the uneven cooling of the electrode assembly 20 can be further suppressed.

(3)側壁13c,13d,13e,13fの厚みを底壁13bの厚みよりも小さくしているため、電池セル11の容量の増加や小型化を図ることができる。
なお、上記の実施形態は以下のように変更してもよい。
(3) Since the thickness of the side walls 13c, 13d, 13e, and 13f is smaller than the thickness of the bottom wall 13b, the capacity and size of the battery cell 11 can be increased.
In addition, you may change said embodiment as follows.

○ ケース本体13の底壁13bは、内面13gと同様に、その外面13hも傾斜する形状であっても良い。こうした形態によっても、底壁13bの内面13gの形状により、底壁13bの中間部分では底壁13bと電極組立体20との隙間が大きくなり、底壁13bの側壁13d,13fとの接続部分では底壁13bと電極組立体20との隙間が小さくなる。このため、上記実施形態で得ることのできる効果(1)〜(3)と同様の効果を得ることができる。   The bottom wall 13b of the case main body 13 may have a shape in which the outer surface 13h is inclined as well as the inner surface 13g. Even in such a form, due to the shape of the inner surface 13g of the bottom wall 13b, the gap between the bottom wall 13b and the electrode assembly 20 is increased in the middle portion of the bottom wall 13b, and in the connection portion between the side walls 13d and 13f of the bottom wall 13b. The gap between the bottom wall 13b and the electrode assembly 20 is reduced. For this reason, the effect similar to effect (1)-(3) which can be acquired by the said embodiment can be acquired.

○ ケース本体13の底壁13bは、その内面13gが傾斜せずに平坦な形状であっても良い。こうした形態によっても、底壁13bの厚みが側壁13c,13d,13e,13fの厚みよりも大きくなるため、上記実施形態で得ることのできる効果(1)及び(3)と同様の効果を得ることができる。   The bottom wall 13b of the case body 13 may have a flat shape without the inner surface 13g being inclined. Even in such a form, since the thickness of the bottom wall 13b is larger than the thickness of the side walls 13c, 13d, 13e, 13f, the same effects as the effects (1) and (3) that can be obtained in the above embodiment can be obtained. Can do.

○ 冷却機構35を電池モジュール10として並設された複数の電池セル11を共通して冷却する冷却機構35とし、複数の電池セル11で共通の冷却機構35をケース本体13の底壁13bに設けるようにしても良い。   The cooling mechanism 35 is a cooling mechanism 35 that cools a plurality of battery cells 11 arranged in parallel as the battery module 10, and the cooling mechanism 35 that is common to the plurality of battery cells 11 is provided on the bottom wall 13 b of the case body 13. You may do it.

○ 冷却機構35を、ケース本体13の底壁13bに配置した上で更に、側壁13c,13d,13e,13fのうちの一部もしくはその全てに配設しても良い。こうした形態でも、ケース本体13の底壁13bを上記実施形態と同様の形状とすれば、底壁13bに配設された冷却機構35による電極組立体20の冷却効果が十分に期待できるため、側壁13c,13d,13e,13fに配設する冷却機構35を簡易なものとすることができる。   The cooling mechanism 35 may be disposed on the bottom wall 13b of the case body 13 and further disposed on some or all of the side walls 13c, 13d, 13e, and 13f. Even in such a configuration, if the bottom wall 13b of the case body 13 has the same shape as that of the above embodiment, the cooling effect of the electrode assembly 20 by the cooling mechanism 35 disposed on the bottom wall 13b can be sufficiently expected. The cooling mechanism 35 disposed in 13c, 13d, 13e, and 13f can be simplified.

○ 冷却機構35としては、空冷式等、水冷式以外の冷却機構を採用しても良い。
○ 伝熱プレート30は、ステンレス等、アルミニウム以外の熱伝導性の高い材料からなるものであっても良い。
As the cooling mechanism 35, a cooling mechanism other than the water cooling type such as an air cooling type may be adopted.
The heat transfer plate 30 may be made of a material having high thermal conductivity other than aluminum, such as stainless steel.

○ 負極電極25とセパレータ29とを同一の大きさに形成しても良い。
○ 電極組立体20は、積層型に限らず、帯状の正極電極と帯状の負極電極を捲回して層状に積層した捲回型でもよい。ただし、捲回型の電極組立体の場合には、電解液が最短距離で電極と接触できないため、積層型の電極組立体の方が冷却機構35による冷却効果が大きい。
The negative electrode 25 and the separator 29 may be formed in the same size.
The electrode assembly 20 is not limited to the laminated type, and may be a wound type in which a belt-like positive electrode and a belt-like negative electrode are wound and laminated in layers. However, in the case of a wound-type electrode assembly, the electrolyte solution cannot contact the electrode at the shortest distance, so that the cooling effect by the cooling mechanism 35 is greater in the stacked electrode assembly.

○ 電池セル11は、リチウムイオン二次電池であったが、これに限らず、他の二次電池であってもよい。要するに、正極活物質層と負極活物質層との間をイオンが移動するとともに電荷の授受を行うものであればよい。また、蓄電装置としてキャパシタでもよい。   The battery cell 11 is a lithium ion secondary battery, but is not limited thereto, and may be another secondary battery. In short, any ion may be used as long as ions move between the positive electrode active material layer and the negative electrode active material layer and transfer charge. Further, a capacitor may be used as the power storage device.

○ 電池セル11は、車両電源装置として自動車に搭載してもよいし、産業用車両に搭載しても良い。また、定置用の蓄電装置に適用してもよい。   (Circle) the battery cell 11 may be mounted in a motor vehicle as a vehicle power supply device, and may be mounted in an industrial vehicle. Further, the present invention may be applied to a stationary power storage device.

10…電池モジュール、11…電池セル、12…ケース、13…ケース本体、13a…開口部、13b…底壁、13c,13d,13e,13f…側壁、13g…内面、13h…外面、14…蓋体、20…電極組立体、21…正極電極、25…負極電極、29…セパレータ、35…冷却機構。   DESCRIPTION OF SYMBOLS 10 ... Battery module, 11 ... Battery cell, 12 ... Case, 13 ... Case main body, 13a ... Opening part, 13b ... Bottom wall, 13c, 13d, 13e, 13f ... Side wall, 13g ... Inner surface, 13h ... Outer surface, 14 ... Cover Body, 20 ... electrode assembly, 21 ... positive electrode, 25 ... negative electrode, 29 ... separator, 35 ... cooling mechanism.

Claims (3)

電極組立体及び電解液がケースに収容されて構成された電池セルを複数備える電池モジュールであって、
前記ケースを構成するケース壁は、底壁と前記底壁に立設する側壁とを含み、
前記複数の電池セルの前記底壁を冷却する冷却機構が設けられ、
前記底壁のうち厚みの最も小さい部分の厚みは、前記側壁の厚みよりも大きいことを特徴とする電池モジュール。
A battery module comprising a plurality of battery cells configured by accommodating an electrode assembly and an electrolyte in a case,
The case wall constituting the case includes a bottom wall and a side wall standing on the bottom wall,
A cooling mechanism for cooling the bottom walls of the plurality of battery cells is provided;
The battery module according to claim 1, wherein a thickness of a portion of the bottom wall having the smallest thickness is larger than a thickness of the side wall.
前記底壁の内面は傾斜していて、
前記冷却機構による前記底壁の冷却効果が大きい部分では、前記底壁の内面と前記電極組立体との間隙が大きく、前記冷却機構による前記底壁の冷却効果が小さい部分では、前記底壁の内面と前記電極組立体との間隙が小さい請求項1に記載の電池モジュール。
The inner surface of the bottom wall is inclined,
In the portion where the cooling effect of the bottom wall by the cooling mechanism is large, the gap between the inner surface of the bottom wall and the electrode assembly is large, and in the portion where the cooling effect of the bottom wall by the cooling mechanism is small, the bottom wall The battery module according to claim 1, wherein a gap between an inner surface and the electrode assembly is small.
前記電極組立体は、正極電極と負極電極との間にセパレータを介在させて層状をなす積層型である請求項1又は請求項2に記載の電池モジュール。   3. The battery module according to claim 1, wherein the electrode assembly is a laminated type in which a separator is interposed between a positive electrode and a negative electrode to form a layer.
JP2014035578A 2014-02-26 2014-02-26 Battery module Expired - Fee Related JP6164119B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014035578A JP6164119B2 (en) 2014-02-26 2014-02-26 Battery module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014035578A JP6164119B2 (en) 2014-02-26 2014-02-26 Battery module

Publications (2)

Publication Number Publication Date
JP2015162290A true JP2015162290A (en) 2015-09-07
JP6164119B2 JP6164119B2 (en) 2017-07-19

Family

ID=54185284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014035578A Expired - Fee Related JP6164119B2 (en) 2014-02-26 2014-02-26 Battery module

Country Status (1)

Country Link
JP (1) JP6164119B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110265595A (en) * 2019-06-03 2019-09-20 佛山科学技术学院 Radiator and battery pack

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5558950A (en) * 1993-03-05 1996-09-24 Ovonic Battery Company, Inc. Optimized cell pack for large sealed nickel-metal hydride batteries
JPH09199094A (en) * 1996-01-17 1997-07-31 Matsushita Electric Ind Co Ltd Battery jar for storage battery, and storage battery
WO2005036675A1 (en) * 2003-10-10 2005-04-21 Fukuda Metal Foil & Powder Co., Ltd. Packaging can for power supply unit, packaging cover for power supply unit, and power supply unit using packaging can or packaging cover
JP2006156399A (en) * 2004-11-29 2006-06-15 Samsung Sdi Co Ltd Case for lithium secondary battery and lithium secondary battery using the same
JP2009110832A (en) * 2007-10-31 2009-05-21 Sanyo Electric Co Ltd Rectangular battery and battery pack
US20130236770A1 (en) * 2012-03-12 2013-09-12 Gs Yuasa International Ltd. Electric storage device
WO2014010438A1 (en) * 2012-07-13 2014-01-16 三洋電機株式会社 Battery system, and vehicle and power storage device equipped with battery system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5558950A (en) * 1993-03-05 1996-09-24 Ovonic Battery Company, Inc. Optimized cell pack for large sealed nickel-metal hydride batteries
JPH09199094A (en) * 1996-01-17 1997-07-31 Matsushita Electric Ind Co Ltd Battery jar for storage battery, and storage battery
WO2005036675A1 (en) * 2003-10-10 2005-04-21 Fukuda Metal Foil & Powder Co., Ltd. Packaging can for power supply unit, packaging cover for power supply unit, and power supply unit using packaging can or packaging cover
JP2006156399A (en) * 2004-11-29 2006-06-15 Samsung Sdi Co Ltd Case for lithium secondary battery and lithium secondary battery using the same
JP2009110832A (en) * 2007-10-31 2009-05-21 Sanyo Electric Co Ltd Rectangular battery and battery pack
US20130236770A1 (en) * 2012-03-12 2013-09-12 Gs Yuasa International Ltd. Electric storage device
WO2014010438A1 (en) * 2012-07-13 2014-01-16 三洋電機株式会社 Battery system, and vehicle and power storage device equipped with battery system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110265595A (en) * 2019-06-03 2019-09-20 佛山科学技术学院 Radiator and battery pack
CN110265595B (en) * 2019-06-03 2024-03-29 佛山科学技术学院 Heat abstractor and group battery

Also Published As

Publication number Publication date
JP6164119B2 (en) 2017-07-19

Similar Documents

Publication Publication Date Title
JP6780018B2 (en) Cooling array for energy storage
US9705163B2 (en) Battery module
US11056747B2 (en) Battery module
JP5677177B2 (en) Battery assembly
JP6097607B2 (en) Power storage device and power storage device unit
JP2012156124A5 (en)
JP2007305425A5 (en)
JP6608653B2 (en) Battery module
WO2015162841A1 (en) Battery block
JPWO2018025567A1 (en) Battery module
JP5991548B2 (en) Battery module with battery block
KR20150131759A (en) Battery Module Having Thermoelectric Element
WO2019131358A1 (en) Battery pack
US11342608B2 (en) Battery module
JP2012190588A (en) Secondary battery
JP2010287491A (en) Secondary battery
KR20160068446A (en) Battery module, and battery pack including the same
JP6164119B2 (en) Battery module
JP5691932B2 (en) Secondary battery
JP2010287487A (en) Secondary battery
JP6442883B2 (en) Power storage module
JP2015022843A (en) Electricity storage device module
JP3224790U (en) Storage battery and storage battery system
JP6353942B2 (en) Power storage device and power storage device unit
JP2016031851A (en) Power storage device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160610

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170314

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170523

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170605

R151 Written notification of patent or utility model registration

Ref document number: 6164119

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees