JP2015154728A - Cell analyzing method and system - Google Patents

Cell analyzing method and system Download PDF

Info

Publication number
JP2015154728A
JP2015154728A JP2014030547A JP2014030547A JP2015154728A JP 2015154728 A JP2015154728 A JP 2015154728A JP 2014030547 A JP2014030547 A JP 2014030547A JP 2014030547 A JP2014030547 A JP 2014030547A JP 2015154728 A JP2015154728 A JP 2015154728A
Authority
JP
Japan
Prior art keywords
cell
cell culture
image
density
culture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014030547A
Other languages
Japanese (ja)
Inventor
田中 剛
Tsuyoshi Tanaka
剛 田中
松永 是
Tadashi Matsunaga
是 松永
達也 佐伯
Tatsuya Saeki
達也 佐伯
原田 学
Manabu Harada
学 原田
泰圭 林
Taikei Hayashi
泰圭 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MARCOM KK
Tokyo University of Agriculture and Technology NUC
Tokyo University of Agriculture
Malcom Co Ltd
Original Assignee
MARCOM KK
Tokyo University of Agriculture and Technology NUC
Tokyo University of Agriculture
Malcom Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MARCOM KK, Tokyo University of Agriculture and Technology NUC, Tokyo University of Agriculture, Malcom Co Ltd filed Critical MARCOM KK
Priority to JP2014030547A priority Critical patent/JP2015154728A/en
Publication of JP2015154728A publication Critical patent/JP2015154728A/en
Pending legal-status Critical Current

Links

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for simply measuring a cell culture density reaching to a high-density region using an imaging picture of a cell culture face without using an objective lens by an optical sensing system.
SOLUTION: A cell analyzing method images an obtained optical pattern based on the cultured cell concerned under transmitted illumination using a photosensor array adjacent to a cell culture face without passing through an objective lens, and measures a cell culture density using as an indicator an occupation area rate of the cell measured based on the optical pattern of a cell confluent part.
COPYRIGHT: (C)2015,JPO&INPIT

Description

本発明は、光センシングによる細胞解析方法及びそれに用いる装置に関する。   The present invention relates to a cell analysis method by optical sensing and an apparatus used therefor.

がん研究や再生医療の分野では、細胞を培養、増殖させて薬剤効果や遺伝子機能を評価することがよく行われている。例えば、がん研究では、細胞浸潤アッセイ、血管新生動態解析、抗がん剤評価、再生医療では、幹細胞増殖評価等において、細胞アッセイが汎用されている。
斯かる細胞アッセイにおいては、細胞の形状変化、増殖率などの細胞集団の時間変化に関する情報を得る細胞キネティック解析が行われる。細胞キネティック解析を行なう場合、細胞培養密度は主たる指標であり、例えはがん細胞アッセイにおいては、抗がん剤などの因子の影響を確認するために必須であり、また幹細胞アッセイでは培養中の幹細胞が正常な増殖能力を示すことを確認する上で必須の指標である。
したがって、培養容器内の細胞集団に対して、細胞培養密度の時間経過を追跡することが求められる。
In the fields of cancer research and regenerative medicine, it is often performed to evaluate the drug effect and gene function by culturing and proliferating cells. For example, cell assays are widely used in cancer research in cell invasion assays, angiogenesis kinetic analysis, anticancer drug evaluation, and regenerative medicine in stem cell proliferation evaluation.
In such a cell assay, cell kinetic analysis is performed to obtain information on time changes of a cell population such as cell shape change and proliferation rate. When performing cell kinetic analysis, cell culture density is the main indicator.For example, in cancer cell assays, it is essential to confirm the influence of factors such as anticancer agents. This is an indispensable index for confirming that stem cells exhibit normal proliferation ability.
Therefore, it is required to track the time course of the cell culture density for the cell population in the culture vessel.

従来、細胞密度や細胞数の測定は、培養容器内の細胞の顕微鏡観察により行われることが多く、例えば、観察対象を移動させる自動ステージと結像光学系を組み合わせた方法(特許文献1)や、低倍率での顕微鏡撮像に適した照明を組み合わせた方法(特許文献2)が知られているが、一度に撮像される顕微鏡視野はその拡大倍率に伴い小さくなっており、一度に広範囲の培養状態を確認することが困難であると云う問題がある。また、高密度領域における細胞密度計測については、専用プログラムが開発されているが、これらのソフトウェアプログラムは、顕微鏡画像を前提としたものであり、レンズレスイメージングで得られる画像に対しては、解析プログラムの十分な検討はなされていない。   Conventionally, cell density and cell number are often measured by microscopic observation of cells in a culture vessel. For example, a method (Patent Document 1) combining an automatic stage that moves an observation target and an imaging optical system is used. A method that combines illumination suitable for microscopic imaging at low magnification is known (Patent Document 2), but the microscopic field of view captured at a time decreases with the magnification, and a wide range of cultures are performed at once. There is a problem that it is difficult to confirm the state. In addition, dedicated programs have been developed for cell density measurement in the high-density region, but these software programs are based on the assumption of microscope images, and analysis is performed on images obtained by lensless imaging. The program has not been fully examined.

特開2010−60519号公報JP 2010-60519 A 特開2011−81082号公報JP 2011-81082 A

本発明は、光センシングシステムにより、対物レンズを介さずに細胞培養面をイメージングした画像(「レンズレス画像)とも称する)を用いて、高密度領域に至る細胞培養密度を簡易に測定する方法を提供することに関する。   The present invention provides a method for easily measuring a cell culture density reaching a high density region by using an image obtained by imaging a cell culture surface without using an objective lens (also referred to as a “lensless image”) using an optical sensing system. About providing.

本発明者らは、細胞培養面に近接させたフォトセンサアレイを用いて、細胞培養面を透過照明下で撮像して得られるレンズレス画像において、細胞集密部の光学パターンが計測対象領域に対して占める割合(細胞占有面積率)が、実際の細胞培養密度と良好に相関し、これを指標として細胞培養密度を測定できることを見出した。
細胞培養密度は、一般には、顕微鏡画像中で得られる明確な輪郭を持つ細胞像を前提とし、その計数によって算出されるものである。しかし、飛躍的な計測視野の拡大を実現するレンズレス画像においては、顕微鏡と同様に個別の細胞像を計数していくことは、特に高密度領域において困難であった。上記相関関係は、培養容器底面に占める細胞集密部に由来する散乱パターンの検出を前提とするものであり、これは細胞培養面全体の透過光情報を近接したフォトセンサアレイで取得、画像化することで、新たに見出されたものである。
In a lensless image obtained by imaging a cell culture surface under transmitted illumination using a photosensor array placed close to the cell culture surface, the present inventors set the optical pattern of the cell confluence in the measurement target region. It was found that the ratio of the cell occupying (cell occupying area ratio) correlates well with the actual cell culture density, and the cell culture density can be measured using this as an index.
The cell culture density is generally calculated on the basis of a cell image having a clear outline obtained in a microscope image. However, it is difficult to count individual cell images in a lensless image that realizes a dramatic increase in the measurement field of view, particularly in a high-density region. The above correlation is based on the detection of the scattering pattern derived from the cell confluence at the bottom of the culture vessel, which is obtained by imaging the transmitted light information of the entire cell culture surface with a close photosensor array and imaging it. By doing so, it was newly discovered.

すなわち、本発明は、以下の1)〜5)に係るものである。
1)細胞培養面に対物レンズを介さずに近接させたフォトセンサアレイを用いて、透過照明下、当該培養細胞に基づいて得られる光学パターンを撮像し、細胞集密部の光学パターンに基づき計測される細胞占有面積率を指標として細胞培養密度を測定する、細胞解析方法。
2)下記式により、細胞占有面積率から細胞培養密度を算出する、上記1)の細胞解析方法。
That is, the present invention relates to the following 1) to 5).
1) Using a photosensor array placed close to the cell culture surface without an objective lens, the optical pattern obtained based on the cultured cell is imaged under transmitted illumination, and measured based on the optical pattern of the cell confluence A cell analysis method for measuring a cell culture density using a cell occupying area ratio as an index.
2) The cell analysis method according to 1) above, wherein the cell culture density is calculated from the cell occupation area ratio according to the following formula.

3)細胞占有面積率が、下記式により算出される、上記1)又は2)の細胞解析方法。   3) The cell analysis method according to 1) or 2) above, wherein the cell occupation area ratio is calculated by the following formula.

4)培養容器内に存在する培養細胞の細胞情報をピクセルデータとして取得するフォトセンサアレイ、細胞培養面に対して透過照明する透過照明光学系、及び演算装置を含む細胞解析装置によって光学パターンが撮像される、上記1)〜3)の細胞解析方法。
5)培養容器内に存在する培養細胞の細胞情報をピクセルデータとして取得するフォトセンサアレイ、細胞培養面に対して透過照明する透過照明光学系、及び演算装置を含む、上記1)〜4)の細胞解析を行うための装置。
4) An optical pattern is imaged by a cell analysis device including a photosensor array that acquires cell information of cultured cells existing in a culture vessel as pixel data, a transmission illumination optical system that transmits and illuminates a cell culture surface, and an arithmetic unit. The cell analysis method of 1) to 3) above.
5) The above 1) to 4), including a photosensor array that acquires cell information of cultured cells existing in the culture vessel as pixel data, a transmission illumination optical system that transmits and illuminates the cell culture surface, and an arithmetic unit. A device for cell analysis.

本発明の装置によれば、従来の顕微鏡システムでは困難であった培養容器上の全細胞の迅速計測が可能である。そして、本発明の細胞解析方法によれば、高密度領域に至る細胞培養密度を、迅速且つ簡易に測定できる。したがって、本発明は、がん研究や再生医療の産業化の進行に伴って求められる、癌細胞浸潤アッセイや幹細胞増殖評価で必要とされる経時的な細胞集団の解析に有用である。   According to the apparatus of the present invention, it is possible to quickly measure all cells on a culture vessel, which is difficult with a conventional microscope system. According to the cell analysis method of the present invention, the cell culture density reaching the high density region can be measured quickly and easily. Therefore, the present invention is useful for analysis of cell populations over time required for cancer cell invasion assay and stem cell proliferation evaluation, which are required with the progress of industrialization of cancer research and regenerative medicine.

本発明の細胞解析装置の全体構成を示す断面図。Sectional drawing which shows the whole structure of the cell analyzer of this invention. 細胞解析装置の概念図とスキャン画像。上段:集光レンズを配置した細胞解析装置の概念図(a)とそれを用いて撮像した画像(b)、下段:集光レンズを使用しない細胞解析装置の概念図(c)とそれを用いて撮像した画像(d)Conceptual diagram and scan image of the cell analyzer. Upper: conceptual diagram (a) of a cell analyzer with a condensing lens and an image (b) imaged using it, lower: conceptual diagram (c) of a cell analyzer without a condensing lens, and using it Image (d) 本発明の細胞解析装置により撮像した画像と顕微鏡画像の撮像領域の比較。(a):顕微鏡画像、(b):レンズレス画像The comparison of the imaging area | region of the image imaged with the cell analyzer of this invention, and a microscope image. (A): Microscopic image, (b): Lensless image 本発明の細胞解析装置により撮像した画像と顕微鏡画像の比較。(a):顕微鏡画像、(b):レンズレス画像The comparison of the image imaged with the cell analyzer of this invention and a microscope image. (A): Microscopic image, (b): Lensless image 本発明の細胞解析装置により撮像した画像と顕微鏡画像の比較(12〜60時間)。上段:レンズレス画像、下段:顕微鏡画像Comparison between an image captured by the cell analyzer of the present invention and a microscope image (12 to 60 hours). Upper: Lensless image, Lower: Microscope image レンズレス画像と顕微鏡画像の輝度極大点計数に基づく細胞培養密度の関係を示すグラフ。The graph which shows the relationship of the cell culture density based on the brightness | luminance maximum point count of a lensless image and a microscope image. 細胞占有面積率(%)と実際の細胞培養密度との関係を示すグラフ。The graph which shows the relationship between a cell occupation area rate (%) and an actual cell culture density.

本発明の細胞解析方法は、対物レンズを介さない光センシングシステムにより、細胞培養面を透過照明下で撮像して得られる画像(「レンズレス画像」)を解析するものである。
当該細胞解析に用いられる装置は、光センシングシステムとして、培養容器内に存在する培養細胞の細胞情報をピクセルデータとして取得するフォトセンサアレイが採用され、これと、細胞培養面に対して透過照明する透過照明光学系、及び演算装置から構成される。図1に、一実施形態である細胞解析装置の構成例を示す。
The cell analysis method of the present invention analyzes an image (“lensless image”) obtained by imaging a cell culture surface under transmitted illumination using an optical sensing system that does not involve an objective lens.
The device used for the cell analysis employs a photosensor array that acquires cell information of cultured cells existing in the culture vessel as pixel data as an optical sensing system, and transmits and illuminates the cell culture surface with this. It consists of a transmission illumination optical system and an arithmetic unit. In FIG. 1, the structural example of the cell analyzer which is one Embodiment is shown.

図1に示されるように、培養容器1の近接、ここでは下部にフォトセンサ2が配置され、培養容器1の上方には、透過照明光源3と集光レンズ4が配置されている。
ここで、培養容器としては、細胞の平面接着培養ができるものであればく、例えばディッシュ、フラスコ、マルチウェルプレート等が使用できる。
As shown in FIG. 1, a photosensor 2 is disposed in the vicinity of the culture vessel 1, here in the lower portion, and a transmitted illumination light source 3 and a condenser lens 4 are disposed above the culture vessel 1.
Here, any culture vessel may be used as long as it can perform planar adhesion culture of cells. For example, a dish, a flask, a multiwell plate, or the like can be used.

フォトセンサアレイとしては、ラインセンサが使用される。ラインセンサには、光電変換素子が線状に一列又は複数列に配置されたものがあるが、本発明においてはその何れでもよい。ラインセンサによる一次元走査撮像によれば、培養容器の全領域を高分解能で撮像することが可能である。
ここで、用いられる光電変換素子としては、CCD(Charge Coupled Device)、CMOS(Complementary Metal Oxide Semiconductor)等のイメージ素子が使用可能であり、10μm/pixel以下の解像度を有するものが好ましい。
A line sensor is used as the photosensor array. In some line sensors, photoelectric conversion elements are linearly arranged in one or a plurality of rows, and any of them may be used in the present invention. According to one-dimensional scanning imaging with a line sensor, it is possible to image the entire region of the culture vessel with high resolution.
Here, as the photoelectric conversion element to be used, an image element such as a CCD (Charge Coupled Device) or a CMOS (Complementary Metal Oxide Semiconductor) can be used, and an element having a resolution of 10 μm / pixel or less is preferable.

また、当該センサ又は培養容器には、被写体(培養容器)又はセンサを移動するための移動手段5が適宜設けられる。   In addition, the sensor or the culture container is appropriately provided with a subject (culture container) or a moving means 5 for moving the sensor.

透過照明光学系は、光源としてLEDを用いるのが好ましく、波長400nm以上500nm以下の範囲のLEDを用いるのがより好ましい。   The transmission illumination optical system preferably uses an LED as a light source, and more preferably uses an LED having a wavelength in the range of 400 nm to 500 nm.

また、LEDを光源として用いた場合、集光レンズとして両凸レンズを用い、平行光照射条件下での撮像とするのが好ましい。非平行光照射条件で、ラインスキャンした場合、取得画像における受光領域は長方形状であるが(図2(d))、集光レンズを配置して平行光照射条件で撮像を行うことにより、取得画像においてレンズ有効径に対応する円形状の受光領域が得られ(図2(b))、レンズ径を拡大することにより、計測対象容器全面の撮像が可能となる(図3(b))。したがって、集光レンズとしては、例えば、有効径60mm、焦点距離63mmの球面凸レンズを用い、光源を焦点距離の位置に置くことができる。   Moreover, when using LED as a light source, it is preferable to use a biconvex lens as a condensing lens and to image under parallel light irradiation conditions. When line scanning is performed under non-parallel light irradiation conditions, the light-receiving area in the acquired image is rectangular (FIG. 2D), but it is acquired by arranging a condenser lens and performing imaging under parallel light irradiation conditions. A circular light-receiving region corresponding to the effective lens diameter is obtained in the image (FIG. 2B), and by enlarging the lens diameter, the entire surface of the measurement target container can be imaged (FIG. 3B). Therefore, as the condenser lens, for example, a spherical convex lens having an effective diameter of 60 mm and a focal length of 63 mm can be used, and the light source can be placed at the focal length.

演算装置は、取得されたピクセルデータを演算処理等するための装置(コンピュータ)であり、後述する細胞占有面積率、細胞培養密度を演算処理するためのプログラムの他、照明光の強度やレンズの焦点位置、センサの駆動位置等を制御するためのプログラムを含むことができる。   The arithmetic device is a device (computer) for performing arithmetic processing on the acquired pixel data, and in addition to a program for arithmetic processing of the cell occupation area ratio and cell culture density described later, the intensity of illumination light and the lens A program for controlling the focal position, the driving position of the sensor, and the like can be included.

斯様に、本発明の細胞解析装置によれば、対物レンズによる拡大を行わず、ラインセンサによる一次元走査撮像(レンズレスイメージング)を行うことで、計測対象容器全面の広域イメージングが可能である(図3(b)、図4(b)参照)。そして、その画像は、細胞増殖と共に細胞占有面積が増加し、顕微鏡画像と同様に、細胞増殖の追跡が可能である(図5上段参照)。   Thus, according to the cell analysis device of the present invention, wide-area imaging of the entire surface of the measurement target container is possible by performing one-dimensional scanning imaging (lensless imaging) with a line sensor without performing magnification with an objective lens. (See FIGS. 3B and 4B). The image increases the cell occupation area as the cell grows, and the cell growth can be traced similarly to the microscope image (see the upper part of FIG. 5).

尚、本発明の細胞解析方法において、解析対象となる細胞の種類は特に限定されず、試験の目的に応じて適宜選択すればよい。好ましくは、哺乳動物細胞であり、哺乳動物としては、例えば、ネコ、イヌ、ウマ、ブタ、ウシ、ヤギ、羊、齧歯類(例えば、マウスやラット、ウサギ、リス、クマ)、霊長類(例えば、チンパンジー、サル、ゴリラ、ヒト)、およびそれらのトランスジェニック種を含む。斯かる細胞は、初代培養哺乳動物細胞、樹立された哺乳動物細胞、付着細胞、不死化細胞株、幹細胞由来の分化細胞、幹細胞または組織から新たに単離した細胞等、何れのものでも良い。   In the cell analysis method of the present invention, the type of cell to be analyzed is not particularly limited, and may be appropriately selected according to the purpose of the test. Preferred are mammalian cells. Examples of mammals include cats, dogs, horses, pigs, cows, goats, sheep, rodents (eg, mice, rats, rabbits, squirrels, bears), primates ( For example, chimpanzees, monkeys, gorillas, humans), and their transgenic species. Such cells may be any of primary cultured mammalian cells, established mammalian cells, adherent cells, immortal cell lines, differentiated cells derived from stem cells, cells newly isolated from stem cells or tissues, and the like.

本発明の細胞解析装置により撮像されるレンズレス画像を用いることにより、細胞数が1×10cells/cm未満の低密度領域においては、画像中、任意の閾値設定より指定した局所領域内で最も輝度の高い箇所、すなわち画像中の輝度極大箇所の検出により、細胞像を計数し、細胞培養密度を計測することができる。 By using a lensless image captured by the cell analysis apparatus of the present invention, in a low density region where the number of cells is less than 1 × 10 4 cells / cm 2, within the local region designated by an arbitrary threshold setting in the image The cell image density can be counted and the cell culture density can be measured by detecting the highest luminance portion, that is, the maximum luminance portion in the image.

一方、細胞数が1×10cells/cmを超える細胞集密部(高密度領域)については、輝度極大箇所の検出閾値が適切に設定できないため、個々のシグナル計数の誤差が大きくなり(図6)、上記の方法によっては正確な測定は不可能である。
斯かる場合において、本発明者らは、下記式によって算出される、細胞集密部の光学パターンが計測対象領域に対して占める割合(細胞占有面積率)に着目した。
On the other hand, for a cell confluent portion (high density region) where the number of cells exceeds 1 × 10 4 cells / cm 2 , the detection threshold of the luminance maximum point cannot be set appropriately, and thus the error of individual signal count increases ( 6), accurate measurement is not possible by the above method.
In such a case, the present inventors paid attention to the ratio (cell occupation area ratio) that the optical pattern of the cell confluent portion occupies with respect to the measurement target area, which is calculated by the following formula.

ここで、細胞集密部(px)は、培養容器底面に存在する細胞に由来してレンズレス画像中に発生した散乱パターンが生じている領域のピクセル数である。散乱パターンの周縁部は、細胞の存在しない背景に比べて輝度の低い領域に囲まれるため、その内側のピクセル数が計測される。また、計測対象領域(px)は、画像中の培養容器底面に対応する領域のピクセル数である。
そして、斯かる細胞占有面積率(%)と、顕微鏡観察によって測定された細胞培養密度との関係を検討・解析したところ、図7に示すように、細胞占有面積率と細胞培養密度には、良好な相関があることを見出した。
Here, the cell confluence (px) is the number of pixels in a region where the scattering pattern generated in the lensless image is generated from the cells existing on the bottom surface of the culture vessel. Since the peripheral portion of the scattering pattern is surrounded by a region having a lower luminance than the background in which no cells exist, the number of pixels inside is measured. The measurement target region (px) is the number of pixels in the region corresponding to the bottom surface of the culture vessel in the image.
And when examining and analyzing the relationship between the cell occupation area ratio (%) and the cell culture density measured by microscopic observation, as shown in FIG. We found that there is a good correlation.

すなわち、得られたレンズレス画像より、細胞集密部(px)の面積と、計測対象領域(px)の面積を求め、細胞占有面積率(%)を算出して、以下の関係式を用いることにより、高密度領域における細胞培養密度を測定することができる。式中のaは、計測対象細胞種による係数であり、性状の大きく異なる細胞種を対象とした計測の際には補正した数値を用いることで対応できる。   That is, from the obtained lensless image, the area of the cell confluence (px) and the area of the measurement target region (px) are obtained, the cell occupation area ratio (%) is calculated, and the following relational expression is used. Thus, the cell culture density in the high density region can be measured. “A” in the formula is a coefficient depending on the cell type to be measured, and can be dealt with by using a corrected numerical value when measuring a cell type having greatly different properties.

斯くして得られる、細胞培養密度の測定によれば、培養容器内の細胞集団に対して、細胞培養密度の時間経過を追跡することが可能となり、がん細胞アッセイにおける抗がん剤などの因子の影響評価や、幹細胞アッセイにおける培養中の幹細胞が正常な増殖能力を示すことの確認が実施できるようになる。   According to the measurement of the cell culture density obtained in this manner, it becomes possible to trace the time course of the cell culture density for the cell population in the culture container. Evaluation of the influence of factors and confirmation that stem cells in culture exhibit normal growth ability in a stem cell assay can be performed.

実施例1 レンズレスラインスキャンによる画像の取得
ラインセンサ(解像度:5.3μm/pixel)、集光レンズ(焦点距離:30mm,有効径:22mm)、LED(波長:465nm)を用い、HeLa細胞を接着培養した直径35mmの培養ディッシュを計測対象としてラインセンサの上部に配置し、レンズレスラインスキャンによる撮像系を構築した。
LEDを点光源とみなしてレンズの焦点位置に配置し、平行光照射条件で撮像を行ったところ(図2(a))、取得画像において、レンズ有効径22mmに対応する円形状の受光領域であった(図2(b))。
一方、培養ディッシュ上方に設置したLEDによる、集光レンズを用いない非平行光照射条件でラインスキャン撮像を行ったところ(図2(c))、取得画像における受光領域は長方形状であった(図2(d))。
さらに、照明に使用するレンズの有効径を60mmに拡大したレンズレスラインスキャンシステムにより撮像したところ、INCellAnalyzerを用いて取得した計測対象ディッシュ全面の明視野顕微鏡画像(対物レンズ倍率:4倍,視野数:23×17,図3(a))に対応する広域のホールディッシュ撮像が可能であった(図3(b))。
また、同領域の明視野顕微鏡画像(図4(a))と比較したところ、レンズレスラインスキャンによる取得画像において、細胞透過光像が確認された(図4(b))。
Example 1 Acquisition of Image by Lensless Line Scan Using a line sensor (resolution: 5.3 μm / pixel), a condenser lens (focal length: 30 mm, effective diameter: 22 mm), and an LED (wavelength: 465 nm), HeLa cells were A culture dish having a diameter of 35 mm, which was adhered and cultured, was placed on the upper part of the line sensor as a measurement target, and an imaging system based on lensless line scanning was constructed.
When the LED was regarded as a point light source and placed at the focal position of the lens and imaged under parallel light irradiation conditions (FIG. 2A), in the acquired image, a circular light receiving region corresponding to a lens effective diameter of 22 mm was obtained. (FIG. 2 (b)).
On the other hand, when line scan imaging was performed under non-parallel light irradiation conditions without using a condenser lens using an LED installed above the culture dish (FIG. 2C), the light receiving region in the acquired image was rectangular ( FIG. 2 (d)).
Furthermore, when the effective diameter of the lens used for illumination was imaged with a lensless line scan system expanded to 60 mm, a bright field microscope image (objective lens magnification: 4 times, number of fields of view) of the entire dish to be measured obtained using INCellAnalyzer : 23 × 17, wide-area hold dish imaging corresponding to FIG. 3A was possible (FIG. 3B).
Moreover, when compared with the bright field microscope image (FIG. 4A) of the same region, a cell transmission light image was confirmed in the acquired image by the lensless line scan (FIG. 4B).

実施例2 レンズレス画像に基づくHeLa細胞の増殖追跡の実施
DMEM(10%FBS,1%PS,1%NEAA)を加えた培養ディッシュ(直径35mm)にHeLa細胞を3×10cells/mLの濃度で播種し、37℃で12時間インキュベートすることで底面に接着させた。培養中のディッシュに対し、LED(波長:465nm)点光源と両凸レンズ(レンズ径:60mm)を用いて調節した平行光照射下で、ラインセンサを走査させることで、レンズレス画像を取得した。同様の計測を12時間毎に播種後60時間後まで実施した。
得られたレンズレス画像において、接着培養細胞に由来するシグナルが確認され、時間経過にともなって細胞占有面積が増加する様子を観察可能であった(図5)。
Example 2 Implementation of HeLa cell growth tracking based on lensless images HeLa cells were added to a culture dish (35 mm in diameter) to which DMEM (10% FBS, 1% PS, 1% NEAA) was added at 3 × 10 4 cells / mL. It seed | inoculated by the density | concentration and it was made to adhere to the bottom face by incubating at 37 degreeC for 12 hours. A lensless image was acquired by scanning the dish in culture under the parallel light irradiation adjusted using an LED (wavelength: 465 nm) point light source and a biconvex lens (lens diameter: 60 mm). The same measurement was carried out every 12 hours until 60 hours after sowing.
In the obtained lensless image, a signal derived from the adherent cultured cells was confirmed, and it was possible to observe how the cell occupation area increased with time (FIG. 5).

実施例3 細胞培養密度の測定
上記レンズレス画像において、細胞は中心部が周辺より明るいパターンとして可視化される。そこで、顕微鏡画像と同様に、輝度極大点の計数に基づく、細胞密度計測を試みた。その結果、1×10cells/cmを超える密度領域については個々のシグナル計数の誤差が大きくなることが確認された(図6)。
そこで、レンズレス画像中で得られる細胞集密部の計測対象領域に対して占める割合を以下により算出した。
Example 3 Measurement of Cell Culture Density In the lensless image, cells are visualized as a pattern whose center is brighter than the periphery. Therefore, as in the case of the microscopic image, an attempt was made to measure the cell density based on the count of the luminance maximum points. As a result, it was confirmed that the error of individual signal counts increased in the density region exceeding 1 × 10 4 cells / cm 2 (FIG. 6).
Therefore, the ratio of the cell confluent portion obtained in the lensless image to the measurement target region was calculated as follows.

一方、実際の細胞培養密度を同領域の顕微鏡画像中の細胞像を計数することで計測した。
その結果、当該細胞占有面積率(%)が、実際の細胞培養密度と高い相関を持つことが示唆された (図7)。
On the other hand, the actual cell culture density was measured by counting cell images in a microscopic image of the same region.
As a result, it was suggested that the cell occupation area ratio (%) was highly correlated with the actual cell culture density (FIG. 7).

1 培養容器
2 フォトセンサ
3 透過照明光源
4 集光レンズ
5 移動手段
DESCRIPTION OF SYMBOLS 1 Culture container 2 Photosensor 3 Transmission illumination light source 4 Condensing lens 5 Moving means

Claims (5)

細胞培養面に対物レンズを介さずに近接させたフォトセンサアレイを用いて、透過照明下、当該培養細胞に基づいて得られる光学パターンを撮像し、細胞集密部の光学パターンに基づき計測される細胞占有面積率を指標として細胞培養密度を測定する、細胞解析方法。   Using a photosensor array that is brought close to the cell culture surface without using an objective lens, an optical pattern obtained based on the cultured cells is imaged under transmitted illumination, and measured based on the optical pattern of the cell confluence. A cell analysis method for measuring a cell culture density using a cell occupation area ratio as an index. 下記式により、細胞占有面積率から細胞培養密度を算出する、請求項1記載の細胞解析方法。
The cell analysis method according to claim 1, wherein the cell culture density is calculated from the cell occupation area ratio by the following formula.
細胞占有面積率が、下記式により算出される、請求項1又は2記載の細胞解析方法。
The cell analysis method according to claim 1 or 2, wherein the cell occupation area ratio is calculated by the following formula.
培養容器内に存在する培養細胞の細胞情報をピクセルデータとして取得するフォトセンサアレイ、細胞培養面に対して透過照明する透過照明光学系、及び演算装置を含む細胞解析装置によって光学パターンが撮像される、請求項1〜3のいずれか1項記載の細胞解析方法。   Optical patterns are imaged by a cell analysis device including a photosensor array that acquires cell information of cultured cells existing in a culture vessel as pixel data, a transmission illumination optical system that transmits and illuminates a cell culture surface, and an arithmetic unit. The cell analysis method according to any one of claims 1 to 3. 培養容器内に存在する培養細胞の細胞情報をピクセルデータとして取得するフォトセンサアレイ、細胞培養面に対して透過照明する透過照明光学系、及び演算装置を含む、請求項1〜4のいずれか1項記載の細胞解析を行うための装置。   5. A photosensor array that acquires cell information of cultured cells existing in the culture vessel as pixel data, a transmission illumination optical system that transmits and illuminates the cell culture surface, and an arithmetic unit. The apparatus for performing the cell analysis of description.
JP2014030547A 2014-02-20 2014-02-20 Cell analyzing method and system Pending JP2015154728A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014030547A JP2015154728A (en) 2014-02-20 2014-02-20 Cell analyzing method and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014030547A JP2015154728A (en) 2014-02-20 2014-02-20 Cell analyzing method and system

Publications (1)

Publication Number Publication Date
JP2015154728A true JP2015154728A (en) 2015-08-27

Family

ID=54774507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014030547A Pending JP2015154728A (en) 2014-02-20 2014-02-20 Cell analyzing method and system

Country Status (1)

Country Link
JP (1) JP2015154728A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101829551B1 (en) * 2016-10-11 2018-02-14 주식회사 바이오원 Cell counting apparatus and cell counting method using the same
WO2018061131A1 (en) * 2016-09-28 2018-04-05 オリンパス株式会社 Cell status assessment device
US10795142B2 (en) 2017-05-12 2020-10-06 Olympus Corporation Cell-image acquisition device
JP2021090392A (en) * 2019-12-11 2021-06-17 株式会社マルコム Analysis system
CN113337385A (en) * 2021-08-05 2021-09-03 于吉(南京)生物科技有限公司 Automatic monitoring method and device for cell culture

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06311879A (en) * 1993-03-15 1994-11-08 Nec Corp Biosensor
JP2007124914A (en) * 2005-11-01 2007-05-24 Olympus Corp Method for judging passage of cultured cell
JP2010038593A (en) * 2008-07-31 2010-02-18 Hiroshima Univ Micromatter detecting method and micromatter detector
WO2012119114A2 (en) * 2011-03-03 2012-09-07 California Institute Of Technology E-petri dishes, devices, and systems

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06311879A (en) * 1993-03-15 1994-11-08 Nec Corp Biosensor
JP2007124914A (en) * 2005-11-01 2007-05-24 Olympus Corp Method for judging passage of cultured cell
JP2010038593A (en) * 2008-07-31 2010-02-18 Hiroshima Univ Micromatter detecting method and micromatter detector
WO2012119114A2 (en) * 2011-03-03 2012-09-07 California Institute Of Technology E-petri dishes, devices, and systems

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BIOSENSORS & BIOELECTRONICS, 1996, 11(1/2):81-90, JPN6017045828, ISSN: 0003693056 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018061131A1 (en) * 2016-09-28 2018-04-05 オリンパス株式会社 Cell status assessment device
WO2018062125A1 (en) * 2016-09-28 2018-04-05 オリンパス株式会社 Cell status assessment device
CN109790505A (en) * 2016-09-28 2019-05-21 奥林巴斯株式会社 Cell state measuring device
JPWO2018062125A1 (en) * 2016-09-28 2019-07-18 オリンパス株式会社 Cell condition measuring device
KR101829551B1 (en) * 2016-10-11 2018-02-14 주식회사 바이오원 Cell counting apparatus and cell counting method using the same
US10795142B2 (en) 2017-05-12 2020-10-06 Olympus Corporation Cell-image acquisition device
JP2021090392A (en) * 2019-12-11 2021-06-17 株式会社マルコム Analysis system
JP7365045B2 (en) 2019-12-11 2023-10-19 株式会社マルコム analysis system
CN113337385A (en) * 2021-08-05 2021-09-03 于吉(南京)生物科技有限公司 Automatic monitoring method and device for cell culture

Similar Documents

Publication Publication Date Title
JP2015154728A (en) Cell analyzing method and system
US9076632B2 (en) Position sensitive STEM detector
US10889794B2 (en) Apparatus for measuring cell activity and method for analyzing cell activity
US9435734B2 (en) Method for observing stem cells, method for removal of cell region in state tending toward differentiation, and device for observing stem cells
US10330907B2 (en) Cell imaging control device, method, and program
US20160369223A1 (en) Cell imaging control device, method, and program
US10360676B2 (en) Cell image evaluation device, method, and program
Moscelli et al. An imaging system for real-time monitoring of adherently grown cells
JP2015039342A (en) Stem cell differentiation assessment apparatus, method, and program
CN106066315A (en) For characterizing and quantify the picking images of microgranule sample
ATE453872T1 (en) METHOD AND SYSTEM FOR DIGITALIZING A SAMPLE WITH FLUORESCENCE TARGETS
JP2017510303A (en) Culture and detection equipment
JP6284832B2 (en) Cell evaluation apparatus, method and program
US20210348999A1 (en) Particle measuring device, calibration method, and measuring device
US8940498B2 (en) Biological assays for the characterization of cells using single-cell tracking and uses thereof
US11443851B2 (en) Cancer test system and method for assessing cancer test
WO2019176048A1 (en) Cell image processing device
US20220268689A1 (en) Particle quantifying device
KR20190031563A (en) A photographed image evaluation apparatus and method,
JP6571210B2 (en) Observation device
US20150285785A1 (en) Monitoring and/or characterising biological or chemical material
JP5658902B2 (en) Bacteria imaging device and bacterial liquid adjustment device
JP2021093951A (en) Microbe determination system
JP2015154729A (en) Cell analyzing method and system
JP2016158577A (en) Cell colony detection device, cell colony detection method, and program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170124

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171205

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180205

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180724