JP2015153727A - lithium ion secondary battery - Google Patents

lithium ion secondary battery Download PDF

Info

Publication number
JP2015153727A
JP2015153727A JP2014029488A JP2014029488A JP2015153727A JP 2015153727 A JP2015153727 A JP 2015153727A JP 2014029488 A JP2014029488 A JP 2014029488A JP 2014029488 A JP2014029488 A JP 2014029488A JP 2015153727 A JP2015153727 A JP 2015153727A
Authority
JP
Japan
Prior art keywords
electrode body
negative electrode
positive electrode
distance
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014029488A
Other languages
Japanese (ja)
Other versions
JP6252228B2 (en
Inventor
竜二 大井手
Ryuji Oide
竜二 大井手
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2014029488A priority Critical patent/JP6252228B2/en
Publication of JP2015153727A publication Critical patent/JP2015153727A/en
Application granted granted Critical
Publication of JP6252228B2 publication Critical patent/JP6252228B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a lithium ion secondary battery superior in cycle durability.SOLUTION: A lithium ion secondary battery comprises a housing 500, a wind-type electrode body 400 and an electrolytic solution which are included in the housing 500, and a positive electrode collector terminal 120 and a negative electrode collector terminal 220 which are connected to the electrode body 400. The electrode body 400 has a bottom-end part BT immersed in the electrolytic solution. Supposing that the distance from the bottom-end part BT of the electrode body 400 to a top-end part TP of the electrode body 400 in a height direction of the battery is X, the distance from the bottom-end part BT to the liquid level EL of the electrolytic solution is Y, and at least one distance of the distance from the bottom-end part BT to a connection part 120a of the positive electrode collector terminal 120 and the electrode body 400, and the distance from the bottom-end part BT to a connection part 220a of the negative electrode collector terminal 220 and the electrode body 400 is Z, X, Y and Z satisfies the following conditions: 0.11≤Y/X≤0.33; and 0≤Z/X≤0.39.

Description

本発明はリチウムイオン二次電池に関する。   The present invention relates to a lithium ion secondary battery.

特開2013−232425号公報(特許文献1)には、捲回電極体を非水電解液とともにケースに収容してなる非水系二次電池が開示されている。   Japanese Patent Laying-Open No. 2013-232425 (Patent Document 1) discloses a non-aqueous secondary battery in which a wound electrode body is housed in a case together with a non-aqueous electrolyte.

特開2013−232425号公報JP2013-232425A

リチウムイオン二次電池において、電解液は電極体に保持され、正負極間でのLi+の移動を促す媒体として機能している。しかし充放電サイクルが繰り返されると、電極体の膨張収縮に伴って電解液が電極体の外部に流出したり、電解液が分解したりする等して、正負極間に保持されるべき電解液量に不足を生じる場合がある。このような現象は一般に「液枯れ」とも呼ばれており、電池のサイクル寿命を左右する要因の一つと考えられている。 In the lithium ion secondary battery, the electrolytic solution is held by the electrode body and functions as a medium that promotes the movement of Li + between the positive and negative electrodes. However, when the charge / discharge cycle is repeated, the electrolyte solution should be held between the positive and negative electrodes because the electrolyte solution flows out of the electrode body as the electrode body expands and contracts, or the electrolyte solution decomposes. Insufficient quantity may occur. Such a phenomenon is generally called “liquid drainage” and is considered to be one of the factors affecting the cycle life of the battery.

液枯れ対策として、電池内に予め過剰量の電解液を収容し、電極体が電解液にある程度浸った状態としておくことが考えられる。これにより、電極体からの電解液の流出を防止するとともに、電極体において電解液量の不足が生じた場合にもこれを補うことができる。しかしながら、たとえば車載用途のように長期使用が想定される用途では、サイクル耐久性の更なる向上が望まれている。   As a measure against the liquid withering, it is conceivable that an excessive amount of the electrolytic solution is accommodated in the battery in advance and the electrode body is immersed in the electrolytic solution to some extent. This prevents the electrolyte solution from flowing out of the electrode body, and can compensate for a shortage of the electrolyte amount in the electrode body. However, in applications that are expected to be used for a long time, such as in-vehicle applications, further improvement in cycle durability is desired.

そこで本発明者が、巻回型の電極体が電解液に浸った構成を備える電池において、充放電サイクルに伴う容量低下の要因を詳細に調査したところ、電極体のうち電解液に浸った部分の負極では、局所的にLi+受入性が低下しており、これが容量低下の一因となっていることが新たに判明した。 In view of this, the present inventor conducted a detailed investigation of the cause of the capacity decrease associated with the charge / discharge cycle in a battery having a configuration in which the wound electrode body was immersed in the electrolytic solution, and the portion of the electrode body immersed in the electrolytic solution. In the negative electrode, it was newly found that the Li + acceptability was locally reduced, which contributed to the capacity reduction.

本発明は上記のような課題に鑑みてなされたものであって、その目的とするところは、サイクル耐久性に優れるリチウムイオン二次電池を提供することにある。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a lithium ion secondary battery having excellent cycle durability.

本発明者は、充放電中の電池における温度分布をサーモグラフィによって計測したところ、巻回型の電極体のうち電解液に浸っている部分の温度が局所的に低くなっており、これがLi+受入性低下の原因であることを知見した。そして本発明者は、該知見に基づきさらに研究を重ねることにより、充放電中の電池に生じる温度分布を効率的に緩和できる電池構成を見出し、本発明を完成させるに至った。すなわち本発明のリチウムイオン二次電池は、以下の構成を備える。 The inventor measured the temperature distribution in the battery during charging / discharging by thermography. As a result, the temperature of the portion of the wound electrode body that was immersed in the electrolyte solution was locally low, and this was the Li + acceptance. It was found that it was the cause of sex decline. The inventor has further researched based on this finding, and has found a battery configuration capable of efficiently relaxing the temperature distribution generated in the battery being charged and discharged, and has completed the present invention. That is, the lithium ion secondary battery of the present invention has the following configuration.

(1)リチウムイオン二次電池は、筐体と、該筐体に内蔵される巻回型の電極体および電解液と、該電極体に接続される正極集電端子および負極集電端子と、を備える。ここで電極体の下端部は電解液に浸っている。   (1) A lithium ion secondary battery includes a housing, a wound electrode body and an electrolytic solution built in the housing, a positive current collector terminal and a negative current collector terminal connected to the electrode body, Is provided. Here, the lower end of the electrode body is immersed in the electrolytic solution.

そして電池の高さ方向において、電極体の下端部から電極体の上端部までの距離をXとし、同下端部から電解液の液面までの距離をYとし、同下端部から正極集電端子と電極体との接続部までの距離、および同下端部から負極集電端子と電極体との接続部までの距離のうち、少なくともいずれかの距離をZとするとき、0.11≦Y/X≦0.33かつ0≦Z/X≦0.39となる関係を満たす。   In the height direction of the battery, X is the distance from the lower end of the electrode body to the upper end of the electrode body, Y is the distance from the lower end to the liquid surface of the electrolyte, and the positive current collector terminal from the lower end Of at least one of the distance from the lower end to the connection between the negative electrode current collector terminal and the electrode body is 0.11 ≦ Y / The relationship of X ≦ 0.33 and 0 ≦ Z / X ≦ 0.39 is satisfied.

上記の構成を備えるリチウムイオン二次電池では、充放電中の電極体に生じる温度分布が緩和され、優れたサイクル耐久性を示すことができる。この理由は次のように推測される。   In a lithium ion secondary battery provided with said structure, the temperature distribution which arises in the electrode body during charging / discharging is relieve | moderated, and the outstanding cycle durability can be shown. The reason is presumed as follows.

電極体のうち電解液に浸っている部分の温度が低くなる原因は、電極体の有する熱が電解液によって奪われるからであると考えられる。そして、奪熱によって反応場が低温化し、局所的なLi+受入性の低下を来すものと考えられる。 The reason why the temperature of the portion of the electrode body that is immersed in the electrolytic solution is considered to be that the heat of the electrode body is taken away by the electrolytic solution. Then, it is considered that the reaction field is lowered by deprivation and local Li + acceptability is lowered.

上記の構成において、Xは電極体の体積を表す指標であり、Yは電極体のうち電解液に浸っている部分の体積を表す指標である。したがって、Y/Xは、電極体のうち電解液に浸っている部分の割合を表す指標とみなすことができる。   In the above configuration, X is an index representing the volume of the electrode body, and Y is an index representing the volume of the portion of the electrode body that is immersed in the electrolytic solution. Therefore, Y / X can be regarded as an index representing the proportion of the electrode body that is immersed in the electrolyte.

ここで本発明者が得た実験結果によれば、Y/Xが0.33を超えると、電解液の奪熱作用によって、電極体の高さ方向に生じる温度差(以下「温度ムラ」とも記す)が大きくなり、電極体の下方部分においてLi+受入性が低下する。他方、Y/Xが0.11未満となると、液枯れによって十分なサイクル耐久性を示すことができない。したがって本発明では、Y/Xを0.11≦Y/X≦0.33の範囲に規制する。 Here, according to the experimental results obtained by the present inventors, when Y / X exceeds 0.33, the temperature difference (hereinafter referred to as “temperature unevenness”) generated in the height direction of the electrode body due to the heat removal action of the electrolyte solution. And the Li + acceptability decreases in the lower part of the electrode body. On the other hand, when Y / X is less than 0.11, sufficient cycle durability cannot be exhibited due to liquid erosion. Therefore, in the present invention, Y / X is restricted to a range of 0.11 ≦ Y / X ≦ 0.33.

さらに本発明では液面の高さの規制に加えて、電極体に接続される集電端子のジュール熱および熱伝導を利用して、電極体のうち電解液に浸った部分を加熱する。すなわち、集電端子と電極体との接続部を電極体の下方部分に設けることにより、集電端子で発生するジュール熱を、接続部を介して電極体の下方部分へと伝導させる。これにより、電極体のうち電解液に浸った部分および電解液が加熱され、液面の高さを規制したことによる奪熱抑制作用と相俟って、充放電中の電極体に生じる温度ムラが顕著に小さくなり、以ってサイクル耐久性がめざましく向上する。   Furthermore, in the present invention, in addition to the regulation of the liquid level, the portion of the electrode body that is immersed in the electrolytic solution is heated using Joule heat and heat conduction of the current collecting terminal connected to the electrode body. That is, by providing a connecting portion between the current collecting terminal and the electrode body in a lower portion of the electrode body, Joule heat generated in the current collecting terminal is conducted to the lower portion of the electrode body through the connecting portion. As a result, the portion of the electrode body that has been immersed in the electrolyte and the electrolyte are heated, and in combination with the effect of suppressing heat removal due to the restriction of the height of the liquid surface, temperature unevenness that occurs in the electrode during charge / discharge Is significantly reduced, and the cycle durability is remarkably improved.

ここで本発明者が得た実験結果によれば、電極体の下端部から正極集電端子と電極体との接続部までの距離、および同下端部から負極集電端子と電極体との接続部までの距離のうち、少なくともいずれかの距離をZとするとき、Z/Xを0≦Z/X≦0.39の範囲に規制することにより、充放電中の電極体に生じる温度ムラを顕著に小さくすることができる。   Here, according to the experimental results obtained by the present inventors, the distance from the lower end of the electrode body to the connection portion between the positive electrode current collector terminal and the electrode body, and the connection between the lower end portion and the negative electrode current collector terminal and the electrode body. When at least one of the distances to the part is Z, Z / X is restricted to a range of 0 ≦ Z / X ≦ 0.39, thereby preventing temperature unevenness generated in the electrode body during charging and discharging. Can be significantly reduced.

ここで「接続部」とは、正極集電端子および負極集電端子が電極体と電気的に接続される部位を示し、具体的には、たとえば溶接部位や溶着部位等を示すものとする。また本明細書では、正極集電端子および負極集電端子を総称して、単に「集電端子」または「各集電端子」と記すこともある。   Here, the “connecting portion” indicates a portion where the positive electrode current collecting terminal and the negative electrode current collecting terminal are electrically connected to the electrode body, and specifically indicates, for example, a welding portion, a welding portion, or the like. Further, in the present specification, the positive current collecting terminal and the negative current collecting terminal may be collectively referred to simply as “current collecting terminal” or “each current collecting terminal”.

なお「電池の高さ方向」とは、当該リチウムイオン二次電池が通常使用されるべき姿勢における高さ方向を示すものとする。   The “battery height direction” indicates the height direction in a posture in which the lithium ion secondary battery should be normally used.

(2)少なくとも正極集電端子と電極体との接続部において、Z/Xが0≦Z/X≦0.39となる関係を満たすことが好ましい。   (2) It is preferable that Z / X satisfies the relationship of 0 ≦ Z / X ≦ 0.39 at least at the connection portion between the positive electrode current collecting terminal and the electrode body.

一般に、正極集電端子の素材にはアルミニウム(Al)が用いられ、負極集電端子の素材には銅(Cu)が用いられている。ここでAlはCuよりも熱伝導率の低い素材である。すなわち正極集電端子は、負極集電端子よりも充放電に伴うジュール発熱量が大きいといえる。そのため、少なくとも正極集電端子が上記関係を満たすことにより、効率的に電極体の下方部分を加熱することができる。   In general, aluminum (Al) is used as the material for the positive electrode current collector terminal, and copper (Cu) is used as the material for the negative electrode current collector terminal. Here, Al is a material having a lower thermal conductivity than Cu. In other words, it can be said that the positive electrode current collector terminal has a larger amount of Joule heat generated by charging and discharging than the negative electrode current collector terminal. Therefore, when at least the positive electrode current collecting terminal satisfies the above relationship, the lower part of the electrode body can be efficiently heated.

なお、より好ましくは正極集電端子および負極集電端子の両方が、0≦Z/X≦0.39となる関係を満たす。正極集電端子および負極集電端子の両方が上記関係を満たすことにより、更に効率的に電極体の下方部分を加熱することができ、サイクル耐久性が一層向上するからである。   More preferably, both the positive electrode current collector terminal and the negative electrode current collector terminal satisfy the relationship of 0 ≦ Z / X ≦ 0.39. This is because when both the positive electrode current collector terminal and the negative electrode current collector terminal satisfy the above relationship, the lower part of the electrode body can be more efficiently heated, and the cycle durability is further improved.

(3)Z/Xは、0≦Z/X≦0.28を満たすことが好ましい。これにより、電極体に生じる温度ムラが更に小さくなり、サイクル耐久性がより一層向上する。なお同様の観点から、Z/Xは、0≦Z/X≦0.17を満たすことがより好ましい。   (3) Z / X preferably satisfies 0 ≦ Z / X ≦ 0.28. Thereby, the temperature nonuniformity which arises in an electrode body becomes still smaller, and cycling durability improves further. From the same viewpoint, it is more preferable that Z / X satisfies 0 ≦ Z / X ≦ 0.17.

(4)巻回型の電極体は、巻回軸の両端部に集電端子との接続部を有し、筐体の内部において電極体は、電極体の巻回軸方向が、電池の高さ方向と略直交する方向となるように配置されることが好ましい。   (4) The wound electrode body has a connection portion with a current collecting terminal at both ends of the winding shaft. It is preferable that they are arranged so as to be in a direction substantially orthogonal to the vertical direction.

かかる構成を採用することにより、発電要素である電極体から効率的に電気を取り出すことができ、ハイレート性能に優れる電池を提供できる。   By adopting such a configuration, it is possible to efficiently extract electricity from the electrode body that is a power generation element, and to provide a battery that is excellent in high-rate performance.

本発明によれば、サイクル耐久性に優れるリチウムイオン二次電池が提供される。   According to the present invention, a lithium ion secondary battery excellent in cycle durability is provided.

本発明の一実施形態に係るリチウムイオン二次電池の構成の一例を示す模式的な断面図である。It is typical sectional drawing which shows an example of a structure of the lithium ion secondary battery which concerns on one Embodiment of this invention. 本発明の一実施形態に係るリチウムイオン二次電池の変形例の構成を示す模式的な断面図である。It is typical sectional drawing which shows the structure of the modification of the lithium ion secondary battery which concerns on one Embodiment of this invention. 本発明の一実施形態に係わる巻回型の電極体の構成の一例を示す模式図である。It is a schematic diagram which shows an example of a structure of the winding type electrode body concerning one Embodiment of this invention. 電極体のうち電解液に浸っている部分の割合がサイクル耐久性に及ぼす影響の一例を示すグラフである。It is a graph which shows an example of the influence which the ratio of the part immersed in electrolyte solution has on cycle durability among electrode bodies. 集電端子の接続位置の高さがサイクル耐久性に及ぼす影響の一例を示すグラフである。It is a graph which shows an example of the influence which the height of the connection position of a current collection terminal has on cycle durability. 電極体のうち電解液に浸っている部分の割合および集電端子の接続位置の高さとサイクル耐久性との関係の一例を示すグラフである。It is a graph which shows an example of the relationship between the ratio of the part immersed in electrolyte solution among electrode bodies, the height of the connection position of a current collection terminal, and cycle durability.

以下、本発明の一実施形態(以下「本実施形態」とも記す。)について詳細に説明するが、本実施形態はこれらに限定されるものではない。   Hereinafter, an embodiment of the present invention (hereinafter also referred to as “the present embodiment”) will be described in detail, but the present embodiment is not limited thereto.

〔リチウムイオン二次電池〕
図1は本実施形態のリチウムイオン二次電池の構成の一例を示す模式的な断面図である。図1を参照して、電池1000は筐体500を備える。筐体500は、有底角形の筐体本体500aと蓋体500bとを有する。筐体500の素材は、たとえばAlやAl合金である。
[Lithium ion secondary battery]
FIG. 1 is a schematic cross-sectional view showing an example of the configuration of the lithium ion secondary battery of the present embodiment. Referring to FIG. 1, battery 1000 includes a housing 500. The housing 500 has a bottomed rectangular housing body 500a and a lid 500b. The material of the housing 500 is, for example, Al or an Al alloy.

筐体500には、巻回型の電極体400と電解液(図示せず)とが内蔵されている。筐体500の内部において、電極体400は、その巻回軸AWの方向が電池1000の高さ方向と略直交する方向となるように配置されている。また、電極体400の下端部BTは電解液に浸っている。   The casing 500 contains a wound electrode body 400 and an electrolytic solution (not shown). Inside the housing 500, the electrode body 400 is disposed such that the direction of the winding axis AW is substantially perpendicular to the height direction of the battery 1000. The lower end portion BT of the electrode body 400 is immersed in the electrolytic solution.

図3は巻回型の電極体400の構成を示す模式図である。図3を参照して、電極体400は、セパレータ300を介して正極板100と負極板200とが対向するように巻回されてなる。なお図3に示す電極体400は偏平形状を有するが、電極体400は巻回型の電極体である限り、必ずしも偏平形状を有するものでなくてもよい。また電極体400が偏平形状を有する場合にも、電極体400の厚さおよびアスペクト比(高さ方向と巻回軸方向の寸法比率)は特に制限されるものではない。   FIG. 3 is a schematic diagram showing a configuration of a wound electrode body 400. Referring to FIG. 3, electrode body 400 is wound so that positive electrode plate 100 and negative electrode plate 200 face each other with separator 300 interposed therebetween. Although the electrode body 400 shown in FIG. 3 has a flat shape, the electrode body 400 does not necessarily have a flat shape as long as it is a wound electrode body. Even when the electrode body 400 has a flat shape, the thickness and the aspect ratio (the dimensional ratio in the height direction and the winding axis direction) of the electrode body 400 are not particularly limited.

正極板100は、長尺帯状のシート部材であり、集電芯材(たとえばAl箔)上に正極合材が固着されてなる正極合材部100aと、集電芯材が露出した正極非合材部100bとを有する。正極板100において、正極非合材部100bは、正極板100の短手方向(幅方向)の片側に連続して形成されている。そして電極体400において、正極非合材部100bは、巻回軸AWの一方の端部から露出するように配置されている。   The positive electrode plate 100 is a long belt-like sheet member, and a positive electrode mixture portion 100a in which a positive electrode mixture is fixed on a current collector core material (for example, an Al foil), and a positive electrode non-combination where the current collector core material is exposed. Material part 100b. In the positive electrode plate 100, the positive electrode unmixed material portion 100 b is continuously formed on one side of the positive electrode plate 100 in the short direction (width direction). In the electrode body 400, the positive electrode unmixed material portion 100b is disposed so as to be exposed from one end portion of the winding shaft AW.

負極板200も、長尺帯状のシート部材であり、集電芯材(たとえばCu箔)上に負極合材が固着されてなる負極合材部200aと、集電芯材が露出した負極非合材部200bとを有する。負極板200において、負極非合材部200bは、負極板200の短手方向(幅方向)の片側に連続して形成されている。そして電極体400において、負極非合材部200bは、巻回軸AWにおいて、正極非合材部100bが露出する端部とは異なる端部から、露出するように配置されている。   The negative electrode plate 200 is also a long belt-like sheet member, and a negative electrode composite portion 200a in which the negative electrode composite material is fixed onto a current collector core material (for example, Cu foil), and a negative electrode non-bonded material in which the current collector core material is exposed. And a material part 200b. In the negative electrode plate 200, the negative electrode unmixed material portion 200 b is continuously formed on one side of the negative electrode plate 200 in the short direction (width direction). In the electrode body 400, the negative electrode unmixed material portion 200b is arranged so as to be exposed from an end portion different from the end portion where the positive electrode non-mixed material portion 100b is exposed on the winding axis AW.

再び図1を参照して、電極体400から露出した正極非合材部100bは、正極集電端子120によって束ねられるように、接続部120aにおいて正極集電端子120と溶接されている。また電極体400から露出した負極非合材部200bは、負極集電端子220によって束ねられるように、接続部220aにおいて負極集電端子220と溶接されている。ここで、接続部120a,220aは、各集電端子の先端部分に設けられることが好ましい。効率的な熱伝導を発生させるためである。   Referring again to FIG. 1, positive electrode unmixed material portion 100 b exposed from electrode body 400 is welded to positive electrode current collector terminal 120 at connection portion 120 a so as to be bundled by positive electrode current collector terminal 120. Further, the negative electrode unmixed material portion 200 b exposed from the electrode body 400 is welded to the negative electrode current collector terminal 220 at the connection portion 220 a so as to be bundled by the negative electrode current collector terminal 220. Here, it is preferable that the connecting portions 120a and 220a are provided at the tip portions of the current collecting terminals. This is to generate efficient heat conduction.

さらに正極集電端子120は、蓋体500bに設けられた正極外部端子140に接続されている。同様に負極集電端子220は、蓋体500bに設けられた負極外部端子240に接続されている。   Furthermore, the positive electrode current collecting terminal 120 is connected to a positive electrode external terminal 140 provided on the lid 500b. Similarly, the negative electrode current collecting terminal 220 is connected to a negative electrode external terminal 240 provided on the lid 500b.

そして電池1000の高さ方向において、電極体400の下端部BTから上端部TPまでの距離をXとし、下端部BTから電解液の液面ELまでの距離をYとしたとき、Y/Xが0.11≦Y/X≦0.33となる関係を満たしている。これにより、液枯れを防止しつつ、電解液による奪熱作用を抑制することができる。   In the height direction of the battery 1000, when the distance from the lower end BT to the upper end TP of the electrode body 400 is X and the distance from the lower end BT to the electrolyte surface EL is Y, Y / X is The relationship of 0.11 ≦ Y / X ≦ 0.33 is satisfied. Thereby, it is possible to suppress the heat removal action by the electrolytic solution while preventing the liquid from withstanding.

さらに電池1000では、電極体400の下端部BTから、正極集電端子120と電極体400との接続部120aまでの距離をZとしたとき、Z/Xが0≦Z/X≦0.39となる関係を満たしている。また下端部BTから、負極集電端子220と電極体400との接続部220aまでの距離をZとしたときも、Z/Xが0≦Z/X≦0.39となる関係を満たしている。これにより、充放電時に各集電端子で発生するジュール熱が、各集電端子を通して電極体400の下方部分および電解液に伝えられ、当該部分を加熱することができる。   Furthermore, in battery 1000, when the distance from lower end portion BT of electrode body 400 to connecting portion 120a between positive electrode current collector terminal 120 and electrode body 400 is Z, Z / X is 0 ≦ Z / X ≦ 0.39. Satisfies the relationship. Further, when the distance from the lower end portion BT to the connecting portion 220a between the negative electrode current collector terminal 220 and the electrode body 400 is Z, the relationship that Z / X satisfies 0 ≦ Z / X ≦ 0.39 is satisfied. . Thereby, Joule heat generated at each current collecting terminal at the time of charging / discharging is transmitted to the lower part of the electrode body 400 and the electrolytic solution through each current collecting terminal, and the part can be heated.

このように、液面ELの高さ、および集電端子と電極体400との接続位置の高さを規制することにより、電極体400のうち電解液に浸った部分の低温化を抑制することができる。すなわち電池1000では、充放電中における電極体400の温度ムラが緩和され、電極体400の全域に亘って略均等に充放電反応を進行させることができる。したがって、電池1000は優れたサイクル耐久性を示すことができる。   In this way, by controlling the height of the liquid surface EL and the height of the connection position between the current collector terminal and the electrode body 400, the temperature of the portion of the electrode body 400 immersed in the electrolytic solution is suppressed. Can do. That is, in the battery 1000, the temperature unevenness of the electrode body 400 during charge / discharge is alleviated, and the charge / discharge reaction can be allowed to proceed substantially uniformly over the entire area of the electrode body 400. Therefore, the battery 1000 can exhibit excellent cycle durability.

ここで本実施形態の変形例について説明する。
〔変形例〕
図2は、本実施形態の変形例の構成を示す模式的な断面図である。本実施形態では、図2に示す電池2000のように、各集電端子と電極体400との接続部が複数設けられていてもよい。この場合、電池2000の高さ方向において、下端部BTから最も近くに位置する接続部120b,220bまでの距離をZとするものとする。
Here, a modification of the present embodiment will be described.
[Modification]
FIG. 2 is a schematic cross-sectional view showing a configuration of a modified example of the present embodiment. In the present embodiment, as in the battery 2000 shown in FIG. 2, a plurality of connection portions between the current collecting terminals and the electrode body 400 may be provided. In this case, in the height direction of the battery 2000, the distance from the lower end portion BT to the connection portions 120b and 220b located closest is assumed to be Z.

電池2000では、接続部120b,220bが、電解液の液面ELよりも下に位置している。すなわち接続部120b,220bは電解液中に位置している。これにより、電極体400のみならず電解液も直接加熱することができる。よって、電極体400に生じる温度ムラを効率的に緩和することができる。   In the battery 2000, the connection parts 120b and 220b are located below the liquid level EL of the electrolytic solution. That is, the connection parts 120b and 220b are located in the electrolytic solution. As a result, not only the electrode body 400 but also the electrolytic solution can be directly heated. Therefore, the temperature unevenness generated in the electrode body 400 can be efficiently reduced.

以下、電池1000を構成する各部材について説明する。
<正極板>
正極板100は、たとえば正極活物質、導電材、結着材および溶媒等を含む正極合材スラリーを、集電芯材上に塗工、乾燥することにより、正極合材部100aを形成した後、正極合材部100aを圧縮してその厚さを調整することにより作製できる。
Hereinafter, each member constituting the battery 1000 will be described.
<Positive electrode plate>
The positive electrode plate 100 is formed, for example, by forming a positive electrode mixture portion 100a by coating and drying a positive electrode mixture slurry containing a positive electrode active material, a conductive material, a binder, a solvent, and the like on a current collector core material. The positive electrode mixture portion 100a can be compressed to adjust its thickness.

正極活物質は、リチウムイオン二次電池の正極として作用し得るものであればよい。たとえば、LiCoO2、LiNiO2、LiNiaCob2(ただし式中、a+b=1、0<a<1、0<b<1である)、LiMnO2、LiMn24、LiNiaCobMnc2(ただし式中、a+b+c=1、0<a<1、0<b<1、0<c<1である)、LiFePO4等の正極活物質を用いることができる。これらの正極活物質は単独で用いてもよいし、2種以上を併用してもよい。正極合材における正極活物質の含有率は、たとえば80〜99質量%程度であり、好ましくは85〜95質量%程度である。 The positive electrode active material may be any material that can act as the positive electrode of the lithium ion secondary battery. For example, LiCoO 2 , LiNiO 2 , LiNi a Co b O 2 (where a + b = 1, 0 <a <1, 0 <b <1), LiMnO 2 , LiMn 2 O 4 , LiNi a Co b A positive electrode active material such as Mn c O 2 (where a + b + c = 1, 0 <a <1, 0 <b <1, 0 <c <1) or LiFePO 4 can be used. These positive electrode active materials may be used independently and may use 2 or more types together. The content rate of the positive electrode active material in a positive electrode compound material is about 80-99 mass%, for example, Preferably it is about 85-95 mass%.

また導電材としては、たとえばアセチレンブラック(AB)等を用いることができ、結着材としては、たとえばポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン(PTFE)等を用いることができる。なおスラリー化の際に使用する溶媒としては、たとえばN−メチル−2−ピロリドン(NMP)等が好適である。   As the conductive material, for example, acetylene black (AB) can be used, and as the binder, for example, polyvinylidene fluoride (PVdF), polytetrafluoroethylene (PTFE), or the like can be used. In addition, as a solvent used in the case of slurrying, N-methyl-2-pyrrolidone (NMP) etc. are suitable, for example.

<負極板>
負極板200は、たとえば負極活物質、増粘材、結着材および溶媒等を含む負極合材スラリーを、集電芯材上に塗工、乾燥することにより、負極合材部200aを形成した後、負極合材部200aを圧縮してその厚さを調整することにより作製できる。
<Negative electrode plate>
The negative electrode plate 200 was formed by applying a negative electrode mixture slurry containing, for example, a negative electrode active material, a thickener, a binder, a solvent, and the like onto a current collector core and drying, thereby forming a negative electrode mixture portion 200a. Then, it can produce by compressing the negative electrode compound-material part 200a and adjusting the thickness.

負極活物質は、リチウムイオン二次電池の負極として作用し得るものであればよい。たとえば、黒鉛、コークス等の炭素系負極活物質や、珪素、錫等の合金系負極活物質を用いることができる。これらの負極活物質は単独で用いてもよいし、2種以上を併用してもよい。負極合材における負極活物質の含有率は、たとえば90〜99質量%程度であり、好ましくは95〜99質量%程度である。   The negative electrode active material should just be what can act as a negative electrode of a lithium ion secondary battery. For example, carbon-based negative electrode active materials such as graphite and coke, and alloy-based negative electrode active materials such as silicon and tin can be used. These negative electrode active materials may be used independently and may use 2 or more types together. The content rate of the negative electrode active material in a negative electrode compound material is about 90-99 mass%, for example, Preferably it is about 95-99 mass%.

また増粘材としては、たとえばカルボキシメチルセルロース(CMC)等を用いることができ、結着材としては、スチレンブタジエンゴム(SBR)等を用いることができる。なおスラリー化の際に使用する溶媒としては、たとえば水等が好適である。   As the thickening material, for example, carboxymethyl cellulose (CMC) or the like can be used, and as the binding material, styrene butadiene rubber (SBR) or the like can be used. In addition, as a solvent used in the case of slurrying, water etc. are suitable, for example.

<セパレータ>
セパレータ300はLi+を透過させるとともに、正極板100と負極板200との電気的な接触を防止する。セパレータ300は、機械的な強度と化学的な安定性の観点からポリオレフィン系材料からなる微多孔膜が好ましい。たとえば、ポリエチレン(PE)やポリプロピレン(PP)等の微多孔膜が好適である。セパレータ300の厚さは、たとえば5〜40μm程度とすることができる。セパレータ300の孔径および空孔率は、その透気度が所望の値となるように適宜調整すればよい。
<Separator>
Separator 300 allows Li + to pass therethrough and prevents electrical contact between positive electrode plate 100 and negative electrode plate 200. The separator 300 is preferably a microporous film made of a polyolefin-based material from the viewpoint of mechanical strength and chemical stability. For example, a microporous film such as polyethylene (PE) or polypropylene (PP) is suitable. The thickness of the separator 300 can be about 5-40 micrometers, for example. What is necessary is just to adjust suitably the hole diameter and porosity of the separator 300 so that the air permeability may become a desired value.

<電解液>
電解液は、非プロトン性溶媒に溶質(Li塩)が溶解されてなる。非プロトン性溶媒としては、たとえば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、γ−ブチロラクトン(GBL)およびビニレンカーボネート(VC)等の環状カーボネート類や、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)およびジエチルカーボネート(DEC)等の鎖状カーボネート類等を用いることができる。これらの非プロトン性溶媒は電気伝導率や電気化学的な安定性の観点から、2種以上を適宜併用して用いることができる。特に、環状カーボネートと鎖状カーボネートとを混合して用いることが好ましく、環状カーボネートと鎖状カーボネートの体積比は、1:9〜5:5程度が好ましい。具体例を挙げれば、たとえば、EC、EMCおよびDMCの3種を混合して用いることができる。
<Electrolyte>
The electrolytic solution is obtained by dissolving a solute (Li salt) in an aprotic solvent. Examples of the aprotic solvent include cyclic carbonates such as ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), γ-butyrolactone (GBL) and vinylene carbonate (VC), and dimethyl carbonate (DMC). ), Chain carbonates such as ethyl methyl carbonate (EMC) and diethyl carbonate (DEC). These aprotic solvents can be used in an appropriate combination of two or more from the viewpoint of electrical conductivity and electrochemical stability. In particular, it is preferable to use a mixture of a cyclic carbonate and a chain carbonate, and the volume ratio of the cyclic carbonate to the chain carbonate is preferably about 1: 9 to 5: 5. If a specific example is given, 3 types, EC, EMC, and DMC, can be mixed and used, for example.

Li塩としては、たとえば、LiPF6、LiBF4、LiClO4、LiAsF6、Li(CF3SO22N、LiCF3SO3等を用いることができる。また、これらのLi塩についても2種以上を併用してもよい。電解液中におけるLi塩の濃度は、特に限定されないが、放電特性および保存特性の観点から0.5〜2.0mol/L程度であることが好ましい。 As the Li salt, for example, LiPF 6 , LiBF 4 , LiClO 4 , LiAsF 6 , Li (CF 3 SO 2 ) 2 N, LiCF 3 SO 3 and the like can be used. Moreover, you may use 2 or more types together about these Li salts. The concentration of the Li salt in the electrolytic solution is not particularly limited, but is preferably about 0.5 to 2.0 mol / L from the viewpoint of discharge characteristics and storage characteristics.

以下、実施例を用いて本実施形態をより詳細に説明するが、本実施形態はこれらに限定されるものではない。   Hereinafter, although this embodiment is described in detail using an example, this embodiment is not limited to these.

〔リチウムイオン二次電池の作製〕
以下のように、電解液の液面の高さ、および集電端子の接続位置の高さをそれぞれ変更して、各種リチウムイオン二次電池を作製し、サイクル耐久性を評価した。
[Production of lithium ion secondary battery]
Various lithium ion secondary batteries were manufactured by changing the height of the electrolyte surface and the height of the connection position of the current collector terminal as follows, and the cycle durability was evaluated.

なお、今回の実験では、電極体400の下端部BTから、正極集電端子120の接続部120aまでの高さと、負極集電端子220の接続部220aまでの高さは同一とした。   In this experiment, the height from the lower end portion BT of the electrode body 400 to the connecting portion 120a of the positive electrode current collecting terminal 120 and the height from the connecting portion 220a of the negative electrode current collecting terminal 220 are the same.

<実施例1>
(正極板の作製)
正極活物質(LiNi1/3Co1/3Mn1/32)と、導電助材(AB)と、結着材(PVdF)とを、LiNi1/3Co1/3Mn1/32:AB:PVdF=93:4:3(質量比)となるように混合し、さらにNMP中で混練することにより正極合材スラリーを得た。次いでダイコーターを用いて、正極合材スラリーを長尺帯状のAl箔(集電芯材)の両主面上に塗工、乾燥して正極合材部100aを形成した。さらにロール圧延機を用いて、正極合材部100aを圧延することにより、正極板100を得た。正極板100は短手方向(幅方向)の片側に連続して正極非合材部100bを有するものとした。
<Example 1>
(Preparation of positive electrode plate)
A positive electrode active material (LiNi 1/3 Co 1/3 Mn 1/3 O 2 ), a conductive additive (AB), and a binder (PVdF) are mixed with LiNi 1/3 Co 1/3 Mn 1/3. The mixture was mixed so that O 2 : AB: PVdF = 93: 4: 3 (mass ratio), and further kneaded in NMP to obtain a positive electrode mixture slurry. Next, using a die coater, the positive electrode mixture slurry was coated on both main surfaces of the long strip-shaped Al foil (current collector core material) and dried to form the positive electrode mixture portion 100a. Furthermore, the positive electrode plate 100 was obtained by rolling the positive electrode mixture part 100a using a roll mill. The positive electrode plate 100 had a positive electrode non-mixed material portion 100b continuously on one side in the short direction (width direction).

(負極板の作製)
負極活物質(天然黒鉛粉末)と、増粘材(CMC)と、結着材(SBR)とを、天然黒鉛:CMC:SBR=98:1:1(質量比)となるように混合し、さらに水中で混練することにより負極合材スラリーを得た。次いでダイコーターを用いて、負極合材スラリーを長尺帯状のCu箔(集電芯材)の両主面上に塗工、乾燥して負極合材部200aを形成した。さらにロール圧延機を用いて、負極合材部200aを圧延することにより、負極板200を得た。負極板200は幅方向の片側に連続して負極非合材部200bを有するものとした。
(Preparation of negative electrode plate)
A negative electrode active material (natural graphite powder), a thickener (CMC), and a binder (SBR) are mixed so that natural graphite: CMC: SBR = 98: 1: 1 (mass ratio). Furthermore, the negative electrode mixture slurry was obtained by kneading in water. Next, using a die coater, the negative electrode mixture slurry was applied on both main surfaces of a long strip of Cu foil (current collector core material) and dried to form the negative electrode mixture portion 200a. Furthermore, the negative electrode plate 200 was obtained by rolling the negative electrode mixture part 200a using a roll mill. The negative electrode plate 200 had the negative electrode non-mixing material part 200b continuously on one side in the width direction.

(電解液の調製)
ECとEMCとDMCとを、EC:EMC:DMC=3:4:3(体積比)となるように混合して混合溶媒を得た。次いで、この混合溶媒にLiPF6(1.0mol/L)を溶解させることにより電解液を調製した。この電解液の密度は、1.23g/cm3であった。
(Preparation of electrolyte)
EC, EMC, and DMC were mixed so that EC: EMC: DMC = 3: 4: 3 (volume ratio) to obtain a mixed solvent. Next, an electrolytic solution was prepared by dissolving LiPF 6 (1.0 mol / L) in this mixed solvent. The density of this electrolytic solution was 1.23 g / cm 3 .

(組み立て)
PP/PE/PPの3層構造を有するセパレータ300を準備した。そして図3を参照して、セパレータ300を介して正極板100と負極板200とが対向するように巻回して楕円状の巻回体を得た。次いで平板プレス機を用いて、巻回体を偏平状にプレス加工することにより、巻回型の電極体400を得た。このとき、電極体400の高さ方向の長さ寸法〔完成電池において距離(X)となるべき寸法〕は90mmとした。
(assembly)
A separator 300 having a three-layer structure of PP / PE / PP was prepared. Referring to FIG. 3, winding was performed so that positive electrode plate 100 and negative electrode plate 200 face each other with separator 300 interposed therebetween, so that an elliptical wound body was obtained. Next, a wound electrode body 400 was obtained by pressing the wound body into a flat shape using a flat plate press. At this time, the length dimension of the electrode body 400 in the height direction [dimension to be the distance (X) in the finished battery] was 90 mm.

図1を参照して、筐体本体500aと、予め集電端子および外部端子が設けられた蓋体500bとを準備した。   With reference to FIG. 1, a housing body 500a and a lid body 500b provided with a current collecting terminal and an external terminal in advance were prepared.

次に、電極体400の巻回軸AWの一方の端部から露出した正極非合材部100bを束ねるように、Al製の正極集電端子120を正極非合材部100bに溶接して電気的に接続した。同様に、巻回軸AWの他方の端部から露出した負極非合材部200bを束ねるように、Cu製の負極集電端子220を負極非合材部200bに溶接して電気的に接続した。このとき、電極体400の下端部BTから各集電端子の接続部120a,220aまでの距離(Z)は、35mmとした。   Next, the positive electrode current collector terminal 120 made of Al is welded to the positive electrode non-mixed material portion 100b so that the positive electrode non-mixed material portion 100b exposed from one end portion of the winding axis AW of the electrode body 400 is bundled. Connected. Similarly, the negative electrode current collector terminal 220 made of Cu is welded and electrically connected to the negative electrode non-mixed material portion 200b so as to bundle the negative electrode non-mixed material portion 200b exposed from the other end of the winding shaft AW. . At this time, the distance (Z) from the lower end portion BT of the electrode body 400 to the connection portions 120a and 220a of the current collecting terminals was set to 35 mm.

次に、電極体400を筐体本体500aに挿入し、筐体本体500aと蓋体500bとをレーザ溶接によって接合した。さらに蓋体500bに設けられた注液孔(図示せず)から、上記で調製した電解液(142g)を注液した。注液後、電極体400の下端部BTから液面ELまでの距離(Y)は、30mmとなっていた。   Next, the electrode body 400 was inserted into the housing body 500a, and the housing body 500a and the lid body 500b were joined by laser welding. Further, the electrolytic solution (142 g) prepared above was injected from an injection hole (not shown) provided in the lid 500b. After the injection, the distance (Y) from the lower end BT of the electrode body 400 to the liquid level EL was 30 mm.

そして注液孔を封止栓によって封止することにより、角形リチウムイオン二次電池(設計容量:25Ah)を得た。   The liquid injection hole was sealed with a sealing plug to obtain a prismatic lithium ion secondary battery (design capacity: 25 Ah).

<実施例2〜8および比較例1〜5>
表1に示すように、電解液の注液量を変更して距離(Y)を変化させるとともに、集電端子の形状(長さ寸法)および溶接位置を変更して距離(Z)を変化させることを除いては、実施例1と同条件を用いて、実施例2〜8および比較例1〜5に係る角形リチウムイオン二次電池を得た。
<Examples 2-8 and Comparative Examples 1-5>
As shown in Table 1, the distance (Y) is changed by changing the injection amount of the electrolytic solution, and the distance (Z) is changed by changing the shape (length dimension) and welding position of the current collecting terminal. Except this, using the same conditions as in Example 1, prismatic lithium ion secondary batteries according to Examples 2 to 8 and Comparative Examples 1 to 5 were obtained.

Figure 2015153727
Figure 2015153727

〔評価〕
上記で得た各電池の評価を以下のようにして行なった。なお以下の説明において「CC」は定電流を、「CV」は定電圧をそれぞれ示すものとする。
[Evaluation]
Each battery obtained above was evaluated as follows. In the following description, “CC” represents a constant current, and “CV” represents a constant voltage.

(初期容量の測定)
各電池に対して、25℃環境下で、CC−CV充電(CC電流:25A、CV電圧:4.1V、総充電時間:2時間)と、CC−CV放電(CC電流:25A、CV電圧:3.0V、総放電時間:2時間)とを行なって、初期容量(放電容量)を測定した。
(Measurement of initial capacity)
For each battery, CC-CV charge (CC current: 25 A, CV voltage: 4.1 V, total charge time: 2 hours) and CC-CV discharge (CC current: 25 A, CV voltage) in a 25 ° C. environment. : 3.0 V, total discharge time: 2 hours), and the initial capacity (discharge capacity) was measured.

(サイクル耐久試験)
0℃に設定した恒温槽内で、各電池に対して、次の[1]〜[4]の操作を順次実行することを1サイクルとする充放電サイクルを1000cyc実行した。
(Cycle durability test)
In a thermostat set to 0 ° C., a charge / discharge cycle of 1000 cyc was performed with one cycle being the sequential execution of the operations [1] to [4] for each battery.

[1]パルス充電(電流値:130A、時間:17秒間)
[2]休止(時間:10分間)
[3]パルス放電(電流値:130A、時間:30秒間)
[4]休止(時間:10分間)。
[1] Pulse charging (current value: 130 A, time: 17 seconds)
[2] Rest (time: 10 minutes)
[3] Pulse discharge (current value: 130 A, time: 30 seconds)
[4] Rest (time: 10 minutes).

そして、1000cyc実行後、初期容量と同条件でサイクル後容量を測定し、サイクル後容量を初期容量で除することにより、容量維持率を算出した。結果を表1に示す。   And after 1000 cyc execution, the capacity | capacitance after a cycle was measured on the same conditions as an initial stage capacity | capacitance, and the capacity | capacitance maintenance factor was computed by remove | dividing a post-cycle capacity | capacitance by an initial stage capacity | capacitance. The results are shown in Table 1.

<結果と考察>
(1)液面の高さの影響について
図4は、下端部BTから液面ELまでの距離(Y)と、下端部BTから上端部TPまでの距離(X)との比、すなわち電極体400のうち電解液に浸っている部分の割合を表す指標(Y/X)が、容量維持率に及ぼす影響を示すグラフである。図4において、集電端子の接続位置の高さを表す指標(Z/X)は0.39に固定されている。
<Results and discussion>
(1) Effect of liquid level FIG. 4 shows the ratio of the distance (Y) from the lower end BT to the liquid level EL and the distance (X) from the lower end BT to the upper end TP, that is, the electrode body. It is a graph which shows the influence which the parameter | index (Y / X) showing the ratio of the part immersed in electrolyte solution among 400 has on a capacity | capacitance maintenance factor. In FIG. 4, the index (Z / X) representing the height of the connection position of the current collecting terminal is fixed at 0.39.

図4から分かるように、Y/Xが0.22〜0.44である範囲では、Y/Xが小さくなる程(すなわち液面ELが低くなる程)、容量維持率が向上している。これは、電極体400において、電解液との接触体積が減少することにより、奪熱量が減少し、温度ムラが抑えられるからであると考えられる。   As can be seen from FIG. 4, in the range where Y / X is 0.22 to 0.44, the capacity retention rate is improved as Y / X becomes smaller (that is, the liquid level EL becomes lower). This is presumably because, in the electrode body 400, the amount of heat removal decreases and the temperature unevenness is suppressed by reducing the contact volume with the electrolytic solution.

しかし、Y/Xが0.11未満となると急激に容量維持率が減少している。これは、液面ELが過度に低くなることにより、液枯れの進行が早まったからであると考えられる。したがってこの結果から、Y/Xは少なくとも0.11以上であることを要する。   However, when Y / X is less than 0.11, the capacity retention rate decreases rapidly. This is considered to be because the progress of liquid withering was accelerated by the liquid level EL becoming excessively low. Therefore, from this result, Y / X needs to be at least 0.11 or more.

(2)集電端子の接続位置の高さの影響について
図5は、下端部BTから各集電端子と電極体400との接続部120a,220aまでの距離(Z)と、下端部BTから上端部TPまでの距離(X)との比、すなわち集電端子の接続位置の高さを表す指標(Z/X)が、容量維持率に及ぼす影響を示すグラフである。図5において、電極体のうち電解液に浸っている部分の割合を表す指標(Y/X)は0.22に固定されている。
(2) About the influence of the height of the connection position of the current collector terminal FIG. 5 shows the distance (Z) from the lower end portion BT to the connection portions 120a, 220a between the current collector terminals and the electrode body 400, and the lower end portion BT. It is a graph which shows the influence which the ratio (Z / X) showing the ratio with the distance (X) to upper end part TP, ie, the height of the connection position of a current collection terminal, has on the capacity maintenance rate. In FIG. 5, the index (Y / X) indicating the ratio of the portion of the electrode body that is immersed in the electrolytic solution is fixed to 0.22.

図5から分かるように、Z/Xが小さい程、すなわち電池1000の高さ方向において各集電端子と電極体400との接続部120a,220aが低い位置である程、容量維持率が向上している。これは、接続部120a,220aの位置が低くなることにより、電極体400の下方部分および電解液が加熱され、温度ムラが抑えられるからであると考えられる。したがって、Z/Xは小さい程好ましく、最も好ましくは0(ゼロ)である。   As can be seen from FIG. 5, the smaller the Z / X is, that is, the lower the connecting portions 120a and 220a between the current collector terminals and the electrode body 400 in the height direction of the battery 1000, the higher the capacity retention rate. ing. This is presumably because the lower portions of the electrode body 400 and the electrolytic solution are heated by the lower positions of the connecting portions 120a and 220a, and temperature unevenness is suppressed. Therefore, Z / X is preferably as small as possible, and most preferably 0 (zero).

またZ/Xが0.50から0.39に減少すると容量維持率が大幅に向上し、0.39を境界としてその効果は若干鈍化している。したがってZ/Xは少なくとも0.39以下であることを要する。   Further, when Z / X is reduced from 0.50 to 0.39, the capacity retention ratio is greatly improved, and the effect is slightly reduced with 0.39 as a boundary. Therefore, Z / X needs to be at least 0.39 or less.

(3)液面の高さおよび集電端子の接続位置の高さの相乗作用について
図6は、電極体のうち電解液に浸っている部分の割合を表す指標(Y/X)、および集電端子の接続位置の高さを表す指標(Z/X)の両方を変化させた場合における容量維持率の推移を示すグラフである。図6中の点線は、容量維持率の推移傾向が分かりやすいように補助的に付している。
(3) Regarding the synergistic effect of the height of the liquid level and the height of the connection position of the current collecting terminal FIG. 6 shows an index (Y / X) indicating the ratio of the portion of the electrode body immersed in the electrolyte, and the current collector. It is a graph which shows transition of the capacity | capacitance maintenance factor at the time of changing both of the parameter | index (Z / X) showing the height of the connection position of an electrical terminal. The dotted line in FIG. 6 is attached in an auxiliary manner so that the transition tendency of the capacity maintenance rate can be easily understood.

図6から、0.11≦Y/X≦0.33であり、かつ0≦Z/X≦0.39となる領域において、容量維持率が著しく向上していることが分かる。このような結果となる理由は、液面ELの高さを低くしたことによる奪熱抑制作用と、集電端子の接続部120a,220aの高さを低くしたことによる加熱作用とが相乗するからであると考えられる。   FIG. 6 shows that the capacity retention ratio is remarkably improved in the region where 0.11 ≦ Y / X ≦ 0.33 and 0 ≦ Z / X ≦ 0.39. The reason for such a result is that the heat removal suppression effect by reducing the height of the liquid surface EL and the heating effect by reducing the height of the connection portions 120a and 220a of the current collecting terminal are synergistic. It is thought that.

以上の実験結果から次の事項が実証できたといえる。
すなわち、筐体500と、筐体500に内蔵される巻回型の電極体400および電解液と、電極体400に接続される正極集電端子120および負極集電端子220と、を備え、電極体400の下端部BTは電解液に浸っており、電池の高さ方向において、電極体400の下端部BTから電極体400の上端部TPまでの距離をXとし、下端部BTから電解液の液面ELまでの距離をYとし、下端部BTから正極集電端子120と電極体400との接続部120aまでの距離、および下端部BTから負極集電端子220と電極体400との接続部220aまでの距離のうち、少なくともいずれかの距離をZとするとき、0.11≦Y/X≦0.33かつ0≦Z/X≦0.39となる関係を満たすリチウムイオン二次電池は、サイクル耐久性に優れる。
From the above experimental results, it can be said that the following items were proved.
That is, it includes a housing 500, a wound electrode body 400 and an electrolytic solution built in the housing 500, and a positive electrode current collecting terminal 120 and a negative electrode current collecting terminal 220 connected to the electrode body 400. The lower end portion BT of the body 400 is immersed in the electrolyte, and in the height direction of the battery, the distance from the lower end portion BT of the electrode body 400 to the upper end portion TP of the electrode body 400 is X, and the electrolyte solution from the lower end portion BT Y is the distance to the liquid surface EL, the distance from the lower end BT to the connecting portion 120a between the positive electrode current collecting terminal 120 and the electrode body 400, and the connecting portion between the lower end portion BT and the negative electrode current collecting terminal 220 and the electrode body 400. A lithium ion secondary battery satisfying a relationship of 0.11 ≦ Y / X ≦ 0.33 and 0 ≦ Z / X ≦ 0.39, where at least one of the distances up to 220a is Z, To cycle durability It is.

以上のように本実施形態および実施例について説明を行なったが、今回開示された実施形態および実施例はすべての点で例示であって制限的なものではない。本発明の範囲は特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。   Although the present embodiment and examples have been described as above, the embodiment and examples disclosed this time are illustrative in all points and are not restrictive. The scope of the present invention is defined by the terms of the claims, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

100 正極板、100a 正極合材部、100b 正極非合材部、120 正極集電端子、120a,120b,220a,220b 接続部、140 正極外部端子、200 負極板、200a 負極合材部、200b 負極非合材部、220 負極集電端子、240 負極外部端子、300 セパレータ、400 電極体、TP 上端部、BT 下端部、500 筐体、500a 筐体本体、500b 蓋体、1000,2000 電池、X,Y,Z 距離、EL 液面、AW 巻回軸。   DESCRIPTION OF SYMBOLS 100 Positive electrode plate, 100a Positive electrode mixture part, 100b Positive electrode non-mixing part, 120 Positive electrode current collection terminal, 120a, 120b, 220a, 220b Connection part, 140 Positive electrode external terminal, 200 Negative electrode plate, 200a Negative electrode mixture part, 200b Negative electrode Non-mixed material part, 220 negative electrode current collector terminal, 240 negative electrode external terminal, 300 separator, 400 electrode body, TP upper end part, BT lower end part, 500 housing, 500a housing body, 500b lid body, 1000, 2000 battery, X , Y, Z distance, EL liquid level, AW winding axis.

Claims (1)

筐体と、
前記筐体に内蔵される巻回型の電極体および電解液と、
前記電極体に接続される正極集電端子および負極集電端子と、を備え、
前記電極体の下端部は前記電解液に浸っており、
電池の高さ方向において、
前記電極体の前記下端部から前記電極体の上端部までの距離をXとし、
前記下端部から前記電解液の液面までの距離をYとし、
前記下端部から前記正極集電端子と前記電極体との接続部までの距離、および前記下端部から前記負極集電端子と前記電極体との接続部までの距離のうち、少なくともいずれかの距離をZとするとき、
0.11≦Y/X≦0.33かつ0≦Z/X≦0.39を満たす、リチウムイオン二次電池。
A housing,
A wound electrode body and electrolyte contained in the housing;
A positive electrode current collector terminal and a negative electrode current collector terminal connected to the electrode body,
The lower end of the electrode body is immersed in the electrolytic solution,
In the height direction of the battery,
The distance from the lower end of the electrode body to the upper end of the electrode body is X,
The distance from the lower end to the liquid level of the electrolyte is Y,
At least one of the distance from the lower end to the connecting portion between the positive electrode current collector terminal and the electrode body and the distance from the lower end to the connecting portion between the negative electrode current collector terminal and the electrode body Is Z,
A lithium ion secondary battery satisfying 0.11 ≦ Y / X ≦ 0.33 and 0 ≦ Z / X ≦ 0.39.
JP2014029488A 2014-02-19 2014-02-19 Lithium ion secondary battery Active JP6252228B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014029488A JP6252228B2 (en) 2014-02-19 2014-02-19 Lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014029488A JP6252228B2 (en) 2014-02-19 2014-02-19 Lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2015153727A true JP2015153727A (en) 2015-08-24
JP6252228B2 JP6252228B2 (en) 2017-12-27

Family

ID=53895748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014029488A Active JP6252228B2 (en) 2014-02-19 2014-02-19 Lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP6252228B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021193184A1 (en) * 2020-03-23 2021-09-30 株式会社Gsユアサ Electricity storage element, electricity storage element production method and electricity storage device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012176272A1 (en) * 2011-06-20 2012-12-27 トヨタ自動車株式会社 Production method for secondary battery
JP2013168239A (en) * 2012-02-14 2013-08-29 Hitachi Vehicle Energy Ltd Secondary battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012176272A1 (en) * 2011-06-20 2012-12-27 トヨタ自動車株式会社 Production method for secondary battery
JP2013168239A (en) * 2012-02-14 2013-08-29 Hitachi Vehicle Energy Ltd Secondary battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021193184A1 (en) * 2020-03-23 2021-09-30 株式会社Gsユアサ Electricity storage element, electricity storage element production method and electricity storage device

Also Published As

Publication number Publication date
JP6252228B2 (en) 2017-12-27

Similar Documents

Publication Publication Date Title
US9819026B2 (en) Positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP6015653B2 (en) Non-aqueous electrolyte and lithium ion battery
JP2010267540A (en) Nonaqueous electrolyte secondary battery
JP2011192402A (en) Nonaqueous electrolyte secondary battery
KR20120036882A (en) Nonaqueous electrolyte and nonaqueous electrolyte secondary battery using the same
CN106133952B (en) Non-aqueous electrolyte secondary battery
JP6056955B2 (en) Lithium secondary battery
JP6565899B2 (en) Nonaqueous electrolyte secondary battery
JP6208560B2 (en) Lithium secondary battery
JP6899312B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte power storage elements
JPWO2014069460A1 (en) Lithium secondary battery
JP2017188305A (en) Method for evaluating lithium ion secondary battery output
WO2015129376A1 (en) Rolled electrode set and nonaqueous-electrolyte battery
JP6229333B2 (en) Nonaqueous electrolyte secondary battery
US10312520B2 (en) Non-aqueous electrolyte secondary battery
US10490853B2 (en) Electrolyte for lithium secondary battery and lithium secondary battery comprising same
JP6119641B2 (en) Cylindrical non-aqueous electrolyte secondary battery
JP7003775B2 (en) Lithium ion secondary battery
JP6252228B2 (en) Lithium ion secondary battery
JP6872725B2 (en) Non-aqueous electrolyte secondary battery
US20170352910A1 (en) Electrolyte for lithium secondary battery and lithium secondary battery comprising same
JP2018133335A (en) Nonaqueous electrolyte battery
JP2017091851A (en) Method for manufacturing nonaqueous electrolyte secondary battery
JP7006450B2 (en) Non-aqueous electrolyte secondary battery
JP7059644B2 (en) Non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170321

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171031

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171113

R151 Written notification of patent or utility model registration

Ref document number: 6252228

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151