JP2015160039A - Method of producing decellularized tissue - Google Patents

Method of producing decellularized tissue Download PDF

Info

Publication number
JP2015160039A
JP2015160039A JP2014038045A JP2014038045A JP2015160039A JP 2015160039 A JP2015160039 A JP 2015160039A JP 2014038045 A JP2014038045 A JP 2014038045A JP 2014038045 A JP2014038045 A JP 2014038045A JP 2015160039 A JP2015160039 A JP 2015160039A
Authority
JP
Japan
Prior art keywords
tissue
decellularized
decellularized tissue
producing
surfactant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014038045A
Other languages
Japanese (ja)
Other versions
JP6271298B2 (en
Inventor
岸田 晶夫
Akio Kishida
晶夫 岸田
木村 剛
Takeshi Kimura
剛 木村
謙一郎 日渡
Kenichiro Hiwatari
謙一郎 日渡
晃子 田崎
Akiko Tazaki
晃子 田崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Adeka Corp
Tokyo Medical and Dental University NUC
Original Assignee
Adeka Corp
Tokyo Medical and Dental University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Adeka Corp, Tokyo Medical and Dental University NUC filed Critical Adeka Corp
Priority to JP2014038045A priority Critical patent/JP6271298B2/en
Publication of JP2015160039A publication Critical patent/JP2015160039A/en
Application granted granted Critical
Publication of JP6271298B2 publication Critical patent/JP6271298B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Materials For Medical Uses (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of producing a decellularized tissue by which a cell piece removal from a biological tissue and washing can be carried out in a relatively short period of time, and tissues are unsusceptible to damage.SOLUTION: A broken tissue is removable in a relatively short period of time without causing significant damage to the tissue by applying static pressure to a tissue of animal origin in a medium containing surfactant. The present invention is capable of producing a decellularized tissue with less damage, in particular, a decellularized tissue with less damage in a large organ, such as heart, liver, kidney, and lung, which are conventionally difficult to produce.

Description

本発明は、再生医療に好適に使用できる脱細胞組織の製造方法に関する。   The present invention relates to a method for producing a decellularized tissue that can be suitably used for regenerative medicine.

他人の生体組織由来の移植片を移植する場合、被移植者側組織による移植片の拒絶反応が問題となる。このような問題の解決方法として、人工組織の開発が期待されている。素材として種々の高分子の利用が試みられているが、これら素材と生体組織との適合性が低いため、移植片と生体組織との接合部位における脱落や感染症が発生する場合がある。そこで、生体組織との適合性を向上すべく、生体組織から細胞を除却して残存する支持組織である脱細胞化生体組織を移植片として使用する技術が開発されてきた。特別な装置を使用することなく、効率的に生体組織から細胞を除去できることから、界面活性剤による脱細胞方法(例えば、特許文献1〜3を参照)が広く行われている。しかしながら、界面活性剤による脱細胞方法では、組織に対するダメージが大きく、脱細胞化された組織の力学的な強度が大きく低下し、特に肝臓、腎臓、肺等では、移植時に臓器の損傷が起きるおそれがあった。一方、超高静水圧処理による脱細胞方法(例えば、特許文献4〜6を参照)が知られているが、処理後の細胞片の洗浄に長時間を要したり、大型の臓器の場合には洗浄が十分に行えないという問題があった。   When transplanting a graft derived from a living tissue of another person, rejection of the graft by the recipient side tissue becomes a problem. Development of artificial tissue is expected as a solution for such problems. Although various polymers have been tried to be used as materials, the compatibility between these materials and biological tissues is low, and there are cases where dropouts or infectious diseases occur at the joints between the graft and the biological tissues. Therefore, in order to improve the compatibility with the living tissue, a technique has been developed in which cells are removed from the living tissue and the decellularized living tissue that is the remaining supporting tissue is used as a graft. Since cells can be efficiently removed from a living tissue without using a special apparatus, a decellularization method using a surfactant (for example, see Patent Documents 1 to 3) is widely performed. However, the decellularization method using a surfactant causes a large damage to the tissue, and the mechanical strength of the decellularized tissue is greatly reduced. In particular, in the liver, kidney, lung, etc., organ damage may occur during transplantation. was there. On the other hand, a decellularization method using ultrahigh hydrostatic pressure treatment is known (for example, see Patent Documents 4 to 6). However, it takes a long time to wash cell pieces after treatment, or in the case of a large organ. Had a problem that it could not be cleaned sufficiently.

特開昭60−501540号公報JP-A-60-501540 特表2003−518981号公報Japanese translation of PCT publication No. 2003-518981 特表2009−505752号公報Special table 2009-505752 gazette 特開2004−094552号公報JP 2004-094552 A 国際公開第2008/111530号パンフレットInternational Publication No. 2008/111530 Pamphlet 特表2013−502275号公報Special table 2013-502275 gazette

本発明が解決しようとする課題は、生体組織からの細胞片の洗浄を比較的短時間で行うことができ、組織に対するダメージが少ない、脱細胞組織の製造方法を提供することにある。   The problem to be solved by the present invention is to provide a method for producing a decellularized tissue that can clean a cell piece from a living tissue in a relatively short time and has little damage to the tissue.

本発明者らは、鋭意検討し、動物由来組織に、界面活性剤を含有する媒体中で静水圧を印加することにより、上記課題が解決できることを見出し、本発明を完成するに至った。即ち本発明は、界面活性剤を含有する媒体中で100〜1500MPaの静水圧を印加する工程を有する脱細胞組織の製造方法である。   The present inventors have intensively studied and found that the above problems can be solved by applying a hydrostatic pressure to animal-derived tissue in a medium containing a surfactant, and have completed the present invention. That is, the present invention is a method for producing a decellularized tissue having a step of applying a hydrostatic pressure of 100 to 1500 MPa in a medium containing a surfactant.

本発明により、比較的短時間で、ダメージの少ない脱細胞組織が製造でき、特に、従来製造が困難だった肝臓、腎臓、肺等の大型臓器のダメージの少ない脱細胞組織が得られるようになる。   According to the present invention, a decellularized tissue with little damage can be produced in a relatively short time, and in particular, a decellularized tissue with little damage to large organs such as liver, kidney and lung, which has been difficult to produce conventionally, can be obtained. .

以下、本発明について詳細に説明する。   Hereinafter, the present invention will be described in detail.

〔動物由来組織〕
本発明の脱細胞組織の製造方法に使用する動物由来組織(生体組織ともいう。)は、脊椎動物由来の細胞を有する生体組織であれば、特に限定されないが、拒絶反応が少ないことから、哺乳類又は鳥類由来の生体組織が好ましく、入手が容易であることから、哺乳類の家畜、鳥類の家畜又はヒト由来の生体組織が更に好ましい。哺乳類の家畜としては、ウシ、ウマ、ラクダ、リャマ、ロバ、ヤク、ヒツジ、ブタ、ヤギ、シカ、アルパカ、イヌ、タヌキ、イタチ、キツネ、ネコ、ウサギ、ハムスター、モルモット、ラット、マウス、リス、アライグマ等が挙げられる。また、鳥類の家畜としては、インコ、オウム、ニワトリ、アヒル、七面鳥、ガチョウ、ホロホロ鳥、キジ、ダチョウ、ウズラ等が挙げられる。これらの中でも、入手の安定性から、ブタ、ウサギ、ヒトの生体組織が好ましい。
[Animal-derived tissue]
The animal-derived tissue (also referred to as a biological tissue) used in the method for producing a decellularized tissue of the present invention is not particularly limited as long as it is a biological tissue having vertebrate-derived cells. Alternatively, a biological tissue derived from birds is preferable, and a biological tissue derived from mammals, avian livestock, or humans is more preferable because it is easily available. Mammalian livestock includes cattle, horses, camels, llamas, donkeys, yaks, sheep, pigs, goats, deer, alpaca, dogs, raccoon dogs, weasels, foxes, cats, rabbits, hamsters, guinea pigs, rats, mice, squirrels, Raccoon etc. are mentioned. In addition, examples of avian livestock include parakeets, parrots, chickens, ducks, turkeys, geese, guinea fowls, pheasants, ostriches, and quails. Among these, porcine, rabbit, and human biological tissues are preferable from the viewpoint of availability.

生体組織の部位としては、細胞外にマトリックス構造を持った部位が使用でき、このような部位としては、例えば、肝臓、腎臓、尿管、膀胱、尿道、舌、扁桃、食道、胃、小腸、大腸、肛門、膵臓、心臓、血管、脾臓、肺、脳、骨、脊髄、軟骨、精巣、子宮、卵管、卵巣、胎盤、角膜、骨格筋、腱、神経、皮膚等が挙げられる。生体組織の部位として、組織再生の効果が高いことから軟骨、骨、肝臓、腎臓、心臓、肺、脳、及び脊髄が好ましい。生体組織は採取後、腐敗や機能の低下を防ぐための処理を行うことが好ましい。このような処理としては、薬剤による殺菌処理、冷凍による凍結処理等が挙げられ、組織へダメージが少ないことから凍結処理が好ましい。   As a part of a living tissue, a part having a matrix structure outside the cell can be used. Examples of such a part include a liver, kidney, ureter, bladder, urethra, tongue, tonsils, esophagus, stomach, small intestine, Examples include large intestine, anus, pancreas, heart, blood vessel, spleen, lung, brain, bone, spinal cord, cartilage, testis, uterus, fallopian tube, ovary, placenta, cornea, skeletal muscle, tendon, nerve, skin and the like. As the site of the living tissue, cartilage, bone, liver, kidney, heart, lung, brain, and spinal cord are preferable because of the high tissue regeneration effect. It is preferable that the biological tissue is subjected to a treatment for preventing spoilage and functional deterioration after collection. Examples of such treatment include sterilization treatment with a drug, freezing treatment by freezing, and the like, and freezing treatment is preferable because there is little damage to the tissue.

〔印加工程〕
本発明の製造方法では、動物由来組織に、界面活性剤を含有する媒体中で100〜1500MPaの静水圧を印加する。印加後の動物由来組織が本発明における脱細胞組織に相当する。印加する静水圧が100MPaよりも低い場合には、動物由来組織中の細胞の破壊が不十分となり、1500MPaを超える場合は印加に耐えられる圧力容器が必要であり、多大なエネルギーを要するとともに、印加に用いる媒体が水性媒体の場合には氷が生成しやすくなる。印加する静水圧は300〜1300MPaが好ましく、500〜1200MPaが更に好ましく、700〜1100MPaが最も好ましい。本発明によれば、従来よりも低い値の静水圧による印加であっても効果的に脱細胞化を行うことができる。したがって、より低い圧力で印加工程を行うという観点から、印加する静水圧は100〜800MPa、好ましくは、200〜700MPa、更に好ましくは500〜700MPaであってもよい。
[Applying process]
In the production method of the present invention, a hydrostatic pressure of 100 to 1500 MPa is applied to animal-derived tissue in a medium containing a surfactant. The animal-derived tissue after application corresponds to the decellularized tissue in the present invention. When the applied hydrostatic pressure is lower than 100 MPa, the destruction of the cells in the animal-derived tissue is insufficient, and when it exceeds 1500 MPa, a pressure vessel that can withstand the application is required, which requires a lot of energy and is applied. When the medium used in the above is an aqueous medium, ice is likely to be generated. The applied hydrostatic pressure is preferably 300 to 1300 MPa, more preferably 500 to 1200 MPa, and most preferably 700 to 1100 MPa. According to the present invention, decellularization can be effectively performed even by application with a hydrostatic pressure having a lower value than conventional ones. Therefore, from the viewpoint of performing the application step at a lower pressure, the applied hydrostatic pressure may be 100 to 800 MPa, preferably 200 to 700 MPa, and more preferably 500 to 700 MPa.

静水圧の印加には、1種以上の界面活性剤を含有する媒体を使用する。媒体としては、水、生理食塩水、プロピレングリコール又はその水溶液、グリセリン又はその水溶液、糖類水溶液等が挙げられる。緩衝液としては、酢酸緩衝液、リン酸緩衝液、クエン酸緩衝液、ホウ酸緩衝液、酒石酸緩衝液、トリス緩衝液、HEPES緩衝液、MES緩衝液等が挙げられる。糖類水溶液の糖類としては、エリトロース、キシロース、アラビノース、アロース、タロース、グルコース、マンノース、ガラクトース、エリスリトール、キシリトール、マンニトール、ソルビトール、ガラクチトール、スクロース、ラクトース、マルトース、トレハロース、デキストラン、アルギン酸、ヒアルロン酸等が挙げられる。界面活性剤は、水溶液でのイオン性からアニオン性界面活性剤、カチオン性界面活性剤、両性界面活性剤及びノニオン性界面活性剤に分類され、本発明では、アニオン性界面活性剤、カチオン性界面活性剤及び両性界面活性剤をまとめてイオン性界面活性剤という場合がある。   For applying the hydrostatic pressure, a medium containing one or more surfactants is used. Examples of the medium include water, physiological saline, propylene glycol or an aqueous solution thereof, glycerin or an aqueous solution thereof, and an aqueous saccharide solution. Examples of the buffer solution include acetate buffer solution, phosphate buffer solution, citrate buffer solution, borate buffer solution, tartaric acid buffer solution, Tris buffer solution, HEPES buffer solution, MES buffer solution and the like. Examples of the saccharide in the aqueous saccharide solution include erythrose, xylose, arabinose, allose, talose, glucose, mannose, galactose, erythritol, xylitol, mannitol, sorbitol, galactitol, sucrose, lactose, maltose, trehalose, dextran, alginic acid, hyaluronic acid, etc. Can be mentioned. Surfactants are classified into ionic to aqueous anionic surfactants, cationic surfactants, amphoteric surfactants and nonionic surfactants in the aqueous solution. In the present invention, the anionic surfactants and the cationic interfaces are classified. The active agent and the amphoteric surfactant may be collectively referred to as an ionic surfactant.

アニオン性界面活性剤としては、アルキルスルホン酸塩(ドデシルスルホン酸ナトリウム等)、脂肪酸石鹸、アルコシキカルボン酸塩、ポリオキシエチレンアルコシキカルボン酸塩、アルキルベンゼンスルホン酸塩、アルキル硫酸エステル塩、ポリオキシエチレンアルキル硫酸エステル塩、アルキルリン酸エステル塩、α−スルホ脂肪酸エステル塩、N−アシルグルタミン酸塩、アシル−N−メチルタウリン塩、N−アルキルサルコシン塩、コール酸及びその誘導体の塩等が挙げられる。   Anionic surfactants include alkyl sulfonates (such as sodium dodecyl sulfonate), fatty acid soaps, alkoxy carboxylates, polyoxyethylene alkoxy carboxylates, alkyl benzene sulfonates, alkyl sulfates, polyoxy Examples include ethylene alkyl sulfate, alkyl phosphate, α-sulfo fatty acid ester, N-acyl glutamate, acyl-N-methyl taurate, N-alkyl sarcosine, cholic acid and its derivatives. .

カチオン性界面活性剤としては、アルキルジメチルアミン、アルキルジエタノールアミン、アルキルトリメチルアンモニウム塩、ジアルキルジメチルアンモニウム塩、アルキルピリジウム塩、アルキルベンジルジメチルアンモニウム塩等のカチオン性界面活性剤等が挙げられる。   Examples of the cationic surfactant include cationic surfactants such as alkyldimethylamine, alkyldiethanolamine, alkyltrimethylammonium salt, dialkyldimethylammonium salt, alkylpyridium salt, and alkylbenzyldimethylammonium salt.

両性界面活性剤としては、アルキルジメチルアミンオキシド、アルキルカルボキシベタイン、アルキルアミドプロピルベタイン、アルキルアミドプロピルスルホベタイン、アルキルイミダゾニウムベタイン、3−[(3−コールアミドプロピル)ジメチルアンモニオ]−2−ヒドロキシ−1−プロパンスルホナート塩、3−[(3−コールアミドプロピル)ジメチルアンモニオ]−1−プロパンスルホナート塩等が挙げられる。   Amphoteric surfactants include alkyldimethylamine oxide, alkylcarboxybetaine, alkylamidopropylbetaine, alkylamidopropylsulfobetaine, alkylimidazolium betaine, 3-[(3-cholamidopropyl) dimethylammonio] -2-hydroxy. Examples include -1-propanesulfonate salt, 3-[(3-cholamidopropyl) dimethylammonio] -1-propanesulfonate salt, and the like.

ノニオン性界面活性剤としては、グリセリン脂肪酸エステル、ソルビタン脂肪酸エステル、ショ糖脂肪酸エステル、ポリエチレングリコール脂肪酸エステル、ポリオキシエチレングリセリン脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル(ポリオキシエチレンオクチルフェニルエーテル、ノニルフェノールエトキシレート(ポリオキシエチレンノニルフェニルエーテル)等)、ポリオキシエチレンポリオキシプロピレンエーテル、アルキル(ポリ)グリセリンエーテル、脂肪酸アルカノールアミド、ポリオキシエチレン脂肪酸アルカノールアミド、アルキル(ポリ)グリコシド等が挙げられる。   Nonionic surfactants include glycerin fatty acid ester, sorbitan fatty acid ester, sucrose fatty acid ester, polyethylene glycol fatty acid ester, polyoxyethylene glycerin fatty acid ester, polyoxyethylene sorbitan fatty acid ester, polyoxyethylene alkyl ether, polyoxyethylene alkyl. Phenyl ether (polyoxyethylene octylphenyl ether, nonylphenol ethoxylate (polyoxyethylene nonylphenyl ether), etc.), polyoxyethylene polyoxypropylene ether, alkyl (poly) glycerin ether, fatty acid alkanolamide, polyoxyethylene fatty acid alkanolamide, Examples thereof include alkyl (poly) glycosides.

界面活性剤としては、細胞の破壊と細胞の除去の点から、アルキルスルホン酸塩、アルキル硫酸エステル塩、ポリオキシエチレンアルキル硫酸エステル塩、α−スルホ脂肪酸エステル塩、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、アルキル(ポリ)グリコシドが好ましく、アルキルスルホン酸塩、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、アルキル(ポリ)グリコシドが更に好ましい。   Surfactants include alkyl sulfonate, alkyl sulfate ester salt, polyoxyethylene alkyl sulfate ester salt, α-sulfo fatty acid ester salt, polyoxyethylene alkyl ether, polyoxyethylene from the viewpoint of cell destruction and cell removal. Ethylene alkyl phenyl ethers and alkyl (poly) glycosides are preferred, and alkyl sulfonates, polyoxyethylene alkyl ethers, polyoxyethylene alkyl phenyl ethers, and alkyl (poly) glycosides are more preferred.

媒体中の界面活性剤の含量は、細胞の破壊と細胞の除去の点から、媒体全体に対して0.05〜5.00質量%が好ましく、0.07〜2.00質量%が更に好ましい。なお、界面活性剤は1種のみを用いてもよいし、2種以上を組み合わせて用いてもよい。媒体中の界面活性剤の含量は、公知の方法、例えば、液体クロマトグラフィー等によって特定する。   The content of the surfactant in the medium is preferably 0.05 to 5.00% by mass, more preferably 0.07 to 2.00% by mass with respect to the entire medium from the viewpoint of cell destruction and cell removal. . Note that only one surfactant may be used, or two or more surfactants may be used in combination. The content of the surfactant in the medium is specified by a known method such as liquid chromatography.

高静水圧処理の温度は、氷が生成せず、熱による組織へのダメージがない温度であれば、特に限定されないが、脱細胞処理が円滑に行われ組織への影響も少ないことから0〜45℃が好ましく、4〜37℃が更に好ましく、15〜35℃が最も好ましい。高静水圧処理の時間は、短すぎると細胞の破壊が十分行われず、長い場合にはエネルギーの浪費につながることから、5〜60分が好ましく、7〜30分が更に好ましい。   The temperature of the high hydrostatic pressure treatment is not particularly limited as long as ice is not generated and the tissue is not damaged by heat. However, the decellularization treatment is performed smoothly and the influence on the tissue is small. 45 ° C is preferable, 4-37 ° C is more preferable, and 15-35 ° C is most preferable. When the time for the high hydrostatic pressure treatment is too short, cell destruction is not sufficiently performed, and when it is long, energy is wasted, so 5 to 60 minutes is preferable, and 7 to 30 minutes is more preferable.

〔洗浄工程〕
高静水圧が印加された生体組織は、組織中の破壊された細胞を除去するために、洗浄液により洗浄してもよい。洗浄液は、高静水圧処理で使用した媒体と同様の組成でもよいし異なる組成でもよい。本発明に使用する洗浄液は、核酸分解酵素(DNase、RNase等)、有機溶媒又はキレート剤を含有することが好ましいが、含有しなくともよい。高静水圧が印加された生体組織から、核酸分解酵素は核酸成分の、有機溶媒は脂質を、除去効率を向上させることができ、キレート剤は、脱細胞組織中のカルシウムイオンやマグネシウムイオンを不活性化することにより、本発明の粒子化脱細胞組織を疾患部に適用した場合の石灰化を防ぐことができる。有機溶剤としては、脂質の除去効果が高いことから、水溶性の有機溶剤が好ましく、エタノール、イソプロパノール、アセトン、ジメチルスルホキシドが好ましい。キレート剤としては、エチレンジアミン四酢酸(EDTA)、ニトリロ三酢酸(NTA)、ジエチレントリミン五酢酸(DTPA)、ヒドロキシエチルエチレンジアミン三酢酸(HEDTA)、トリエチレンテトラミン六酢酸(TTHA)、1,3−プロパンジアミン四酢酸(PDTA)、1,3−ジアミノ−2−ヒドロキシプロパン四酢酸(DPTA−OH)、ヒドロキシエチルイミノ二酢酸(HIDA)、ジヒドロキシエチルグリシン(DHEG)、グリコールエーテルジアミン四酢酸(GEDTA)、ジカルボキシメチルグルタミン酸(CMGA)、3−ヒドロキシ−2,2’−イミノジコハク酸(HIDA)、ジカルボキシメチルアスパラギン酸(ASDA)等のイミノカルボン酸系キレート剤又はその塩;クエン酸、酒石酸、リンゴ酸、乳酸等のヒドロキシカルボン酸系キレート剤又はその塩が挙げられ、これらのキレート剤の塩としては、ナトリウム塩又はカリウム塩が挙げられる。
[Washing process]
A biological tissue to which a high hydrostatic pressure is applied may be washed with a washing solution in order to remove broken cells in the tissue. The cleaning liquid may have the same composition as the medium used in the high hydrostatic pressure treatment or a different composition. The washing liquid used in the present invention preferably contains a nucleolytic enzyme (DNase, RNase, etc.), an organic solvent or a chelating agent, but may not contain it. From biological tissues to which high hydrostatic pressure is applied, nucleolytic enzymes can improve the removal efficiency of nucleic acid components, organic solvents can remove lipids, and chelating agents can eliminate calcium ions and magnesium ions in decellularized tissues. By activating, calcification when the particulate decellularized tissue of the present invention is applied to a diseased part can be prevented. As the organic solvent, a water-soluble organic solvent is preferable because it has a high effect of removing lipids, and ethanol, isopropanol, acetone, and dimethyl sulfoxide are preferable. As chelating agents, ethylenediaminetetraacetic acid (EDTA), nitrilotriacetic acid (NTA), diethylenetriminepentaacetic acid (DTPA), hydroxyethylethylenediaminetriacetic acid (HEDTA), triethylenetetraminehexaacetic acid (TTHA), 1,3-propane Diamine tetraacetic acid (PDTA), 1,3-diamino-2-hydroxypropanetetraacetic acid (DPTA-OH), hydroxyethyliminodiacetic acid (HIDA), dihydroxyethylglycine (DHEG), glycol ether diamine tetraacetic acid (GEDTA), Iminocarboxylic acid-based chelating agents such as dicarboxymethylglutamic acid (CMGA), 3-hydroxy-2,2′-iminodisuccinic acid (HIDA), dicarboxymethylaspartic acid (ASDA) or salts thereof; citric acid, tartaric acid, apple Examples thereof include hydroxycarboxylic acid-based chelating agents such as acids and lactic acid or salts thereof. Examples of salts of these chelating agents include sodium salts and potassium salts.

高静水圧処理された組織を洗浄する場合には、洗浄液に組織を浸漬、又は組織に洗浄液を灌流する。洗浄液に組織を浸漬する場合には、必要に応じて、洗浄液を振盪又は撹拌してもよい。洗浄時間は、生体組織の部位や大きさ、媒体中の界面活性剤の種類や含量に応じて選択すればよく、特に限定されないが、例えば12〜144時間、好ましくは12〜72時間、更に好ましくは12〜48時間でよい。本発明によれば、従来の技術よりも短時間で脱細胞化を行い得る。   In the case of washing the tissue subjected to the high hydrostatic pressure treatment, the tissue is immersed in the washing solution or perfused with the washing solution. When the tissue is immersed in the cleaning liquid, the cleaning liquid may be shaken or stirred as necessary. The washing time may be selected according to the site and size of the biological tissue and the type and content of the surfactant in the medium, and is not particularly limited. For example, the washing time is 12 to 144 hours, preferably 12 to 72 hours, and more preferably. May be 12 to 48 hours. According to the present invention, decellularization can be performed in a shorter time than conventional techniques.

〔本発明における脱細胞組織〕
界面活性剤を含有する処理液で脱細胞した脱細胞組織では、通常、物理的強度が大きく低下するのに対し、本発明の脱細胞組織の製造方法では、高静水圧処理に、界面活性剤を含有する媒体を使用しているにも関わらず、物理的強度の低下が小さい。この原因についてはわかっていないが、高静水圧の印加によりタンパク質が変質し、界面活性剤によるダメージを受けにくくなったためと考えられる。
[Decellularized tissue in the present invention]
In a decellularized tissue that has been decellularized with a treatment solution containing a surfactant, the physical strength is usually greatly reduced. Despite the use of a medium containing, the decrease in physical strength is small. Although the cause of this is not known, it is considered that the protein has been altered by the application of high hydrostatic pressure and is less likely to be damaged by the surfactant.

本発明の製造方法により、組織に対するダメージが少ない脱細胞組織が、比較的短時間で製造できるようになり、特に高静水圧による方法では困難だった大型の臓器、例えば、心臓、肝臓、腎臓、膵臓等の脱細胞が容易に行える。   By the production method of the present invention, decellularized tissue with little damage to the tissue can be produced in a relatively short time, and particularly large organs that have been difficult to obtain by the method using high hydrostatic pressure, such as the heart, liver, kidney, Decellularization of pancreas and the like can be easily performed.

本発明の製造方法により製造された脱細胞組織は、生体への移植、疾患部位や損傷部位の修復に好適に適用できる。本発明の脱細胞組織を生体に適用する場合には、単独で適用してもよいし、疾患部位の再生・治癒効果のある他の成分とともに適用してもよい。このような他の成分としては、成長因子、プロテオグリカン又はグリコサミノグリカン、細胞、β−1,3−グルカン、メバロン酸等が挙げられる。また、本発明の脱細胞化組織は、そのまま生体に適用してもよいし、細胞を播種し培養し定着させてから適用してもよい。   The decellularized tissue produced by the production method of the present invention can be suitably applied to transplantation into a living body and repair of a diseased site or damaged site. When the decellularized tissue of the present invention is applied to a living body, it may be applied alone, or may be applied together with other components having a regeneration / healing effect on a disease site. Examples of such other components include growth factors, proteoglycans or glycosaminoglycans, cells, β-1,3-glucan, mevalonic acid and the like. In addition, the decellularized tissue of the present invention may be applied to a living body as it is, or may be applied after cells are seeded, cultured and fixed.

成長因子としては、インシュリン類似成長因子(IGF)、塩基性繊維芽細胞成長因子(bFGF)、酸性繊維芽細胞成長因子(aFGF)、形質転換成長因子−α(TGF−α)、形質転換成長因子(TGF−β)、骨形成タンパク質(BMP)、血小板由来成長因子(PDGF)、角質細胞成長因子(KGF)、表皮細胞成長因子(EGF)、血管内皮細胞成長因子(VEGF)、造血促進因子(EPO)、顆粒大食細胞成長因子(GM−CSF)、顆粒細胞成長因子(G−CSF)、神経細胞成長因子(NGF)、ヘパリン結合(EGF)等が挙げられる。プロテオグリカン又はグリコサミノグリカンとしては、コンドロイチン硫酸、ヘパラン硫酸、ケラタン硫酸、デルマタン硫酸、ヒアルロン酸、ヘパリン等が挙げられる。   As growth factors, insulin-like growth factor (IGF), basic fibroblast growth factor (bFGF), acidic fibroblast growth factor (aFGF), transforming growth factor-α (TGF-α), transforming growth factor (TGF-β), bone morphogenetic protein (BMP), platelet-derived growth factor (PDGF), keratinocyte growth factor (KGF), epidermal growth factor (EGF), vascular endothelial growth factor (VEGF), hematopoietic promoter ( EPO), granule macrophage growth factor (GM-CSF), granule cell growth factor (G-CSF), nerve cell growth factor (NGF), heparin binding (EGF) and the like. Examples of proteoglycan or glycosaminoglycan include chondroitin sulfate, heparan sulfate, keratan sulfate, dermatan sulfate, hyaluronic acid, heparin and the like.

本発明の脱細胞組織は、生体への適用以外にも、細胞の培養、例えば、幹細胞(ES細胞、iPS細胞等)の培養の培地の基材に適用することができる。   The decellularized tissue of the present invention can be applied to a substrate of a culture medium for cell culture, for example, stem cell (ES cell, iPS cell, etc.), in addition to application to a living body.

以下、実施例により本発明を更に説明するが、本発明はこれらの実施例によって限定されるものではない。なお、特に限定のない限り、実施例中の「%」や「ppm」は質量基準によるものである。   EXAMPLES Hereinafter, although an Example demonstrates this invention further, this invention is not limited by these Examples. Unless otherwise specified, “%” and “ppm” in the examples are based on mass.

〔サンプルの調製〕
ラットから腎臓を摘出し、腎臓につながる動脈と静脈にカニューレを挿入し瞬間接着剤で固定した。この腎臓を生理食塩水に浸漬し、動脈側から生理食塩水を注入し12時間灌流させたものをサンプルとして用いた。
[Sample preparation]
The kidney was removed from the rat, and the artery and vein connected to the kidney were cannulated and fixed with an instantaneous adhesive. A sample obtained by immersing the kidney in physiological saline, injecting physiological saline from the artery side, and perfusing for 12 hours was used as a sample.

〔媒体・洗浄液〕
高静水圧処理工程及び洗浄工程には媒体又は洗浄液として以下の溶液を使用した。
PBS:リン酸緩衝生理食塩水
0.10%SDS:ドデシルスルホン酸ナトリウムを0.1%含有するリン酸緩衝生理
食塩水
0.50%SDS:ドデシルスルホン酸ナトリウムを0.5%含有するリン酸緩衝生理
食塩水
0.50%NPE:ノニルフェノールエトキシレート(EO10)を0.5%含有する
リン酸緩衝生理食塩水
20ppmDN:DNaseを20pppm含有するリン酸緩衝生理食塩水
[Medium / Cleaning liquid]
The following solutions were used as media or cleaning solutions in the high hydrostatic pressure treatment step and the cleaning step.
PBS: phosphate buffered saline 0.10% SDS: phosphate buffered physiology containing 0.1% sodium dodecylsulfonate
Saline 0.50% SDS: phosphate buffered physiology containing 0.5% sodium dodecyl sulfonate
Saline 0.50% NPE: 0.5% nonylphenol ethoxylate (EO10)
Phosphate buffered saline 20 ppm DN: phosphate buffered saline containing 20 pppm DNase

〔印加工程〕
ポリエチレン製チャック付き袋に、サンプルと、高静水圧処理の媒体を入れ、研究開発用高圧処理装置(神戸製鋼製、商品名:Dr.CHEF)を用いて、500MPa又は1000MPaの静水圧を15分間印加した。
[Applying process]
A sample and a medium for high hydrostatic pressure treatment are put into a bag with polyethylene chuck, and a hydrostatic pressure of 500 MPa or 1000 MPa is applied for 15 minutes using a high-pressure treatment apparatus for research and development (product name: Dr. CHEF). Applied.

〔洗浄方法〕
サンプルを洗浄液に浸漬し、動脈側から洗浄液を注入し24〜48時間灌流させ、脱細胞処理したサンプルを得た。なお、表1中の( )内の数字は灌流を行った時間を表わし、矢印「→」は洗浄を行った順番を表わす。「→」の前に記載された工程が、先に行った工程である。
[Cleaning method]
The sample was immersed in a washing solution, and the washing solution was injected from the artery side and perfused for 24 to 48 hours to obtain a decellularized sample. The numbers in parentheses in Table 1 represent the time of perfusion, and the arrow “→” represents the order of washing. The process described before “→” is the process performed previously.

Figure 2015160039
Figure 2015160039

<脱細胞性の評価>
脱細胞処理したサンプルを目視し、以下の基準で脱細胞性を評価した。結果を表2に示す。
○:赤みが見られず、透明〜きれいな白色であり脱細胞性が良好である
△:やや赤みが見られ、脱細胞性がやや不良である
×:明らかに赤みが残り、脱細胞性が不良である
<Evaluation of decellularity>
The decellularized sample was visually observed, and decellularity was evaluated according to the following criteria. The results are shown in Table 2.
○: No redness is seen, clear to clean white and decellularization is good Δ: Some redness is seen, and the decellularity is slightly poor ×: Clear redness remains, and the decellularity is poor Is

<形状保持性評価>
脱細胞処理したサンプルを腰高シャーレに入れてサンプルの高さを測定し、この腰高シャーレを25℃恒温槽に24時間保存した後、サンプルの高さを再度測定した。高さの減少率から、下記の基準にて形状保持性を判断した。結果を表2に示す。なお、形状保持性が高いほど脱細胞組織のダメージが少ないことを示す。
○:高さの減少率が0〜20%であり形状保持性が高い
△:高さの減少率が20〜50%であり形状保持性がやや低い
×:高さの減少率が50%以上であり形状保持性が低い
<Evaluation of shape retention>
The decellularized sample was placed in a waist-high petri dish and the height of the sample was measured. The waist-high petri dish was stored in a thermostatic bath at 25 ° C. for 24 hours, and then the sample height was measured again. From the height reduction rate, shape retention was judged according to the following criteria. The results are shown in Table 2. In addition, it shows that there is so little damage of a decellularized tissue that shape retainability is high.
○: Height reduction rate is 0-20% and shape retention is high Δ: Height reduction rate is 20-50% and shape retention is slightly low ×: Height reduction rate is 50% or more And shape retention is low

Figure 2015160039
Figure 2015160039

表2の結果から明らかなように、本発明の製造方法で得られた脱細胞組織は、比較的短時間で脱細胞化されており、組織へのダメージも少ないことがわかる。   As is clear from the results in Table 2, it can be seen that the decellularized tissue obtained by the production method of the present invention has been decellularized in a relatively short time and has little damage to the tissue.

Claims (5)

動物由来組織に、界面活性剤を含有する媒体中で100〜1500MPaの静水圧を印加する印加工程を有する脱細胞組織の製造方法。   A method for producing a decellularized tissue, comprising an application step of applying a hydrostatic pressure of 100 to 1500 MPa in a medium containing a surfactant to an animal-derived tissue. 前記媒体中の前記界面活性剤の含量が、前記媒体全体に対して0.05〜5.00質量%である請求項1記載の脱細胞組織の製造方法。   The method for producing a decellularized tissue according to claim 1, wherein the content of the surfactant in the medium is 0.05 to 5.00% by mass with respect to the whole medium. 界面活性剤が、アルキルスルホン酸塩、アルキル硫酸エステル塩、ポリオキシエチレンアルキル硫酸エステル塩、α−スルホ脂肪酸エステル塩、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル及びアルキル(ポリ)グリコシドから選択される1種以上の界面活性剤である請求項1又は2記載の脱細胞組織の製造方法。   The surfactant is selected from alkyl sulfonate, alkyl sulfate ester salt, polyoxyethylene alkyl sulfate ester salt, α-sulfo fatty acid ester salt, polyoxyethylene alkyl ether, polyoxyethylene alkyl phenyl ether and alkyl (poly) glycoside The method for producing a decellularized tissue according to claim 1 or 2, wherein the one or more surfactants are used. 前記印加工程後に、前記動物由来組織を12〜144時間洗浄する工程を有する請求項1〜3のいずれか1項に記載の脱細胞組織の製造方法。   The method for producing a decellularized tissue according to any one of claims 1 to 3, further comprising a step of washing the animal-derived tissue for 12 to 144 hours after the applying step. 請求項1〜4のいずれか1項に記載の脱細胞組織の製造方法により得られる脱細胞組織。   A decellularized tissue obtained by the method for producing a decellularized tissue according to any one of claims 1 to 4.
JP2014038045A 2014-02-28 2014-02-28 Method for producing decellularized tissue Active JP6271298B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014038045A JP6271298B2 (en) 2014-02-28 2014-02-28 Method for producing decellularized tissue

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014038045A JP6271298B2 (en) 2014-02-28 2014-02-28 Method for producing decellularized tissue

Publications (2)

Publication Number Publication Date
JP2015160039A true JP2015160039A (en) 2015-09-07
JP6271298B2 JP6271298B2 (en) 2018-01-31

Family

ID=54183549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014038045A Active JP6271298B2 (en) 2014-02-28 2014-02-28 Method for producing decellularized tissue

Country Status (1)

Country Link
JP (1) JP6271298B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016136633A1 (en) * 2015-02-27 2016-09-01 株式会社Adeka Decellularized tissue
JP2017046626A (en) * 2015-09-01 2017-03-09 京都府公立大学法人 Decellularized treatment solution and method for producing decellularized tissue
JP2020092651A (en) * 2018-12-12 2020-06-18 国立大学法人 長崎大学 Surfactant for decellularization
WO2021145425A1 (en) * 2020-01-17 2021-07-22 学校法人慶應義塾 Kidney regeneration accelerator and production method for same
WO2022102739A1 (en) * 2020-11-12 2022-05-19 株式会社Adeka Decellularized tissue composition

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004097552A (en) * 2002-09-10 2004-04-02 National Cardiovascular Center Method for treating biological tissue for transplantation by applying super-high hydrostatic pressure
WO2005063316A1 (en) * 2003-12-26 2005-07-14 Cardio Incorporated Transplantable biomaterial and method of preparing the same
JP2008206477A (en) * 2007-02-27 2008-09-11 National Cardiovascular Center Method for cell inoculation using needleless syringe
JP2009505752A (en) * 2005-08-26 2009-02-12 リージェンツ オブ ザ ユニバーシティ オブ ミネソタ Decellularization and recellularization of organs and tissues
JP2013502275A (en) * 2009-08-18 2013-01-24 ライフセル コーポレーション How to process the organization
US20130337560A1 (en) * 2012-06-13 2013-12-19 Miromatrix Medical Inc. Methods of Decellularizing Bone

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004097552A (en) * 2002-09-10 2004-04-02 National Cardiovascular Center Method for treating biological tissue for transplantation by applying super-high hydrostatic pressure
WO2005063316A1 (en) * 2003-12-26 2005-07-14 Cardio Incorporated Transplantable biomaterial and method of preparing the same
JP2009505752A (en) * 2005-08-26 2009-02-12 リージェンツ オブ ザ ユニバーシティ オブ ミネソタ Decellularization and recellularization of organs and tissues
JP2008206477A (en) * 2007-02-27 2008-09-11 National Cardiovascular Center Method for cell inoculation using needleless syringe
JP2013502275A (en) * 2009-08-18 2013-01-24 ライフセル コーポレーション How to process the organization
US20130337560A1 (en) * 2012-06-13 2013-12-19 Miromatrix Medical Inc. Methods of Decellularizing Bone

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016136633A1 (en) * 2015-02-27 2016-09-01 株式会社Adeka Decellularized tissue
JP2017046626A (en) * 2015-09-01 2017-03-09 京都府公立大学法人 Decellularized treatment solution and method for producing decellularized tissue
JP2020092651A (en) * 2018-12-12 2020-06-18 国立大学法人 長崎大学 Surfactant for decellularization
WO2021145425A1 (en) * 2020-01-17 2021-07-22 学校法人慶應義塾 Kidney regeneration accelerator and production method for same
WO2022102739A1 (en) * 2020-11-12 2022-05-19 株式会社Adeka Decellularized tissue composition

Also Published As

Publication number Publication date
JP6271298B2 (en) 2018-01-31

Similar Documents

Publication Publication Date Title
JP6271299B2 (en) Method for producing decellularized tissue
KR102501235B1 (en) decellularized tissue
US20220073881A1 (en) Compositions and methods for implantation of processed adipose tissue and processed adipose tissue products
Kajbafzadeh et al. Determining the optimal decellularization and sterilization protocol for preparing a tissue scaffold of a human-sized liver tissue
JP6271298B2 (en) Method for producing decellularized tissue
Hrebikova et al. Chemical decellularization: a promising approach for preparation of extracellular matrix
Poornejad et al. The impact of decellularization agents on renal tissue extracellular matrix
Destefani et al. Advances in the knowledge about kidney decellularization and repopulation
JP6623333B2 (en) Method for producing particulate decellularized tissue
TWI715560B (en) Anti-adhesive material and substitute biomembrane employing decellularized tissue
KR20180095913A (en) Decellitized placental membranes, their preparation methods and uses
Park et al. Preparation of immunogen-reduced and biocompatible extracellular matrices from porcine liver
Ansari et al. Development and characterization of a porcine liver scaffold
CN107397972A (en) A kind of preparation method of animal skin acellular matrix dressing and the dressing of gained
KR102181811B1 (en) Method for Decellularization of Tissue
Jiwangga et al. Current strategies for tracheal decellularization: a systematic review
JP2020092651A (en) Surfactant for decellularization
Dnyaneshwarrao DEVELOPMENT, OPTIMIZATION AND BIOLOGICAL EVALUATION OF AMNIOTIC MEMBRANE FOR REGENERATIVE THERAPY
Oganesyan et al. Engineering Vascularized Composite Allografts Using Natural Scaffolds: A Systematic Review

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170801

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20170920

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171227

R150 Certificate of patent or registration of utility model

Ref document number: 6271298

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250