JP2015151986A - Fluid machinery - Google Patents

Fluid machinery Download PDF

Info

Publication number
JP2015151986A
JP2015151986A JP2014029239A JP2014029239A JP2015151986A JP 2015151986 A JP2015151986 A JP 2015151986A JP 2014029239 A JP2014029239 A JP 2014029239A JP 2014029239 A JP2014029239 A JP 2014029239A JP 2015151986 A JP2015151986 A JP 2015151986A
Authority
JP
Japan
Prior art keywords
impeller
flow rate
fluid
igv
surging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014029239A
Other languages
Japanese (ja)
Other versions
JP6235369B2 (en
Inventor
澄賢 平舘
Kiyotaka HIRADATE
澄賢 平舘
泰 新川
Yasushi Shinkawa
泰 新川
玄明 千葉
Genaki Chiba
玄明 千葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2014029239A priority Critical patent/JP6235369B2/en
Publication of JP2015151986A publication Critical patent/JP2015151986A/en
Application granted granted Critical
Publication of JP6235369B2 publication Critical patent/JP6235369B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Positive-Displacement Air Blowers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a fluid machinery which has a relatively simple system configuration and in which the occurrence of surging can be avoided with small number of times of performance test to be carried out in advance.SOLUTION: The fluid machinery comprises a rotatable impeller 3, a variable inlet guide vane 2 for generating a swirl flow in fluid flowed into the impeller 3 and a controller 14 for controlling a rotational speed N of the impeller 3 and a rotation angle αof the variable inlet guide vane 2. The controller 14 stores data of relationship between a suction flow rate Q and a stage efficiency η of the fluid machinery and data of relationship between a theoretical head Hand a suction flow rate Q of the fluid machinery. Using the stored data and a swirl angle αof the fluid flowing into the impeller 3, the controller 14 obtains a flow rate of fluid generating surging as a surging occurrence limit flow rate Qand controls the rotational speed N of the impeller 3 and the rotation angle αof the variable inlet guide vane 2 on the basis of the obtained surging occurrence limit flow rate Q.

Description

本発明は流体機械に関し、特に、羽根車と、羽根車へ流入する流体に旋回流を発生させる旋回流発生装置とを有する流体機械に関する。   The present invention relates to a fluid machine, and more particularly, to a fluid machine having an impeller and a swirling flow generating device that generates a swirling flow in a fluid flowing into the impeller.

遠心式や斜流式などの流体機械は、駆動機により回転する羽根車でガスや液体などの作動流体にエネルギーを与え、一般に、消費電力の低減や安定作動範囲の拡大が要求される。消費電力の低減や安定作動範囲の拡大を図るため、これら流体機械の中でも特に単段構成の流体機械では、駆動機の回転速度をインバータ等で制御する回転速度制御や、羽根車の上流側に取り付けた可変入口案内翼(inlet guide vane。以下「IGV」と呼ぶ。)などの旋回流発生装置による制御などが行われる場合が多い。IGVによる制御(IGV制御)では、IGV開度(IGVの回転角、つまりIGVの翼の取付角度)を変更し、羽根車の仕事が低減する方向の旋回をIGVによって作動流体に付与する。   A fluid machine such as a centrifugal type or a mixed flow type imparts energy to a working fluid such as a gas or a liquid with an impeller rotated by a driving machine, and generally requires reduction of power consumption and expansion of a stable operation range. In order to reduce power consumption and expand the stable operating range, among these fluid machines, especially in a single-stage fluid machine, rotational speed control that controls the rotational speed of the drive with an inverter, etc., and upstream of the impeller Control by a swirling flow generator such as an attached guide vane (hereinafter referred to as “IGV”) is often performed. In the control by the IGV (IGV control), the IGV opening (the rotation angle of the IGV, that is, the IGV blade attachment angle) is changed, and the working fluid is imparted to the working fluid by the IGV in a direction that reduces the work of the impeller.

回転速度の低減やIGV開度の低減により流体機械の運転流量を低減していくと、羽根車やディフューザなどの流体機械の各構成要素の翼の入口角と流入流れの角度との差が大きくなったり、又は内部流速の流れ方向への減速が大きくなったりすることで、ある流量にて流れが翼面から剥離する。流れの剥離が生じると圧力損失が増大し、ついには流量を低減しても圧力が上昇しない、いわゆる失速が生じる。流体機械が失速する、つまり流体機械の流量Q−ヘッド(圧力)上昇Hの特性曲線上にdH/dQ≦0の領域が現れると、流体機械の内部での流量や圧力の微小変動が自励振動を起こし、系全体の圧力や流量が激しく振動するサージングが生じる。サージングが発生すると安定運転が不可能となるばかりでなく、機器が損傷する場合がある。   If the operating flow rate of the fluid machine is reduced by reducing the rotational speed or the IGV opening, the difference between the blade inlet angle and the inflow angle of each component of the fluid machine such as the impeller and diffuser becomes large. The flow is separated from the blade surface at a certain flow rate due to the increase in deceleration of the internal flow velocity in the flow direction. When flow separation occurs, the pressure loss increases, and eventually a so-called stall occurs in which the pressure does not increase even if the flow rate is reduced. When the fluid machine stalls, that is, when a region of dH / dQ ≦ 0 appears on the characteristic curve of flow rate Q-head (pressure) rise H of the fluid machine, minute fluctuations in the flow rate and pressure inside the fluid machine are self-excited. Surging occurs that causes vibration and vigorously vibrates the pressure and flow rate of the entire system. When surging occurs, not only stable operation becomes impossible, but the equipment may be damaged.

このため、流体機械では、サージングが生じないように運転制御をする必要がある。回転速度制御やIGV制御を用いる場合には、回転速度やIGVの設定条件ごとにサージング発生限界流量、つまりdH/dQ=0となる流量点が異なるため、各回転速度や各設定条件におけるサージング発生限界流量を決定する必要があり、このような決定を行う制御法を用いて運転制御を行う必要がある。   For this reason, in a fluid machine, it is necessary to perform operation control so that surging does not occur. When rotational speed control or IGV control is used, the surging generation limit flow rate, that is, the flow point at which dH / dQ = 0 is different for each rotational speed and IGV setting condition, so surging occurs at each rotational speed and each setting condition. It is necessary to determine the critical flow rate, and it is necessary to perform operation control using a control method that performs such determination.

IGV制御を用いる場合において、サージング発生限界流量を決定する最も単純な手法は、多数のIGV開度に対して事前に性能試験を実施しておき、各IGV開度におけるサージング発生限界流量を求め、これらのデータを集めたデータベースを構築しておく手法である。羽根車の回転速度の変化時における流体機械の特性変化は、例えば非特許文献1に記載されているように、以下の式(1)〜(3)で示される流体機械の回転速度相似則、   In the case of using IGV control, the simplest method for determining the surging occurrence limit flow rate is to perform a performance test in advance for a large number of IGV openings, and obtain the surging occurrence limit flow rate at each IGV opening, It is a technique to construct a database that collects these data. The characteristic change of the fluid machine when the rotation speed of the impeller changes, for example, as described in Non-Patent Document 1, the rotation speed similarity law of the fluid machine represented by the following equations (1) to (3):

Figure 2015151986
Figure 2015151986

Figure 2015151986
Figure 2015151986

Figure 2015151986
Figure 2015151986

(但し、Q、H、及びLは、それぞれ羽根車の回転速度がNの場合の吸込体積流量、ヘッド(圧力)、及び軸動力を表し、Q’、H’、及びL’は、それぞれ羽根車の回転速度がN’の場合の吸込体積流量、ヘッド、及び軸動力を表す。)により表すことができる。このため、IGV開度を変えた場合のデータを集めたデータベースを構築しておけば、サージング発生限界流量を決定するのに十分である。 (However, Q, H, and L represent the suction volume flow rate, the head (pressure), and the shaft power when the rotational speed of the impeller is N, respectively, and Q ′, H ′, and L ′ represent the blades, respectively. This represents the suction volume flow, the head, and the shaft power when the rotational speed of the vehicle is N ′. Therefore, if a database that collects data when the IGV opening is changed is constructed, it is sufficient to determine the surging generation limit flow rate.

また、サージングの初生を検知することでサージングを回避しようとする手法が、従来から多数提案されている。例えば、特許文献1には、サージングの初生を圧力の上昇で検出する技術が記載されている。   Many techniques have been proposed in the past for detecting surging by avoiding surging. For example, Patent Literature 1 describes a technique for detecting the beginning of surging by increasing the pressure.

特開昭63−161362号公報JP 63-161362 A

ターボ機械協会編、「ターボポンプ」、日本工業出版、2007年、pp.19−20Edited by Turbomachinery Association, “Turbo Pump”, Nihon Kogyo Shuppan, 2007, pp. 19-20

上述したような従来の方法でも、サージングの発生を回避することは可能である。しかし、サージング発生限界流量を決定するために非常に多くの性能試験を予め実施する必要があるという課題や、サージングの初生を検知するために高応答なセンサを必要とするのでシステム構成が複雑で高価となるという課題があった。   Even with the conventional method as described above, it is possible to avoid the occurrence of surging. However, the system configuration is complicated because there is a problem that it is necessary to perform a large number of performance tests in advance to determine the surging limit flow rate, and a high-response sensor is required to detect the beginning of surging. There was a problem of becoming expensive.

本発明は、事前に実施する性能試験の回数が少なく、比較的単純なシステム構成でサージングの発生を回避することができる流体機械を提供することを目的とする。   SUMMARY OF THE INVENTION An object of the present invention is to provide a fluid machine in which the number of performance tests to be performed in advance is small and surging can be avoided with a relatively simple system configuration.

上記課題を解決するため、本発明による流体機械は、回転可能な羽根車と、回転可能であり、前記羽根車へ流入する流体に旋回流を発生させる可変入口案内翼と、前記羽根車の回転速度と前記可変入口案内翼の回転角とを制御する制御器とを備える。前記制御器は、流体機械の吸込流量と段効率との関係のデータと、流体機械の理論ヘッドと吸込流量との関係のデータとを格納しており、これらのデータと前記羽根車へ流入する前記流体の旋回角度とから、サージングが発生する前記流体の流量をサージング発生限界流量として求め、求めた前記サージング発生限界流量に基づいて、前記羽根車の回転速度と前記可変入口案内翼の回転角とを制御することを特徴とする。   In order to solve the above problems, a fluid machine according to the present invention includes a rotatable impeller, a variable inlet guide vane that is rotatable and generates a swirling flow in the fluid flowing into the impeller, and the rotation of the impeller. And a controller for controlling the speed and the rotation angle of the variable inlet guide vane. The controller stores data on the relationship between the suction flow rate of the fluid machine and the stage efficiency, and data on the relationship between the theoretical head of the fluid machine and the suction flow rate, and the data flows into the impeller. From the swirl angle of the fluid, the flow rate of the fluid that generates surging is obtained as a surging generation limit flow rate, and based on the calculated surging generation limit flow rate, the rotational speed of the impeller and the rotation angle of the variable inlet guide vane It is characterized by controlling.

本発明によれば、事前に実施する性能試験の回数が少なく、比較的単純なシステム構成でサージングの発生を回避することができる流体機械を提供することができる。   According to the present invention, it is possible to provide a fluid machine in which the number of performance tests to be performed in advance is small and surging can be avoided with a relatively simple system configuration.

本発明の実施例1による流体機械の縦断面図。The longitudinal cross-sectional view of the fluid machine by Example 1 of this invention. 遠心式単段流体機械Aの特性曲線の実測例。An actual measurement example of the characteristic curve of the centrifugal single-stage fluid machine A. 遠心式単段流体機械Bの特性曲線の実測例。An actual measurement example of the characteristic curve of the centrifugal single-stage fluid machine B. 遠心式単段流体機械Bの段効率ηの特性曲線を示す図。The figure which shows the characteristic curve of the stage efficiency (eta) of the centrifugal single-stage fluid machine. 遠心式単段流体機械Bの羽根車効率ηimpの特性曲線を示す図。The figure which shows the characteristic curve of the impeller efficiency (eta) imp of the centrifugal single-stage fluid machine B. FIG. 流体機械のディフューザの位置における絶対速度ベクトルを示す図。The figure which shows the absolute velocity vector in the position of the diffuser of a fluid machine. 流体機械の羽根車の出口における速度三角形を示す図。The figure which shows the speed triangle in the exit of the impeller of a fluid machine. 流体機械のIGVの下流における絶対速度ベクトルと、羽根車の入口における速度三角形を示す図。The figure which shows the absolute speed vector in the downstream of IGV of a fluid machine, and the speed triangle in the inlet of an impeller. 流体機械の性能特性曲線の模式図。The schematic diagram of the performance characteristic curve of a fluid machine. IGV回転角と実際の流体の流れの予旋回角度αとの関係を模式的に示す図。The figure which shows typically the relationship between IGV rotation angle and the pre-swirl angle (alpha) 1 of the actual fluid flow. 実施例1における流体機械の制御システムの構成図。1 is a configuration diagram of a fluid machine control system in Embodiment 1. FIG. 実施例1における流体機械の、サージング発生限界流量を導出する方法のフローチャート。3 is a flowchart of a method for deriving a surging generation limit flow rate of the fluid machine in the first embodiment. 本発明の実施例2における流体機械の制御システムの構成図。The block diagram of the control system of the fluid machine in Example 2 of this invention.

本発明による流体機械は、羽根車と、羽根車へ流入する流体に旋回流を発生させる旋回流発生装置である可変入口案内翼(IGV)と、羽根車の回転速度と可変入口案内翼の回転角とを制御する制御器とを備え、事前に実施する性能試験の回数を必要最小限に抑えながら、比較的単純なシステム構成にて、サージングが発生する流体の流量であるサージング発生限界流量を算出することができる。この結果、本発明による流体機械は、サージングの発生を回避することができ、運転信頼性を向上できる。   The fluid machine according to the present invention includes an impeller, a variable inlet guide vane (IGV) that is a swirling flow generating device that generates a swirling flow in the fluid flowing into the impeller, and the rotational speed of the impeller and the rotation of the variable inlet guide vane. And a controller that controls the angle, and the surging generation limit flow rate, which is the flow rate of surging, is generated with a relatively simple system configuration while minimizing the number of performance tests to be performed in advance. Can be calculated. As a result, the fluid machine according to the present invention can avoid the occurrence of surging and improve the operation reliability.

以下、羽根車が1つだけある単段の流体機械を例に挙げて、本発明の実施例による流体機械を、図面を用いて説明する。   Hereinafter, a fluid machine according to an embodiment of the present invention will be described with reference to the drawings, taking a single-stage fluid machine having only one impeller as an example.

図1は、本発明の実施例1による流体機械の縦断面図である。図1では、流体機械のうち、羽根車3の回転軸6より上側を示しており、下側は省略している。なお、本実施例では、流体機械の一例として、単段の遠心式のターボ型圧縮機を例に挙げて説明するが、本発明による流体機械は、その他の種類の流体機械にも適用することができる。   1 is a longitudinal sectional view of a fluid machine according to a first embodiment of the present invention. In FIG. 1, among the fluid machines, the upper side of the rotating shaft 6 of the impeller 3 is shown, and the lower side is omitted. In this embodiment, a single-stage centrifugal turbo compressor will be described as an example of the fluid machine. However, the fluid machine according to the present invention is also applicable to other types of fluid machines. Can do.

本実施例による流体機械は、回転して流体を昇圧する羽根車3、羽根車3が設置された回転軸6、回転可能に設置され羽根車3へ流入する流体に任意の旋回角を付与して旋回流を発生させるIGV2、IGV2を回転させる駆動機1、羽根車3の下流側に設けられ羽根車3の出口から流入する流体の動圧を静圧へと変換する円形翼列ディフューザ4、及びディフューザ4に接続された吐出スクロール5を備える。IGV2は、流体機械の作動流体の入口に設けられ、回転軸6に対し放射状に設けられた翼列である。羽根車3は、図示しない駆動機の作用により回転軸6が回転することで、回転駆動される。なお、ディフューザ4は、翼のないベーンレスディフューザでもよい。また、吐出スクロール5は、スクロールと類似の別形態の吐出流路でもよい。これらの流体機械の各構成要素は、ケーシング7内に格納され、内部流路を構成する。   The fluid machine according to the present embodiment imparts an arbitrary swivel angle to the impeller 3 that rotates to boost the fluid, the rotary shaft 6 on which the impeller 3 is installed, and the fluid that is rotatably installed and flows into the impeller 3. IGV2 that generates a swirling flow, a drive unit 1 that rotates the IGV2, a circular blade row diffuser 4 that is provided on the downstream side of the impeller 3 and converts the dynamic pressure of the fluid flowing in from the outlet of the impeller 3 to static pressure, And a discharge scroll 5 connected to the diffuser 4. The IGV 2 is a blade row provided at the inlet of the working fluid of the fluid machine and provided radially with respect to the rotating shaft 6. The impeller 3 is rotationally driven by the rotation of the rotating shaft 6 by the action of a driving machine (not shown). The diffuser 4 may be a vaneless diffuser without a wing. Further, the discharge scroll 5 may be a discharge channel having another form similar to the scroll. Each component of these fluid machines is stored in the casing 7 and constitutes an internal flow path.

作動流体は、流体機械の吸込流路8から吸い込まれ、IGV2により任意の旋回角を与えられた状態で羽根車3に流入して昇圧され、ディフューザ4で減速された後、吐出スクロール5により吐出流路9へと導き出される。   The working fluid is sucked in from the suction flow path 8 of the fluid machine, flows into the impeller 3 in a state where an arbitrary turning angle is given by the IGV 2, is increased in pressure, decelerated by the diffuser 4, and then discharged by the discharge scroll 5. It is led to the flow path 9.

図2A、図2Bを用いて、本発明の実施例1による流体機械の性能特性に関して説明する。図2A、図2Bは、図1と同様の構成であり、かつ各構成要素の形状が全く異なる2種類の単段の遠心式流体機械(遠心式単段流体機械Aと遠心式単段流体機械B)について、吸込流量Q−ヘッド上昇Hの特性曲線と、吸込流量Q−効率(段効率)ηの特性曲線との実測例を示す図である。段効率とは、IGV2の入口と吐出スクロール5の出口における温度と圧力から算出したヘッドと、理論ヘッド(軸動力)とから算出した効率のことである。図2Aは、遠心式単段流体Aについての特性曲線を示し、図2Bは、遠心式単段流体機械Bについての特性曲線を示す。図2A、図2Bに示すように、遠心式単段流体Aについては、IGV開度が100%、35%、及び15%の場合の性能試験を実施し、遠心式単段流体Bについては、IGV開度が100%、10%、及び5%の場合の性能試験を実施して、それぞれ特性曲線を求めた。   The performance characteristics of the fluid machine according to the first embodiment of the present invention will be described with reference to FIGS. 2A and 2B. 2A and 2B are two types of single-stage centrifugal fluid machines (centrifugal single-stage fluid machine A and centrifugal single-stage fluid machine) having the same configuration as in FIG. It is a figure which shows the actual measurement example of the characteristic curve of suction flow Q-head rise H, and the characteristic curve of suction flow Q-efficiency (stage efficiency) (eta) about B). The stage efficiency is the efficiency calculated from the head calculated from the temperature and pressure at the inlet of the IGV 2 and the outlet of the discharge scroll 5 and the theoretical head (shaft power). FIG. 2A shows a characteristic curve for the centrifugal single-stage fluid A, and FIG. 2B shows a characteristic curve for the centrifugal single-stage fluid machine B. As shown in FIGS. 2A and 2B, for the centrifugal single-stage fluid A, a performance test is performed when the IGV opening is 100%, 35%, and 15%, and for the centrifugal single-stage fluid B, A performance test was conducted when the IGV opening was 100%, 10%, and 5%, and characteristic curves were obtained.

図2A、図2Bから分かる通り、我々が実施した性能試験の結果から、効率特性に以下の特徴があることが分かった。即ち、性能試験を実施した2種類の単段の遠心式流体機械(遠心式単段流体機械Aと遠心式単段流体機械B)は、設計が全く異なるのにも関わらず、各IGV開度に対する低流量側のサージング発生限界流量付近におけるQ−η特性曲線が、IGV開度によらない一本の曲線(図2A、図2B中の点線)で、ほぼ完全に表現できることが分かった。サージング発生限界流量とは、吸込流量Q−ヘッド上昇Hの特性曲線の傾きがゼロとなる流量、即ちdH/dQ=0となる流量のことである。   As can be seen from FIG. 2A and FIG. 2B, it was found from the results of the performance test that we conducted that the efficiency characteristics have the following characteristics. In other words, the two types of single-stage centrifugal fluid machines (centrifugal single-stage fluid machine A and centrifugal single-stage fluid machine B) that have been subjected to performance tests have different IGV opening degrees despite their completely different designs. It has been found that the Q-η characteristic curve in the vicinity of the surging limit flow rate on the low flow rate side can be expressed almost completely by a single curve (dotted line in FIGS. 2A and 2B) that does not depend on the IGV opening. The surging generation limit flow rate is a flow rate at which the slope of the characteristic curve of suction flow rate Q-head rise H becomes zero, that is, a flow rate at which dH / dQ = 0.

このように、IGVを備える単段の流体機械において、低流量側のサージング発生限界流量付近におけるQ−η特性曲線(吸込流量Qと段効率ηとの関係)が、IGV開度によらない一本の曲線で表現できる理由は、以下のように考えられる。   Thus, in a single-stage fluid machine equipped with an IGV, the Q-η characteristic curve (relationship between the suction flow rate Q and the stage efficiency η) near the surging limit flow rate on the low flow rate side is not dependent on the IGV opening. The reason why it can be expressed by the curve of the book is considered as follows.

図3Aは、図2Bに示した遠心式単段流体機械Bの段効率ηの特性曲線を示す図であり、図3Bは、遠心式単段流体機械Bの羽根車効率ηimpの特性曲線を示す図である。それぞれ、各IGV開度の系列の最も低流量側における流量付近が、dH/dQ=0となるサージング発生限界流量である。羽根車効率ηimpとは、羽根車3の入口と出口における温度と圧力から算出したヘッドと、理論ヘッド(軸動力)とから算出した効率のことであり、羽根車3の単体の効率のことである。なお、図3Aと図3Bの縦軸のスケールは、同一である。 3A is a diagram showing a characteristic curve of the stage efficiency η of the centrifugal single-stage fluid machine B shown in FIG. 2B, and FIG. 3B shows a characteristic curve of the impeller efficiency η imp of the centrifugal single-stage fluid machine B. FIG. In each of the IGV opening series, the vicinity of the flow rate on the lowest flow rate side is the surging generation limit flow rate at which dH / dQ = 0. The impeller efficiency η imp is an efficiency calculated from the head calculated from the temperature and pressure at the inlet and outlet of the impeller 3 and the theoretical head (shaft power), and is the efficiency of the impeller 3 alone. It is. In addition, the scale of the vertical axis | shaft of FIG. 3A and FIG. 3B is the same.

図3Aに示すように、段効率ηは、IGV開度に応じて大きく変化する。一方、図3B中の点線の円で示すように、異なるIGV開度でのサージング発生限界流量付近の羽根車効率ηimpの差異は、図3Aに示す異なるIGV開度でのサージング発生限界流量付近の段効率ηの差異に比べて、非常に小さい。従って、低流量側では、羽根車3の下流側に位置するディフューザ4による損失が支配的であり、ディフューザ4の効率に応じて段効率ηが変化していると考えられる。 As shown in FIG. 3A, the stage efficiency η varies greatly depending on the IGV opening. On the other hand, as shown by the dotted circle in FIG. 3B, the difference in the impeller efficiency η imp near the surging generation limit flow rate at different IGV opening is near the surging generation limit flow at different IGV opening shown in FIG. 3A. Compared with the difference in the stage efficiency η, it is very small. Therefore, on the low flow rate side, the loss due to the diffuser 4 located on the downstream side of the impeller 3 is dominant, and the stage efficiency η is considered to change according to the efficiency of the diffuser 4.

図4A〜4Cは、流体機械のIGV2と羽根車3とディフューザ4の位置における速度ベクトルを示す図である。図4Aは、ディフューザ4の位置における絶対速度ベクトルを示す図である。図4Bは、羽根車3の出口における速度三角形を示す図である。図4Cは、IGV2の下流における絶対速度ベクトルと、羽根車3の入口における速度三角形を示す図である。また、IGV2の位置における速度三角形は、IGV2の回転角(IGV回転角)が0°の場合(即ちIGV開度が100%の場合)と、IGV回転角が0°でない場合(即ちIGV開度が100%でない場合)とを示している。   4A to 4C are diagrams showing velocity vectors at positions of the IGV 2, the impeller 3, and the diffuser 4 of the fluid machine. FIG. 4A is a diagram illustrating an absolute velocity vector at the position of the diffuser 4. FIG. 4B is a diagram showing a speed triangle at the exit of the impeller 3. FIG. 4C is a diagram showing an absolute velocity vector downstream of the IGV 2 and a velocity triangle at the inlet of the impeller 3. In addition, the speed triangle at the position of IGV2 indicates that the rotation angle of IGV2 (IGV rotation angle) is 0 ° (that is, the IGV opening is 100%) and that the IGV rotation angle is not 0 ° (that is, the IGV opening). Is not 100%).

図4A〜4Cにおいて、αIGVはIGV回転角(回転軸方向と、IGV2の後縁の向く方向とがなす角度で、羽根車3の回転方向と同一の方向を正とする)、Cは流体の絶対速度、Cmは流体の絶対速度の子午面方向成分、Cuは流体の絶対速度の周方向成分、Uは羽根車3の周速度、Wは羽根車3の相対速度、αは流体の絶対流れ角(回転軸方向又は径方向と、絶対速度ベクトルとがなす角度で、羽根車3の回転方向と同一の方向を正とする)、βは流体の相対流れ角、及びβは羽根車3の羽根角度(各羽根部位における、円周方向と、羽根に沿う方向に引いた接線とがなす角度で、羽根車3の回転方向と同一の方向を正とする)をそれぞれ表し、添え字の「1」は羽根車3の入口における値、「2」は羽根車3の出口における値、「3」はディフューザ4の入口における値、「4」はディフューザ4の出口における値を、それぞれ示す。 4A to 4C, α IGV is an IGV rotation angle (the angle formed by the rotation axis direction and the direction toward the rear edge of IGV 2 and the same direction as the rotation direction of impeller 3 is positive), and C is a fluid , Cm is the meridional component of the absolute velocity of the fluid, Cu is the circumferential component of the absolute velocity of the fluid, U is the circumferential velocity of the impeller 3, W is the relative velocity of the impeller 3, and α is the absolute velocity of the fluid The flow angle (the angle formed by the rotation axis direction or radial direction and the absolute velocity vector, the same direction as the rotation direction of the impeller 3 is positive), β is the relative flow angle of the fluid, and β b is the impeller 3 blade angles (the angle formed by the circumferential direction and the tangent line drawn in the direction along the blades in each blade part, the same direction as the rotation direction of the impeller 3 being positive) “1” is the value at the entrance of the impeller 3, “2” is the value at the exit of the impeller 3, and “3” "Is a value at the inlet of the diffuser 4, and" 4 "is a value at the outlet of the diffuser 4.

図4A〜4Cから分かる通り、羽根車3へ流入する流体の絶対流れ角α(予旋回角度α)はIGV回転角αIGVによって変化し、予旋回角度αの値に応じて、羽根車3のQ−ηimp特性曲線の形状が大きく変化することが予測される。これは、以下の式(4)で表される羽根車の理論ヘッドHth(損失のない、効率100%の場合のヘッド)、 As can be seen from FIGS. 4A to 4C, the absolute flow angle α 1 (pre-turning angle α 1 ) of the fluid flowing into the impeller 3 varies depending on the IGV rotation angle α IGV , and the blades according to the value of the pre-turning angle α 1. It is predicted that the shape of the Q-η imp characteristic curve of the vehicle 3 will change greatly. This is the theoretical head H th of the impeller represented by the following formula (4) (head without loss, efficiency 100%),

Figure 2015151986
Figure 2015151986

(但し、gは重力加速度を表す。)の値や、羽根車3の入射角(=β1b−β)と羽根車3の減速比(=W/W)の値が、羽根車3の入口における予旋回角度αの値によって大きく変化するためである。 (Where g represents gravitational acceleration) and the impeller 3 incident angle (= β 1b −β 1 ) and impeller 3 reduction ratio (= W 1 / W 2 ) This is because it largely changes depending on the value of the pre-swivel angle α 1 at the entrance of No. 3.

しかし、IGV部での圧力損失がなく、かつ作動流体が非圧縮性流体であるような理想的な状態を考えれば、αが変化しても、羽根車3の出口における子午面方向の流体の絶対速度Cmの変化はないから、吸込流量Qが同一であれば、αの値によらず羽根車3の出口での速度三角形の形状は、同一となる(実際には、作動流体が圧縮性流体の場合、αを大きくするためにαIGVを大きくすると、IGV部で圧力損失が発生し、羽根車3の入口での作動流体の密度が変化するため、Cmは厳密には等しくならないが、その変化量は小さいため、上記の理想的状態を想定して差し支えない)。従って、ディフューザ4の効率特性曲線(横軸に流量、縦軸に各流量におけるディフューザ部で発生するヘッド損失の理論ヘッドに対する割合をとった曲線)の形状に大きく影響する因子であるディフューザ入射角(=β3b−α)も、αの値によらず、ほぼ吸込流量Qの値のみで決定されることとなる。IGV回転角αIGVと作動流体の予旋回角αとは一対一の対応関係があるため、この結果として、ディフューザ4の効率特性曲線の形状も、αIGVの値によらずに、ほぼ同一となると考えられる。 However, considering an ideal state where there is no pressure loss at the IGV portion and the working fluid is an incompressible fluid, even if α 1 changes, the fluid in the meridional direction at the outlet of the impeller 3 since the absolute change in velocity Cm 2 is not, if the same suction flow Q, the shape of the velocity triangle of the outlet of the impeller 3 regardless of the alpha 1 value, a coincident (in fact, the working fluid Is a compressible fluid, increasing α IGV to increase α 1 causes pressure loss in the IGV section and changes the density of the working fluid at the inlet of the impeller 3, so Cm 2 is strictly Are not equal, but the amount of change is small, so the above ideal state can be assumed). Therefore, the diffuser incident angle (which is a factor that greatly affects the shape of the efficiency characteristic curve of the diffuser 4 (curve with the horizontal axis representing the flow rate and the vertical axis representing the ratio of the head loss occurring at each diffuser to the theoretical head). = Β 3b −α 3 ) is also determined by only the value of the suction flow rate Q, regardless of the value of α 1 . Since the IGV rotation angle α IGV and the working fluid pre-swivel angle α 1 have a one-to-one correspondence, as a result, the shape of the efficiency characteristic curve of the diffuser 4 is substantially the same regardless of the value of α IGV. It is thought that it becomes.

前述の通り、サージング発生限界流量付近の羽根車効率ηimpは、IGV開度によらずほぼ同一の値となり、かつ、低流量側において性能に対し支配的であるディフューザ4の効率特性曲線の形状は、αIGVの値によらずほぼ同一となると考えられるから、結果として、サージング発生限界流量付近におけるQ−η特性曲線は、IGV開度によらない一本の曲線として表現できるものと考えられる。 As described above, the impeller efficiency η imp in the vicinity of the surging limit flow rate is substantially the same value regardless of the IGV opening, and the shape of the efficiency characteristic curve of the diffuser 4 that is dominant to the performance on the low flow rate side. Is considered to be substantially the same regardless of the value of α IGV , and as a result, the Q-η characteristic curve in the vicinity of the surging limit flow rate can be expressed as a single curve independent of the IGV opening. .

この知見を利用すると、事前に実施する性能試験の回数を必要最小限に抑えながら、比較的単純なシステム構成にて、流体機械のサージング発生限界流量を算出することができる。その手法を、以下に説明する。   Using this knowledge, it is possible to calculate the surging generation limit flow rate of a fluid machine with a relatively simple system configuration while minimizing the number of performance tests to be performed in advance. The method will be described below.

前述の式(4)と図4A〜4Cとから、Hthは、吸込流量Qの低下と共に直線的に増大することが導かれる。流体に予旋回角度αを与えない場合には、式(4)の右辺第二項UCu/gが0となり、Hthは羽根車3の出口での速度三角形のみで決定される。一方、流体に予旋回角度αを与えた場合には、予旋回角度αを与えない場合よりも同一流量におけるHthが小さくなるが、流量を低減していくにつれて、Cuは小さくなり、予旋回角度αを与えない場合のHthとの差は徐々に小さくなる。また、各流量点において、Hthから各部の圧力損失を差し引いた値が実際の流体機械のヘッド上昇Hとなるから、流体機械の段効率ηは、以下の式(5) From the above equations (4) and FIG. 4A-4C, H th are guided to be linearly increased with the decrease of the suction flow rate Q. When the pre-swivel angle α 1 is not given to the fluid, the second term U 1 Cu 1 / g on the right side of Equation (4) becomes 0, and H th is determined only by the velocity triangle at the exit of the impeller 3. . On the other hand, when the pre-swivel angle α 1 is given to the fluid, H th at the same flow rate becomes smaller than when the pre-swivel angle α 1 is not given, but Cu 1 becomes smaller as the flow rate is reduced. , the difference between the H th when no given pre-rotation angles alpha 1 gradually decreases. In each flow point, since the value obtained by subtracting the pressure loss of each unit from H th is the actual fluid machine head rise H, the stage efficiency η of the fluid machine, the following equation (5)

Figure 2015151986
Figure 2015151986

で表される。 It is represented by

図5は、流体機械の性能特性曲線の模式図であり、吸込流量Qに対するヘッド上昇Hと段効率ηを示す図である。前記の通り、予め事前にαIGVを2〜3通りに変化させた性能試験を実施しさえすれば、サージング発生限界流量付近における、IGV開度によらない一本のQ−η特性曲線(図5中のη’(Q))を得ることができる。従って、これに加えて、αIGVの値に応じた理論ヘッドHthの流量変化特性が分かれば、H=η’Hthであるので、全てのIGV開度の条件に対して、サージング発生限界流量付近のQ−H特性曲線の形状を導出することが可能である。 FIG. 5 is a schematic diagram of the performance characteristic curve of the fluid machine, and shows the head rise H and the stage efficiency η with respect to the suction flow rate Q. As described above, a single Q-η characteristic curve (FIG. 1) that does not depend on the IGV opening near the surging generation limit flow rate is required as long as a performance test is performed in advance by changing α IGV in two or three ways. Η ′ (Q)) in FIG. Therefore, in addition to this, if the flow rate change characteristic of the theoretical head H th according to the value of α IGV is known, since H = η′H th , the surging occurrence limit is satisfied for all IGV opening conditions. It is possible to derive the shape of the QH characteristic curve near the flow rate.

理論ヘッドHthの流量変化特性を求めるにあたり、Hthを表す式(4)の右辺第一項については、例えば、次のように求めることができる。予め事前に実施する性能試験の結果から、以下の式(6)で表されるすべり係数ξ(羽根車3の出口で流れがどれだけ翼に沿って流出するかを表す指標)、 In obtaining the flow rate change characteristic of the theoretical head Hth , the first term on the right side of the equation (4) representing Hth can be obtained, for example, as follows. From the result of the performance test performed in advance, the slip coefficient ξ (an index indicating how much the flow flows along the blade at the exit of the impeller 3) represented by the following formula (6),

Figure 2015151986
Figure 2015151986

(但し、Cu2∞は、流れが完全に翼に沿って流出する際の、流体の絶対速度の周方向成分を表す。)を算出しておく。作動流体が非圧縮性流体の場合には、 (However, Cu 2∞ represents the circumferential component of the absolute velocity of the fluid when the flow completely flows out along the blade.) If the working fluid is an incompressible fluid,

Figure 2015151986
Figure 2015151986

より、すべり係数ξ、羽根車3の代表的寸法値(例えば、出口径、出口幅、及び出口角)、及び吸込流量QのみからCuを求めることができる。作動流体が圧縮性流体の場合には、羽根車3の出入口間で流体の密度が変化するため、羽根車3の出口での体積流量は吸込流量Qと同一にならないが、簡単な反復計算を実施することで、Cuを求めることが可能である。ここで、ξの値はαIGVの変化にほとんど影響を受けないから、IGV開度が100%の時の性能試験結果から、Hthの計算値が実測値と合うようにξの値を算出すればよい。 Thus, Cu 2 can be obtained only from the slip coefficient ξ, the representative dimension values of the impeller 3 (for example, the outlet diameter, the outlet width, and the outlet angle) and the suction flow rate Q. When the working fluid is a compressive fluid, the density of the fluid changes between the inlet and outlet of the impeller 3, so that the volumetric flow rate at the outlet of the impeller 3 is not the same as the suction flow rate Q. By carrying out, Cu 2 can be obtained. Here, since the value of ξ is hardly affected by the change in α IGV , the value of ξ is calculated from the performance test result when the IGV opening is 100% so that the calculated value of H th matches the measured value. do it.

一方、式(4)の右辺第二項については、図4A〜4C中に示される予旋回角度αの値を導出する何らかの手法が必要となる。これは、IGV回転角αIGVと実際の流体の流れの予旋回角度αとが、必ずしも一致しないためである。本実施例では、このαIGVとαとの関係を、αIGVを2〜3通りに変化させた性能試験の結果から導出する。この性能試験は、上述したように、IGV開度によらないQ−η特性曲線(図5中のη’(Q))を得るために予め事前に実施する試験である。 On the other hand, for the second term on the right side of the equation (4), some method for deriving the value of the pre-turn angle α 1 shown in FIGS. This is because the IGV rotation angle α IGV and the actual fluid flow pre-swirl angle α 1 do not always match. In this embodiment, the relationship between α IGV and α 1 is derived from the results of performance tests in which α IGV is changed in two to three ways. As described above, this performance test is performed in advance in order to obtain a Q-η characteristic curve (η ′ (Q) in FIG. 5) independent of the IGV opening.

図6は、αIGVを2〜3通りに変化させた性能試験の結果から導出したIGV回転角αIGVと実際の流体の流れの予旋回角度αとの関係を模式的に示す図である。IGV開度(即ちIGV回転角αIGV)を変更して予め事前に実施した幾つかの性能試験の結果と、例えば上記の式(6)で求めたすべり係数ξを用いて算出した理論ヘッドHthとが合うように、αの値を求める。この際、以下の式(8) FIG. 6 is a diagram schematically showing the relationship between the IGV rotation angle α IGV derived from the result of the performance test in which α IGV is changed in two to three ways and the actual swirl angle α 1 of the actual fluid flow. . Theoretical head H calculated using the results of several performance tests performed in advance by changing the IGV opening (that is, the IGV rotation angle α IGV ) and the slip coefficient ξ obtained by the above equation (6), for example. The value of α 1 is obtained so that th matches. At this time, the following equation (8)

Figure 2015151986
Figure 2015151986

を、式(4)に代入してαを変化させていき、算出したHthが実測値と合致したときのαが、実際の予旋回角度である。事前試験を実施したIGV開度(即ちIGV回転角αIGV)ごとにαの値を求め、これらの値をグラフにプロットし、これらのプロットと点(0、0)との間を補間する補間関数を算出すれば、IGV回転角αIGVと実際の流体の流れの予旋回角度αとの関係α(αIGV)を導出することができ、図6に示すαIGV−α曲線を得ることができる。図6に示すαIGV−α曲線(補間関数α(αIGV))から、全てのIGV開度における予旋回角度αが求められる。 And gradually changing the 1 alpha into Equation (4), the alpha 1 when calculated H th is consistent with the measured values, the actual pre-rotation angles. For each IGV opening (ie, IGV rotation angle α IGV ) for which the preliminary test has been performed, the value of α 1 is obtained, these values are plotted on a graph, and interpolation between these plots and the point (0, 0) is performed. If the interpolation function is calculated, the relationship α 1IGV ) between the IGV rotation angle α IGV and the actual fluid flow pre-swivel angle α 1 can be derived, and the α IGV1 curve shown in FIG. Can be obtained. From the α IGV1 curve (interpolation function α 1IGV )) shown in FIG. 6, the pre-turn angle α 1 at all IGV opening degrees is obtained.

なお、図6には、α=αIGVを表す破線を、参考のために示している。流体がIGV2に沿って流れた場合には、α=αIGVとなる。 In FIG. 6, a broken line representing α 1 = α IGV is shown for reference. When the fluid flows along IGV2, α 1 = α IGV .

事前試験の結果からαIGV−α曲線を求めておくことで、全てのIGV開度(即ち全てのIGV回転角αIGV)における、サージング発生限界流量付近のQ−H特性曲線の形状を導出することができる。そして、求めたQ−H特性曲線においてdH/dQ=0となる吸込流量Qを求めることで、流体機械のサージング発生限界流量を求めることができる。 By obtaining the α IGV1 curve from the results of the preliminary test, the shape of the QH characteristic curve in the vicinity of the surging limit flow rate at all IGV openings (ie, all IGV rotation angles α IGV ) is derived. can do. And the surging generation | occurrence | production limit flow volume of a fluid machine can be calculated | required by calculating | requiring the suction flow volume Q used as dH / dQ = 0 in the calculated | required QH characteristic curve.

図7は、本実施例における流体機械の制御システムの構成図である。図7に示すように、流体機械の制御システムは、図1に示した流体機械と、流体機械に設置された計測装置と、流体機械を制御する制御器14を備える。   FIG. 7 is a configuration diagram of a fluid machine control system in the present embodiment. As illustrated in FIG. 7, the fluid machine control system includes the fluid machine illustrated in FIG. 1, a measuring device installed in the fluid machine, and a controller 14 that controls the fluid machine.

流体機械の吸込流路8には、吸込流量Qの計測装置11a、吸込圧力Psの計測装置11b、及び吸込温度Tsの計測装置11cが設置される。IGV2の駆動機1には、IGV回転角αIGVの計測装置11dが設置される。羽根車3の回転軸6には、羽根車3の回転速度Nの計測装置11eが設置される。吐出流路9には、吐出圧力Pdの計測装置11fが設置される。これらの計測装置11a〜11fは、回線12a〜12fを介して、制御器14と接続される。 In the suction flow path 8 of the fluid machine, a suction flow rate Q measuring device 11a, a suction pressure Ps measuring device 11b, and a suction temperature Ts measuring device 11c are installed. An IGV rotation angle α IGV measuring device 11d is installed in the driving machine 1 of the IGV2. On the rotating shaft 6 of the impeller 3, a measuring device 11e for the rotational speed N of the impeller 3 is installed. In the discharge channel 9, a measuring device 11f for the discharge pressure Pd is installed. These measuring devices 11a to 11f are connected to the controller 14 via lines 12a to 12f.

制御器14は、IGV回転角αIGVを調整するための制御信号を、回線13aを介してIGV2の駆動機1へ送る。IGV2は、駆動機1によりIGV開度(即ちIGV回転角αIGV)が変更される。また、制御器14は、回転速度Nを調整するための制御信号を、回線13bを介して羽根車3の駆動機10へ送る。羽根車3は、駆動機10により回転軸6が回転することで、回転駆動される。なお、図7には示していないが、流量調整弁等の機器が配管に組み込まれている場合には、制御器14は、これらの機器を調整するための信号を機器に送信することもできる。 The controller 14 sends a control signal for adjusting the IGV rotation angle α IGV to the driver 1 of the IGV 2 via the line 13a. In the IGV 2, the IGV opening (that is, the IGV rotation angle α IGV ) is changed by the drive unit 1. Further, the controller 14 sends a control signal for adjusting the rotation speed N to the driving machine 10 of the impeller 3 through the line 13b. The impeller 3 is rotationally driven when the rotating shaft 6 is rotated by the driving machine 10. Although not shown in FIG. 7, when a device such as a flow rate adjustment valve is incorporated in the pipe, the controller 14 can also transmit a signal for adjusting these devices to the device. .

制御器14は、各種の演算装置と各種のデータを格納する記憶装置とを備える。演算装置の例としては、式(1)〜(3)で表される羽根車の回転速度Nの変化時の流体機械の性能変化量を求める装置、作動流体が圧縮性を有する場合にCuを求めるための簡単な反復演算をする装置、及びサージング発生限界流量を決定するのに必要なその他の演算を行う装置などがある。記憶装置に格納されるデータの例としては、予め事前に実施する性能試験の結果から求めたη’(Q)とすべり係数ξ、IGV開度が100%の時の性能試験結果から得られるHthの流量変化特性とその勾配、補間関数α(αIGV)のデータ、対象とする流体機械の主要寸法値、及びサージング発生限界流量を決定するのに必要なその他のデータなどがある。 The controller 14 includes various arithmetic devices and a storage device that stores various data. Examples of the calculation device include a device for obtaining a change in performance of the fluid machine when the rotational speed N of the impeller represented by the equations (1) to (3) is changed, and Cu 2 when the working fluid has compressibility. There are a device for performing a simple iterative operation for obtaining the value, a device for performing other operations necessary for determining the surging limit flow rate, and the like. As an example of data stored in the storage device, η ′ (Q), a slip coefficient ξ obtained from a result of a performance test performed in advance, an H obtained from a performance test result when the IGV opening is 100%. There is a flow rate change characteristic and a gradient of th , data of an interpolation function α 1IGV ), main dimension values of a target fluid machine, and other data necessary for determining a surging limit flow rate.

本実施例では、以下のように、流体機械のサージング発生限界流量を求めて、流体機械の運転を制御する。なお、以下の説明では、所望のヘッドHと流量Qを得るために、ある回転速度とIGV回転角で運転されていた流体機械を、異なる回転速度N’とIGV回転角αIGV’で運転させた場合を考える。 In the present embodiment, the surging generation limit flow rate of the fluid machine is obtained and the operation of the fluid machine is controlled as follows. In the following description, in order to obtain a desired head H and flow rate Q, a fluid machine that has been operated at a certain rotational speed and IGV rotational angle is operated at a different rotational speed N ′ and IGV rotational angle α IGV ′. Consider the case.

図8は、本実施例における流体機械の、サージング発生限界流量を導出する方法のフローチャートである。   FIG. 8 is a flowchart of a method of deriving the surging generation limit flow rate of the fluid machine in the present embodiment.

S10で、計測装置11e(図7)で羽根車3の回転速度N’を取得する。   In S10, the rotational speed N ′ of the impeller 3 is acquired by the measuring device 11e (FIG. 7).

S12で、S10で取得したN’を、予め事前に実施した性能試験における羽根車3の回転速度Nと比較し、回転速度比N’/Nを算出する。   In S12, N ′ acquired in S10 is compared with the rotational speed N of the impeller 3 in the performance test performed in advance, and the rotational speed ratio N ′ / N is calculated.

S14で、この回転速度比N’/Nと、前記の式(1)を変形した式(9)   In S14, the rotational speed ratio N '/ N and the formula (9) obtained by modifying the formula (1).

Figure 2015151986
Figure 2015151986

とから、回転速度Nにおける動作点(流量Q)と同一な動作条件となる(つまり効率が等しくなる)、回転速度N’における動作点(流量Q’)を求める。 From this, the operating point (flow rate Q ') at the rotational speed N' that satisfies the same operating conditions (that is, the efficiency becomes equal) as the operating point (flow rate Q) at the rotational speed N is obtained.

S16で、この流量Q’を、予め事前に求めておいたQ−η特性曲線(図5中のη’(Q))のQに代入すると、回転速度N’における、IGV開度によらない一本のQ−η特性曲線η’(Q’)   In S16, if this flow rate Q ′ is substituted for Q of the Q-η characteristic curve (η ′ (Q) in FIG. 5) obtained in advance, it does not depend on the IGV opening at the rotational speed N ′. One Q-η characteristic curve η ′ (Q ′)

Figure 2015151986
Figure 2015151986

を得る。 Get.

S18で、回転速度がN’でIGV回転角がαIGV’の条件における理論ヘッドHthの流量変化特性、即ち理論ヘッド特性Hth’(Q’)を求める。具体的には、予め事前に求めておいたξの値と式(7)とから、この運転条件における、羽根車3の出口における流体の絶対速度の周方向成分Cu’(Q’)を求める。更に、予め事前に求めておいた補間関数α(αIGV)(図6)と式(8)とから、この運転条件における、羽根車3の入口における流体の絶対速度の周方向成分Cu’(Q’)を求める。なお、IGV回転角αIGV’は、計測装置11dで計測する。以上のようにして求めたCu’(Q’)とCu’(Q’)と式(4)とから、Hth’(Q’)を求める。 In S18, it obtains the flow rate change characteristic of the theoretical head H th 'IGV rotation angle is alpha IGV' rotational speed N in the conditions, i.e. the theoretical head characteristics H th the '(Q'). Specifically, the circumferential component Cu 2 ′ (Q ′) of the absolute velocity of the fluid at the outlet of the impeller 3 under this operating condition is calculated from the value of ξ obtained in advance and Equation (7). Ask. Furthermore, from the interpolation function α 1IGV ) (FIG. 6) and Equation (8) obtained in advance, the circumferential component Cu 1 of the absolute velocity of the fluid at the inlet of the impeller 3 under these operating conditions. Find '(Q'). The IGV rotation angle α IGV ′ is measured by the measuring device 11d. H th ′ (Q ′) is obtained from Cu 2 ′ (Q ′), Cu 1 ′ (Q ′) and Equation (4) obtained as described above.

S20では、S16で求めたη’(Q’)とS18で求めたHth’(Q’)とを式(5)に代入すると、本運転条件における、サージング発生限界流量付近のヘッドの流量変化特性H’(Q’)が、以下の式(11) In S20, when η ′ (Q ′) obtained in S16 and H th ′ (Q ′) obtained in S18 are substituted into Equation (5), the flow rate change of the head in the vicinity of the surging generation limit flow rate under the present operating conditions. The characteristic H ′ (Q ′) is expressed by the following equation (11)

Figure 2015151986
Figure 2015151986

で求めることができる。 Can be obtained.

S22で、式(11)をQ’で微分し、dH’(Q’)/dQ’=0となる流量Q’を、本運転条件におけるサージング発生限界流量Qsurgeとして求める。 In S22, Equation (11) is differentiated by Q ′, and a flow rate Q ′ at which dH ′ (Q ′) / dQ ′ = 0 is obtained as a surging generation limit flow rate Q surge under the present operating conditions.

このように、本実施例における流体機械は、制御器14が、dH’(Q’)/dQ’=0となる流量Qsurgeを算出し、算出した流量Qsurgeの記憶と更新を繰り返す。そして、制御器14は、流量Q、吸込圧力Ps、吸込温度Ts、及び吐出圧力Pdの計測結果を基に算出するヘッドHと流量Qが所望の値を満足し、かつ流量Qがサージング発生限界流量Qsurgeを下回らないように、羽根車3の回転速度N、IGV回転角αIGV、及び流量調整弁を制御する。 As described above, in the fluid machine in the present embodiment, the controller 14 calculates the flow rate Q surge at which dH ′ (Q ′) / dQ ′ = 0, and repeatedly stores and updates the calculated flow rate Q surge . The controller 14 calculates the head H and the flow rate Q calculated based on the measurement results of the flow rate Q, the suction pressure Ps, the suction temperature Ts, and the discharge pressure Pd, and the flow rate Q is a surging occurrence limit. The rotation speed N of the impeller 3, the IGV rotation angle α IGV , and the flow rate adjustment valve are controlled so as not to fall below the flow rate Q surge .

なお、図2から、αIGV≠0°の場合(IGV開度が100%でない場合)には、η(Q)’のライン上付近に最高効率点が位置することが分かる。従って、αIGVを大きく設定した場合(IGV開度を小さくした場合)には、η’(Q)のライン上の流量を狙って羽根車3の回転速度N、IGV回転角αIGV、及び流量調整弁を制御し、所望のヘッドHに合わせ込むのがよい。 2 that the maximum efficiency point is located near the line of η (Q) ′ when α IGV ≠ 0 ° (when the IGV opening is not 100%). Therefore, when α IGV is set large (when the IGV opening is reduced), the rotational speed N of the impeller 3, the IGV rotation angle α IGV , and the flow rate aiming at the flow rate on the line η ′ (Q). It is preferable to control the adjusting valve so as to match the desired head H.

図9は、本発明の実施例2における流体機械の制御システムの構成図である。図9において、図7と同一の符号は、図7と同一又は共通の構成要素を示し、これらの構成要素についての説明は省略する。   FIG. 9 is a configuration diagram of a control system for a fluid machine in Embodiment 2 of the present invention. 9, the same reference numerals as those in FIG. 7 denote the same or common components as those in FIG. 7, and description of these components is omitted.

本実施例による流体機械の制御システムは、IGV2と羽根車3との間に、予旋回角度αの検出装置15を備え、検出装置15が回線15aを介して制御器14と接続されている点が、実施例1による流体機械の制御システム(図7)と相違する。予旋回角度αの検出装置15を備えることにより、図6に示した補間関数α(αIGV)を事前に求めなくても、実施例1と同様に、サージング発生限界流量Qsurgeを求めることが可能である。サージング発生限界流量Qsurgeは、図8に示したフローチャートによる方法で求めることができる。但し、S18では、検出装置15が検出した予旋回角度αと式(8)とから、羽根車3の入口における流体の絶対速度の周方向成分Cu’(Q’)を求める。 The fluid machine control system according to the present embodiment includes a detection device 15 having a pre-turn angle α 1 between the IGV 2 and the impeller 3, and the detection device 15 is connected to the controller 14 via a line 15 a. The point is different from the control system (FIG. 7) of the fluid machine according to the first embodiment. By providing the detection device 15 for the pre-turning angle α 1 , the surging occurrence limit flow rate Q surge is obtained in the same manner as in the first embodiment without obtaining the interpolation function α 1IGV ) shown in FIG. 6 in advance. It is possible. The surging generation limit flow rate Q surge can be obtained by the method according to the flowchart shown in FIG. However, in S18, the circumferential component Cu 1 ′ (Q ′) of the absolute velocity of the fluid at the inlet of the impeller 3 is obtained from the pre-turning angle α 1 detected by the detection device 15 and the equation (8).

予旋回角度αの検出装置15には、例えば、IGV2の下流での流体の流れに完全に追随して方向を変えるような小型で軽量な金属片を用いることができる。このような金属片を、回転可能な軸に取り付け、配管の内部に挿入し、角度検出器でこの金属片の回転角度を計測することで、予旋回角度αを検出する。 The pre-rotation angle alpha 1 of the detector 15, for example, may be used a lightweight metal pieces small such changes direction completely follow the flow of fluid downstream of IGV2. Such metal piece, mounted on a rotatable shaft, inserted into the interior of the pipe, by measuring the rotational angle of the metal strip at an angle detector detects the pre-rotation angle alpha 1.

本実施例の流体機械の制御システムは、検出装置15を備えるため、実施例1の流体機械の制御システムと比べると若干、構成が複雑となるが、予旋回角度αを直接求めることができる。このため、予旋回角度αを求めるときの補間の仕方に精度が依存する実施例1の流体機械の制御システムよりも、サージング発生限界流量Qsurgeをより正確に求めることが可能である。 Since the fluid machine control system according to the present embodiment includes the detection device 15, the configuration is slightly complicated as compared with the fluid machine control system according to the first embodiment, but the pre-turn angle α 1 can be directly obtained. . Therefore, than the fluid control system of the machine of the first embodiment precision how interpolation depends upon obtaining the pre-rotation angle alpha 1, it is possible to more accurately determine the surging occurrence limit flow rate Q surge.

なお、本発明は、上記の実施例に限定されるものではなく、様々な変形例を含む。例えば、上記の実施例は、本発明を分かりやすく説明するために詳細に説明したものであり、本発明は、必ずしも説明した全ての構成を備える態様に限定されるものではない。   In addition, this invention is not limited to said Example, Various modifications are included. For example, the above-described embodiments are described in detail for easy understanding of the present invention, and the present invention is not necessarily limited to an aspect including all the configurations described.

1…IGVの駆動機、2…IGV(可変入口案内翼)、3…羽根車、4…ディフューザ、5…吐出スクロール、6…羽根車の回転軸、7…ケーシング、8…吸込流路、9…吐出流路、10…羽根車の駆動機、11a…吸込流量Qの計測装置、11b…吸込圧力Psの計測装置、11c…吸込温度Tsの計測装置、11d…IGV回転角αIGVの計測装置、11e…羽根車の回転速度Nの計測装置、11f…吐出圧力Pdの計測装置、12a〜12f、13a、13b、15a…回線、14…制御器、15…予旋回角度の検出装置。 DESCRIPTION OF SYMBOLS 1 ... IGV drive machine, 2 ... IGV (variable inlet guide vane), 3 ... Impeller, 4 ... Diffuser, 5 ... Discharge scroll, 6 ... Rotating shaft of impeller, 7 ... Casing, 8 ... Suction flow path, 9 DESCRIPTION OF SYMBOLS ... Discharge flow path, 10 ... Impeller drive machine, 11a ... Suction flow rate Q measuring device, 11b ... Suction pressure Ps measuring device, 11c ... Suction temperature Ts measuring device, 11d ... IGV rotation angle α IGV measuring device , 11e: a measuring device for the rotational speed N of the impeller, 11f: a measuring device for the discharge pressure Pd, 12a to 12f, 13a, 13b, 15a ... a circuit, 14 ... a controller, 15 ... a detecting device for a pre-turning angle.

Claims (3)

回転可能な羽根車と、
回転可能であり、前記羽根車へ流入する流体に旋回流を発生させる可変入口案内翼と、
前記羽根車の回転速度と前記可変入口案内翼の回転角とを制御する制御器とを備え、
前記制御器は、
流体機械の吸込流量と段効率との関係のデータと、流体機械の理論ヘッドと吸込流量との関係のデータとを格納しており、
これらのデータと前記羽根車へ流入する前記流体の旋回角度とから、サージングが発生する前記流体の流量をサージング発生限界流量として求め、
求めた前記サージング発生限界流量に基づいて、前記羽根車の回転速度と前記可変入口案内翼の回転角とを制御する、
ことを特徴とする流体機械。
A rotatable impeller,
A variable inlet guide vane that is rotatable and generates a swirling flow in the fluid flowing into the impeller;
A controller for controlling the rotational speed of the impeller and the rotational angle of the variable inlet guide vane,
The controller is
Stores data on the relationship between the suction flow rate of the fluid machine and the stage efficiency, and data on the relationship between the theoretical head of the fluid machine and the suction flow rate,
From these data and the swirl angle of the fluid flowing into the impeller, the flow rate of the fluid at which surging occurs is determined as the surging generation limit flow rate,
Based on the calculated surging limit flow rate, the rotational speed of the impeller and the rotational angle of the variable inlet guide vane are controlled.
A fluid machine characterized by that.
前記制御器は、
前記可変入口案内翼の回転角と前記羽根車へ流入する前記流体の旋回角度との関係のデータを更に格納しており、
このデータから前記羽根車へ流入する前記流体の旋回角度を求め、求めた前記流体の旋回角度を用いて前記サージング発生限界流量を求める請求項1に記載の流体機械。
The controller is
Further storing data of the relationship between the rotation angle of the variable inlet guide vane and the turning angle of the fluid flowing into the impeller,
The fluid machine according to claim 1, wherein a swirl angle of the fluid flowing into the impeller is obtained from the data, and the surging generation limit flow rate is obtained using the obtained swirl angle of the fluid.
前記可変入口案内翼と前記羽根車との間に、前記羽根車へ流入する前記流体の旋回角度の検出装置を更に備え、
前記制御器は、前記検出装置が検出した前記流体の旋回角度を用いて前記サージング発生限界流量を求める請求項1に記載の流体機械。
Further comprising a detection device for a swirl angle of the fluid flowing into the impeller between the variable inlet guide vane and the impeller,
The fluid machine according to claim 1, wherein the controller obtains the surging generation limit flow rate using a swirl angle of the fluid detected by the detection device.
JP2014029239A 2014-02-19 2014-02-19 Fluid machinery Active JP6235369B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014029239A JP6235369B2 (en) 2014-02-19 2014-02-19 Fluid machinery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014029239A JP6235369B2 (en) 2014-02-19 2014-02-19 Fluid machinery

Publications (2)

Publication Number Publication Date
JP2015151986A true JP2015151986A (en) 2015-08-24
JP6235369B2 JP6235369B2 (en) 2017-11-22

Family

ID=53894507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014029239A Active JP6235369B2 (en) 2014-02-19 2014-02-19 Fluid machinery

Country Status (1)

Country Link
JP (1) JP6235369B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014181905A (en) * 2013-03-15 2014-09-29 Daikin Applied Americas Inc Refrigeration device, and control device of refrigerator

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61155697A (en) * 1984-12-28 1986-07-15 Yokogawa Electric Corp Optimum control device of compressor
JPH0617788A (en) * 1992-07-01 1994-01-25 Daikin Ind Ltd Surging occurrence predicting device
JPH0842493A (en) * 1994-05-27 1996-02-13 Ebara Corp Fluid machine with variable guide vane
JP2005023792A (en) * 2003-06-30 2005-01-27 Toyota Central Res & Dev Lab Inc Centrifugal compressor with variable vane

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61155697A (en) * 1984-12-28 1986-07-15 Yokogawa Electric Corp Optimum control device of compressor
JPH0617788A (en) * 1992-07-01 1994-01-25 Daikin Ind Ltd Surging occurrence predicting device
JPH0842493A (en) * 1994-05-27 1996-02-13 Ebara Corp Fluid machine with variable guide vane
JP2005023792A (en) * 2003-06-30 2005-01-27 Toyota Central Res & Dev Lab Inc Centrifugal compressor with variable vane

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014181905A (en) * 2013-03-15 2014-09-29 Daikin Applied Americas Inc Refrigeration device, and control device of refrigerator

Also Published As

Publication number Publication date
JP6235369B2 (en) 2017-11-22

Similar Documents

Publication Publication Date Title
US7824148B2 (en) Centrifugal compressor performance by optimizing diffuser surge control and flow control device settings
JP6431896B2 (en) Method and system for anti-surge control of a turbo compressor with side flow
KR101679186B1 (en) Optimal design method of impeller for centrifugal and mixed flow pump, impeller of centrifugal and mixed flow pump and centrifugal and mixed flow pump by the method
JP2015086710A (en) Centrifugal compressor for gas pipeline and gas pipeline
Sano et al. Alternate blade stall and rotating stall in a vaned diffuser
JP6005181B2 (en) Preventing pump surging in compressors
JP6235369B2 (en) Fluid machinery
Abbas Cavitation in centrifugal pumps
Tomita et al. A new operating range enhancement device combined with a casing treatment and inlet guide vanes for centrifugal compressors
Yagi et al. Optimizing a suction channel to improve performance of a centrifugal compressor stage
Tabar et al. Investigation of recirculation effects on the formation of vapor bubbles in centrifugal pump blades
US11913476B2 (en) Compressor system
Hayami Research and Development of a Transonic Turbo Compressor Hiroshi Hayami
Vanyashov et al. Influence analysis of flow entry conditions on the centrifugal compressor impeller blades to integral gasodynamic characteristics in a combine regulation method
Yoon et al. Performance prediction of mixed-flow pumps
Rolfes et al. Investigation of performance and rotor tip flow field in a low speed research compressor with circumferential groove casing treatment at varying tip clearance
JP6362984B2 (en) Centrifugal fluid machine
Torabi et al. Hydrodynamic design of the volute of a centrifugal pump using CFD
Vogel et al. Experimental and numerical investigation of the unsteady flow field in a vaned diffuser of a high-speed centrifugal compressor
Tetu Improving Centrifugal Compressor Performance by Optimizing Diffuser Surge Control (Variable Diffuser Geometry) and Flow Control (Inlet Guide Vane) Device Settings
Kowshik et al. Rotating instability in a centrifugal blower with shrouded impeller
Feng et al. Experimental investigation of velocity fluctuations in a radial diffuser pump
Tsukamoto et al. Effect of Impeller Outlet Flow Affected by Casing Treatment on Rotating Stall in Vane-Less Diffuser in Centrifugal Turbomachinery
Zheng et al. Extension of operating range of a centrifugal compressor by use of a non-axisymmetric diffuser
Bogdanets et al. Validation of a CFD model of a single stage centrifugal compressor by local flow parameters

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160407

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170926

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171026

R150 Certificate of patent or registration of utility model

Ref document number: 6235369

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350