JP2015152148A - Toroidal type continuously variable transmission - Google Patents

Toroidal type continuously variable transmission Download PDF

Info

Publication number
JP2015152148A
JP2015152148A JP2014028857A JP2014028857A JP2015152148A JP 2015152148 A JP2015152148 A JP 2015152148A JP 2014028857 A JP2014028857 A JP 2014028857A JP 2014028857 A JP2014028857 A JP 2014028857A JP 2015152148 A JP2015152148 A JP 2015152148A
Authority
JP
Japan
Prior art keywords
disk
spline
axial
axial direction
continuously variable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014028857A
Other languages
Japanese (ja)
Other versions
JP6252227B2 (en
JP2015152148A5 (en
Inventor
智巳 山口
Tomomi Yamaguchi
智巳 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2014028857A priority Critical patent/JP6252227B2/en
Publication of JP2015152148A publication Critical patent/JP2015152148A/en
Publication of JP2015152148A5 publication Critical patent/JP2015152148A5/ja
Application granted granted Critical
Publication of JP6252227B2 publication Critical patent/JP6252227B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Friction Gearing (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent fretting friction based on elastic deformation of an input-side disk 2c in an axial direction caused by thrust of a pressurization device.SOLUTION: A spline shaft part 13a is arranged at a portion closer to an outer peripheral face of a tip part of an input rotating shaft 1b, and a lock recessed groove 14a and an outer peripheral side cylindrical face part 22 having an outside diameter larger than a diameter of a circumscribed circle of the spline shaft part 13a are arranged in a state that the spline shaft part 13a is sandwiched between both sides in an axial direction. The spline shaft part 13a and a spline hole 12a which is formed at an intermediate part of a center hole 18 of an input-side disk 2c in the axial direction are engaged with each other, and the outer peripheral side cylindrical face part 22 and an inner peripheral face side cylindrical face part 20 formed at an inner end part of the center hole 18 are fit and fixed to each other by interference fitting. Then, an outside face of an inner-oriented flange part 21 formed at an outer end part of the center hole 18 and an inside face of a lock ring 15a are made to abut on each other.

Description

この発明は、自動車用変速装置として、或いはポンプ等の各種産業用機械の運転速度を調節する為の変速装置として利用する、トロイダル型無段変速機の改良に関する。   The present invention relates to an improvement in a toroidal type continuously variable transmission that is used as a transmission for an automobile or a transmission for adjusting the operating speed of various industrial machines such as a pump.

自動車用変速装置としてトロイダル型無段変速機を使用する事が、特許文献1〜4等の多くの刊行物に記載されると共に一部で実施されていて周知である。又、トロイダル型無段変速機と遊星歯車機構とを組み合わせて変速比の調整幅を広くする構造も、特許文献5等、やはり多くの刊行物に記載されて、従来から広く知られている。図2は、これら各特許文献に記載されて従来から広く知られているトロイダル型無段変速機の第1例を示している。この従来構造の第1例の場合、入力回転軸1の両端寄り部分の周囲に1対の入力側ディスク2a、2bを、それぞれが断面円弧形のトロイド曲面である軸方向片側面同士を互いに対向させた状態で、ボールスプライン23、23を介して支持し、遠近動可能に、且つ、前記入力回転軸1を介して互いに同期して回転する様にしている。又、この入力回転軸1の中間部周囲に出力筒3を、この入力回転軸1に対する相対回転を可能に支持している。又、この出力筒3の外周面には、軸方向中央部に出力歯車4を固設すると共に、軸方向両端部に1対の出力側ディスク5、5を、スプライン係合により、前記出力筒3と同期した回転を可能に支持している。又、この状態で、それぞれが断面円弧形のトロイド曲面である、前記両出力側ディスク5、5の軸方向側面を、前記両入力側ディスク2a、2bの軸方向片側面に対向させている。   The use of a toroidal continuously variable transmission as a transmission for an automobile is described in many publications such as Patent Documents 1 to 4 and partially implemented, and is well known. Further, a structure in which a toroidal type continuously variable transmission and a planetary gear mechanism are combined to widen the adjustment range of the gear ratio is also described in many publications such as Patent Document 5 and has been widely known. FIG. 2 shows a first example of a toroidal-type continuously variable transmission described in these patent documents and widely known in the past. In the case of the first example of this conventional structure, a pair of input-side disks 2a and 2b are disposed around the portions near both ends of the input rotation shaft 1, and axial one side surfaces, each of which is a toroidal curved surface having a circular arc cross section, are mutually connected. In a state of being opposed to each other, it is supported via ball splines 23 and 23 so as to be movable in a near-far direction and to rotate in synchronization with each other via the input rotary shaft 1. An output cylinder 3 is supported around the intermediate portion of the input rotary shaft 1 so as to be able to rotate relative to the input rotary shaft 1. Further, on the outer peripheral surface of the output cylinder 3, an output gear 4 is fixed at the center in the axial direction, and a pair of output side disks 5, 5 are connected to both ends in the axial direction by spline engagement. The rotation synchronized with 3 is supported. Further, in this state, the axial side surfaces of the output side disks 5 and 5, each of which is a toroidal curved surface having an arcuate cross section, are opposed to one axial side surface of the input side disks 2 a and 2 b. .

又、前記両入力側ディスク2a、2bと前記両出力側ディスク5、5との間に、それぞれの周面を部分球状凸面とした複数個のパワーローラ6、6を挟持している。これら各パワーローラ6、6は、トラニオン7、7に回転自在に支持されており、前記両入力側ディスク2a、2bの回転に伴って回転しつつ、これら両入力側ディスク2a、2bから前記両出力側ディスク5、5に動力を伝達する。即ち、トロイダル型無段変速機の運転時には、駆動軸8により一方(図3の左方)の入力側ディスク2aを、押圧装置9(図示の構造はローディングカム式を備えた機械式の押圧装置であるが、油圧シリンダ内にピストンを嵌装して成る油圧式のものを採用した構造に就いても、従来から広く知られている。)を介して回転駆動する。この結果、前記入力回転軸1の両端部に支持された1対の入力側ディスク2a、2bが、互いに近づく方向に押圧されつつ同期して回転する。そして、この回転が、前記各パワーローラ6、6を介して前記両出力側ディスク5、5に伝わり、前記出力歯車4から取り出される。尚、前記各トラニオン7、7が、特許請求の範囲に記載した支持部材に相当する。これに対し、フルトロイダル型のトロイダル型無段変速機の場合には、キャリアが、特許請求の範囲に記載した支持部材に相当する。   Further, a plurality of power rollers 6 and 6 each having a partially spherical convex surface are sandwiched between the input disks 2a and 2b and the output disks 5 and 5. The power rollers 6 and 6 are rotatably supported by the trunnions 7 and 7 and rotate with the rotation of both the input side disks 2a and 2b. Power is transmitted to the output side disks 5 and 5. That is, during operation of the toroidal-type continuously variable transmission, the drive shaft 8 pushes one (left side in FIG. 3) the input side disk 2a and the pressing device 9 (the structure shown in the drawing is a mechanical pressing device having a loading cam type). However, a structure using a hydraulic type in which a piston is fitted in a hydraulic cylinder is also widely known in the art. As a result, the pair of input-side disks 2a and 2b supported at both ends of the input rotation shaft 1 rotate synchronously while being pressed in a direction approaching each other. Then, this rotation is transmitted to the output side disks 5 and 5 through the power rollers 6 and 6 and is taken out from the output gear 4. The trunnions 7 and 7 correspond to the support members described in the claims. On the other hand, in the case of a full toroidal toroidal continuously variable transmission, the carrier corresponds to the support member described in the claims.

又、前記入力回転軸1の両端部近傍で前記両入力側ディスク2a、2bを軸方向両側から挟む位置に、それぞれ予圧ばね10a、10bを設けている。そして、前記押圧装置9の非作動時(前記駆動軸8の停止時)にも、前記各パワーローラ6、6の周面と、前記入力側、出力側各ディスク2a、2b、5の内側面との転がり接触部(トラクション部)の面圧を、必要最低限だけは確保する様にしている。従って、これら各転がり接触部は、トロイダル型無段変速機の運転開始直後から、過大な滑りを生じる事なく、動力伝達を開始する。尚、前記必要最低限の面圧を確保する為の弾力は、前記押圧装置9の内径側に配置した予圧ばね10aにより得る。前記入力回転軸1の先端部に螺着したローディングナット11と入力側ディスク2bの外側面との間に配置した予圧ばね10bは、前記押圧装置9の急な作動時に加わる衝撃を緩和するものであって、省略する事もできる。設ける場合には、十分に(大きなトルクを伝達する際にも完全に押し潰されない程度に)大きな弾力を持たせる。   Further, preload springs 10a and 10b are provided at positions where both the input side disks 2a and 2b are sandwiched from both sides in the axial direction in the vicinity of both ends of the input rotary shaft 1, respectively. Even when the pressing device 9 is not in operation (when the drive shaft 8 is stopped), the peripheral surfaces of the power rollers 6 and 6 and the inner surfaces of the input side and output side disks 2a, 2b and 5 are provided. The surface pressure of the rolling contact part (traction part) is secured to the minimum necessary. Therefore, these rolling contact portions start power transmission without causing excessive slip immediately after the start of operation of the toroidal continuously variable transmission. The elasticity for securing the minimum necessary surface pressure is obtained by a preload spring 10 a disposed on the inner diameter side of the pressing device 9. The preload spring 10b disposed between the loading nut 11 screwed to the tip end of the input rotary shaft 1 and the outer surface of the input side disk 2b alleviates the impact applied when the pressing device 9 is suddenly operated. It can be omitted. When it is provided, it has a sufficiently large elasticity (so as not to be completely crushed even when a large torque is transmitted).

上述の様なトロイダル型無段変速機の場合、前記必要最低限の面圧を確保する為の前記予圧ばね10aの弾力を調整する作業が面倒である。即ち、前記従来構造の第1例の場合、この予圧ばね10aの弾力を、前記入力回転軸1の先端部に螺着したローディングナット11の締め付け量を変更する事により調整する必要があり、面倒である。これに対し、特許文献6〜7等には、ローディングナットに代えてコッタと呼ばれる係止環を用いた構造が記載されている。   In the case of the toroidal type continuously variable transmission as described above, the work of adjusting the elasticity of the preload spring 10a for ensuring the minimum surface pressure is troublesome. That is, in the case of the first example of the conventional structure, it is necessary to adjust the elasticity of the preload spring 10a by changing the tightening amount of the loading nut 11 screwed to the tip end portion of the input rotary shaft 1. It is. On the other hand, Patent Documents 6 to 7 describe a structure using a locking ring called a cotter instead of a loading nut.

図3〜6は、この様な係止環を組み込んだ従来構造の第2例を示している。この従来構造の第2例の場合、入力側ディスク2bの中心部にスプライン孔12を形成し、このスプライン孔12と、入力回転軸1aの先端寄り部分の外周面に形成したスプライン軸部13とを係合している。又、この入力回転軸1aの先端部外周面で、このスプライン軸部13から軸方向に外れた部分に、全周に亙って係止凹溝14を形成し、この係止凹溝14に、複数(2〜4個)の部分円弧状の素子から成る係止環15の径方向内半部を係止している。そして、この係止環15の内側面(図3〜4の左側面)のうちの径方向外端寄り部分を、入力側ディスク2bの外側面のうちの径方向内端部に当接させる。押圧装置9(図3に示した構造は、油圧式の押圧装置)の非作動時に、各パワーローラ6、6(図2参照)の周面と、入力、出力側各ディスク2a、2b、5aの内側面との転がり接触部の面圧を必要最低限確保する為の、皿ばね10aの弾力の調整は、前記係止環15として、適正な軸方向の厚さ寸法を有するものを選択する事により図る。又、前記入力回転軸1aの先端部に断面L字形の抑え環16を外嵌し、この抑え環16の内周面を、前記係止環15の外周面に当接或いは近接対向させる事により、この係止環15(を構成する各素子)が前記係止凹溝14から抜け出るのを防止している。この様な抑え環16は、前記入力回転軸1aの先端部に係止した止め輪17により軸方向の変位を阻止する。以上の様な構成により、前記入力側ディスク2bを前記入力回転軸1aに、この入力回転軸1aと同期した回転を可能に支持している。尚、前記従来構造の第2例の場合、出力側ディスク5aとして一体型のものを使用する事により、トロイダル型無段変速機全体として小型・軽量化を図っている。但し、この部分の構造及び作用に就いては、本発明の要旨とは関係しないし、従来から広く知られている為、詳しい説明は省略する。   3 to 6 show a second example of a conventional structure in which such a locking ring is incorporated. In the case of the second example of this conventional structure, a spline hole 12 is formed at the center of the input side disk 2b, and the spline hole 12 and a spline shaft portion 13 formed on the outer peripheral surface of the input rotary shaft 1a. Is engaged. Further, a locking groove 14 is formed on the outer peripheral surface of the tip end portion of the input rotating shaft 1a in the axial direction away from the spline shaft portion 13 over the entire circumference. The radially inner half of the locking ring 15 composed of a plurality (2 to 4) partial arc-shaped elements is locked. Then, the radially outer end portion of the inner side surface (left side surface in FIGS. 3 to 4) of the locking ring 15 is brought into contact with the radially inner end portion of the outer side surface of the input side disk 2b. When the pressing device 9 (the structure shown in FIG. 3 is a hydraulic pressing device) is not operated, the peripheral surfaces of the power rollers 6 and 6 (see FIG. 2) and the input and output side disks 2a, 2b and 5a For the adjustment of the elasticity of the disc spring 10a in order to ensure the necessary minimum surface pressure of the rolling contact portion with the inner side surface, the one having the appropriate axial thickness dimension is selected as the locking ring 15 Plan by things. Further, a retaining ring 16 having an L-shaped cross section is fitted on the tip of the input rotating shaft 1a, and the inner peripheral surface of the retaining ring 16 is brought into contact with or in close proximity to the outer peripheral surface of the locking ring 15. This locking ring 15 (each element constituting the locking ring 15) is prevented from coming out of the locking groove 14. Such a retaining ring 16 prevents axial displacement by a retaining ring 17 that is engaged with the tip of the input rotary shaft 1a. With the configuration described above, the input disk 2b is supported on the input rotary shaft 1a so as to be able to rotate in synchronization with the input rotary shaft 1a. In the case of the second example of the conventional structure, the entire toroidal continuously variable transmission is reduced in size and weight by using an integral output side disk 5a. However, since the structure and operation of this part are not related to the gist of the present invention and are widely known in the past, detailed description will be omitted.

上述の様な従来構造の第2例に係るトロイダル型無段変速機の場合、運転時に、前記先端側の入力側ディスク2bは、前記押圧装置9の発生する推力に基づく前記各パワーローラ6、6から受ける力に基づいて、図7に誇張して示す様に、この入力側ディスク2bの外径寄り部分が前記係止環15側に近付く方向(軸方向)に弾性変形する。即ち、運転時に前記推力に基づき前記入力側ディスク2bに加わる力は、トロイダル型無段変速機の運転時に最大で数十kN〜百数十kN(数tF〜十数tF)程度となり、この様な力に基づく入力側ディスク2bの軸方向に関する弾性変形量は、コンマ数mm(10分の数mm)程度と無視できない量となる。そして、この様に前記入力側ディスク2bが軸方向に弾性変形すると、この入力側ディスク2bの外側面と前記係止環15の内側面とが断続的に繰り返し当接する可能性がある。前記従来構造の第2例の場合には、前記入力側ディスク2bの中心部にスプライン孔12を設けている為、このスプライン孔12の各雌スプライン溝の外端縁(図3、4の右端縁)と、前記係止環15の内側面(図3、4の左側面)とが断続的に繰り返し当接して互いに擦れ合い、これら各雌スプライン溝の外端縁(これら各雌スプライン溝の周方向両側に存在するスプライン山部の外端部径方向内端縁)が前記係止環15の内側面に食い込む傾向となって、当該部分でフレッチング摩耗が生じる可能性がある。   In the case of the toroidal type continuously variable transmission according to the second example of the conventional structure as described above, the input-side disk 2b on the distal end side is driven by the power rollers 6 based on the thrust generated by the pressing device 9 during operation. Based on the force received from 6, as shown exaggeratedly in FIG. 7, the portion closer to the outer diameter of the input side disk 2 b is elastically deformed in the direction approaching the locking ring 15 side (axial direction). That is, the force applied to the input side disk 2b based on the thrust during operation is about several tens kN to hundreds tens kN (several tF to several tens tF) at the maximum during operation of the toroidal type continuously variable transmission. The amount of elastic deformation in the axial direction of the input-side disk 2b based on a large force is a comma number of mm (a few tenths of a millimeter) and cannot be ignored. When the input side disk 2b is elastically deformed in the axial direction in this way, there is a possibility that the outer side surface of the input side disk 2b and the inner side surface of the locking ring 15 are repeatedly contacted intermittently. In the case of the second example of the conventional structure, since the spline hole 12 is provided at the center of the input side disk 2b, the outer edge of each female spline groove of the spline hole 12 (the right end in FIGS. 3 and 4). Edge) and the inner side surface (the left side surface in FIGS. 3 and 4) of the locking ring 15 repeatedly abut against each other and rub against each other, and the outer end edges of each of these female spline grooves (of each of these female spline grooves) The outer end radial direction inner edge of the spline crest existing on both sides in the circumferential direction tends to bite into the inner surface of the locking ring 15, and fretting wear may occur in that portion.

特に、前記入力側ディスク2bが弾性変形する円周方向位置は、前記各パワーローラ6、6により押し付けられる部分が変化するのに伴って常に変化する。この為、前記スプライン山部の数が多い事も影響して、前記擦れ合いの周波数は相当に高く(例えば百数十Hzに)なり、フレッチング摩耗発生の面からはかなり厳しい条件となる。この様なフレッチング摩耗は、剥離等の損傷の起点となったり、発生した摩耗粉が潤滑油(トラクションオイル)を汚染し、各部の潤滑状態を不良にする可能性がある。特に、前記スプライン孔12の各雌スプライン溝の外端縁と前記係止環15の内側面との繰り返し当接に基づく、この係止環15の内側面のフレッチング摩耗は、この内側面の径方向中間部に段差部を形成する。この様な段差部には、トロイダル型無段変速機の運転時に前記入力側ディスク2bから前記係止環15の外径寄り部分に上述の様に大きな(数十kN〜百数十kN程度の)スラスト荷重が加わった場合に、部分的に大きな曲げ応力が生じ易く、前記係止環15の支持力喪失に結び付く、亀裂等の重大な損傷を発生する原因となる可能性がある。   In particular, the circumferential position at which the input side disk 2b is elastically deformed always changes as the portions pressed by the power rollers 6 and 6 change. For this reason, the frequency of the rubbing is considerably high (for example, hundreds of tens Hz) due to the fact that the number of the spline crests is large, which is a severe condition in terms of occurrence of fretting wear. Such fretting wear may become a starting point of damage such as peeling, or the generated wear powder may contaminate the lubricating oil (traction oil), resulting in poor lubrication of each part. In particular, the fretting wear on the inner surface of the locking ring 15 based on repeated contact between the outer edge of each female spline groove of the spline hole 12 and the inner surface of the locking ring 15 is caused by the diameter of the inner surface. A step portion is formed in the middle portion in the direction. Such a stepped portion has a large (as high as several tens of kN to hundreds of tens of kN) as described above from the input side disk 2b to the outer diameter portion of the locking ring 15 during operation of the toroidal type continuously variable transmission. ) When a thrust load is applied, a large bending stress is likely to occur partially, which may cause a serious damage such as a crack that leads to a loss of the supporting force of the locking ring 15.

特開2003−214516号公報JP 2003-214516 A 特開2007−315595号公報JP 2007-315595 A 特開2008−25821号公報JP 2008-25821 A 特開2008−275088号公報JP 2008-275088 A 特開2004−169719号公報JP 2004-169719 A 特開2000−205361号公報JP 2000-205361 A 特開2009−041715号公報JP 2009-041715 A

本発明は、上述の様な事情に鑑みて、外側ディスクの軸方向の弾性変形に拘らず、この外側ディスクの中心部に設けられたスプライン孔の雌スプライン溝の端縁と、係止環の片側面との間でフレッチング摩耗が発生するのを防止できる構造を実現すべく発明したものである。   In view of the circumstances as described above, the present invention provides an edge of a female spline groove of a spline hole provided at the center of the outer disk, and an engagement ring, regardless of the elastic deformation in the axial direction of the outer disk. The invention was invented to realize a structure capable of preventing fretting wear from occurring on one side surface.

本発明のトロイダル型無段変速機は、前述した従来から知られているトロイダル型無段変速機と同様に、回転軸と、1対の外側ディスクと、内側ディスクと、複数個の支持部材と、これら各支持部材と同数のパワーローラと、押圧装置と、係止環とを備える。
このうちの回転軸は、先端部外周面に周方向に亙る係止凹溝を、この係止凹溝と軸方向に隣接する部分にスプライン軸部を、それぞれ設けている。
又、前記両外側ディスクは、それぞれが断面円弧形のトロイド曲面である互いの軸方向片側面同士を対向させた状態で前記回転軸の両端部に、この回転軸と同期した回転を自在に、且つ、前記両外側ディスクのうちの一方の外側ディスクは、この回転軸に対する軸方向の相対変位を可能に、同じく他方の外側ディスクは、この他方の外側ディスクの中心部に形成したスプライン孔と前記スプライン軸部とを係合する事で、それぞれ支持されている。
又、前記内側ディスクは、前記回転軸の中間部周囲に、断面円弧形のトロイド曲面である軸方向両側面を前記両外側ディスクの軸方向片側面に対向させた状態で、前記回転軸に対する相対回転を自在に支持されたもので、一体、若しくは1対の素子を結合して成る。
又、前記各支持部材は、軸方向に関して前記内側ディスクの軸方向両側面と前記両外側ディスクの軸方向片側面との間位置にそれぞれ複数個ずつ、前記回転軸に対し捩れの位置にある枢軸を中心とする揺動変位を可能に設けられている。
又、前記各パワーローラは、前記各支持部材に回転自在に支持されたもので、部分球状凸面としたそれぞれの周面を、前記内側ディスクの軸方向両側面と前記両外側ディスクの軸方向片側面とに当接させている。
又、前記押圧装置は、前記回転軸と、前記両外側ディスクのうちの一方の外側ディスクとの間に設けられ、この一方の外側ディスクを、これら両外側ディスクのうちの他方の外側ディスクに向け押圧する。この様な押圧装置としては、ローディングカムを組み込んだ機械式或いは、油圧シリンダ及びピストンを備えた油圧式の押圧装置を使用する事ができる。
又、前記係止環は、複数(例えば2〜4個)の部分円弧状の素子を組み合わせる事により、全体を円環状に構成したものであって、前記回転軸の外周面に形成した係止凹溝に係止され、この係止環の軸方向片側面(のうち係止凹溝から露出した部分)を、軸方向に関して対向する、前記他方の外側ディスクの軸方向他側面に当接させる。これにより、この他方の外側ディスクが前記一方の外側ディスクから離れる方向に変位するのを阻止する。
The toroidal-type continuously variable transmission of the present invention is similar to the previously known toroidal-type continuously variable transmission, and includes a rotating shaft, a pair of outer disks, an inner disk, and a plurality of support members. The same number of power rollers as the support members, a pressing device, and a locking ring are provided.
Among these, the rotating shaft is provided with a locking groove extending in the circumferential direction on the outer peripheral surface of the tip portion, and a spline shaft portion is provided in a portion adjacent to the locking groove in the axial direction.
In addition, the both outer disks can freely rotate in synchronization with the rotating shaft at both ends of the rotating shaft in a state where the axial side surfaces of each of the toroidal curved surfaces each having a circular arc cross section are opposed to each other. One outer disk of the two outer disks is capable of axial relative displacement with respect to the rotation axis, and the other outer disk is a spline hole formed at the center of the other outer disk. Each is supported by engaging the spline shaft portion.
In addition, the inner disk has a circular arc-shaped toroidal curved surface around the middle part of the rotating shaft, with the axially opposite side surfaces facing the axially one side surface of the outer disk, and with respect to the rotating shaft. The relative rotation is supported freely, and it is formed as a single unit or a pair of elements.
Further, each of the supporting members is pivoted at a position twisted with respect to the rotating shaft, and a plurality of each of the supporting members is disposed between the axial side surfaces of the inner disk and the axial side surfaces of the outer disks. Oscillating displacement about the center is provided.
Each of the power rollers is rotatably supported by each of the support members, and each circumferential surface having a partially spherical convex surface is formed on both axial sides of the inner disk and axial pieces of the outer disks. It is in contact with the side.
The pressing device is provided between the rotating shaft and one outer disk of the two outer disks, and the one outer disk faces the other outer disk of the two outer disks. Press. As such a pressing device, a mechanical pressing device incorporating a loading cam or a hydraulic pressing device including a hydraulic cylinder and a piston can be used.
In addition, the locking ring is configured by combining a plurality of (for example, 2 to 4) partial arc-shaped elements so as to form a ring shape as a whole, and the locking ring formed on the outer peripheral surface of the rotating shaft. Locked in the groove, one axial side surface of the locking ring (a portion exposed from the locking groove) is brought into contact with the other axial side surface of the other outer disk facing in the axial direction. . This prevents the other outer disk from being displaced in a direction away from the one outer disk.

特に本発明のトロイダル型無段変速機の場合は、前記係止環の軸方向片側面と、前記スプライン孔を構成する各スプライン溝の端縁とを軸方向に関して互いに離隔させ、前記各パワーローラを介しての前記各ディスク同士の間でのトルク伝達に伴う前記他方の外側ディスクの弾性変形時にも、この係止環の軸方向片側面とこのスプライン孔を構成する各雌スプライン溝の端縁とが当接する事を防止している。   Particularly, in the case of the toroidal type continuously variable transmission according to the present invention, the axial side surface of the locking ring and the edge of each spline groove constituting the spline hole are separated from each other in the axial direction, and the power rollers Even when the other outer disk is elastically deformed due to torque transmission between the disks via the rim, one axial side surface of the locking ring and the edge of each female spline groove constituting the spline hole Is prevented from coming into contact.

上述の様な本発明を実施する場合に好ましくは、請求項2に記載した発明の様に、前記回転軸の先端部外周面に前記スプライン軸部を軸方向両側から挟む状態で、前記係止凹溝と、このスプライン軸部の外接円の直径よりも大きな外径を有し、軸方向に亙り外径が変化しない外周面側円筒面部を設ける。又、前記他方の外側ディスクの内周面のうちで、前記スプライン孔に隣接する軸方向他側面側端部に、軸方向に亙り外径が変化しない内周面側円筒面部を設ける。そして、この内周面側円筒面と前記外周面側円筒面部とを締り嵌めにより嵌合させる。
又、好ましくは請求項3に記載した発明の様に、前記他方の外側ディスクの内周面のうちの軸方向他側面側端部に、このスプライン孔の内接円の直径よりも小さな内径を有する内向鍔部を形成し、この内向鍔部を、前記係止環の軸方向片側面と前記係止凹溝の内側面との間に配置する。そして、内向鍔部の軸方向他側面と、前記係止環の軸方向片側面とを当接させる。
Preferably, when the present invention as described above is carried out, as in the invention described in claim 2, the spline shaft portion is sandwiched from both sides in the axial direction on the outer peripheral surface of the distal end portion of the rotating shaft, and the locking is performed. The outer circumferential surface side cylindrical surface portion having an outer diameter larger than the diameter of the circumscribed circle of the concave groove and the spline shaft portion and extending in the axial direction is provided. In addition, an inner peripheral surface side cylindrical surface portion whose outer diameter does not change in the axial direction is provided at an end portion on the other axial side surface adjacent to the spline hole in the inner peripheral surface of the other outer disk. And this inner peripheral surface side cylindrical surface and the said outer peripheral surface side cylindrical surface part are fitted by interference fitting.
Preferably, as in the invention described in claim 3, an inner diameter smaller than the diameter of the inscribed circle of the spline hole is formed at the end of the other side in the axial direction of the inner peripheral surface of the other outer disk. An inward flange portion is formed, and the inward flange portion is disposed between one axial side surface of the locking ring and an inner surface of the locking groove. Then, the other axial side surface of the inward flange is brought into contact with the one axial side surface of the locking ring.

上述の様に構成する、本発明のトロイダル型無段変速機によれば、外側ディスクの軸方向の弾性変形に拘らず、この外側ディスクのスプライン孔の雌スプライン溝の端縁と、係止環の片側面との間でフレッチング摩耗が発生するのを防止できる。即ち、この係止環の軸方向片側面と、前記スプライン孔を構成する各スプライン溝の端縁とを軸方向に関して互いに離隔させている。これにより、押圧装置の発生する推力に基づいて前記外側ディスクが軸方向に弾性変形した場合にも、前記係止環の軸方向片側面と前記雌スプライン溝の端縁とが擦れ合い、この端縁がこの軸方向片側面に食い込む傾向となる事を防止して、当該部分に著しいフレッチング摩耗が発生するのを防止できる。   According to the toroidal type continuously variable transmission of the present invention configured as described above, regardless of the elastic deformation in the axial direction of the outer disk, the edge of the female spline groove of the spline hole of the outer disk, and the locking ring It is possible to prevent fretting wear from occurring between the one side surface and the other side surface. In other words, one axial side surface of the locking ring and the edge of each spline groove constituting the spline hole are separated from each other in the axial direction. As a result, even when the outer disk is elastically deformed in the axial direction based on the thrust generated by the pressing device, the one axial side surface of the locking ring and the end edge of the female spline groove are rubbed together. It is possible to prevent the edge from becoming a tendency to bite into one side surface in the axial direction, and to prevent the occurrence of significant fretting wear in the portion.

又、請求項2に記載した発明の様に、前記回転軸側に設けた外周面側円筒面部と前記他方の外側ディスク側に設けた内周面側円筒面部とを締り嵌めにより嵌合させた構造の場合には、これら回転軸と他方の外側ディスク側との同心性(組立に伴ってこれら回転軸と他方の外側ディスク側との中心軸同士を一致させる精度)を向上させられる他、これら回転軸と他方の外側ディスク側との支持剛性の向上も図れる。即ち、この支持剛性を、円筒面部同士の締り嵌めに基づいて向上させられるだけでなく、前記回転軸と他方の外側ディスク側とを軸方向に関し複数箇所位置(スプライン軸部とスプライン孔との係合部、前記係止環の軸方向片側面と前記他方の外側ディスクの軸方向他側面との突合せ部及び前記外周面側、内周面側両円筒面部同士の嵌合部)で支持しているので、この面からも、前記支持剛性を向上させて、前記他方の外側ディスクの位置決め精度向上による変速比調節の精度向上等、トロイダル型無段変速機の各種性能の向上を図れる。又、請求項3に記載した発明の構造によれば、前記回転軸に対して他方の外側ディスク側を支持する、軸方向に離隔した複数箇所位置の支持部の軸方向距離(支持スパン)を長くして、押圧装置の発生する推力に基づき、前記他方の外側ディスクに加わるモーメントに関する支持剛性をより向上でき、前記トロイダル型無段変速機の各種性能のより一層の向上を図れる。   Further, as in the invention described in claim 2, the outer peripheral surface side cylindrical surface portion provided on the rotating shaft side and the inner peripheral surface side cylindrical surface portion provided on the other outer disk side are fitted by an interference fit. In the case of the structure, the concentricity between these rotating shafts and the other outer disk side (the accuracy with which the center axes of these rotating shafts and the other outer disk side coincide with each other during assembly) can be improved. Support rigidity between the rotating shaft and the other outer disk can be improved. In other words, the support rigidity is not only improved based on the interference fit between the cylindrical surface portions, but also the rotational shaft and the other outer disk side are arranged at a plurality of positions in the axial direction (the relationship between the spline shaft portion and the spline hole). And a mating portion, a butting portion between one axial side surface of the locking ring and the other axial side surface of the other outer disk, and a fitting portion between the outer peripheral surface side and the inner peripheral surface side cylindrical surface portions). Therefore, also from this aspect, it is possible to improve various performances of the toroidal type continuously variable transmission by improving the support rigidity and improving the accuracy of gear ratio adjustment by improving the positioning accuracy of the other outer disk. Further, according to the structure of the invention described in claim 3, the axial distance (support span) of the support portions at a plurality of positions separated in the axial direction, which supports the other outer disk side with respect to the rotating shaft, is provided. The support rigidity related to the moment applied to the other outer disk can be further improved based on the thrust generated by the pressing device, and the various performances of the toroidal continuously variable transmission can be further improved.

本発明の実施の形態の1例を示す、図3のX部拡大図に相当する図(A)と、(A)のY部拡大図(B)。The figure (A) equivalent to the X section enlarged view of FIG. 3 which shows an example of embodiment of this invention, and the Y section enlarged view (B) of (A). 従来構造の第1例を示す断面図。Sectional drawing which shows the 1st example of a conventional structure. 同第2例を示す断面図。Sectional drawing which shows the 2nd example. 同じく図3のX部拡大図(A)と、(A)のZ部拡大図(B)。Similarly, the X part enlarged view (A) of FIG. 3, and the Z part enlarged view (B) of (A). 先端側の入力側ディスクを取り出して示す斜視図。The perspective view which takes out and shows the input side disk of the front end side. この先端側の入力側ディスクと入力回転軸との係合部の状態を示す断面図。Sectional drawing which shows the state of the engaging part of this input side disk of this front end side, and an input rotating shaft. この先端側の入力側ディスクの弾性変形を誇張して示す模式図。The schematic diagram which exaggerates and shows the elastic deformation of this input side disk of the front end side.

[実施の形態の1例]
図1は、総ての請求項に対応する、本発明の実施の形態の1例を示している。尚、本例を含めて、本発明のトロイダル型無段変速機及び無段変速装置の特徴は、押圧装置9(図2、3参照)の発生する推力に基づく、特許請求の範囲に記載した他方の外側ディスクである入力側ディスク2cの弾性変形に拘らず、この入力側ディスク2cの中心部に形成したスプライン孔12aの雌スプライン溝の外端縁(図1の右端縁)と、係止環15aの軸方向片側面である内側面(図1の左側面)との間でフレッチング摩耗が発生するのを抑える為の構造にある。その他の部分の構造及び作用は、前述の図2〜6に示した構造を含め、従来から知られているトロイダル型無段変速機と同様であるから、同等部分に関する図示並びに説明は省略若しくは簡略にし、以下、本例の特徴部分を中心に説明する。
[Example of Embodiment]
FIG. 1 shows an example of an embodiment of the invention corresponding to all claims. The features of the toroidal continuously variable transmission and continuously variable transmission of the present invention, including this example, are described in the claims based on the thrust generated by the pressing device 9 (see FIGS. 2 and 3). Regardless of the elastic deformation of the input side disk 2c which is the other outer disk, the outer end edge (right end edge in FIG. 1) of the female spline groove of the spline hole 12a formed at the center of the input side disk 2c, The fretting wear is prevented from occurring between the inner side surface (left side surface in FIG. 1) that is one side surface of the ring 15a in the axial direction. Since the structure and operation of the other parts are the same as those of conventionally known toroidal type continuously variable transmissions including the structures shown in FIGS. 2 to 6 described above, illustration and explanation of equivalent parts are omitted or simplified. In the following, the characteristic part of this example will be mainly described.

本例の場合、前記スプライン孔12aを、前記入力側ディスク2cの中心部に、この入力側ディスク2cを軸方向に貫通する状態で設けた中心孔18のうちの、軸方向中間部のみに設けている。この中心孔18の軸方向両端部のうち、出力側ディスク5aを支持する為の支持ポスト19側の端部である内端部に、前記入力側ディスク2cの中心軸に直交する仮想平面に関する断面形状が、歪みのない正円形で、軸方向に関して内径が変化しない、内周面側円筒面部20としている。一方、前記中心孔18の軸方向両端部のうち、出力側ディスク5aを支持する為の支持ポスト19とは反対側の端部である外端部に、前記スプライン孔12aの内接円の直径よりも小さな内径を有する内向鍔部21を形成している。   In the case of this example, the spline hole 12a is provided in the central portion of the input side disk 2c only in the middle portion in the axial direction of the center hole 18 provided in a state of passing through the input side disk 2c in the axial direction. ing. Of the both axial ends of the center hole 18, a cross section relating to an imaginary plane orthogonal to the central axis of the input side disk 2c is formed at the inner end that is the end on the support post 19 side for supporting the output side disk 5a. The inner circumferential surface side cylindrical surface portion 20 is a perfect circular shape with no distortion and the inner diameter does not change in the axial direction. On the other hand, the diameter of the inscribed circle of the spline hole 12a is formed at the outer end, which is the end opposite to the support post 19 for supporting the output-side disk 5a, of the both ends in the axial direction of the center hole 18. An inward flange 21 having a smaller inner diameter is formed.

これに対して、特許請求の範囲に記載した回転軸である入力回転軸1bの先端部(図1の右端部)の外周面寄り部分に、前記スプライン孔12aとスプライン係合するスプライン軸部13aを設け、このスプライン軸部13aを軸方向両側から挟む状態で、前記係止環15aの内径側半部を係止する為の係止凹溝14aと、前記スプライン軸部13aの外接円の直径よりも大きな外径を有する外周面側円筒面部22を設けている。この外周面側円筒面部22は、前記入力回転軸1bの中心軸に直交する仮想平面に関する断面形状が、歪みのない正円形で、軸方向に関して外径が変化しない。又、前記外周面側円筒面部22の自由状態での外径は、前記内周面側円筒面部20の自由状態での内径よりも僅かに大きくしている。そして、トロイダル型無段変速機を組み立てた状態で、前記スプライン孔12aと前記スプライン軸部13aとをスプライン係合させると共に、前記内周面側円筒面20と前記外周面側円筒面部22とを締り嵌めにより嵌合させている。   On the other hand, a spline shaft portion 13a that is spline-engaged with the spline hole 12a at a portion near the outer peripheral surface of the tip end portion (the right end portion in FIG. 1) of the input rotation shaft 1b that is the rotation shaft described in the claims. In the state where the spline shaft 13a is sandwiched from both sides in the axial direction, a locking groove 14a for locking the inner half of the locking ring 15a and a diameter of a circumscribed circle of the spline shaft 13a An outer peripheral surface side cylindrical surface portion 22 having a larger outer diameter is provided. The outer peripheral surface side cylindrical surface portion 22 has a cross-sectional shape with respect to a virtual plane orthogonal to the central axis of the input rotation shaft 1b, which is a regular circle without distortion, and the outer diameter does not change in the axial direction. Further, the outer diameter of the outer peripheral surface side cylindrical surface portion 22 in a free state is slightly larger than the inner diameter of the inner peripheral surface side cylindrical surface portion 20 in a free state. Then, in a state where the toroidal-type continuously variable transmission is assembled, the spline hole 12a and the spline shaft portion 13a are spline-engaged, and the inner peripheral surface side cylindrical surface 20 and the outer peripheral surface side cylindrical surface portion 22 are connected. It is fitted with an interference fit.

又、前記係止凹溝14aの軸方向幅W14aは、前述の図4に示した従来構造の係止凹溝14の軸方向幅W14(図4参照)場合よりも十分に大きく、前記係止環15aの軸方向厚さT15と前記内向鍔部21の軸方向厚さT21との和よりも少し大きく{(W14a>(T15+T21)>W14}している。そして、トロイダル型無段変速機を組み立てた状態で、前記内向鍔部21を、前記係止環15aの内側面と前記係止凹溝14aの内側面との間に配置し、前記内向鍔部21の外側面と、前記係止環15aの内側面とを当接させる。この状態でトロイダル型無段変速機を運転すると、これら両側面同士の当接部には、押圧装置9(図2〜3参照)が発生する押圧力等により、前述した様に、数十kN〜百数十kN程度の力が加わる。又、前記両側面同士の当接部にはトラクションオイルが存在し、このトラクションオイルが、これら両側面同士が径方向にずれ動く事に対する抵抗として働く。従って、前記入力側ディスク2cは前記入力回転軸1bに対し、前記スプライン孔12aと前記スプライン軸13aとの係合部に加え、前記両円筒面部20、22同士の嵌合部と、前記両側面同士の突合せ部とで支持している。 Further, the axial width W 14a of the locking groove 14a is sufficiently larger than the axial width W 14 (see FIG. 4) of the locking groove 14 of the conventional structure shown in FIG. slightly larger than the sum of the axial thickness T 15 of the retaining ring 15a and an axial thickness T 21 of the inward flange portion 21 is {(W 14a> (T 15 + T 21)> W 14}. And in the state which assembled the toroidal type continuously variable transmission, the said inward eaves part 21 is arrange | positioned between the inner side surface of the said locking ring 15a, and the inner side surface of the said locking groove 14a, and the said inward eaves part 21 is brought into contact with the inner surface of the locking ring 15a When the toroidal continuously variable transmission is operated in this state, the pressing device 9 (see FIG. ~ 3)), the force of about several tens of kN to several hundreds of kN is applied as described above. In addition, traction oil is present at the abutting portions between the two side surfaces, and this traction oil acts as a resistance against the movement of these two side surfaces in the radial direction. In addition to the engagement portion between the spline hole 12a and the spline shaft 13a, the input rotation shaft 1b is supported by the fitting portion between the cylindrical surface portions 20 and 22 and the butting portion between the both side surfaces. Yes.

上述の様に構成する、本例のトロイダル型無段変速機によれば、前記入力側ディスク2cの軸方向の弾性変形に拘らず、この入力側ディスク2cの中心孔18の軸方向中間部に設けたスプライン孔部12aの雌スプライン溝の端縁と、前記係止環15aの内側面との間でフレッチング摩耗が発生するのを防止できる。即ち、本例の場合、前記入力側ディスク2cの中心孔18の外端部に、前記内向鍔部21を設け、前記係止環15aの内側面と、前記スプライン孔部12aを構成する雌スプライン溝の端縁とを軸方向に関して互いに離隔させている(前記係止環15aの内側面を、内周面が単なる円筒面である前記内向鍔部21の外側面に当接させている)。これにより、押圧装置の発生する推力に基づいて前記入力側ディスク2cが軸方向に弾性変形した場合にも、前記係止環15aの内側面と前記雌スプライン溝の端縁とが擦れ合い、この端縁がこの軸方向片側面に食い込む傾向となる事を防止して、当該部分に著しいフレッチング摩耗が発生するのを防止できる。   According to the toroidal type continuously variable transmission of this example configured as described above, the axially intermediate portion of the center hole 18 of the input side disk 2c is not affected by the elastic deformation of the input side disk 2c in the axial direction. It is possible to prevent fretting wear from occurring between the edge of the female spline groove of the provided spline hole portion 12a and the inner surface of the locking ring 15a. That is, in the case of this example, the inward flange portion 21 is provided at the outer end portion of the center hole 18 of the input side disk 2c, and the inner side surface of the locking ring 15a and the female spline constituting the spline hole portion 12a. The end edges of the grooves are separated from each other in the axial direction (the inner surface of the locking ring 15a is in contact with the outer surface of the inward flange 21 whose inner peripheral surface is a simple cylindrical surface). Thus, even when the input side disk 2c is elastically deformed in the axial direction based on the thrust generated by the pressing device, the inner surface of the locking ring 15a and the edge of the female spline groove rub against each other. It is possible to prevent the edge from becoming a tendency to bite into one side surface in the axial direction, and to prevent the occurrence of significant fretting wear in the portion.

特に、本例の構造の場合には、前記入力回転軸1b側に設けた外周面側円筒面部22と前記入力側ディスク2c側に設けた内周面側円筒面部20とを締り嵌めにより嵌合させているので、これら入力回転軸1bと入力側ディスク2c側との同心性を向上(中心軸同士の偏心量及び傾斜角度の低減)させられる。この同心性を向上させられる事は、トロイダル型無段変速機の運転時に於ける、前記入力側ディスク2cの振れ回り運動の低減による、振動の低減と変速比制御の精度向上とに繋がる。   In particular, in the case of the structure of this example, the outer peripheral surface side cylindrical surface portion 22 provided on the input rotating shaft 1b side and the inner peripheral surface side cylindrical surface portion 20 provided on the input side disk 2c side are fitted by an interference fit. As a result, the concentricity between the input rotary shaft 1b and the input side disk 2c can be improved (the amount of eccentricity and the tilt angle between the central axes can be reduced). The improvement of the concentricity leads to the reduction of vibration and the improvement of the accuracy of the gear ratio control by reducing the swinging motion of the input side disk 2c during the operation of the toroidal type continuously variable transmission.

更には、前記入力回転軸1bと前記入力側ディスク2c側との支持剛性の向上も図れる。先ず第一に、この支持剛性を、前記両円筒面部20、22同士の締り嵌めに基づいて向上させられる。しかも、前記入力回転軸1bと前記入力側ディスク2c側とを、前記スプライン孔12aと前記スプライン軸部13aとの係合部、前記両円筒面部20、22同士の嵌合部、及び前記内向鍔部21と前記係止環15aとの軸方向側面同士の突合せ部の、軸方向に離隔した3箇所位置で支持している。特に本例の場合、これら各支持部のうち、軸方向両端に位置する、前記嵌合部とこの突合せ部との間の軸方向距離(支持スパンL)を十分に長くできるので、押圧装置9(図2〜3参照)が発生する推力に基づき、前記入力側ディスク2cに加わるモーメントに関する支持剛性をより向上させ、この入力側ディスク2cの中心軸と前記入力回転軸1bの中心軸が傾斜する事をより効果的に抑えて、前記トロイダル型無段変速機の各種性能のより一層の向上を図れる。   Furthermore, the support rigidity between the input rotating shaft 1b and the input side disk 2c can be improved. First of all, the support rigidity can be improved based on the interference fit between the cylindrical surface portions 20 and 22. In addition, the input rotary shaft 1b and the input-side disk 2c side are connected to the engagement portion between the spline hole 12a and the spline shaft portion 13a, the fitting portion between the cylindrical surface portions 20 and 22, and the inward-facing rod. The abutting portions between the axial side surfaces of the portion 21 and the locking ring 15a are supported at three positions spaced in the axial direction. Particularly in the case of this example, the axial distance (support span L) between the fitting portion and the abutting portion located at both ends in the axial direction among these support portions can be made sufficiently long. Based on the thrust generated (see FIGS. 2 to 3), the support rigidity related to the moment applied to the input disk 2c is further improved, and the central axis of the input disk 2c and the central axis of the input rotary shaft 1b are inclined. It is possible to further improve the various performances of the toroidal-type continuously variable transmission by effectively suppressing this.

本発明は、図示の様なハーフトロイダル型に限らず、フルトロイダル型のトロイダル型無段変速機で実施する事もできる。更には、遊星歯車装置等の差動機構と組み合わせた無段変速装置に限らず、トロイダル型無段変速機単体として実施する事もできる。   The present invention is not limited to the half toroidal type as shown in the figure, and can be implemented by a full toroidal type toroidal continuously variable transmission. Furthermore, the present invention is not limited to a continuously variable transmission combined with a differential mechanism such as a planetary gear device, and can be implemented as a single toroidal continuously variable transmission.

1、1a 入力回転軸
2a、2b、2c 入力側ディスク
3 出力筒
4 出力歯車
5、5a 出力側ディスク
6 パワーローラ
7 トラニオン
8 駆動軸
9 押圧装置
10a、10b 予圧ばね
11 ローディングナット
12、12a スプライン孔
13、13a スプライン軸部
14、14a 係止凹溝
15、15a 係止環
16 抑え環
17 止め輪
18 中心孔
19 支持ポスト
20 内周面側円筒面部
21 内向鍔部
22 外周面側円筒面部
23 ボールスプライン
DESCRIPTION OF SYMBOLS 1, 1a Input rotary shaft 2a, 2b, 2c Input side disk 3 Output cylinder 4 Output gear 5, 5a Output side disk 6 Power roller 7 Trunnion 8 Drive shaft 9 Pressing device 10a, 10b Preload spring 11 Loading nut 12, 12a Spline hole 13, 13a Spline shaft portion 14, 14a Locking groove 15, 15a Locking ring 16 Retaining ring 17 Retaining ring 18 Center hole 19 Support post 20 Inner peripheral surface side cylindrical surface portion 21 Inward flange portion 22 Outer peripheral surface side cylindrical surface portion 23 Ball spline

Claims (3)

回転軸と、1対の外側ディスクと、内側ディスクと、複数の支持部材と、これら各支持部材と同数のパワーローラと、押圧装置と、係止環とを備え、
このうちの回転軸は、先端部外周面に周方向に亙る係止凹溝を、この係止凹溝と軸方向に隣接する部分にスプライン軸部を、それぞれ設けたものであり、
前記両外側ディスクは、それぞれが断面円弧形のトロイド曲面である互いの軸方向片側面同士を対向させた状態で、前記回転軸と同期した回転を自在に、且つ、前記両外側ディスクのうちの一方の外側ディスクは、この回転軸に対する軸方向の相対変位を可能に、同じく他方の外側ディスクは、この他方の外側ディスクの中心部に形成したスプライン孔と前記スプライン軸部とを係合する事で、この回転軸にそれぞれ支持されており、
前記内側ディスクは、前記回転軸の中間部周囲に、断面円弧形のトロイド曲面である軸方向両側面を前記両外側ディスクの軸方向片側面に対向させた状態で、前記回転軸に対する相対回転を自在に支持された一体の、若しくは1対の素子を結合して成るものであり、
前記各支持部材は、軸方向に関して前記内側ディスクの軸方向両側面と前記両外側ディスクの軸方向片側面との間位置にそれぞれ複数個ずつ、前記回転軸に対し捩れの位置にある枢軸を中心とする揺動変位を可能に設けられており、
前記各パワーローラは、前記各支持部材に回転自在に支持され、部分球状凸面としたそれぞれの周面を、前記内側ディスクの軸方向両側面と前記両外側ディスクの軸方向片側面とに当接させており、
前記押圧装置は、前記回転軸と、前記一方の外側ディスクとの間に設けられ、この一方の外側ディスクを、前記他方の外側ディスクに向け押圧するものであり、
前記係止環は、前記係止凹溝に係止され、その軸方向片側面を、軸方向に関して対向する前記他方の外側ディスクの軸方向他側面に当接させる事で、この他方の外側ディスクが前記一方の外側ディスクから離れる方向に変位するのを阻止するものであるトロイダル型無段変速機に於いて、
前記係止環の軸方向片側面と、前記スプライン孔を構成する各スプライン溝の端縁とを軸方向に関して互いに離隔させ、前記各パワーローラを介しての前記各ディスク同士の間でのトルク伝達に伴う前記他方の外側ディスクの弾性変形時にも、この係止環の軸方向片側面とこのスプライン孔を構成する各雌スプライン溝の端縁とが当接する事を防止している事を特徴とするトロイダル型無段変速機。
A rotation shaft, a pair of outer disks, an inner disk, a plurality of support members, the same number of power rollers as each of the support members, a pressing device, and a locking ring;
Among these, the rotating shaft is provided with a locking groove extending in the circumferential direction on the outer peripheral surface of the tip portion, and a spline shaft portion provided in a portion adjacent to the locking groove in the axial direction,
The both outer disks are free to rotate in synchronization with the rotating shaft in a state where the axial side surfaces of the toroidal curved surfaces each having an arc cross section are opposed to each other. One of the outer disks is capable of axial displacement relative to the rotation axis, and the other outer disk engages a spline hole formed at the center of the other outer disk with the spline shaft. So, it is supported by each of these rotating shafts,
The inner disk rotates relative to the rotating shaft in a state where both axial side surfaces, which are toroidal curved surfaces having a circular arc cross section, are opposed to one axial side surface of the outer disks, around the middle portion of the rotating shaft. Is formed by combining a single element or a pair of elements that are freely supported.
Each of the supporting members is centered on a pivot that is twisted with respect to the rotating shaft, and a plurality of each of the supporting members is located between the axially opposite side surfaces of the inner disk and the axially one side surface of the outer disks. Is provided so that the swing displacement can be
Each of the power rollers is rotatably supported by each of the support members, and has a circumferential surface that is a partially spherical convex surface abutting on both axial sides of the inner disk and one axial side of the outer disks. Let
The pressing device is provided between the rotating shaft and the one outer disk, and presses the one outer disk toward the other outer disk.
The locking ring is locked in the locking groove, and one side surface in the axial direction thereof is brought into contact with the other side surface in the axial direction of the other outer disk facing in the axial direction. In a toroidal type continuously variable transmission that prevents displacement in a direction away from the one outer disk,
Torque transmission between the disks via the power rollers is achieved by separating one axial side surface of the locking ring and the edge of each spline groove constituting the spline hole with respect to the axial direction. Further, even when the other outer disk is elastically deformed, the axial side surface of the locking ring is prevented from coming into contact with the edge of each female spline groove constituting the spline hole. Toroidal-type continuously variable transmission.
前記回転軸の先端部外周面に前記スプライン軸部を軸方向両側から挟む状態で、前記係止凹溝と、このスプライン軸部の外接円の直径よりも大きな外径を有し、軸方向に亙り外径が変化しない外周面側円筒面部とを設けると共に、前記他方の外側ディスクの内周面のうちで、前記スプライン孔に隣接する軸方向他側面側端部に、軸方向に亙り外径が変化しない内周面側円筒面部を設け、前記スプライン軸部と前記スプライン孔とをスプライン係合させた状態で、前記内周面側円筒面と前記外周面側円筒面部とを締り嵌めにより嵌合させた、請求項1に記載したトロイダル型無段変速機。   In the state where the spline shaft portion is sandwiched from both sides in the axial direction on the outer peripheral surface of the tip end portion of the rotating shaft, the engaging groove has an outer diameter larger than the diameter of the circumscribed circle of the spline shaft portion, An outer peripheral side cylindrical surface portion that does not change the outer diameter of the twisted outer diameter, and an outer diameter of the other outer side disk adjacent to the spline hole on the other end in the axial direction adjacent to the spline hole. The inner peripheral surface side cylindrical surface portion that does not change is provided, and the inner peripheral surface side cylindrical surface portion and the outer peripheral surface side cylindrical surface portion are fitted by interference fitting with the spline shaft portion and the spline hole being spline engaged. The toroidal continuously variable transmission according to claim 1, which is combined. 前記他方の外側ディスクの内周面のうちの軸方向他側面側端部に、このスプライン孔の内接円の直径よりも小さな内径を有する内向鍔部を形成し、この内向鍔部を、前記係止環の軸方向片側面と前記係止凹溝の内側面との間に配置している、請求項1〜2のうち何れか1項に記載したトロイダル型無段変速機。   An inward flange having an inner diameter smaller than the diameter of the inscribed circle of the spline hole is formed at an end portion on the other axial side surface of the inner peripheral surface of the other outer disk, and the inward flange is 3. The toroidal continuously variable transmission according to claim 1, wherein the toroidal continuously variable transmission is disposed between one axial side surface of the locking ring and an inner side surface of the locking groove.
JP2014028857A 2014-02-18 2014-02-18 Toroidal continuously variable transmission Active JP6252227B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014028857A JP6252227B2 (en) 2014-02-18 2014-02-18 Toroidal continuously variable transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014028857A JP6252227B2 (en) 2014-02-18 2014-02-18 Toroidal continuously variable transmission

Publications (3)

Publication Number Publication Date
JP2015152148A true JP2015152148A (en) 2015-08-24
JP2015152148A5 JP2015152148A5 (en) 2017-03-16
JP6252227B2 JP6252227B2 (en) 2017-12-27

Family

ID=53894631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014028857A Active JP6252227B2 (en) 2014-02-18 2014-02-18 Toroidal continuously variable transmission

Country Status (1)

Country Link
JP (1) JP6252227B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018096941A1 (en) * 2016-11-24 2018-05-31 日本精工株式会社 Toroidal continuously variable transmission
WO2018096983A1 (en) * 2016-11-24 2018-05-31 日本精工株式会社 Toroidal continuously variable transmission

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003028257A (en) * 2001-05-08 2003-01-29 Nsk Ltd Toroidal type continuously variable transmission and continuously variable transmission device
JP2006266460A (en) * 2005-03-25 2006-10-05 Ntn Corp Structure for preventing constant velocity joint shaft from coming off
JP2013221569A (en) * 2012-04-17 2013-10-28 Nsk Ltd Toroidal type continuously variable transmission
JP2014234871A (en) * 2013-06-03 2014-12-15 日本精工株式会社 Toroidal type continuously variable transmission

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003028257A (en) * 2001-05-08 2003-01-29 Nsk Ltd Toroidal type continuously variable transmission and continuously variable transmission device
JP2006266460A (en) * 2005-03-25 2006-10-05 Ntn Corp Structure for preventing constant velocity joint shaft from coming off
JP2013221569A (en) * 2012-04-17 2013-10-28 Nsk Ltd Toroidal type continuously variable transmission
JP2014234871A (en) * 2013-06-03 2014-12-15 日本精工株式会社 Toroidal type continuously variable transmission

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018096941A1 (en) * 2016-11-24 2018-05-31 日本精工株式会社 Toroidal continuously variable transmission
WO2018096983A1 (en) * 2016-11-24 2018-05-31 日本精工株式会社 Toroidal continuously variable transmission

Also Published As

Publication number Publication date
JP6252227B2 (en) 2017-12-27

Similar Documents

Publication Publication Date Title
WO2012111562A1 (en) Toroidal type continuously variable transmission
JP6117991B2 (en) Toroidal continuously variable transmission
JP5935473B2 (en) Toroidal continuously variable transmission
JP6252227B2 (en) Toroidal continuously variable transmission
JP6110215B2 (en) Toroidal continuously variable transmission
JP6277833B2 (en) Toroidal continuously variable transmission
JP6413383B2 (en) Toroidal continuously variable transmission
JP6561572B2 (en) Toroidal continuously variable transmission
JP5982291B2 (en) Toroidal continuously variable transmission
JP5982326B2 (en) Toroidal continuously variable transmission
JP6427886B2 (en) Toroidal continuously variable transmission
JP6705735B2 (en) Toroidal type continuously variable transmission
WO2015052950A1 (en) Single-cavity toroidal continuously variable transmission
JP6561554B2 (en) Toroidal continuously variable transmission
JP6248442B2 (en) Toroidal continuously variable transmission
JP6492906B2 (en) Toroidal continuously variable transmission
JP6519333B2 (en) Toroidal type continuously variable transmission
JP2018084282A5 (en)
JP6183163B2 (en) Toroidal continuously variable transmission
JP6311452B2 (en) Toroidal continuously variable transmission
JP2015090160A (en) Toroidal type continuously variable transmission
JP2008175215A (en) Continuously variable transmission device
JP2018096429A (en) Toroidal type continuously variable transmission
JP2015152145A (en) Toroidal type continuously variable transmission
JP2014169762A (en) Toroidal type continuously variable transmission

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170209

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170209

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171026

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171031

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171113

R150 Certificate of patent or registration of utility model

Ref document number: 6252227

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150