JP2015156755A - Power converter control device and motor system including the same - Google Patents

Power converter control device and motor system including the same Download PDF

Info

Publication number
JP2015156755A
JP2015156755A JP2014030932A JP2014030932A JP2015156755A JP 2015156755 A JP2015156755 A JP 2015156755A JP 2014030932 A JP2014030932 A JP 2014030932A JP 2014030932 A JP2014030932 A JP 2014030932A JP 2015156755 A JP2015156755 A JP 2015156755A
Authority
JP
Japan
Prior art keywords
power converter
drive signal
pulse
control device
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014030932A
Other languages
Japanese (ja)
Other versions
JP5986595B2 (en
Inventor
博光 鈴木
Hiromitsu Suzuki
博光 鈴木
大谷 裕樹
Hiroki Otani
裕樹 大谷
中井 英雄
Hideo Nakai
英雄 中井
山田 堅滋
Katashige Yamada
堅滋 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Toyota Motor Corp
Priority to JP2014030932A priority Critical patent/JP5986595B2/en
Priority to PCT/JP2015/052599 priority patent/WO2015125586A1/en
Publication of JP2015156755A publication Critical patent/JP2015156755A/en
Application granted granted Critical
Publication of JP5986595B2 publication Critical patent/JP5986595B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • H02M7/53875Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current with analogue control of three-phase output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/539Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency
    • H02M7/5395Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency by pulse-width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • H02P27/085Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation wherein the PWM mode is adapted on the running conditions of the motor, e.g. the switching frequency
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/50Reduction of harmonics

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a power converter control device capable of reducing loss of a motor system as a whole.
SOLUTION: The power converter control device includes: a pulse number determinator 414 for determining a pulse number in one electric period; and a drive signal generator 416 for determining a voltage modulation factor and a phase difference and generate a driving voltage in accordance with the modulation factor and the phase difference. The drive signal generator 416 reduces a pulse rate that is a rate of a pulse number in a range of 60° to 120° to a total pulse number during a half electric period accordingly to an increase of the modulation factor.
COPYRIGHT: (C)2015,JPO&INPIT

Description

本発明は、電力変換器制御装置及びそれを備えたモータシステムに関する。   The present invention relates to a power converter control device and a motor system including the same.

ハイブリッド車や電気自動車等の移動体にはモータ(電動機)が搭載されている。モータは、バッテリ等の電力供給源から電力を受けて、電力エネルギーを機械的な動力に変換して駆動力を発生させる。したがって、モータでの電力の損失はできるだけ抑制することが望まれる。   A motor (electric motor) is mounted on a moving body such as a hybrid vehicle or an electric vehicle. The motor receives electric power from a power supply source such as a battery, converts electric power energy into mechanical power, and generates a driving force. Therefore, it is desirable to suppress power loss in the motor as much as possible.

PWM(Pulse Widht Modulation)よりもスイッチング回数が少ない変調方式として、矩形波形電圧の特定波形位置から高次高調波成分(5次、7次、11次・・・)を削除することで電流歪を生じさせる原因を低減する技術が開示されている(特許文献1)。   As a modulation method with fewer switching times than PWM (Pulse Width Modulation), current distortion is eliminated by removing high-order harmonic components (5th, 7th, 11th,...) From a specific waveform position of a rectangular waveform voltage. A technique for reducing the cause of the occurrence is disclosed (Patent Document 1).

また、モータをインバータ駆動する差異のインバータ電圧として、nパルスモードにおいて正規化された高調波損失を正規化された基本波電力で除した値が最小となるようにスイッチ角α1〜αnを設定することで、低次高調波を消去しつつ、基本波成分の出力電圧を増大させる技術が開示されている(特許文献2)。   Further, the switch angles α1 to αn are set so that the value obtained by dividing the harmonic loss normalized in the n-pulse mode by the normalized fundamental wave power is minimized as the inverter voltage of the difference in which the motor is driven by the inverter. Thus, a technique for increasing the output voltage of the fundamental wave component while eliminating low-order harmonics has been disclosed (Patent Document 2).

特開2011−35991号公報JP2011-35991A 特開2012−120250号公報JP 2012-120250 A

ところで、従来の高調波抑制技術では、インバータ回路のスイッチングによる入力電圧の低次高調波成分を低減させることのみ考慮されており、モータに通電されたときの電流の歪みやトルクへの影響が考慮されていない。したがって、電流の高調波成分によるモータの鉄損も考慮されておらず、モータシステムの損失は部分的にのみ考慮されている。   By the way, in the conventional harmonic suppression technology, only the reduction of the low-order harmonic component of the input voltage due to switching of the inverter circuit is considered, and the distortion of the current and the influence on the torque when the motor is energized are considered. It has not been. Therefore, the iron loss of the motor due to the harmonic component of the current is not taken into consideration, and the loss of the motor system is only considered partially.

また、特定の低次高調波を完全に消去する必要がない場合であっても、選択されたnパルスにおいて制御可能な次数の高調波成分のみを評価して処理を行っているので、結果的に低次高調波成分のみを考慮して除去することになっており、モータシステム全体として損失を低減させるように最適化されていない。   Even if it is not necessary to completely erase a specific low-order harmonic, only the harmonic component of the order that can be controlled in the selected n pulses is evaluated and processed. However, the low-order harmonic component is only considered and removed, and the motor system as a whole is not optimized to reduce the loss.

本発明の1つの態様は、スイッチング素子を備えた3相フルブリッジ型の電力変換器の各相の前記スイッチング素子に対して駆動電圧を出力する電力変換器制御装置であって、電気1周期中のパルス数を決定するパルス数決定器と、前記電圧の変調率と位相差を決定し、前記変調率及び前記位相差に応じて前記駆動電圧を生成する駆動信号生成器と、を備え、前記駆動信号生成器は、電気半周期中の全パルス数に対する60度〜120度の範囲内のパルス数の割合であるパルス割合を前記変調率の増加に伴って減少させることを特徴とする電力変換器制御装置である。   One aspect of the present invention is a power converter control device that outputs a driving voltage to the switching element of each phase of a three-phase full-bridge type power converter including a switching element, and the power converter control device outputs a driving voltage during one electrical cycle. A pulse number determinator that determines the number of pulses, and a drive signal generator that determines a modulation rate and a phase difference of the voltage and generates the drive voltage according to the modulation rate and the phase difference, and The drive signal generator reduces a pulse ratio, which is a ratio of the number of pulses within a range of 60 degrees to 120 degrees with respect to the total number of pulses in an electrical half cycle, as the modulation rate increases. Controller.

本発明の別の態様は、3相モータと、スイッチング素子を備えた3相フルブリッジ型の電力変換器の各相の前記スイッチング素子に対して駆動電圧を出力する電力変換器制御装置と、を備え、前記3相モータを前記電力変換器制御装置によって制御するモータシステムであって、前記電力変換器制御装置は、電気1周期中のパルス数を決定するパルス数決定器と、前記電圧の変調率と位相差を決定し、前記変調率及び前記位相差に応じて前記駆動電圧を生成する駆動信号生成器と、を備え、前記駆動信号生成器は、電気半周期中の全パルス数に対する60度〜120度の範囲内のパルス数の割合であるパルス割合を前記変調率の増加に伴って減少させることを特徴とするモータシステムである。   Another aspect of the present invention includes a three-phase motor, and a power converter control device that outputs a drive voltage to the switching element of each phase of a three-phase full-bridge power converter including a switching element. A motor system that controls the three-phase motor by the power converter control device, the power converter control device comprising: a pulse number determiner that determines the number of pulses in one electrical cycle; and the voltage modulation A drive signal generator for determining a rate and a phase difference, and generating the drive voltage according to the modulation rate and the phase difference, wherein the drive signal generator is 60 for the total number of pulses in an electrical half cycle. The motor system is characterized in that a pulse ratio, which is a ratio of the number of pulses within a range of degrees to 120 degrees, is decreased as the modulation rate increases.

ここで、前記駆動信号生成器は、前記変調率の増加に伴って前記パルス割合を100%から減少させることが好適である。   Here, it is preferable that the drive signal generator decreases the pulse rate from 100% as the modulation rate increases.

また、前記駆動信号生成器は、電気1周期のパルス数を1パルス以上とし、前記パルス割合を前記変調率に対して段階的に切り替えることが好適である。   Moreover, it is preferable that the drive signal generator sets the number of pulses in one electrical cycle to 1 pulse or more and switches the pulse rate in a stepwise manner with respect to the modulation rate.

本発明によれば、モータシステム全体として損失を低減させることを可能とする電力変換器制御装置及びそれを備えたモータシステムを提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the power converter control apparatus which makes it possible to reduce a loss as a whole motor system, and a motor system provided with the same can be provided.

本発明の実施の形態におけるモータシステムの構成を示す図である。It is a figure which shows the structure of the motor system in embodiment of this invention. 本発明の実施の形態における制御回路の構成を示す図である。It is a figure which shows the structure of the control circuit in embodiment of this invention. 本発明の実施の形態における駆動信号生成器の構成を示す図である。It is a figure which shows the structure of the drive signal generator in embodiment of this invention. 本発明の実施の形態における変調率に対する電気角60度以上120度以下の範囲内のパルス割合の関係を示す図である。It is a figure which shows the relationship of the pulse ratio in the range whose electrical angle is 60 degree | times or more and 120 degrees or less with respect to the modulation factor in embodiment of this invention. 本発明の実施の形態において生成される駆動電圧の例を示す図である。It is a figure which shows the example of the drive voltage produced | generated in embodiment of this invention. 本発明の実施の形態において生成される駆動電圧の例を示す図である。It is a figure which shows the example of the drive voltage produced | generated in embodiment of this invention. 本発明の実施の形態における損失の低減効果を示す図である。It is a figure which shows the reduction effect of the loss in embodiment of this invention.

本発明の実施の形態におけるモータシステムは、図1に示すように、モータ100、電源回路200、電力変換器300及び電力変換器制御装置400を含んで構成される。電源回路200から供給される電力は、電力変換器制御装置400によって制御された電力変換器300によって直流交流変換されてモータ100へ供給される。   As shown in FIG. 1, the motor system according to the embodiment of the present invention includes a motor 100, a power supply circuit 200, a power converter 300, and a power converter control device 400. The power supplied from the power supply circuit 200 is DC / AC converted by the power converter 300 controlled by the power converter control device 400 and supplied to the motor 100.

モータ100は、電源回路200から供給された電力によって駆動される。モータ100は、回転子に永久磁石を備えた同期機とすることができる。モータ100の固定子の電機子巻線に電力変換器300から交流電力が供給され、モータ100の回転が制御される。モータ100の駆動力は、例えば、ハイブリッド自動車や電機自動車を含む移動体の駆動力として利用することができる。   The motor 100 is driven by electric power supplied from the power supply circuit 200. The motor 100 can be a synchronous machine having a permanent magnet in the rotor. AC power is supplied from the power converter 300 to the armature winding of the stator of the motor 100, and the rotation of the motor 100 is controlled. The driving force of the motor 100 can be used as a driving force of a mobile body including a hybrid vehicle and an electric vehicle, for example.

また、モータ100は、発電機を兼ねたモータジェネレータとしてもよい。この場合、発電によった電力が電力変換器300において交流直流変換されて電源回路200のバッテリに充電が行われる。   The motor 100 may be a motor generator that also serves as a generator. In this case, the power generated by the power generation is AC / DC converted by the power converter 300 and the battery of the power supply circuit 200 is charged.

また、モータ100には、回転子の回転位置(回転角度)θを検出するためのレゾルバ10を付設してもよい。レゾルバ10は、モータ100の回転子の回転位置(回転角度)θを検出する。レゾルバ10からの出力は電力変換器制御装置400の角速度演算器に入力され、角速度演算器によってから回転位置(回転角度)θがモータ100の回転子の角速度ω(回転数)に換算される。   The motor 100 may be provided with a resolver 10 for detecting the rotational position (rotation angle) θ of the rotor. The resolver 10 detects the rotation position (rotation angle) θ of the rotor of the motor 100. The output from the resolver 10 is input to the angular velocity calculator of the power converter controller 400, and the angular position calculator converts the rotational position (rotational angle) θ into the angular velocity ω (rotational speed) of the rotor of the motor 100.

また、モータ100への電源供給ライン上に電流センサ12を設ける。電流センサ12により各相の電流値iu,ivをリアルタイムに検出し、電力変換器制御装置400の3相/dq軸変換器において電流値iu,ivからd軸電流値id及びq軸電流値iqに変換する。   Further, a current sensor 12 is provided on the power supply line to the motor 100. The current values iu and iv of each phase are detected in real time by the current sensor 12, and the d-axis current value id and the q-axis current value iq are converted from the current values iu and iv in the three-phase / dq axis converter of the power converter control device 400. Convert to

電源回路200は、バッテリ20及び平滑コンデンサ22を含んで構成される。バッテリ20とモータ100との間において電力変換器300を介して電力の受け渡しが行われる。平滑コンデンサ22は、バッテリ20の出力電圧を平滑化するために設けられる。   The power supply circuit 200 includes a battery 20 and a smoothing capacitor 22. Power is transferred between the battery 20 and the motor 100 via the power converter 300. The smoothing capacitor 22 is provided to smooth the output voltage of the battery 20.

電力変換器300は、インバータ回路を含んで構成される。電力変換器300は、電力変換器制御装置400から出力されるパルス状の駆動信号によって開閉制御されるスイッチング素子を含む上アーム及び下アームを備えた3相フルブリッジ型回路とすることができる。   The power converter 300 includes an inverter circuit. The power converter 300 can be a three-phase full-bridge circuit including an upper arm and a lower arm that include switching elements that are controlled to be opened and closed by a pulsed drive signal output from the power converter control device 400.

上アーム及び下アームは、スイッチング素子であるIGBT(絶縁ゲート型バイポーラトランジスタ)とダイオードとの並列接続からなる。上アームと下アームは直列接続され、3つの上下アーム直列回路が構成される。各上下アーム直列回路の中点がモータ100の交流電力線に接続される。上アームと下アームのスイッチング素子は、電力変換器制御装置400からの駆動信号を受けて、駆動信号によってインバータ回路のスイッチング素子の開閉を制御して3相の疑似正弦波電圧を生成する。その疑似正弦波電圧がモータ100に供給される。また、モータ100がジェネレータとして機能する場合には、モータ100から出力された三相交流電力が直流電力に変換されて電源回路200に供給される。   The upper arm and the lower arm are composed of a parallel connection of an IGBT (insulated gate bipolar transistor) as a switching element and a diode. The upper arm and the lower arm are connected in series to form three upper and lower arm series circuits. The midpoint of each upper and lower arm series circuit is connected to the AC power line of the motor 100. The switching elements of the upper arm and the lower arm receive a driving signal from the power converter control device 400 and control the opening and closing of the switching element of the inverter circuit by the driving signal to generate a three-phase pseudo sine wave voltage. The pseudo sine wave voltage is supplied to the motor 100. When the motor 100 functions as a generator, the three-phase AC power output from the motor 100 is converted into DC power and supplied to the power supply circuit 200.

また、電力変換器300は、直流電圧を昇降圧する電圧コンバータをさらに備えてもよい。   The power converter 300 may further include a voltage converter that steps up and down a DC voltage.

電力変換器制御装置400は、制御回路402及びドライバ回路404を含んで構成される。制御回路402は、ドライバ回路404に出力される駆動信号を生成する回路である。制御回路402は、他の制御装置やセンサなどからの入力に基づいて、電力変換器300のスイッチングタイミングを制御するための駆動信号を生成する。ドライバ回路404は、制御回路402において生成された駆動信号を受けて、駆動信号を増幅等したドライブ信号を生成して電力変換器300のスイッチング素子を実際に駆動する。   The power converter control device 400 includes a control circuit 402 and a driver circuit 404. The control circuit 402 is a circuit that generates a drive signal output to the driver circuit 404. The control circuit 402 generates a drive signal for controlling the switching timing of the power converter 300 based on inputs from other control devices and sensors. The driver circuit 404 receives the drive signal generated in the control circuit 402, generates a drive signal obtained by amplifying the drive signal, and actually drives the switching element of the power converter 300.

制御回路402は、電力変換器300のスイッチング素子のスイッチングタイミングを演算処理するためのマイクロコンピュータにより実現することができる。制御回路402は、モータ100に対して要求される目標トルク値T、電力変換器300からモータ100に供給される電流値iu,iv、及びモータ100の回転子の回転角θが入力される。目標トルク値Tは、車両のアクセル制御部等から出力される指令信号であり、モータ100に対して要求される出力トルクを示す信号である。   The control circuit 402 can be realized by a microcomputer for calculating the switching timing of the switching elements of the power converter 300. The control circuit 402 receives a target torque value T required for the motor 100, current values iu and iv supplied from the power converter 300 to the motor 100, and a rotation angle θ of the rotor of the motor 100. The target torque value T is a command signal output from an accelerator control unit or the like of the vehicle, and is a signal indicating an output torque required for the motor 100.

制御回路402は、目標トルク値Tに基づいてモータ100のd軸電流指令値及びq軸電流指令値を演算し、このd軸電流指令値及びq軸電流指令値と検出された電流値iu,ivに対応する実際のd軸電流値及びq軸電流値との差分に基づいてd軸電圧指令値及びq軸電圧指令値を演算する。このd軸電圧指令値及びq軸電圧指令値からパルス状の変調波を生成する。この生成されたパルス状の変調波の信号はドライバ回路404で増幅等されて電力変換器300に出力される。   The control circuit 402 calculates the d-axis current command value and the q-axis current command value of the motor 100 based on the target torque value T, and detects the d-axis current command value and the q-axis current command value and the detected current values iu, The d-axis voltage command value and the q-axis voltage command value are calculated based on the difference between the actual d-axis current value and the q-axis current value corresponding to iv. A pulse-like modulated wave is generated from the d-axis voltage command value and the q-axis voltage command value. The generated pulsed modulated wave signal is amplified by the driver circuit 404 and output to the power converter 300.

制御回路402は、図2に示すように、角速度演算器406、3相/dq軸変換器408、電流指令生成器410、電流制御器412、パルス数決定器414及び駆動信号生成器416を含んで構成される。   As shown in FIG. 2, the control circuit 402 includes an angular velocity calculator 406, a three-phase / dq axis converter 408, a current command generator 410, a current controller 412, a pulse number determiner 414, and a drive signal generator 416. Consists of.

角速度演算器406は、レゾルバ10からモータ100の回転子の回転位置(回転角度θ)の検出信号を受けて、回転位置(回転角度θ)をモータ100の回転子の角速度ω(回転数)に換算して電流指令生成器410及び駆動信号生成器416へ出力する。角速度演算器406は、主に微分器から構成される。   The angular velocity calculator 406 receives the detection signal of the rotational position (rotational angle θ) of the rotor of the motor 100 from the resolver 10 and changes the rotational position (rotational angle θ) to the angular velocity ω (rotational speed) of the rotor of the motor 100. Converted and output to the current command generator 410 and the drive signal generator 416. The angular velocity calculator 406 is mainly composed of a differentiator.

3相/dq軸変換器408は、電流センサ12からモータ100へ流入する電流値iu,ivの検出値及びレゾルバ10から回転子の回転位置(回転角度θ)の検出信号を受けて、電流値iu,ivからd軸電流値id及びq軸電流値iqに変換して電流制御器412へ出力する。   The three-phase / dq axis converter 408 receives the detection values of the current values iu and iv flowing from the current sensor 12 into the motor 100 and the detection signal of the rotational position (rotation angle θ) of the rotor from the resolver 10, and receives the current value. iu and iv are converted into a d-axis current value id and a q-axis current value iq and output to the current controller 412.

電流指令生成器410は、外部のアクセル制御部等から出力される目標トルク値Tを受けて、モータ100に対する電流指令値であるd軸電流指令信号idとq軸電流指令信号iqを生成して出力する。すなわち、電流指令生成器410は、目標トルク値Tと回転子の角速度ωとの関係に基づいてd軸電流指令信号id及びq軸電流指令信号iqを生成する。具体的には、目標トルク値Tと回転子の角速度ωと組み合わせに対してd軸電流指令信号id及びq軸電流指令信号iqを関連付けて登録した電流指令値テーブルを予め登録しておき、入力された目標トルク値Tと回転子の角速度ωに関連付けられているd軸電流指令信号idとq軸電流指令信号iqを読み出して出力するようにしてもよい。 The current command generator 410 generates a d-axis current command signal id * and a q-axis current command signal iq * that are current command values for the motor 100 in response to a target torque value T output from an external accelerator control unit or the like. And output. That is, the current command generator 410 generates the d-axis current command signal id * and the q-axis current command signal iq * based on the relationship between the target torque value T and the angular velocity ω of the rotor. Specifically, a current command value table in which a d-axis current command signal id * and a q-axis current command signal iq * are registered in association with the combination of the target torque value T and the angular velocity ω of the rotor is registered in advance. The d-axis current command signal id * and the q-axis current command signal iq * associated with the input target torque value T and the angular velocity ω of the rotor may be read and output.

電流制御器412は、電流指令生成器410からd軸電流指令信号id及びq軸電流指令信号iq並びに3相/dq軸変換器408から実際のモータ100に流れるd軸電流値id及びq軸電流値iqを受けて、d軸電流値id及びq軸電流値iqがd軸電流指令信号id及びq軸電流指令信号iqに追従するようにd軸電圧指令信号Vdとq軸電圧指令信号Vqを演算する。演算されたd軸電圧指令信号Vdとq軸電圧指令信号Vqは、パルス数決定器414及び駆動信号生成器416に入力される。 The current controller 412 receives the d-axis current command signal id * and the q-axis current command signal iq * from the current command generator 410, and the d-axis current values id and q flowing from the three-phase / dq-axis converter 408 to the actual motor 100. In response to the shaft current value iq, the d-axis voltage command signal Vd * and the q-axis so that the d-axis current value id and the q-axis current value iq follow the d-axis current command signal id * and the q-axis current command signal iq *. The voltage command signal Vq * is calculated. The calculated d-axis voltage command signal Vd * and q-axis voltage command signal Vq * are input to the pulse number determiner 414 and the drive signal generator 416.

パルス数決定器414は、駆動信号生成器416において生成される駆動信号の一電気周期に含まれるパルス数を決定する。パルス数決定器414は、d軸電圧指令信号Vdとq軸電圧指令信号Vqを受けて、これらから算出される変調率aに応じて電気1周期中のパルス数を決定する。例えば、変調率aに応じてパルス数を1パルスから31パルスの範囲で変更することが好適である。変調率aは、後述する駆動信号生成器416と同様に算出することができる。このとき、実際のモータ100における損失ができるだけ低減されるように変調率aに応じてパルス数を設定することが好適である。 The pulse number determiner 414 determines the number of pulses included in one electrical cycle of the drive signal generated by the drive signal generator 416. The pulse number determiner 414 receives the d-axis voltage command signal Vd * and the q-axis voltage command signal Vq * , and determines the number of pulses in one electrical cycle according to the modulation factor a calculated from these. For example, it is preferable to change the number of pulses in the range of 1 pulse to 31 pulses according to the modulation factor a. The modulation factor a can be calculated in the same manner as the drive signal generator 416 described later. At this time, it is preferable to set the number of pulses according to the modulation factor a so that the loss in the actual motor 100 is reduced as much as possible.

駆動信号生成器416は、d軸電圧指令信号Vd、q軸電圧指令信号Vq、回転子の回転位置(回転角度θ)及び角速度ω(回転数)並びにパルス数を受けて、電力変換器300を駆動するためのパルス状信号である駆動信号を生成して出力する。駆動信号生成器416は、図3に示すように、電圧位相差演算器420、変調率演算器422及びパルス生成器424を含んで構成される。 The drive signal generator 416 receives the d-axis voltage command signal Vd * , the q-axis voltage command signal Vq * , the rotation position (rotation angle θ) and angular velocity ω (rotation number) of the rotor, and the number of pulses, and receives the power converter. A drive signal which is a pulse signal for driving 300 is generated and output. As shown in FIG. 3, the drive signal generator 416 includes a voltage phase difference calculator 420, a modulation factor calculator 422, and a pulse generator 424.

電圧位相差演算器420は、d軸電圧指令信号Vd及びq軸電圧指令信号Vqを受けて、これらから磁極位置と電圧位相の位相差、すなわち電圧位相差を算出する。電圧位相差δは、式(1)に基づいて算出することができる。
δ=atan(Vd/Vq)・・・・・・(1)
The voltage phase difference calculator 420 receives the d-axis voltage command signal Vd * and the q-axis voltage command signal Vq * and calculates the phase difference between the magnetic pole position and the voltage phase, that is, the voltage phase difference. The voltage phase difference δ can be calculated based on the formula (1).
δ = atan (Vd * / Vq * ) (1)

変調率演算器422は、d軸電圧指令信号Vd及びq軸電圧指令信号Vqを受けて、d軸電圧指令信号Vd及びq軸電圧指令信号Vqがなすベクトルの大きさをバッテリ電圧で正規化した変調率を算出する。変調率aは、バッテリ電圧Vdcとすると式(2)に基づいて算出することができる。
a=(√(Vd+Vq))/Vdc・・・・(2)
Modulation factor computation unit 422 receives the d-axis voltage command signal Vd * and the q-axis voltage command signal Vq *, the d-axis voltage command signal Vd * and the q-axis voltage command signal Vq * Ganasu vector of size battery voltage The modulation rate normalized by is calculated. The modulation factor a can be calculated based on the equation (2) assuming that the battery voltage Vdc.
a = (√ (Vd 2 + Vq 2 )) / Vdc (2)

パルス生成器424は、変調率a、電圧位相信号θv、回転子の角速度ω(回転数)並びにパルス数を受けて、これらに基づいてパルス状信号である駆動信号を生成する。ここで、電圧位相信号θvは、電圧位相差δに回転子の回転位置(回転角度θ)を加算した値である。すなわち、電圧位相信号θvは、回転子の回転角度θとすると式(3)で表わされる。
θv=δ+θ・・・・・・・・(3)
The pulse generator 424 receives the modulation factor a, the voltage phase signal θv, the angular velocity ω (rotation number) of the rotor, and the number of pulses, and generates a drive signal that is a pulse signal based on these. Here, the voltage phase signal θv is a value obtained by adding the rotation position (rotation angle θ) of the rotor to the voltage phase difference δ. That is, the voltage phase signal θv is expressed by the equation (3) when the rotation angle θ of the rotor is assumed.
θv = δ + θ (3)

パルス生成器424では、電気半周期中の全パルス数に対する60度以上120度以下(π/3〜2π/3)の範囲内のパルス数の割合であるパルス割合が変調率aの増加に伴って減少するように駆動信号が生成される。すなわち、変調率aが小さいときには電気半周期中のパルスが60度以上120度以下の範囲のパルス数の割合を多くし、変調率aが増加するに伴って電気半周期中のパルスが60度以上120度以下の範囲のパルス数の割合が減少するように駆動信号を生成する。   In the pulse generator 424, the pulse ratio, which is the ratio of the number of pulses within the range of 60 degrees to 120 degrees (π / 3 to 2π / 3) with respect to the total number of pulses in the electrical half cycle, increases with the modulation rate a. The drive signal is generated so as to decrease. That is, when the modulation rate a is small, the ratio of the number of pulses in the range of 60 degrees to 120 degrees is increased for pulses in the electrical half cycle, and as the modulation rate a increases, the pulse in the electrical half cycle is 60 degrees. The drive signal is generated so that the ratio of the number of pulses in the range of 120 degrees or less is reduced.

このとき、パルス生成器424では、モータ100における渦電流損失を考慮した評価関数を用いて駆動信号のパルス波形(スイッチングパターン)を決定する。従来の駆動信号決定方法は、低次高調波消去PWMおよび低次高調波振幅・位相制御PWM共に駆動信号に含まれる特定の高調波を消去または目標値に制御する方法である。この場合、駆動信号のパルス波形(スイッチングパターン)において制御可能な個数以下の高調波数しか考慮されておらず、電流歪みの改善や制御性から低次高調波の抑制を選択し、これによって電流歪みを改善することでモータ損失の低減を図っていた。しかしながら、低回転及び軽負荷条件では、低次高調波の抑制によるモータ損失低減効果は小さく、さらに低次高調波を制御することで抑制対象としない高次高調波が大きくなり、これがモータ鉄損の増加に繋がっていた。そこで、本実施の形態では、低次高調波だけでなく高次高調波まで考慮した駆動信号のパルス波形(スイッチングパターン)の決定法を採用した。   At this time, the pulse generator 424 determines the pulse waveform (switching pattern) of the drive signal using an evaluation function that takes into account eddy current loss in the motor 100. The conventional drive signal determination method is a method of eliminating specific harmonics included in the drive signal or controlling them to a target value for both the low-order harmonic cancellation PWM and the low-order harmonic amplitude / phase control PWM. In this case, only the number of harmonics that can be controlled or less is considered in the pulse waveform (switching pattern) of the drive signal, and the current distortion is selected by improving the current distortion or suppressing the low-order harmonics for controllability. The motor loss was reduced by improving this. However, under low rotation and light load conditions, the motor loss reduction effect due to the suppression of low-order harmonics is small, and by controlling the low-order harmonics, high-order harmonics that are not subject to suppression become large, and this is the cause of motor iron loss. Led to an increase. Therefore, in this embodiment, a method of determining the pulse waveform (switching pattern) of the drive signal in consideration of not only the low-order harmonics but also the high-order harmonics is employed.

駆動信号のパルス波形(スイッチングパターン)は、低次高調波振幅・位相制御PWMと同じく、半波対称性[f(ωt)=−f(ωt+π)]を有する駆動信号とする。このようなパルス波形(スイッチングパターン)を採用する利点は、従来法である低次高調波消去PWMで用いられる半波対称性[f(ωt)=−f(ωt+π)]と奇対称性[f(ωt)=f(π−ωt)]を有する駆動信号よりもパルス波形(スイッチングパターン)の選択幅が広く、駆動信号に含まれる周波数成分の振幅と位相の両者の制御性の向上が見込めるためである。   The pulse waveform (switching pattern) of the drive signal is a drive signal having half-wave symmetry [f (ωt) = − f (ωt + π)], similar to the low-order harmonic amplitude / phase control PWM. The advantage of adopting such a pulse waveform (switching pattern) is that half-wave symmetry [f (ωt) = − f (ωt + π)] and odd symmetry [f used in the conventional low-order harmonic cancellation PWM are used. Since the selection range of the pulse waveform (switching pattern) is wider than that of the drive signal having (ωt) = f (π−ωt)], it is possible to improve the controllability of both the amplitude and phase of the frequency component included in the drive signal. It is.

駆動信号のパルス波形は、フーリエ級数展開を用いると式(4)として表せる。ただし、n=1,5,7,11,13・・・(奇数の整数)であり、pはパルス数であり、電気半周期中のスイッチング切替回数M=p−1である。

Figure 2015156755
The pulse waveform of the drive signal can be expressed as equation (4) using Fourier series expansion. However, n = 1, 5, 7, 11, 13... (Odd integer), p is the number of pulses, and the number of switching times M = p−1 during the electrical half cycle.
Figure 2015156755

式(4)の係数a及び係数bから各次数の振幅Cと位相αが式(5)から求められる。ここで得られる振幅Cや位相αなどを使い、低損失を実現する駆動信号のパルス波形(スイッチングパターン)を決定する。

Figure 2015156755
Amplitude C n and phase alpha n from the coefficient a n and coefficients b n of each order equation (4) is determined from equation (5). The amplitude C n and the phase α n obtained here are used to determine the pulse waveform (switching pattern) of the drive signal that realizes low loss.
Figure 2015156755

モータ鉄損Wは、スタインメッツの実験式より式(6)で表せる。ここで、Wはモータ鉄損、Wはヒステリシス損、Wは渦電流損、Kはヒステリシス損失係数、Bは磁束密度、fは回転磁束周波数及びKは渦電流損失係数である。

Figure 2015156755
Motor iron loss W i can be expressed by the formula (6) than Steinmetz of the empirical formula. Here, W i is the motor iron loss, W h is the hysteresis loss, W e is the eddy current loss, K h is the hysteresis loss coefficient, B m is the magnetic flux density, f is the rotating magnetic flux frequency, and K e is the eddy current loss coefficient. is there.
Figure 2015156755

ここで、全鉄損中において割合が大きい渦電流損に着目し、渦電流損を評価関数とする。そして、この評価関数が最小となるようにスイッチングパターンを決定する。   Here, attention is paid to eddy current loss having a large ratio in total iron loss, and eddy current loss is used as an evaluation function. Then, the switching pattern is determined so that this evaluation function is minimized.

この評価関数を用いて、駆動信号のパルス波形(スイッチングパターン)を決定する。この時の制約条件として、駆動信号に含まれる基本波の振幅と位相を与える。基本波振幅は、変調率aに基づいて決定する。なお、基本波位相は0度とするため式(4)のaを0に設定する。以上の制約条件を用いて、鉄損中の渦電流損失が最小値となるように駆動信号のパルス波形(スイッチングパターン)を決定する。 Using this evaluation function, the pulse waveform (switching pattern) of the drive signal is determined. As a constraint condition at this time, the amplitude and phase of the fundamental wave included in the drive signal are given. The fundamental wave amplitude is determined based on the modulation factor a. In addition, in order to set the fundamental wave phase to 0 degree, a 1 in Expression (4) is set to 0. Using the above constraint conditions, the pulse waveform (switching pattern) of the drive signal is determined so that the eddy current loss in the iron loss becomes the minimum value.

図4は、変調率aに対する電気角60度以上120度以下の範囲内のパルス割合の対応関係の例を示す図である。   FIG. 4 is a diagram illustrating an example of a correspondence relationship between pulse ratios within a range of electrical angles of 60 degrees to 120 degrees with respect to the modulation rate a.

例えば、総パルス数が5である場合、変調率aが0.7を超える程度までは、図5に示すように、電気角60度以上120度以下の範囲のパルス割合が100%となるように駆動信号が生成される。そして、変調率aが0.72を超えたあたりで、電気角60度以上120度以下の範囲のパルス割合が0となる駆動信号を生成するように制御される。   For example, when the total number of pulses is 5, until the modulation rate a exceeds 0.7, as shown in FIG. 5, the pulse ratio in the range of electrical angle of 60 degrees or more and 120 degrees or less is 100%. A drive signal is generated. Then, when the modulation rate a exceeds 0.72, control is performed so as to generate a drive signal in which the pulse ratio in the range of electrical angle of 60 degrees to 120 degrees becomes zero.

また例えば、総パルス数が27である場合、図6(a)に示すように、変調率aが0〜0.14の範囲では電気角60度以上120度以下の範囲のパルス割合が100%となるように駆動信号が生成される。そして、変調率aが増加するにつれて、図6(b)に示すように、段階的にパルス割合を減少させ、電気角60度未満又は120を超える範囲に一部のパルスが含まれるような駆動信号を生成する。さらに、変調率aが0.72を超えたあたりで、電気角60度以上120度以下の範囲のパルス割合が最小となる駆動信号を生成するように制御される。   Further, for example, when the total number of pulses is 27, as shown in FIG. 6A, when the modulation rate a is in the range of 0 to 0.14, the pulse ratio in the range of electrical angle of 60 degrees to 120 degrees is 100%. A drive signal is generated so that Then, as the modulation rate a increases, as shown in FIG. 6B, the pulse rate is decreased stepwise, and the driving is such that some pulses are included in a range of less than 60 degrees or more than 120 electrical angles. Generate a signal. Further, when the modulation rate a exceeds 0.72, control is performed so as to generate a drive signal that minimizes the pulse ratio in the range of electrical angles of 60 degrees to 120 degrees.

パルス生成器424において生成された駆動信号はドライバ回路404によって増幅等されて電力変換器300に入力される。ドライバ回路404は、下アームを駆動する場合、パルス状の変調波の信号を増幅してドライブ信号として、対応する下アームのスイッチング素子(IGBT)のゲート電極にドライブ信号を印加する。また、ドライバ回路404は、上アームを駆動する場合、パルス状の変調波の信号の基準電位のレベルを上アームの基準電位のレベルにシフトしてからパルス状の変調波の信号を増幅し、これをドライブ信号として対応する上アームのスイッチング素子(IGBT)のゲート電極に印加する。これにより、電力変換器300の各スイッチング素子(IGBT)は、入力された駆動信号に基づいてスイッチングされる。このスイッチングによって電源回路200から供給される直流電力が電気角で2π/3度毎ずらされたU相、V相、W相の駆動電圧Vu,Vv,Vwに変換され、3相交流モータであるモータ100に供給される。   The drive signal generated in the pulse generator 424 is amplified by the driver circuit 404 and input to the power converter 300. When driving the lower arm, the driver circuit 404 amplifies the pulsed modulated wave signal and applies the drive signal to the gate electrode of the corresponding switching element (IGBT) of the lower arm as a drive signal. Further, when driving the upper arm, the driver circuit 404 amplifies the pulsed modulated wave signal after shifting the reference potential level of the pulsed modulated wave signal to the reference potential level of the upper arm, This is applied as a drive signal to the gate electrode of the corresponding upper arm switching element (IGBT). Thereby, each switching element (IGBT) of power converter 300 is switched based on the inputted drive signal. By this switching, the DC power supplied from the power supply circuit 200 is converted into U-phase, V-phase, and W-phase drive voltages Vu, Vv, and Vw that are shifted by 2π / 3 degrees in electrical angle to form a three-phase AC motor. Supplied to the motor 100.

本実施の形態のように、電気角60度以上120度以下の範囲にパルスが集中するように駆動信号を発生させることによって、モータに印加される電圧には従来よりも高い次数の高調波成分を含むようになる。これは、あたかも電力変換器300のスイッチングのパルス数が増加したかのように振る舞い、モータ100における損失、特に鉄損を抑制することを可能とする。   As in the present embodiment, the drive signal is generated so that the pulses are concentrated in the range of electrical angle of 60 degrees or more and 120 degrees or less, whereby the voltage applied to the motor has higher order harmonic components than the conventional one. It comes to include. This behaves as if the number of switching pulses of the power converter 300 is increased, and makes it possible to suppress loss in the motor 100, particularly iron loss.

図7は、従来の三角波比較PWM法により駆動信号を生成した場合と本願の構成により駆動信号を生成した場合とにおいて、電気半周期に含まれるパルス数に対するモータ100での損失割合を比較した結果を示す。図8から明らかなように、本願の構成を採用することによって、すべてのパルス数においてモータ100での損失を低減することができる。   FIG. 7 shows the result of comparing the loss ratio in the motor 100 with respect to the number of pulses included in the electrical half cycle when the drive signal is generated by the conventional triangular wave comparison PWM method and when the drive signal is generated by the configuration of the present application. Indicates. As is apparent from FIG. 8, by adopting the configuration of the present application, it is possible to reduce the loss in the motor 100 for all the pulse numbers.

10 レゾルバ、12 電流センサ、20 バッテリ、22 平滑コンデンサ、60 電気角、100 モータ、200 電源回路、300 電力変換器、400 電力変換器制御装置、402 制御回路、404 ドライバ回路、406 角速度演算器、408 3相/dq軸変換器、410 電流指令生成器、412 電流制御器、414 パルス数決定器、416 駆動信号生成器、420 電圧位相差演算器、422 変調率演算器、424 パルス生成器。   10 resolver, 12 current sensor, 20 battery, 22 smoothing capacitor, 60 electrical angle, 100 motor, 200 power supply circuit, 300 power converter, 400 power converter control device, 402 control circuit, 404 driver circuit, 406 angular velocity calculator, 408 3 phase / dq axis converter, 410 current command generator, 412 current controller, 414 pulse number determiner, 416 drive signal generator, 420 voltage phase difference calculator, 422 modulation factor calculator, 424 pulse generator.

Claims (4)

スイッチング素子を備えた3相フルブリッジ型の電力変換器の各相の前記スイッチング素子に対して駆動電圧を出力する電力変換器制御装置であって、
電気1周期中のパルス数を決定するパルス数決定器と、
前記電圧の変調率と位相差を決定し、前記変調率及び前記位相差に応じて前記駆動電圧を生成する駆動信号生成器と、
を備え、
前記駆動信号生成器は、電気半周期中の全パルス数に対する60度〜120度の範囲内のパルス数の割合であるパルス割合を前記変調率の増加に伴って減少させることを特徴とする電力変換器制御装置。
A power converter control device that outputs a driving voltage to the switching element of each phase of a three-phase full-bridge type power converter including a switching element,
A pulse number determiner for determining the number of pulses in one electrical cycle;
A drive signal generator that determines a modulation rate and a phase difference of the voltage, and generates the drive voltage according to the modulation rate and the phase difference;
With
The drive signal generator reduces a pulse ratio, which is a ratio of the number of pulses within a range of 60 degrees to 120 degrees with respect to the total number of pulses in an electrical half cycle, as the modulation rate increases. Converter control device.
請求項1に記載の電力変換器制御装置であって、
前記駆動信号生成器は、前記変調率の増加に伴って前記パルス割合を100%から減少させることを特徴とする電力変換器制御装置。
The power converter control device according to claim 1,
The drive signal generator is configured to reduce the pulse rate from 100% as the modulation rate increases.
請求項1又は2に記載の電力変換器制御装置であって、
前記駆動信号生成器は、電気1周期のパルス数を1パルス以上とし、前記パルス割合を前記変調率に対して段階的に切り替えることを特徴とする電力変換器制御装置。
The power converter control device according to claim 1 or 2,
The drive signal generator sets the number of pulses in one electrical cycle to 1 pulse or more, and switches the pulse rate stepwise with respect to the modulation rate.
3相モータと、
スイッチング素子を備えた3相フルブリッジ型の電力変換器の各相の前記スイッチング素子に対して駆動電圧を出力する電力変換器制御装置と、
を備え、前記3相モータを前記電力変換器制御装置によって制御するモータシステムであって、
前記電力変換器制御装置は、
電気1周期中のパルス数を決定するパルス数決定器と、
前記電圧の変調率と位相差を決定し、前記変調率及び前記位相差に応じて前記駆動電圧を生成する駆動信号生成器と、
を備え、
前記駆動信号生成器は、電気半周期中の全パルス数に対する60度〜120度の範囲内のパルス数の割合であるパルス割合を前記変調率の増加に伴って減少させることを特徴とするモータシステム。
A three-phase motor,
A power converter control device that outputs a drive voltage to the switching element of each phase of a three-phase full-bridge type power converter including a switching element;
A motor system that controls the three-phase motor by the power converter control device,
The power converter control device includes:
A pulse number determiner for determining the number of pulses in one electrical cycle;
A drive signal generator that determines a modulation rate and a phase difference of the voltage, and generates the drive voltage according to the modulation rate and the phase difference;
With
The drive signal generator reduces a pulse ratio, which is a ratio of the number of pulses within a range of 60 degrees to 120 degrees with respect to the total number of pulses in an electrical half cycle, as the modulation rate increases. system.
JP2014030932A 2014-02-20 2014-02-20 Power converter control device and motor system including the same Active JP5986595B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014030932A JP5986595B2 (en) 2014-02-20 2014-02-20 Power converter control device and motor system including the same
PCT/JP2015/052599 WO2015125586A1 (en) 2014-02-20 2015-01-22 Power converter control apparatus and motor system having the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014030932A JP5986595B2 (en) 2014-02-20 2014-02-20 Power converter control device and motor system including the same

Publications (2)

Publication Number Publication Date
JP2015156755A true JP2015156755A (en) 2015-08-27
JP5986595B2 JP5986595B2 (en) 2016-09-06

Family

ID=52574398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014030932A Active JP5986595B2 (en) 2014-02-20 2014-02-20 Power converter control device and motor system including the same

Country Status (2)

Country Link
JP (1) JP5986595B2 (en)
WO (1) WO2015125586A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017200380A (en) * 2016-04-28 2017-11-02 トヨタ自動車株式会社 Automobile
JP2017200379A (en) * 2016-04-28 2017-11-02 トヨタ自動車株式会社 Automobile
US10850636B2 (en) 2016-12-09 2020-12-01 Denso Corporation Drive device, vehicle, and control method for drive device
JP2021056042A (en) * 2019-09-27 2021-04-08 太陽誘電株式会社 Method and device for calculating iron loss

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6439771B2 (en) 2016-10-19 2018-12-19 トヨタ自動車株式会社 Driving device and automobile
JP6500872B2 (en) 2016-10-19 2019-04-17 トヨタ自動車株式会社 Drive and car
CN111697817B (en) * 2020-06-18 2023-05-12 中车长春轨道客车股份有限公司 Electromagnetic interference resistant device of motor train unit inverter

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5463300A (en) * 1993-08-26 1995-10-31 Oximberg; Carol A. AC motor controller with 180 degree conductive switches
WO2011135694A1 (en) * 2010-04-28 2011-11-03 株式会社 日立製作所 Power conversion device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4939127B2 (en) * 2006-06-30 2012-05-23 株式会社豊田中央研究所 AC motor drive control device and drive control method
JP5558752B2 (en) 2009-07-30 2014-07-23 日立オートモティブシステムズ株式会社 Power converter
JP2012120250A (en) 2010-11-29 2012-06-21 Railway Technical Research Institute Waveform generation method and waveform generation apparatus
MX2014003616A (en) * 2011-09-30 2014-06-05 Mitsubishi Electric Corp Power conversion control device, power conversion control method, electric motor and vehicle drive system.

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5463300A (en) * 1993-08-26 1995-10-31 Oximberg; Carol A. AC motor controller with 180 degree conductive switches
WO2011135694A1 (en) * 2010-04-28 2011-11-03 株式会社 日立製作所 Power conversion device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017200380A (en) * 2016-04-28 2017-11-02 トヨタ自動車株式会社 Automobile
JP2017200379A (en) * 2016-04-28 2017-11-02 トヨタ自動車株式会社 Automobile
US10103656B2 (en) 2016-04-28 2018-10-16 Toyota Jidosha Kabushiki Kaisha Vehicle with controller for performing pulse width modulation control
US10850636B2 (en) 2016-12-09 2020-12-01 Denso Corporation Drive device, vehicle, and control method for drive device
JP2021056042A (en) * 2019-09-27 2021-04-08 太陽誘電株式会社 Method and device for calculating iron loss
JP7373959B2 (en) 2019-09-27 2023-11-06 太陽誘電株式会社 Iron loss calculation method and calculation device

Also Published As

Publication number Publication date
WO2015125586A1 (en) 2015-08-27
JP5986595B2 (en) 2016-09-06

Similar Documents

Publication Publication Date Title
JP5986595B2 (en) Power converter control device and motor system including the same
JP6167982B2 (en) Motor drive device and electric compressor
JP6194466B2 (en) Motor drive device
JP5594301B2 (en) Electric motor drive system
JP2007202365A (en) Power converter device and motor drive unit using it
JP2018064313A (en) Control arrangement and control method of ac motor, and ac motor drive system
JP2015019458A (en) Inverter device and electric vehicle
JP2019129573A (en) Controller of ac motor
JPWO2018139295A1 (en) Inverter control device
KR20150094432A (en) Power apparatus, controlling method thereof and motor driving apparatus therein
JP5845115B2 (en) Motor control device
JP7280170B2 (en) Motor control device, motor control method, hybrid system, boost converter system, electric power steering system
JP7158573B2 (en) POWER CONVERSION DEVICE AND ELECTRIC VEHICLE SYSTEM INCLUDING THE SAME
JP2018057131A (en) Flywheel power storage system
JP5223280B2 (en) Turbocharger control system with electric motor
JP2019161704A (en) Motor controller
JP5808210B2 (en) Motor control device and motor control method
JP2004289927A (en) Motor controller
JP5888148B2 (en) Rotating machine control device
WO2016189671A1 (en) Motor control device and method for stopping same
JP2005033932A (en) Motor controller
JP2010268599A (en) Control device for permanent magnet motor
JP2016005321A (en) Synchronous motor drive system
JP2006050705A (en) Motor control unit
Fernandes et al. Speed sensorless PMSM motor drive system based on four-switch three-phase converter

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150908

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160530

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20160607

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160805

R150 Certificate of patent or registration of utility model

Ref document number: 5986595

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250