JP2015158459A - Water pressure control unit - Google Patents

Water pressure control unit Download PDF

Info

Publication number
JP2015158459A
JP2015158459A JP2014034413A JP2014034413A JP2015158459A JP 2015158459 A JP2015158459 A JP 2015158459A JP 2014034413 A JP2014034413 A JP 2014034413A JP 2014034413 A JP2014034413 A JP 2014034413A JP 2015158459 A JP2015158459 A JP 2015158459A
Authority
JP
Japan
Prior art keywords
valve
control unit
scram
instrumentation air
water pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014034413A
Other languages
Japanese (ja)
Inventor
司 金井
Tsukasa Kanai
司 金井
直人 三澤
Naoto Misawa
直人 三澤
高橋 健
Takeshi Takahashi
高橋  健
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi GE Nuclear Energy Ltd
Original Assignee
Hitachi GE Nuclear Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi GE Nuclear Energy Ltd filed Critical Hitachi GE Nuclear Energy Ltd
Priority to JP2014034413A priority Critical patent/JP2015158459A/en
Publication of JP2015158459A publication Critical patent/JP2015158459A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a water pressure control unit capable of eliminating potentials of disturbing a reactor emergency shutdown and ensuring high reliability by taking measures for preventing the contamination of foreign matters into a scram pilot valve.SOLUTION: A water pressure control unit 1 comprises: an instrumentation air system partition valve 5 isolating instrumentation air from instrumentation air system equipment 11 provided downstream of an instrumentation air filter 10 in an instrumentation air supply system 30; a scram pilot valve 2 controlling a flow of instrumentation air; and a scram valve 3 opened in response to control over the flow of the instrumentation air by the scram pilot valve 2 and enabling high pressure water to be supplied to a control rod drive mechanism 8 and control rods 9, and the water pressure control unit 1 further comprises an upstream equipment foreign matter filter 12 provided between the instrumentation air system equipment 11 and the scram pilot valve 2, and removing foreign matters contaminated into downstream of the instrumentation air system equipment 11.

Description

本発明は、沸騰水型原子力発電所の構成機器である水圧制御ユニットに係わり、特に水圧制御ユニットを構成するスクラムパイロット弁に対し異物除去対策を講じることにより水圧制御ユニットに備わる機能の信頼性を向上させた水圧制御ユニットに関する。   The present invention relates to a water pressure control unit that is a component of a boiling water nuclear power plant, and in particular, by taking measures for removing foreign matter from a scram pilot valve constituting the water pressure control unit, the reliability of the function provided in the water pressure control unit is improved. It relates to an improved water pressure control unit.

沸騰水型原子炉の出力制御は、冷却材の制御による他に、制御棒の挿入または引抜きにより行われている。また、原子炉の緊急停止時には、水圧による駆動源となる水圧制御ユニットを制御し、制御棒駆動機構及び制御棒に高圧水を供給することにより、制御棒駆動機構上部に備え付けられている制御棒を燃料集合体間に緊急挿入し、原子炉を停止させる。   In addition to controlling the coolant, the power control of the boiling water reactor is performed by inserting or pulling out control rods. In addition, when an emergency stop of the nuclear reactor occurs, the control rod provided at the upper part of the control rod drive mechanism is controlled by controlling a water pressure control unit that is a drive source by water pressure and supplying high pressure water to the control rod drive mechanism and the control rod. Is urgently inserted between the fuel assemblies and the reactor is shut down.

水圧制御ユニットは、スクラムパイロット弁内の電磁コイルを励磁状態から、無励磁状態にすることで、スクラムパイロット弁の上流にある計装空気供給配管から供給される計装空気を遮断し、かつ下流にある空気作動式のスクラム弁に蓄えられている計装空気を排除することでスクラム弁を作動させ、制御棒を緊急挿入させる。電磁コイルは、通常時において励磁状態が維持されている。   The water pressure control unit shuts off the instrument air supplied from the instrument air supply piping upstream of the scram pilot valve by switching the electromagnetic coil in the scrum pilot valve from the excited state to the non-excited state, and downstream. The scram valve is actuated by removing the instrument air stored in the air-operated scram valve, and the control rod is inserted urgently. The electromagnetic coil is maintained in an excited state during normal times.

このような水圧制御ユニットの従来技術としては、特許文献1がある。特許文献1は、スクラムパイロット弁の電源表示装置、あるいは制御電源に両端連絡ケーブルを設けて、電源制御回路における接続不良等に起因する複数の制御棒の同時挿入を防止するスクラムパイロット弁の制御電源装置を開示している。   As a prior art of such a water pressure control unit, there is Patent Literature 1. Patent Document 1 discloses a scram pilot valve control power source that prevents a simultaneous insertion of a plurality of control rods due to a connection failure or the like in a power control circuit by providing a scram pilot valve power display device or a control power source with a both-end connection cable. An apparatus is disclosed.

特開平6−82589号公報JP-A-6-82589

スクラムパイロット弁はその構造上、弁可動部のギャップ以上の大きさを有する異物(以下、障害異物という)が弾性変形し、弁体に混入することにより弁体が動作不良を起こす恐れがある。弁体に動作不良が生じると、スクラムパイロット弁の電磁コイルを励磁状態から無励磁状態にした際のスクラムパイロット弁の閉動作が遅れるため、スクラム性能に悪影響を及ぼす恐れがある。   Due to the structure of the scram pilot valve, foreign matter having a size larger than the gap of the valve movable part (hereinafter referred to as obstacle foreign matter) may be elastically deformed and mixed into the valve body, causing the valve body to malfunction. If the valve element malfunctions, the scram pilot valve closing operation is delayed when the electromagnetic coil of the scram pilot valve is switched from the excited state to the non-excited state, which may adversely affect the scrum performance.

そのため、計装空気供給配管の上流にフィルタを設け、フィルタより下流にある計装空気系統機器、スクラムパイロット弁への異物混入防止策が講じられている。   For this reason, a filter is provided upstream of the instrument air supply pipe, and measures are taken to prevent contamination of instrument air system equipment and scram pilot valves downstream from the filter.

しかし、計装空気系統機器の分解点検を実施した際に混入する障害異物に対する除去対策はなされていないため、分解点検時に混入したと推測される障害異物により、スクラムパイロット弁の可動部が動作不良を起こす恐れがある。   However, because there are no measures to remove the obstacle foreign matter that is mixed when the instrumentation air system equipment is overhauled, the moving part of the scram pilot valve malfunctions due to the obstacle foreign matter that is presumed to be mixed during the overhaul. There is a risk of causing.

特許文献1には認識されていない上記の課題を解決することによって、更なる信頼性の高い水圧制御ユニットに提供することが望まれている。   It is desired to provide a more reliable water pressure control unit by solving the above-mentioned problems that are not recognized in Patent Document 1.

本発明の目的は、スクラムパイロット弁における前記の課題を考慮し、スクラムパイロット弁への異物混入防止対策を講じることにより、原子炉の緊急停止を阻害するポテンシャルを排除し、信頼性の高い水圧制御ユニットを提供することにある。   The object of the present invention is to consider the above-mentioned problems in the scram pilot valve, and to take measures to prevent foreign matter from entering the scram pilot valve, thereby eliminating the potential to impede the emergency shutdown of the reactor and highly reliable water pressure control. To provide a unit.

上記課題を解決するために、例えば特許請求の範囲に記載の構成を採用する。
本発明は、上記課題を解決する手段を複数含んでいるが、その一例を挙げるならば計装空気の流れを制御するスクラムパイロット弁と、前記スクラムパイロット弁による前記計装空気の流れの制御によって弁開し、高圧水を制御棒駆動機構及び制御棒に供給することを可能にするスクラム弁とを有する水圧制御ユニットと、前記水圧制御ユニットに計装空気を供給する計装空気貯槽と、計装空気フィルタ及び計装空気系統機器から構成される計装空気供給系とを有し、前記計装空気処理機器と前記スクラムパイロット弁との間に前記計装空気系統機器の下流に混入した異物を除去する上流機器異物フィルタを設けた、
ことを特徴とする。
In order to solve the above problems, for example, the configuration described in the claims is adopted.
The present invention includes a plurality of means for solving the above-mentioned problems. For example, a scram pilot valve for controlling the flow of instrument air, and the control of the flow of instrument air by the scram pilot valve are exemplified. A water pressure control unit having a scram valve that opens the valve and allows high-pressure water to be supplied to the control rod drive mechanism and the control rod; an instrument air storage tank that supplies instrument air to the water pressure control unit; An instrument air supply system comprising an instrument air filter and instrument air system equipment, and foreign matter mixed downstream of the instrument air system equipment between the instrument air processing equipment and the scram pilot valve Provided with an upstream equipment foreign matter filter to remove
It is characterized by that.

本発明によれば、スクラムパイロット弁への異物混入防止対策を講じることにより、原子炉の緊急停止を阻害するポテンシャルを排除し、信頼性の高い水圧制御ユニットを提供できる。   According to the present invention, it is possible to provide a highly reliable water pressure control unit by eliminating the potential for impeding the emergency shutdown of a nuclear reactor by taking measures to prevent foreign matter from entering the scram pilot valve.

本発明の計装空気供給系及びその水圧制御ユニットの第1の実施例の系統構成を示す図である。It is a figure which shows the system | strain structure of the 1st Example of the instrumentation air supply system of this invention, and its water pressure control unit. 本発明の第1の実施例である水圧制御ユニットの構造図である。1 is a structural diagram of a water pressure control unit according to a first embodiment of the present invention. スクラムパイロット弁の内部構造を示す構造図である。It is a structural diagram which shows the internal structure of a scram pilot valve. 本発明の計装空気供給系及びその水圧制御ユニットの第2の実施例の系統構成を示す系統図である。It is a systematic diagram which shows the system | strain structure of the 2nd Example of the instrumentation air supply system of this invention, and its water pressure control unit.

以下図面を用いて本発明の実施の形態を説明する。   Embodiments of the present invention will be described below with reference to the drawings.

(実施例1)
図1は、本発明の計装空気供給系及びその水圧制御ユニットの第1の実施例の系統構成を示す図である。図2は、本発明の第1の実施例である水圧制御ユニット1の構造図である。
(Example 1)
FIG. 1 is a diagram showing a system configuration of a first embodiment of an instrumentation air supply system and its water pressure control unit according to the present invention. FIG. 2 is a structural diagram of the water pressure control unit 1 according to the first embodiment of the present invention.

計装空気供給系30は、計装空気貯槽21と、計装空気の異物を除去する計装空気フィルタ10と、計装空気フィルタ10の下流側に例えば弁や、圧力計、圧力スイッチ等の計装空気系統機器11とを有する。   The instrument air supply system 30 includes an instrument air storage tank 21, an instrument air filter 10 that removes foreign matter from the instrument air, and a valve, a pressure gauge, a pressure switch, and the like downstream of the instrument air filter 10. Instrument air system equipment 11.

水圧制御ユニット1は、計装空気を仕切る計装空気系仕切弁5と、緊急挿入時に弁開することで水圧制御ユニット内の高圧水を制御棒駆動機構8及び制御棒9に供給することを可能にするスクラム弁3と、計装空気の流れを制御しスクラム弁を弁開させるスクラムパイロット弁2と、水圧制御ユニット1と制御棒駆動機構8及び制御棒9を仕切る仕切弁4等の各種弁を有する。水圧制御ユニットを外部から仕切る計装空気系仕切弁5と仕切弁4は、水圧制御ユニット1の作動時は、共に弁開となっている。
また、水圧制御ユニット1は、アキュムレータ6と、窒素容器7とを有する。原子炉の緊急停止時には、アキュムレータ6の下流に備え付けられている空気作動式のスクラム弁3を弁開することで、アキュムレータ6に蓄えられている高圧水を制御棒駆動機構8及び制御棒9に供給する。
The water pressure control unit 1 supplies the high pressure water in the water pressure control unit 8 to the control rod drive mechanism 8 and the control rod 9 by opening the instrument air block valve 5 for partitioning the instrument air and opening the valve at the time of emergency insertion. Various scram valves 3 that enable, a scram pilot valve 2 that controls the flow of instrument air and opens the scram valve, a hydraulic control unit 1, a control rod drive mechanism 8, and a partition valve 4 that partitions the control rod 9. Has a valve. The instrumentation air system gate valve 5 and the gate valve 4 that partition the water pressure control unit from the outside are both opened when the water pressure control unit 1 is operated.
The water pressure control unit 1 includes an accumulator 6 and a nitrogen container 7. At the time of emergency stop of the nuclear reactor, the high pressure water stored in the accumulator 6 is supplied to the control rod drive mechanism 8 and the control rod 9 by opening the air-operated scram valve 3 provided downstream of the accumulator 6. Supply.

さらに、水圧制御ユニット1は、実施例1の特徴である計装空気系統機器や計装空気系仕切弁5などの上流機器から混入する障害異物を少なくとも除去する異物除去部25を有する。異物除去部25は、障害異物を少なくとも除去する上流機器異物フィルタ12と、上流機器異物フィルタの前後に設けられ差圧を検出する2個の圧力センサ13とを有する。異物除去部25は、図2に示す位置に設けられる。なお、図2において計装空気系仕切弁5は、仕切弁4の紙面裏側に設けられている。   Furthermore, the water pressure control unit 1 includes a foreign matter removing unit 25 that removes at least obstacle foreign matter mixed from upstream equipment such as instrumentation air system equipment and instrumentation air system gate valve 5 that is a feature of the first embodiment. The foreign matter removing unit 25 includes an upstream device foreign matter filter 12 that removes at least the obstacle foreign matter, and two pressure sensors 13 that are provided before and after the upstream device foreign matter filter and detect a differential pressure. The foreign substance removing unit 25 is provided at the position shown in FIG. In FIG. 2, the instrumentation air system gate valve 5 is provided on the back side of the paper surface of the gate valve 4.

このような構成によって、原子炉の緊急停止時に、スクラムパイロット弁2で計装空気の流れを制御することによりスクラム弁3を弁開し、高圧水を制御棒駆動機構8及び制御棒9に供給することで、制御棒9を炉心に緊急挿入する。
以下、水圧制御ユニット1を中心として各機器の構造動作を説明する。
With this configuration, the scram pilot valve 2 controls the flow of instrumentation air to open the scram valve 3 and supply high-pressure water to the control rod drive mechanism 8 and the control rod 9 at the time of emergency stop of the reactor. By doing so, the control rod 9 is urgently inserted into the core.
Hereinafter, the structural operation of each device will be described focusing on the water pressure control unit 1.

図3はスクラムパイロット弁2の内部構造を示し、スクラム弁3が弁閉状態になるスクラムパイロット弁の状態を示す。スクラムパイロット弁2の外部との接続関係を図1の引出図Aに示す。スクラムパイロット弁2には1台当たり2個の電磁コイル14が備え付けられており、通常運転時にはこれらの電磁コイル14が励磁状態となっている。電磁コイル14が励磁状態のときは、弁体A15が弁開、弁体B16が弁閉となる。   FIG. 3 shows the internal structure of the scram pilot valve 2 and shows the state of the scrum pilot valve in which the scram valve 3 is closed. A connection relationship with the outside of the scram pilot valve 2 is shown in a drawing A of FIG. The scram pilot valve 2 is provided with two electromagnetic coils 14 per unit, and these electromagnetic coils 14 are in an excited state during normal operation. When the electromagnetic coil 14 is in an excited state, the valve body A15 is opened and the valve body B16 is closed.

このとき、計装空気供給口18からスクラムパイロット弁2に流入した計装空気は、実線の矢印Fで示した流れとなり、スクラム弁3に供給される。即ち、計装空気は、弁体A15の開部を通り、柔軟部17mで支持される弁体17Cを計装空気供給口18のシート面18sに押付け弁閉とし、柔軟部17mに設けられた柔軟部開口部17kからスクラム弁空気供給口22を経由してスクラム弁3に供給される。この結果、スクラム弁3は、計装空気による圧力があるときは弁閉となるので、弁閉状態となる。なお、逆に、計装空気が供給されていないときは弁開となる。   At this time, the instrument air that has flowed into the scram pilot valve 2 from the instrument air supply port 18 becomes a flow indicated by a solid arrow F and is supplied to the scram valve 3. That is, the instrument air passes through the opening of the valve element A15, and the valve element 17C supported by the flexible part 17m is pressed against the seat surface 18s of the instrument air supply port 18 to close the valve, and is provided in the flexible part 17m. The scram valve 3 is supplied from the flexible portion opening 17k via the scram valve air supply port 22. As a result, the scram valve 3 is closed when pressure due to instrument air is present, and thus the valve is closed. On the contrary, when instrument air is not supplied, the valve is opened.

一方、緊急時においては、2個の電磁コイル14が無励磁状態となり、弁体A15が弁体B16から突起している突起部16tを押付け、弁体B16をパイロット排気口19のシール面19sから離間させ弁開となる。弁体A15は、さらに突起部16tを押付け、そのシール面18sに接触し、弁閉となる。この結果、計装空気供給口18から流入した計装空気は、弁体A15で遮断される。弁体B16が弁開となると、スクラムパイロット弁2内の計装空気がパイロット排気口19から排出される。そして、スクラムパイロット弁2内の圧力が低下し、柔軟部17mが、矢印Gに示すように、スクラム弁3に蓄えられている計装空気によって押し上げられ、弁体C17は主排気口20のシール面20sから離間し弁開となる。その結果、スクラム弁3に蓄えられている計装空気がパイロット排気口19および主排気口20を経由して排出される。計装空気が排出されることでスクラム弁3は弁開となり、アキュムレータ6に蓄えられている高圧水が制御棒駆動機構8に供給され、制御棒9を炉心へ緊急挿入する。   On the other hand, in an emergency, the two electromagnetic coils 14 are in a non-excited state, the valve body A15 presses the protruding portion 16t protruding from the valve body B16, and the valve body B16 is pushed from the seal surface 19s of the pilot exhaust port 19. The valve is opened after separation. The valve body A15 further presses the protrusion 16t, contacts the sealing surface 18s, and closes the valve. As a result, the instrument air flowing in from the instrument air supply port 18 is blocked by the valve body A15. When the valve body B16 is opened, the instrument air in the scram pilot valve 2 is discharged from the pilot exhaust port 19. Then, the pressure in the scram pilot valve 2 decreases, and the flexible portion 17m is pushed up by the instrument air stored in the scram valve 3 as indicated by the arrow G, so that the valve body C17 is sealed to the main exhaust port 20. The valve is opened away from the surface 20s. As a result, instrument air stored in the scram valve 3 is discharged via the pilot exhaust port 19 and the main exhaust port 20. As the instrument air is discharged, the scram valve 3 is opened, the high-pressure water stored in the accumulator 6 is supplied to the control rod drive mechanism 8, and the control rod 9 is urgently inserted into the core.

スクラムパイロット弁2は、その構造上、弁可動部のキャップ以上の大きさを有する障害異物が混入することにより、弁体A15および弁体B16が動作不良を起こす恐れがある。弁体A15に動作不良が生じると、スクラムパイロット弁2の電磁コイル14を無励磁状態にした際の計装空気供給口18の閉動作が遅れるため、スクラム性能に悪影響を及ぼす恐れがある。また、弁体B16に動作不良が生じると、スクラムパイロット弁2の電磁コイル14を無励磁状態にした際のパイロット排気口19の開動作が遅れるため、スクラム性能に悪影響を及ぼす恐れがある。   Due to the structure of the scram pilot valve 2, there is a possibility that the valve element A15 and the valve element B16 may malfunction due to the inclusion of a foreign object having a size larger than the cap of the movable part of the valve. If a malfunction occurs in the valve body A15, the closing operation of the instrumentation air supply port 18 when the electromagnetic coil 14 of the scram pilot valve 2 is de-energized is delayed, which may adversely affect the scrum performance. In addition, if an operation failure occurs in the valve body B16, the opening operation of the pilot exhaust port 19 is delayed when the electromagnetic coil 14 of the scram pilot valve 2 is in a non-excited state, which may adversely affect the scrum performance.

そのため、従来は、計装空気の異物を除去する計装空気フィルタ10を設け、これより下流にあるスクラムパイロット弁2と、計装空気系仕切弁5と、その他の計装空気系統機器11への異物混入防止策が講じられていた。   Therefore, conventionally, an instrument air filter 10 that removes foreign matter from the instrument air is provided, and the scram pilot valve 2, instrument air system gate valve 5, and other instrument air system equipment 11 located downstream of the instrument air filter 10 are provided. Measures to prevent foreign matter contamination were taken.

しかし、計装空気系統機器11の分解点検を実施した際に混入する障害異物に対する除去対策はなされていないため、分解点検時に混入したと推測される障害異物により、スクラムパイロット弁2の可動部が動作不良を起こす可能性を排除できない。   However, since there is no removal countermeasure against the obstacle foreign matter mixed when the instrumentation air system device 11 is disassembled and inspected, the movable part of the scram pilot valve 2 is caused by the obstacle foreign matter presumed to be mixed during the disassembly and inspection. The possibility of malfunctioning cannot be excluded.

そこで、実施例1では、スクラムパイロット弁2への異物混入防止策として、前述したように上流機器異物フィルタ12と圧力センサ13とを有する処理機器異物除去部25を設ける。上流機器異物フィルタ12は、計装空気供給配管の上流に備え付けられている計装空気フィルタ10とは別に、計装空気系仕切弁5とスクラムパイロット弁2の間に設ける。スクラムパイロット弁2の直前に設けることで、計装空気系統機器11に加え計装空気系仕切弁5により発生する異物の混入を防止することができる。上流機器異物フィルタ12としては、例えば、金属の網目状のものが好ましい。   Therefore, in the first embodiment, as a measure for preventing foreign matter from entering the scram pilot valve 2, the processing equipment foreign matter removing unit 25 having the upstream equipment foreign matter filter 12 and the pressure sensor 13 is provided as described above. The upstream equipment foreign matter filter 12 is provided between the instrumentation air system gate valve 5 and the scram pilot valve 2 separately from the instrumentation air filter 10 provided upstream of the instrumentation air supply pipe. By providing immediately before the scram pilot valve 2, it is possible to prevent foreign substances generated by the instrumentation air system gate valve 5 in addition to the instrumentation air system equipment 11. The upstream device foreign matter filter 12 is preferably, for example, a metal mesh.

また、スクラムパイロット弁2に対して悪影響を及ぼさない、即ち、弁体A15、弁体B16の外枠23との摺動部に形成される隙間に入り込み摺動の障害となる異物、機種によって異なるが、例えば4.2立方ミリメートルよりも小さい異物に対しては通過可能な程度の除去能力とすることで、上流機器異物フィルタ12の点検頻度、交換頻度の低減と共にコストの軽減を図ることができる。また、圧力センサ13で上流機器異物フィルタ12の両端の差圧を検出することで、上流機器異物フィルタ12の点検時期、交換時期を確実に検知でき、また点検頻度、交換頻度を低減することができる。差圧は、中央操作室または各階に設けられた計装盤に送られ、運転員または作業員が目視で監視し、交換時期を決定する。   Further, it does not adversely affect the scram pilot valve 2, that is, it enters a gap formed in the sliding portion of the valve body A 15 and the valve body B 16 with the outer frame 23, and varies depending on the foreign matter and the type of the obstacle. However, for example, by making it possible to remove foreign matters smaller than 4.2 cubic millimeters, it is possible to reduce costs as well as reducing the inspection frequency and replacement frequency of the upstream device foreign matter filter 12. . Further, by detecting the differential pressure across the upstream device foreign matter filter 12 with the pressure sensor 13, the inspection time and replacement time of the upstream device foreign matter filter 12 can be reliably detected, and the inspection frequency and replacement frequency can be reduced. it can. The differential pressure is sent to a central operation room or an instrument panel provided on each floor, and an operator or a worker visually monitors and determines the replacement time.

さらに、スクラムパイロット弁2に対して少なくとも悪影響を及ぼす障害異物を除去することで、計装空気供給口18、パイロット排気口19および主排気口20のそれぞれのシート面18s、19s及び20sに異物が付着することにより引き起こされるシートリークの予防も期待できる。   Further, by removing the obstacle foreign matters that have at least an adverse effect on the scram pilot valve 2, foreign matters are present on the seat surfaces 18s, 19s and 20s of the instrument air supply port 18, the pilot exhaust port 19 and the main exhaust port 20, respectively. Prevention of sheet leaks caused by adhesion can also be expected.

以上説明したように、実施例1によれば、計装空気系統機器11や計装空気系仕切弁5の分解点検時等に混入叉は発生するスクラムパイロット弁2に対して少なくとも悪影響を及ぼす障害異物を除去することで、障害異物起因によるスクラムパイロット弁2の可動部の動作不良はなくなる。その結果、実施例1によれば、信頼性の高い水圧制御ユニットを提供できる。   As described above, according to the first embodiment, at least an obstacle that adversely affects the scram pilot valve 2 that is mixed or generated when the instrumentation air system device 11 or the instrumentation air system gate valve 5 is overhauled. By removing the foreign matter, the malfunction of the movable portion of the scram pilot valve 2 due to the obstacle foreign matter is eliminated. As a result, according to the first embodiment, a highly reliable water pressure control unit can be provided.

(実施例2)
図4は、本発明の計装空気供給系及びその水圧制御ユニットの第2の実施例の系統構成を示す図である。
(Example 2)
FIG. 4 is a diagram showing a system configuration of a second embodiment of the instrumented air supply system and the water pressure control unit thereof according to the present invention.

実施例2の実施例1と異なる点は、計装空気系統機器11と計装空気系仕切弁5の間に異物除去部25を設けた点である。その他の点は、実施例1と同じである。   A difference of the second embodiment from the first embodiment is that a foreign matter removing unit 25 is provided between the instrumented air system device 11 and the instrumented air system gate valve 5. Other points are the same as those in the first embodiment.

異物除去部25の設置箇所は、実施例1で分解点検の関係から計装空気系仕切弁5になるべく近くであることが望ましい。   The installation location of the foreign matter removing unit 25 is preferably as close as possible to the instrumentation air system gate valve 5 from the relationship of overhaul and inspection in the first embodiment.

本実施例では、異物除去部25を計装空気系仕切弁5の上流に設けているが、当該異物除去部25を含めて水圧制御ユニット1とする。   In this embodiment, the foreign matter removing unit 25 is provided upstream of the instrumentation air system gate valve 5, but the water pressure control unit 1 including the foreign matter removing unit 25 is used.

実施例2は、後から水圧制御ユニット1に付加するのに適した実施例で、実施例1と同様な効果を奏することができる。   The second embodiment is an embodiment suitable for being added to the hydraulic pressure control unit 1 later, and can achieve the same effects as the first embodiment.

1、1A:水圧制御ユニット 2:スクラムパイロット弁
3:スクラム弁 4:仕切弁
5:計装空気系仕切弁 6:アキュムレータ
7:窒素容器 8:制御棒駆動機構
9:制御棒 10:計装空気フィルタ
11:計装空気系統機器 12:上流機器異物フィルタ
13:圧力センサ 14:電磁コイル
15:弁体A 16:弁体B
17:弁体C 18:計装空気供給口
19:パイロット排気口 20:主排気口
21:計装空気貯槽 25:異物除去部
30:計装空気供給系
DESCRIPTION OF SYMBOLS 1, 1A: Water pressure control unit 2: Scrum pilot valve 3: Scrum valve 4: Gate valve 5: Instrument air system gate valve 6: Accumulator 7: Nitrogen container 8: Control rod drive mechanism 9: Control rod 10: Instrument air Filter 11: Instrument air system equipment 12: Upstream equipment foreign matter filter 13: Pressure sensor 14: Electromagnetic coil 15: Valve body A 16: Valve body B
17: Valve body C 18: Instrument air supply port 19: Pilot exhaust port 20: Main exhaust port 21: Instrument air storage tank 25: Foreign matter removal unit 30: Instrument air supply system

上記課題を解決するために、例えば特許請求の範囲に記載の構成を採用する。
本発明は、上記課題を解決する手段を複数含んでいるが、その一例を挙げるならば、計装空気供給系の計装空気フィルタに下流に設けられた計装空気系統機器から計装空気を仕切る計装空気系仕切弁と、計装空気の流れを制御するスクラムパイロット弁と、スクラムパイロット弁による計装空気の流れの制御によって弁開し、高圧水を制御棒駆動機構及び制御棒に供給することを可能にするスクラム弁とを有する水圧制御ユニットであって、計装空気系統機器とスクラムパイロット弁との間に計装空気系統機器の下流に混入した異物を除去する上流機器異物フィルタを設けた、ことを特徴とする
In order to solve the above problems, for example, the configuration described in the claims is adopted.
The present invention includes a plurality of means for solving the above-described problems. To give an example , instrument air is supplied from instrument air system equipment provided downstream in the instrument air filter of the instrument air supply system. Instrument air system gate valve to partition, scram pilot valve to control the flow of instrument air, valve open by controlling the flow of instrument air by the scram pilot valve, and supply high pressure water to control rod drive mechanism and control rod a hydraulic control unit and a scram valve that enables, upstream equipment foreign matter filter for removing foreign matters mixed downstream of instrumentation air system equipment between the instrumentation air system equipment and scram pilot valve It is characterized by providing

Claims (4)

計装空気供給系の計装空気フィルタに下流に設けられた計装空気系統機器から計装空気を仕切る計装空気系仕切弁と、計装空気の流れを制御するスクラムパイロット弁と、前記スクラムパイロット弁による前記計装空気の流れの制御によって弁開し、高圧水を制御棒駆動機構及び制御棒に供給することを可能にするスクラム弁とを有する水圧制御ユニットであって、
前記計装空気系統機器と前記スクラムパイロット弁との間に前記計装空気系統機器の下流に混入した異物を除去する上流機器異物フィルタを設けた、
ことを特徴とする水圧制御ユニット。
An instrumentation air system gate valve that partitions instrumentation air from instrumentation air system equipment provided downstream in an instrumentation air filter of the instrumentation air supply system, a scram pilot valve that controls the flow of instrumentation air, and the scram A water pressure control unit having a scram valve that opens by controlling the flow of the instrument air by a pilot valve, and enables high-pressure water to be supplied to the control rod drive mechanism and the control rod,
An upstream equipment foreign matter filter for removing foreign matter mixed downstream of the instrumented air system equipment is provided between the instrumented air system equipment and the scram pilot valve.
A hydraulic control unit characterized by that.
請求項1記載の水圧制御ユニットであって、
前記上流機器異物フィルタを前記スクラムパイロット弁と計装空気系仕切弁の間に有する、
ことを特徴とする水圧制御ユニット。
The water pressure control unit according to claim 1,
Having the upstream equipment foreign matter filter between the scram pilot valve and an instrumentation air system gate valve;
A hydraulic control unit characterized by that.
請求項1記載の水圧制御ユニットであって、
前記上流機器異物フィルタを前記計装空気系仕切弁と計装空気系統機器の間に有する、
ことを特徴とする水圧制御ユニット。
The water pressure control unit according to claim 1,
Having the upstream equipment foreign matter filter between the instrumentation air system gate valve and instrumentation air system equipment,
A hydraulic control unit characterized by that.
請求項1乃至3のいずれかに記載の水圧制御ユニットであって、
前記上流機器異物フィルタの前後における差圧を検出する差圧検出手段を有する、
ことを特徴とする水圧制御ユニット。
The water pressure control unit according to any one of claims 1 to 3,
Differential pressure detection means for detecting a differential pressure before and after the upstream device foreign matter filter,
A hydraulic control unit characterized by that.
JP2014034413A 2014-02-25 2014-02-25 Water pressure control unit Pending JP2015158459A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014034413A JP2015158459A (en) 2014-02-25 2014-02-25 Water pressure control unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014034413A JP2015158459A (en) 2014-02-25 2014-02-25 Water pressure control unit

Publications (1)

Publication Number Publication Date
JP2015158459A true JP2015158459A (en) 2015-09-03

Family

ID=54182537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014034413A Pending JP2015158459A (en) 2014-02-25 2014-02-25 Water pressure control unit

Country Status (1)

Country Link
JP (1) JP2015158459A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6082994A (en) * 1983-10-14 1985-05-11 株式会社日立製作所 Instrumentation air piping system
JPS62140492U (en) * 1986-02-26 1987-09-04
JPS62247286A (en) * 1986-04-21 1987-10-28 株式会社東芝 Air feeder for operating scram valve
JPH0560890A (en) * 1991-08-30 1993-03-12 Toshiba Corp Control rod driving hydraulic device
JP2004191154A (en) * 2002-12-11 2004-07-08 Hitachi Ltd Control rod driving hydraulic system for nuclear power plant
JP2011013164A (en) * 2009-07-03 2011-01-20 Toshiba Corp Scram valve of water pressure control unit

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6082994A (en) * 1983-10-14 1985-05-11 株式会社日立製作所 Instrumentation air piping system
JPS62140492U (en) * 1986-02-26 1987-09-04
JPS62247286A (en) * 1986-04-21 1987-10-28 株式会社東芝 Air feeder for operating scram valve
JPH0560890A (en) * 1991-08-30 1993-03-12 Toshiba Corp Control rod driving hydraulic device
JP2004191154A (en) * 2002-12-11 2004-07-08 Hitachi Ltd Control rod driving hydraulic system for nuclear power plant
JP2011013164A (en) * 2009-07-03 2011-01-20 Toshiba Corp Scram valve of water pressure control unit

Similar Documents

Publication Publication Date Title
RU2752786C2 (en) Method for testing the solenoid valve and the corresponding device (versions)
US20160329697A1 (en) Systems and Methods for Handling Overcurrent and Undercurrent Conditions in Subsea Control Subsystem Components
US20100181508A1 (en) Safety valve drive system
US10424413B2 (en) Method and control system for gas injection into coolant and nuclear reactor plant
CN103217261B (en) Online detection method for leakage of hydraulic pipeline
WO2014022621A1 (en) Apparatus for monitoring of valves and methods of operating the same
JP2005257340A (en) Gas leak detection device for high-pressure tank system
KR101195935B1 (en) Apparatus of Electrical trip solenoid valve isolation block
JP2015158459A (en) Water pressure control unit
JP2009121917A (en) Blowout device
JP5193648B2 (en) Control rod drive control device
Nasimi et al. Application of Safety Instrumented System (SIS) approach in older nuclear power plants
Cilliers Benchmarking an expert fault detection and diagnostic system on the Three Mile Island accident event sequence
JP5260263B2 (en) Flange joint structure
JP2017141873A (en) Piping leakage prevention system
JP4211001B2 (en) Gas leak detector for high pressure tank system
JP2006226947A (en) Operation inspection system of excessive flow rate blocking valve and operation inspecting method, and draining device used for the same
JP2005043131A (en) Exhaust gas treatment facility for nuclear reactor building
CN105806598A (en) Hydraulic control butterfly valve detection method and alarm system
KR101748143B1 (en) Alternative Mitigation Mechanism for Low Temperature Overpressurization Accident for Nuclear Power Plant
JP6470159B2 (en) Hydraulic operating device and inspection method thereof
KR20180066016A (en) Gas Leakage Sensing System of 3-Way
KR102579660B1 (en) Replacement device during operation of BFPT MTSV valve
KR101517033B1 (en) Chamical supply
JP2014126976A (en) Safety instrumentation system and pst(partial stroke test) activation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160714

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170404

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170801

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180206