JP2015151434A - Tar reforming furnace and gasification equipment thereof - Google Patents

Tar reforming furnace and gasification equipment thereof Download PDF

Info

Publication number
JP2015151434A
JP2015151434A JP2014025173A JP2014025173A JP2015151434A JP 2015151434 A JP2015151434 A JP 2015151434A JP 2014025173 A JP2014025173 A JP 2014025173A JP 2014025173 A JP2014025173 A JP 2014025173A JP 2015151434 A JP2015151434 A JP 2015151434A
Authority
JP
Japan
Prior art keywords
furnace
flow path
injection flow
outer peripheral
injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014025173A
Other languages
Japanese (ja)
Other versions
JP6229526B2 (en
Inventor
正宏 内田
Masahiro Uchida
正宏 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2014025173A priority Critical patent/JP6229526B2/en
Publication of JP2015151434A publication Critical patent/JP2015151434A/en
Application granted granted Critical
Publication of JP6229526B2 publication Critical patent/JP6229526B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a tar reforming furnace having a high reforming ratio, with a gasification gas sufficiently agitated by formation of whirlpools which are smaller than those of the gasification gas introduced from the tangential direction of the furnace body.SOLUTION: A tar reforming furnace 11 injects a gasification gas and an oxidizer into a furnace body 19 so as to reform the tar of the gasification gas. At the top of the furnace body, a plurality of injection flow channels 23 and 24 along the annular circumferential direction are disposed on the inner peripheral side and the outer peripheral side. The injection flow channel 23 on the inner peripheral side is inclined obliquely downward toward the outside in the radial direction of the annular form, and the injection flow channel 24 on the outer peripheral side is inclined obliquely downward toward the inside in the radial direction of the annular form. At least one of the gasification gas and the oxidizer is introduced in the injection flow channel 23 on the inner peripheral side and the injection flow channel 24 on the outer peripheral side. Consequently, alternate injection directions are formed in the furnace body 19 in the plane view, so that revolving whirlpools proceed downwards.

Description

本発明は、タールを改質するタール改質炉及びそのガス化設備に関するものである。   The present invention relates to a tar reforming furnace for reforming tar and its gasification equipment.

一般に、二塔式ガス化炉等のガス化設備には、流動層ガス化炉から生じたガス化ガスを流す改質ラインを備えており、改質ラインには、ガス化ガスのタールを改質する酸化改質炉を配置している。   In general, gasification equipment such as a two-column gasification furnace is provided with a reforming line through which gasification gas generated from a fluidized bed gasification furnace flows, and the reforming line is modified with tar gasification gas. A quality oxidation reforming furnace is installed.

酸化改質炉は、ガス化ガスのタールを改質する円柱状の炉本体と、平面視で炉本体の周囲面の接線方向からガス化ガスを導入するガス化ガス導入部と、炉本体の天井から酸化剤を鉛直方向下向きへ導入する酸化剤導入部とを備えている(例えば、特許文献1参照)。   The oxidation reforming furnace includes a cylindrical furnace body that reforms the gasified gas tar, a gasification gas introduction section that introduces the gasification gas from a tangential direction of the peripheral surface of the furnace body in plan view, and a furnace body And an oxidant introduction part for introducing the oxidant downward in the vertical direction from the ceiling (see, for example, Patent Document 1).

ガス化ガスのタールを改質する際には、ガス化ガスを炉本体の接線方向から導入して炉本体内に大きな渦を形成し、そこに酸化剤を鉛直方向下向きに吹き込み混合させる。続いてガス化ガスの炭化水素と水素ガスの一部を酸化剤により燃焼させて炉本体内を約1000℃以上の高温状態にし、ガス化ガスに含まれる水蒸気によりタールを改質する。   When reforming the tar of the gasification gas, the gasification gas is introduced from the tangential direction of the furnace main body to form a large vortex in the furnace main body, and an oxidant is blown downward and mixed therein. Subsequently, part of the gasified hydrocarbon and hydrogen gas is burned with an oxidizing agent to bring the inside of the furnace body to a high temperature state of about 1000 ° C. or higher, and tar is reformed by water vapor contained in the gasified gas.

特開2009−298974号公報JP 2009-298974 A

しかしながら、酸化改質炉は、ガス化ガスを平面視で炉本体の接線方向から導入して炉本体に大きな渦を形成し、そこに酸化剤を炉本体の天井から鉛直方向下向きに吹き込むため、炉本体内での撹拌はガス化ガスの大きな渦に依存し、ガス化ガス及び酸化剤を十分に撹拌することができないという問題があった。又、酸化改質炉の構造では、不十分な撹拌によって温度が不均一となり、酸化剤の噴出口付近では混合や反応が活発となり、局所的に、燃焼反応が大幅に進み、1000℃以上の高温状態になる一方で、低温部では燃焼反応が進まず、結果的に高い改質率を達成できないという問題があった。   However, the oxidation reforming furnace introduces gasified gas from the tangential direction of the furnace main body in a plan view to form a large vortex in the furnace main body, and oxidant is blown downward vertically from the ceiling of the furnace main body, Stirring in the furnace body depends on a large vortex of the gasification gas, and there is a problem that the gasification gas and the oxidant cannot be sufficiently stirred. In addition, in the structure of the oxidation reforming furnace, the temperature becomes non-uniform due to insufficient stirring, and mixing and reaction become active near the oxidant jet, and the combustion reaction proceeds greatly locally, exceeding 1000 ° C. While it became a high temperature state, the combustion reaction did not proceed in the low temperature part, and as a result, there was a problem that a high reforming rate could not be achieved.

本発明は、上記従来の問題に鑑みてなしたもので、ガス化ガスを炉本体の接線方向から導入した場合の渦に比べ、小さな渦を形成してガス化ガスを十分に撹拌し、高い改質率を達成することができるタール改質炉及びそのガス化設備を提供するものである。   The present invention has been made in view of the above-described conventional problems, and compared with the vortex in the case where the gasification gas is introduced from the tangential direction of the furnace body, the gasification gas is sufficiently stirred to form a small vortex and is high. A tar reforming furnace and its gasification equipment capable of achieving a reforming rate are provided.

本発明のタール改質炉は、炉本体内にガス化ガスと酸化剤を噴射してガス化ガスのタールを改質するタール改質炉であって、
前記炉本体の上部で環状の周方向に沿って形成する複数の噴射流路を、内周側と外周側に配置し、内周側の噴射流路を、環状の径方向外側に向かって斜め下方に傾斜させると共に、外周側の噴射流路を、環状の径方向内側に向かって斜め下方に傾斜させ、
前記内周側の噴射流路と前記外周側の噴射流路には、ガス化ガス又は酸化剤の少なくとも一方が導入され、平面視で前記炉本体内に互い違いの噴射方向を生じ、旋回しつつ下方へ向かう渦を形成するように構成されたものである。
The tar reforming furnace of the present invention is a tar reforming furnace for reforming gasified gas tar by injecting gasified gas and oxidant into the furnace body,
A plurality of injection flow paths formed along the annular circumferential direction at the upper part of the furnace body are arranged on the inner peripheral side and the outer peripheral side, and the inner peripheral injection flow paths are inclined toward the annular radial outer side. While inclining downward, the outer peripheral injection flow path is inclined obliquely downward toward the annular radial inner side,
At least one of a gasified gas or an oxidant is introduced into the inner peripheral injection flow path and the outer peripheral injection flow path, causing alternate injection directions in the furnace body in a plan view, and turning It is configured to form a downward vortex.

本発明のタール改質炉において、前記内周側の噴射流路と前記外周側の噴射流路を同心に配置し、前記内周側の噴射流路にガス化ガスを導入すると共に、前記外周側の噴射流路に酸化剤を導入するように構成することが好ましい。   In the tar reforming furnace of the present invention, the inner peripheral injection passage and the outer peripheral injection passage are arranged concentrically, gasified gas is introduced into the inner peripheral injection passage, and the outer periphery It is preferable that the oxidant be introduced into the side injection flow path.

又、本発明のタール改質炉において、前記内周側の噴射流路と前記外周側の噴射流路を同心に配置し、前記内周側の噴射流路と前記外周側の噴射流路にガス化ガスを導入するように構成し、更に前記内周側の噴射流路と前記外周側の噴射流路の間に、下方へ向かう中間の噴射流路を配置し、中間の噴射流路に酸化剤を導入するように構成することが好ましい。   Further, in the tar reforming furnace of the present invention, the inner peripheral injection passage and the outer peripheral injection passage are arranged concentrically, and the inner peripheral injection passage and the outer peripheral injection passage are arranged. It is configured to introduce gasified gas, and further, an intermediate injection flow path directed downward is disposed between the inner peripheral injection flow path and the outer peripheral injection flow path. It is preferable that the oxidant be introduced.

又、本発明のタール改質炉において、噴射流路を開閉する開閉手段と、該開閉手段を制御する制御部とを備えることが好ましい。   Further, the tar reforming furnace of the present invention preferably includes an opening / closing means for opening and closing the injection flow path and a control unit for controlling the opening / closing means.

又、本発明のタール改質炉において、前記内周側の噴射流路及び前記外周側の噴射流路を、鉛直方向に対して30°以上60°以下で傾斜させることが好ましい。   In the tar reforming furnace of the present invention, it is preferable that the inner peripheral side injection passage and the outer peripheral side injection passage are inclined at 30 ° or more and 60 ° or less with respect to the vertical direction.

本発明のガス化設備は、上記のタール改質炉を備えるガス化設備であって、原料からガス化ガスを取り出してタール改質炉に供給する流動層ガス化炉と、該流動層ガス化炉で生じたチャーと流動媒体を供給してチャーの燃焼により流動媒体を加熱する流動層燃焼炉と、該流動層燃焼炉から導出される排ガスから流動媒体を分離して前記流動層ガス化炉に供給する分離器とを備えるものである。   A gasification facility according to the present invention is a gasification facility including the above-described tar reforming furnace, which includes a fluidized bed gasification furnace that extracts a gasification gas from a raw material and supplies the gasification gas to the tar reforming furnace, and the fluidized bed gasification A fluidized bed combustion furnace for supplying char and a fluidized medium generated in the furnace and heating the fluidized medium by combustion of the char, and the fluidized bed gasification furnace by separating the fluidized medium from the exhaust gas derived from the fluidized bed combustion furnace And a separator to be supplied to.

本発明によれば、ガス化ガスを炉本体の接線方向から導入して渦を形成する場合に比べ、小さな渦を形成してガス化ガスを十分に撹拌し、高い改質率を達成することができるという優れた効果を奏し得る。   According to the present invention, compared with the case where gasified gas is introduced from the tangential direction of the furnace body to form a vortex, a small vortex is formed and the gasified gas is sufficiently stirred to achieve a high reforming rate. It is possible to achieve an excellent effect of being able to.

本発明のタール改質炉とそのガス化設備を示す概念図である。It is a conceptual diagram which shows the tar reforming furnace of this invention, and its gasification equipment. 本発明のタール改質炉の第一例を示すもので、(A)は炉本体の上部を示す側面図、(B)は(A)をIIB−IIB方向から見た平面図である。The 1st example of the tar reforming furnace of this invention is shown, (A) is a side view which shows the upper part of a furnace main body, (B) is the top view which looked at (A) from the IIB-IIB direction. 第一例の炉本体の上部を変形した場合を示す他の構造の側面図である。It is a side view of the other structure which shows the case where the upper part of the furnace main body of a 1st example is deform | transformed. 第一例のガス化ガス及び酸化剤の導入構造を変形した場合を示す別の構造の側面図である。It is a side view of another structure which shows the case where the gasification gas of 1st example and the introduction structure of an oxidizing agent are deform | transformed. 炉本体内の小さい渦を示す平面図である。It is a top view which shows the small vortex in a furnace main body. 本発明のタール改質炉の第二例を示すもので、(A)は炉本体の上部を示す側面図、(B)は(A)をVIB−VIB方向から見た平面図である。The 2nd example of the tar reforming furnace of this invention is shown, (A) is a side view which shows the upper part of a furnace main body, (B) is the top view which looked at (A) from the VIB-VIB direction. 第二例の炉本体の上部を変形した場合を示す他の構造の側面図である。It is a side view of the other structure which shows the case where the upper part of the furnace main body of a 2nd example is deform | transformed. 第二例のガス化ガス及び酸化剤の導入構造を変形した場合を示す別の構造の側面図である。It is a side view of another structure which shows the case where the gasification gas and oxidizing agent introduction structure of a 2nd example is deform | transformed.

以下、本発明のタール改質炉のガス化設備を実施する形態例を図1を参照して説明する。   Hereinafter, an embodiment in which gasification equipment for a tar reforming furnace of the present invention is implemented will be described with reference to FIG.

ガス化設備1は、流動層を形成してガス化ガスを生成する流動層ガス化炉2と、流動層ガス化炉2で生じたチャーと流動媒体を供給してチャーの燃焼により流動媒体を加熱する流動層燃焼炉3と、流動層燃焼炉3から導出される排ガスから流動媒体を分離して流動層ガス化炉2に供給する分離器4とを備えている。ここでガス化設備1は、特定の設備に限定されるものではないが、二塔式ガス化炉が好ましい。   The gasification facility 1 includes a fluidized bed gasification furnace 2 that generates a gasified gas by forming a fluidized bed, and supplies the char and the fluidized medium generated in the fluidized bed gasification furnace 2 to generate the fluidized medium by burning the char. A fluidized bed combustion furnace 3 for heating and a separator 4 for separating the fluidized medium from the exhaust gas derived from the fluidized bed combustion furnace 3 and supplying it to the fluidized bed gasification furnace 2 are provided. Here, the gasification facility 1 is not limited to a specific facility, but a two-column gasification furnace is preferable.

流動層ガス化炉2は、石炭等の原料を流動媒体の熱でガス化するガス化部5と、ガス化部5の下部に渡って形成されて流動層ガス化炉2内に水蒸気等のガス化剤を供給するボックス部6とを有しており、ガス化部5には原料供給ライン7が接続されていると共に、ボックス部6にはガス化剤供給ライン8が接続されている。又、流動層ガス化炉2は、ガス化されなかったチャーと流動媒体をオーバーフロー管9を介して流動層燃焼炉3へ供給すると共に、生成したガス化ガスを改質ライン10へ供給するようになっている。ここで流動層ガス化炉2からガス化ガスを供給する改質ライン10には、タール改質炉11、熱交換器(以下、図示せず)、冷却器、誘引通風機(IDF)、脱硫器、脱塩器等を備え、最終的にフレアスタック等へ導くようにしている。   The fluidized bed gasification furnace 2 is formed over a gasification section 5 for gasifying a raw material such as coal with the heat of a fluidized medium, and a lower portion of the gasification section 5. The gasification unit 5 is connected to a raw material supply line 7, and the box unit 6 is connected to a gasification agent supply line 8. The fluidized bed gasification furnace 2 supplies the char and the fluidized medium that have not been gasified to the fluidized bed combustion furnace 3 through the overflow pipe 9 and supplies the generated gasified gas to the reforming line 10. It has become. Here, a reforming line 10 for supplying gasified gas from the fluidized bed gasification furnace 2 includes a tar reforming furnace 11, a heat exchanger (hereinafter not shown), a cooler, an induction fan (IDF), desulfurization. Equipment, desalinator, etc., and finally lead to flare stack etc.

流動層燃焼炉3は、流動層ガス化炉2のチャーと流動媒体とを下部から導入すると共に、空気管12から供給される空気を下部の風箱13から吹き出させる。チャーと流動媒体は吹き出される空気により流動化されて上昇し、上昇する間にチャーが燃焼して流動媒体が加熱されるようになっている。又、流動層燃焼炉3は、流動媒体を含む高温流体を移送管14を介して分離器4へ供給するようになっている。   The fluidized bed combustion furnace 3 introduces the char and fluidized medium of the fluidized bed gasification furnace 2 from the lower part and blows out air supplied from the air pipe 12 from the lower wind box 13. The char and the fluid medium are fluidized and raised by the blown air, and the char is combusted and the fluid medium is heated while it rises. The fluidized bed combustion furnace 3 supplies a high temperature fluid containing a fluidized medium to the separator 4 through a transfer pipe 14.

分離器4は、サイクロン構造を備えた外筒15を配置しており、流動層燃焼炉3の流動媒体を含む高温流体が、外筒15内へ接線方向に導入されて流動媒体と排ガスとに遠心分離されるようになっている。又、分離器4は、粒径が細かい灰分を含む排ガスを排出ライン16から排出し、粒径の粗い未燃チャーを含む流動媒体を、分離器4に接続される降下管17により流動層ガス化炉2に供給するようになっている。   The separator 4 is provided with an outer cylinder 15 having a cyclone structure, and a high-temperature fluid including a fluid medium of the fluidized bed combustion furnace 3 is introduced into the outer cylinder 15 in a tangential direction to produce a fluid medium and exhaust gas. It is designed to be centrifuged. Further, the separator 4 discharges exhaust gas containing ash having a small particle diameter from the discharge line 16, and fluidized bed gas containing unburned char having a coarse particle diameter is fluidized by a downcomer pipe 17 connected to the separator 4. It is supplied to the chemical reactor 2.

次に、本発明のタール改質炉を実施する形態の第一例を図2〜図5を参照して説明する。   Next, a first example of an embodiment for carrying out the tar reforming furnace of the present invention will be described with reference to FIGS.

第一例のタール改質炉11は、図2に示す如く、排出口18(図1参照)を下方に備える円柱状の炉本体19と、炉本体19の上部のフランジ20に構成されるガス化ガス噴射部21と、炉本体19の上部のフランジ20に構成される酸化剤噴射部22とを備えている。   As shown in FIG. 2, the tar reforming furnace 11 of the first example is a gas composed of a columnar furnace body 19 having a discharge port 18 (see FIG. 1) below and a flange 20 on the top of the furnace body 19. The gasification gas injection part 21 and the oxidizing agent injection part 22 comprised by the flange 20 of the upper part of the furnace main body 19 are provided.

ガス化ガス噴射部21と酸化剤噴射部22は、図2(B)、図5に示す如く平面視から見て、環状の周方向に沿って一定の間隔で形成された複数の噴射流路23,24を、同心になるように内周側と外周側に備えている。内周側の噴射流路23は、ガス化ガスが導入されるようにガス化ガス噴射部21の一部になっており、外周側の噴射流路24は、酸化剤が導入されるように酸化剤噴射部22の一部になっている。更に図2(A)、図5に示す如く、内周側の噴射流路23は、環状の径方向外側に向かって斜め下方に傾斜していると共に、外周側の噴射流路24は、環状の径方向内側に向かって斜め下方に傾斜している。ここで、内周側の噴射流路23、及び外周側の噴射流路24は、図3に示す如く、フランジ20のみに直接形成されるものでなく、フランジ20の下部にノズル20aを設けても良い。又、内周側の噴射流路23を、酸化剤が導入されるように酸化剤噴射部22の一部にしても良いし、外周側の噴射流路24を、ガス化ガスが導入されるようにガス化ガス噴射部21の一部にしても良い。更に、複数の噴射流路23,24が形成される環状の位置とは、環状の中心点から径方向で同じ距離に限定されるものでなく、幅を有する環状帯の領域を示している。更に又、内周側の噴射流路23及び外周側の噴射流路24は、夫々3個以上ならば問題にならないが、炉本体19のスケールを考慮して決定することが好ましい。   The gasification gas injection section 21 and the oxidant injection section 22 are formed of a plurality of injection flow paths formed at regular intervals along the annular circumferential direction as seen in a plan view as shown in FIGS. 23 and 24 are provided on the inner peripheral side and the outer peripheral side so as to be concentric. The inner peripheral injection passage 23 is a part of the gasification gas injection section 21 so that gasified gas is introduced, and the outer peripheral injection passage 24 is introduced with oxidant. It is a part of the oxidant injection unit 22. Further, as shown in FIGS. 2A and 5, the inner peripheral injection flow path 23 is inclined obliquely downward toward the outer side in the annular radial direction, and the outer peripheral injection flow path 24 is annular. It is inclined obliquely downward toward the inside in the radial direction. Here, the inner peripheral injection passage 23 and the outer peripheral injection passage 24 are not directly formed only on the flange 20 as shown in FIG. Also good. Further, the inner peripheral side injection flow path 23 may be a part of the oxidant injection portion 22 so that the oxidant is introduced, and the outer peripheral side injection flow path 24 is introduced with gasified gas. Thus, it may be a part of the gasified gas injection unit 21. Furthermore, the annular position where the plurality of injection flow paths 23 and 24 are formed is not limited to the same distance in the radial direction from the annular center point, but indicates a region of an annular band having a width. Furthermore, there are no problems as long as the number of the inner peripheral side injection flow paths 23 and the outer peripheral side injection flow paths 24 is three or more, but it is preferable to determine in consideration of the scale of the furnace body 19.

又、ガス化ガス噴射部21は、環状に配置される内周側の噴射流路23の流路口を全て覆うように、流動層ガス化炉2から延在する改質ライン10(図1参照)の大径の配管25がフランジ20に接続されている。更に酸化剤噴射部22は、環状に配置される外周側の噴射流路24の流路口を全て覆うように環状の酸化剤導入室26がフランジ20に配置されている。また酸化剤導入室26には、酸化剤を供給する酸化剤供給ライン27の配管28が接続されている。ここで、酸化剤噴射部22は、図4に示す如く、環状の酸化剤導入室26を備えることなく、個々の外周側の噴射流路24に酸化剤供給ライン27の配管28を夫々接続しても良い。又、酸化剤供給ライン27の配管28には、外周側の噴射流路24を開閉可能にする個々のバルブ等の開閉手段29を備え、更に個々の開閉手段29を制御する制御部30を備えても良い。更に又、個々の内周側の噴射流路23に、ガス化ガスを供給するように改質ライン10の小径の配管(図示せず)を夫々接続しても良いし、内周側の噴射流路23を開閉可能にするバルブ等の開閉手段(図示せず)や、開閉手段を制御する他の制御部(図示せず)を備えても良い。   Further, the gasified gas injection section 21 extends from the fluidized bed gasification furnace 2 so as to cover all the flow path openings of the inner peripheral injection flow path 23 (see FIG. 1). ) Large-diameter pipe 25 is connected to the flange 20. Further, in the oxidant injection section 22, an annular oxidant introduction chamber 26 is disposed in the flange 20 so as to cover all the flow path ports of the outer peripheral side injection flow path 24. In addition, a pipe 28 of an oxidant supply line 27 for supplying an oxidant is connected to the oxidant introduction chamber 26. Here, as shown in FIG. 4, the oxidant injection unit 22 does not include the annular oxidant introduction chamber 26, and connects the pipes 28 of the oxidant supply lines 27 to the respective injection passages 24 on the outer peripheral side. May be. In addition, the piping 28 of the oxidant supply line 27 is provided with opening / closing means 29 such as individual valves that can open and close the injection flow path 24 on the outer peripheral side, and further includes a control unit 30 that controls the individual opening / closing means 29. May be. Furthermore, small-diameter pipes (not shown) of the reforming line 10 may be connected to the individual inner peripheral injection passages 23 so as to supply gasified gas, or inner peripheral injection. You may provide opening-closing means (not shown), such as a valve | bulb etc. which can open and close the flow path 23, and the other control part (not shown) which controls an opening / closing means.

内周側の噴射流路23及び外周側の噴射流路24は、図2(A)に示す如く側面視で互いにクロスすると共に、図5に示す如く平面視で互い違いになっている。又、内周側の噴射流路23及び外周側の噴射流路24は、鉛直方向に対して30°以上60°以下、好ましくは、鉛直方向に対して45°に設定されている。更に内周側の噴射流路23と外周側の噴射流路24は、平面視で環状方向に沿って複数備えられており、第一例では、環状方向に沿って炉本体19の上部全体に配置されている。   The inner peripheral injection flow path 23 and the outer peripheral injection flow path 24 cross each other in a side view as shown in FIG. 2A and alternate in a plan view as shown in FIG. Further, the inner peripheral side injection flow path 23 and the outer peripheral side injection flow path 24 are set to be 30 ° or more and 60 ° or less with respect to the vertical direction, preferably 45 ° with respect to the vertical direction. Further, a plurality of inner-side injection channels 23 and outer-side injection channels 24 are provided along the annular direction in plan view. In the first example, the entire upper portion of the furnace body 19 is provided along the annular direction. Is arranged.

本発明のタール改質炉を実施する形態の第一例の作用を説明する。   The effect | action of the 1st example of the form which implements the tar reforming furnace of this invention is demonstrated.

第一例のタール改質炉11でガス化ガスのタールを改質する際には、流動層ガス化炉2から生じたガス化ガスを、改質ライン10の配管25を介して複数の内周側の噴射流路23へ導入し、炉本体19内に側面視で斜め外側下方へ向かい且つ平面視で環状の径方向外側に向かって放射状に噴射する。続いて空気又は高濃度の酸素等の酸化剤を、酸化剤供給ライン27の配管28を介して酸化剤導入室26に供給し、酸化剤導入室26から複数の外周側の噴射流路24へ導入し、炉本体19内に側面視で斜め内側下方へ向かい且つ平面視で外側から環状の径方向内側へ向かって噴射する。そして炉本体19内でガス化ガスと酸化剤は、内周側の噴射流路23と外周側の噴射流路24により、平面視で互い違いの噴射方向を生じ、旋回しつつ下方へ向かう小さい渦を形成する。炉本体19の全体では、内周側の噴射流路23と外周側の噴射流路24の複数の組み合わせにより、平面視で環状方向に沿って均等な小さい渦を複数形成し、ガス化ガスと酸化剤を撹拌混合する。ここで渦構造の形成は、ガス化ガスの噴射方向の逆側、酸化剤の噴射方向の逆側が負圧となり、そこに隣接して噴射されたガス化ガス又は酸化剤が入り込むことが主な形成理由となっている。又、撹拌混合の効果を高めるためには、内周側の噴射流路23と外周側の噴射流路24の間隔が小さい方が良く、内周側の噴射流路23と外周側の噴射流路24の数は多いほど良い。更に撹拌混合の効果は、内周側の噴射流路23と外周側の噴射流路24から噴射されるガス化ガスと酸化剤の運動量が高いほど良い。   When reforming the tar of the gasification gas in the tar reforming furnace 11 of the first example, the gasification gas generated from the fluidized bed gasification furnace 2 is passed through a plurality of internal pipes 25 via the piping 25 of the reforming line 10. It introduces into the circumferential injection passage 23, and injects radially into the furnace body 19 obliquely outward and downward in a side view and radially outward in a plan view. Subsequently, an oxidant such as air or high-concentration oxygen is supplied to the oxidant introduction chamber 26 via the pipe 28 of the oxidant supply line 27, and is supplied from the oxidant introduction chamber 26 to the plurality of outer peripheral injection channels 24. Introduced and injected into the furnace body 19 obliquely inward and downward in a side view and from the outside to an annular radial inner side in a plan view. In the furnace main body 19, the gasified gas and the oxidant cause alternate injection directions in a plan view by the inner peripheral injection passage 23 and the outer peripheral injection passage 24, and are small vortices that turn downward while turning. Form. In the whole furnace body 19, a plurality of uniform small vortices are formed along the annular direction in plan view by a plurality of combinations of the injection passage 23 on the inner peripheral side and the injection passage 24 on the outer peripheral side, and the gasification gas and Stir and mix the oxidizing agent. Here, the formation of the vortex structure is mainly due to the negative pressure on the opposite side of the gasification gas injection direction and the reverse side of the oxidant injection direction, and the gasification gas or oxidant injected adjacent thereto enter. It is the reason for formation. Further, in order to enhance the effect of stirring and mixing, it is better that the distance between the inner peripheral side injection flow path 23 and the outer peripheral side injection flow path 24 is small, and the inner peripheral side injection flow path 23 and the outer peripheral side injection flow path. The greater the number of paths 24, the better. Furthermore, the effect of stirring and mixing is better as the momentum of the gasification gas and the oxidant injected from the inner peripheral injection passage 23 and the outer peripheral injection passage 24 is higher.

そして、炉本体19内では、ガス化ガスの炭化水素と水素ガスの一部を酸化剤により燃焼させて炉本体19内を約1000℃以上の高温状態にし、ガス化ガスに含まれる水蒸気によりタールを改質する。   In the furnace main body 19, a part of the hydrocarbon and hydrogen gas of the gasification gas is burned with an oxidizing agent to bring the inside of the furnace main body 19 to a high temperature state of about 1000 ° C. or higher, and tar is generated by water vapor contained in the gasification gas. To reform.

その後、改質された改質ガスは、排出口18(図1参照)から改質ライン10の下流側に排出され、熱交換器(以下、図示せず)、冷却器、誘引通風機(IDF)、脱硫器、脱塩器等を経由して処理され、最終的にフレアスタック等へ導かれる。   Thereafter, the reformed reformed gas is discharged to the downstream side of the reforming line 10 from the discharge port 18 (see FIG. 1), and a heat exchanger (hereinafter not shown), a cooler, an induction fan (IDF). ), Processed through a desulfurizer, a demineralizer, etc., and finally led to a flare stack or the like.

このように、タール改質炉の形態の第一例によれば、ガス化ガスを炉本体19の接線方向から導入して大きな渦を形成する場合に比べ、小さな渦を形成してガス化ガスを十分に撹拌し、高い改質率を達成することができる。   As described above, according to the first example of the form of the tar reforming furnace, the gasification gas is formed by forming a small vortex as compared with the case where the gasification gas is introduced from the tangential direction of the furnace body 19 to form a large vortex. Can be sufficiently stirred to achieve a high reforming rate.

又、タール改質炉の形態の第一例において、内周側の噴射流路23と外周側の噴射流路24を同心に配置し、内周側の噴射流路23にガス化ガスを導入すると共に、外周側の噴射流路24に酸化剤を導入するように構成すると、小さな渦を適切に形成してガス化ガスを好適且つ十分に撹拌し、高い改質率を達成することができる。   Further, in the first example of the form of the tar reforming furnace, the inner peripheral side injection flow path 23 and the outer peripheral side injection flow path 24 are arranged concentrically, and gasification gas is introduced into the inner peripheral side injection flow path 23. In addition, when the oxidant is introduced into the injection flow path 24 on the outer peripheral side, a small vortex can be appropriately formed to suitably and sufficiently stir the gasification gas, thereby achieving a high reforming rate. .

又、タール改質炉の形態の第一例において、内周側の噴射流路23又は外周側の噴射流路24を開閉する開閉手段29と、開閉手段29を制御する制御部30とを備えると、炉本体19内で温度分布の偏り等が生じた場合であっても、ガス化ガスや酸化剤の噴射量及び噴射位置を調整して対応し得るので、ガス化ガスを適切に撹拌し、高い改質率を達成することができる。   In the first example of the form of the tar reforming furnace, an opening / closing means 29 for opening / closing the inner peripheral injection passage 23 or the outer peripheral injection passage 24 and a control unit 30 for controlling the opening / closing means 29 are provided. Even if a temperature distribution deviation occurs in the furnace body 19, the gasification gas or oxidant injection amount and injection position can be adjusted to cope with this, so the gasification gas can be agitated appropriately. High reforming rate can be achieved.

又、タール改質炉の形態の第一例において、内周側の噴射流路23及び外周側の噴射流路24を、鉛直方向に対して30°以上60°以下で傾斜させると、小さな渦を一層適切に形成してガス化ガスを好適且つ十分に撹拌し、高い改質率を達成することができる。ここで内周側の噴射流路23及び外周側の噴射流路24を、鉛直方向に対して30°より小さい角度で傾斜させると、下方へ向かう力が強くなって排出口18までの時間が短くなり、ガス化ガスを十分に撹拌することができないという問題がある。又、内周側の噴射流路23及び外周側の噴射流路24を、鉛直方向に対して60°より大きい角度で傾斜させると、下方へ向かう力が弱くなってガス化ガスと酸化剤を排出口18へ適切に導くことができず、温度分布の偏り等を生じるという問題がある。   In the first example of the tar reforming furnace, when the inner peripheral injection passage 23 and the outer injection passage 24 are inclined at 30 ° or more and 60 ° or less with respect to the vertical direction, a small vortex Thus, the gasification gas can be suitably and sufficiently stirred to achieve a high reforming rate. Here, if the inner peripheral side injection flow path 23 and the outer peripheral side injection flow path 24 are inclined at an angle smaller than 30 ° with respect to the vertical direction, the downward force increases and the time until the discharge port 18 is increased. There is a problem that the gasification gas cannot be sufficiently stirred because of shortening. Also, if the inner peripheral injection flow path 23 and the outer peripheral injection flow path 24 are inclined at an angle larger than 60 ° with respect to the vertical direction, the downward force is weakened, and the gasified gas and the oxidizing agent are reduced. There is a problem in that it cannot be properly guided to the discharge port 18 and the temperature distribution is biased.

又、図1に示す如く、上記のタール改質炉11を備えるガス化設備1であって、原料からガス化ガスを取り出してタール改質炉11に供給する流動層ガス化炉2と、流動層ガス化炉2で生じたチャーと流動媒体を供給してチャーの燃焼により流動媒体を加熱する流動層燃焼炉3と、流動層燃焼炉3から導出される排ガスから流動媒体を分離して流動層ガス化炉2に供給する分離器4とを備えると、ガス化ガスを好適に取り出すと共に、ガス化ガスを適切に処理することができる。   Further, as shown in FIG. 1, a gasification facility 1 including the above tar reforming furnace 11, which includes a fluidized bed gasification furnace 2 that extracts a gasification gas from a raw material and supplies the gasification gas to the tar reforming furnace 11, The fluidized bed combustion furnace 3 for supplying the char and the fluidized medium generated in the bed gasification furnace 2 and heating the fluidized medium by combustion of the char; and the fluidized medium separated from the exhaust gas derived from the fluidized bed combustion furnace 3 When the separator 4 supplied to the bed gasification furnace 2 is provided, the gasification gas can be suitably taken out and the gasification gas can be appropriately processed.

次に、本発明のタール改質炉を実施する形態の第二例を図6〜図8を参照して説明する。   Next, a second example of an embodiment for carrying out the tar reforming furnace of the present invention will be described with reference to FIGS.

第二例のタール改質炉31は、第一例のガス化ガス噴射部21と酸化剤噴射部22の構成を変形したものであり、図6に示す如く、排出口18(図1参照)を下方に備える円柱状の炉本体32と、炉本体32の上部のフランジ33に構成されるガス化ガス噴射部34と、炉本体32の上部のフランジ33に構成される酸化剤噴射部35とを備えている。   The tar reforming furnace 31 of the second example is a modification of the configuration of the gasified gas injection unit 21 and the oxidant injection unit 22 of the first example, and as shown in FIG. 6, the discharge port 18 (see FIG. 1). A columnar furnace body 32 provided at the bottom, a gasified gas injection section 34 formed on the flange 33 on the top of the furnace body 32, and an oxidant injection section 35 configured on the flange 33 on the top of the furnace body 32, It has.

ガス化ガス噴射部34は、図6(B)に示す如く平面視から見て、環状の周方向に沿って一定の間隔で形成された複数の噴射流路36,37を、同心になるように内周側と外周側に備えている。又、図6(A)に示す如く、内周側の噴射流路36は、環状の径方向外側に向かって斜め下方に傾斜していると共に、外周側の噴射流路37は、環状の径方向内側に向かって斜め下方に傾斜している。   As shown in FIG. 6B, the gasified gas injection unit 34 is concentric with a plurality of injection flow paths 36 and 37 that are formed at regular intervals along the annular circumferential direction when viewed in plan view. Are provided on the inner and outer peripheral sides. Further, as shown in FIG. 6A, the inner peripheral injection flow path 36 is inclined obliquely downward toward the annular radial outer side, and the outer peripheral injection flow path 37 has an annular diameter. It is inclined obliquely downward toward the inside of the direction.

一方、酸化剤噴射部35は、図6(B)に示す如く平面視から見て、環状の周方向に沿って複数形成され、且つ内周側の噴射流路36と外周側の噴射流路37との間に位置する中間の噴射流路38を備えている。中間の噴射流路38は、図6(A)に示す如く、内周側の噴射流路36と外周側の噴射流路37との間で鉛直方向下向きになっている。ここで内周側の噴射流路36、外周側の噴射流路37、中間の噴射流路38は、第一例と同様に、フランジ33のみに直接形成されるものでなく、フランジ33の下部にノズルを設けても良い。又、複数の噴射流路36,37,38が形成される環状の位置とは、環状の中心点から径方向で同じ距離に限定されるものでなく、幅を有する環状帯の領域を示しており、特に中間の噴射流路38は、内周側の噴射流路36と外周側の噴射流路37との間に位置するならば、環状すなわち環状帯の領域のどの位置であっても良い。更に、第二例では、ガス化ガス噴射部34に中間の噴射流路38を備えると共に酸化剤噴射部35に内周側の噴射流路36及び外周側の噴射流路37を備えても良い。更に内周側の噴射流路36及び外周側の噴射流路37は、夫々3個以上ならば問題にならないが、炉本体32のスケールを考慮して決定することが好ましい。   On the other hand, as shown in FIG. 6B, a plurality of the oxidant injection portions 35 are formed along the annular circumferential direction when viewed in plan, and the inner peripheral injection passage 36 and the outer peripheral injection passage. 37 is provided with an intermediate injection flow path 38 located between them. As shown in FIG. 6A, the intermediate injection flow path 38 is vertically downward between the inner peripheral injection flow path 36 and the outer peripheral injection flow path 37. Here, the inner peripheral injection flow path 36, the outer peripheral injection flow path 37, and the intermediate injection flow path 38 are not directly formed only in the flange 33, but in the lower part of the flange 33, as in the first example. A nozzle may be provided. Further, the annular position where the plurality of injection flow paths 36, 37, 38 are formed is not limited to the same distance in the radial direction from the annular center point, but indicates a region of an annular band having a width. In particular, as long as the intermediate injection flow path 38 is located between the injection flow path 36 on the inner peripheral side and the injection flow path 37 on the outer peripheral side, the intermediate injection flow path 38 may be at any position in the annular or annular band region. . Furthermore, in the second example, the gasification gas injection section 34 may include an intermediate injection flow path 38, and the oxidant injection section 35 may include an inner peripheral injection flow path 36 and an outer peripheral injection path 37. . Further, there are no problems if the inner peripheral side injection flow path 36 and the outer peripheral side injection flow path 37 are three or more respectively, but it is preferable to determine in consideration of the scale of the furnace body 32.

又、ガス化ガス噴射部34は、内周側の噴射流路36の流路口及び外周側の噴射流路37の流路口を全て覆うように、円筒状のガス化ガス導入室39がフランジ33に接続されている。更にガス化ガス導入室39の中央には、ガス化ガスを供給する改質ライン10(図1参照)の配管40が接続されている。更に又、酸化剤噴射部35は、ガス化ガス導入室39を貫通して個々の中間の噴射流路38に接続するように酸化剤供給ライン27の個々の配管41を配置し、酸化剤供給ライン27の配管41には、配管41を開閉可能にするバルブ等の開閉手段42を備えている。ここで、酸化剤噴射部35は、図7に示す如く、ガス化ガス導入室39を貫通して個々の中間の噴射流路38に接続される第一配管43と、ガス化ガス導入室39の上部に配置されて第一配管43の流路口を全て覆う環状の酸化剤導入室44と、酸化剤導入室44へ酸化剤を供給する酸化剤供給ライン27の第二配管45とを備えても良い。更に酸化剤噴射部35は、図8に示す如く、個々の酸化剤供給ライン27の配管41を開閉する個々のバルブ等の開閉手段42を備え、更に個々の開閉手段42を制御する制御部46を備えても良い。   Further, the gasified gas injection section 34 has a cylindrical gasified gas introduction chamber 39 with a flange 33 so as to cover all the flow path ports of the inner peripheral injection flow path 36 and the outer peripheral flow path 37. It is connected to the. Further, a pipe 40 of the reforming line 10 (see FIG. 1) for supplying the gasification gas is connected to the center of the gasification gas introduction chamber 39. Furthermore, the oxidant injection unit 35 arranges the individual pipes 41 of the oxidant supply line 27 so as to pass through the gasification gas introduction chamber 39 and connect to the individual intermediate injection flow paths 38, thereby supplying the oxidant supply. The piping 41 of the line 27 is provided with opening / closing means 42 such as a valve that enables the piping 41 to be opened and closed. Here, as shown in FIG. 7, the oxidant injection unit 35 includes a first pipe 43 that passes through the gasification gas introduction chamber 39 and is connected to each intermediate injection flow path 38, and a gasification gas introduction chamber 39. And an annular oxidant introduction chamber 44 that covers the entire flow path opening of the first pipe 43, and a second pipe 45 of the oxidant supply line 27 that supplies the oxidant to the oxidant introduction chamber 44. Also good. Further, as shown in FIG. 8, the oxidant injection unit 35 includes opening / closing means 42 such as individual valves for opening / closing the pipes 41 of the individual oxidant supply lines 27, and a control unit 46 for controlling the individual opening / closing means 42. May be provided.

内周側の噴射流路36及び外周側の噴射流路37は、図6(A)に示す如く側面視で互いにクロスすると共に、図6(B)に示す如く、平面視で互い違いになっている。又、内周側の噴射流路36及び外周側の噴射流路37は、鉛直方向に対して30°以上60°以下、好ましくは、鉛直方向に対して45°に設定されている。更に内周側の噴射流路36と外周側の噴射流路37は、平面視で環状方向に沿って複数備えられており、第二例では、環状方向に沿って炉本体32の上部全体に配置されている。又、中間の噴射流路38は、互いに近接する内周側の噴射流路36と外周側の噴射流路37の間に全て配置されている。   The inner peripheral side injection flow path 36 and the outer peripheral side injection flow path 37 cross each other in a side view as shown in FIG. 6 (A), and alternate in a plan view as shown in FIG. 6 (B). Yes. Moreover, the inner peripheral side injection flow path 36 and the outer peripheral side injection flow path 37 are set at 30 ° or more and 60 ° or less with respect to the vertical direction, preferably 45 ° with respect to the vertical direction. Further, a plurality of inner peripheral injection flow paths 36 and outer peripheral injection flow paths 37 are provided along the annular direction in a plan view. In the second example, the entire upper portion of the furnace body 32 extends along the annular direction. Is arranged. Further, the intermediate injection flow path 38 is all disposed between the inner peripheral injection flow path 36 and the outer peripheral injection flow path 37 that are close to each other.

本発明のタール改質炉を実施する形態の第二例の作用を説明する。   The effect | action of the 2nd example of the form which implements the tar reforming furnace of this invention is demonstrated.

第二例のタール改質炉31でガス化ガスのタールを改質する際には、流動層ガス化炉2から生じたガス化ガスを、改質ライン10の配管40やガス化ガス導入室39等を介して複数の内周側の噴射流路36へ導入し、炉本体32内に側面視で斜め外側下方へ向かい且つ平面視で環状の径方向外側に向かって放射状に噴射する。同時にガス化ガスを、複数の外周側の噴射流路37へ導入し、炉本体32内に側面視で斜め内側下方へ向かい且つ平面視で外側から環状の径方向内側に向かって噴射する。そして炉本体32内でガス化ガスは、内周側の噴射流路36と外周側の噴射流路37により、平面視で互い違いの噴射方向を生じ、旋回しつつ下方へ向かう小さい渦を形成する。炉本体32の全体では、内周側の噴射流路36と外周側の噴射流路37の複数の組み合わせにより、平面視で環状方向に沿って均等な小さい渦を複数形成する。一方で空気又は高濃度の酸素等の酸化剤は、酸化剤供給ライン27の配管41及び中間の噴射流路38を介して炉本体32内に側面視で鉛直方向下向きへ噴射され、炉本体32内で小さい渦のほぼ中心に流下してガス化ガスに巻き込まれつつ撹拌混合される。ここで渦構造の形成は、第一例とほぼ同様な理由となっている。   When reforming the gasification gas tar in the tar reforming furnace 31 of the second example, the gasification gas generated from the fluidized bed gasification furnace 2 is replaced with the piping 40 of the reforming line 10 or the gasification gas introduction chamber. It is introduced into a plurality of injection passages 36 on the inner peripheral side via 39 and the like, and is injected radially downward in the furnace main body 32 in a side view and radially outward in a plan view. At the same time, the gasified gas is introduced into the plurality of outer peripheral injection flow paths 37 and injected into the furnace body 32 obliquely inward and downward as viewed from the side and from the outside toward the annular radial direction as viewed in plan. In the furnace main body 32, the gasified gas causes an alternate injection direction in a plan view by the inner peripheral injection passage 36 and the outer peripheral injection passage 37, and forms a small vortex that turns downward while turning. . In the whole furnace main body 32, a plurality of uniform small vortices are formed along the annular direction in plan view by a plurality of combinations of the injection passage 36 on the inner peripheral side and the injection passage 37 on the outer peripheral side. On the other hand, an oxidant such as air or high-concentration oxygen is injected downward in the vertical direction into the furnace main body 32 through the piping 41 of the oxidant supply line 27 and the intermediate injection flow path 38 in a side view. The mixture is stirred and mixed while flowing down to the center of the small vortex and being entrained in the gasification gas. Here, the formation of the vortex structure has almost the same reason as in the first example.

そして、炉本体32内では、ガス化ガスの炭化水素と水素ガスの一部が酸化剤により燃焼させて炉本体32内を約1000℃以上の高温状態にし、ガス化ガスに含まれる水蒸気によりタールを改質する。   And in the furnace main body 32, a part of hydrocarbon and hydrogen gas of gasification gas are burned with an oxidizing agent, and the inside of the furnace main body 32 is brought into a high temperature state of about 1000 ° C. or more, and tar is generated by water vapor contained in the gasification gas. To reform.

その後、改質された改質ガスは、第一例と同様に、排出口18(図1参照)から改質ライン10の下流側に排出され、熱交換器(以下、図示せず)、冷却器、誘引通風機(IDF)、脱硫器、脱塩器等を経由して処理され、最終的にフレアスタック等へ導かれる。   After that, the reformed reformed gas is discharged from the outlet 18 (see FIG. 1) to the downstream side of the reforming line 10 in the same manner as in the first example, and a heat exchanger (hereinafter not shown), cooling It is processed via a vacuum vessel, an induction fan (IDF), a desulfurizer, a demineralizer, etc., and finally led to a flare stack or the like.

このように、タール改質炉31の形態の第二例によれば、第一例と同様な作用効果を得ることができる。   Thus, according to the 2nd example of the form of the tar reforming furnace 31, the same effect as the 1st example can be obtained.

又、タール改質炉31の形態の第二例において、内周側の噴射流路36と外周側の噴射流路37を同心に配置し、内周側の噴射流路36と外周側の噴射流路37にガス化ガスを導入するように構成し、更に内周側の噴射流路36と外周側の噴射流路37の間に、下方へ向かう中間の噴射流路38を配置し、中間の噴射流路38に酸化剤を導入するように構成すると、ガス化ガスの小さな渦を適切に形成すると共に酸化剤を適切な位置に導入することが可能となり、ガス化ガス及び酸化剤を好適且つ十分に撹拌し、高い改質率を達成することができる。   Further, in the second example of the form of the tar reforming furnace 31, the inner peripheral injection passage 36 and the outer peripheral injection passage 37 are arranged concentrically, and the inner peripheral injection passage 36 and the outer peripheral injection are arranged. It is configured to introduce gasified gas into the flow path 37, and further, an intermediate injection flow path 38 is disposed between the inner peripheral injection flow path 36 and the outer peripheral injection flow path 37. If the oxidant is introduced into the injection flow path 38, a small vortex of the gasification gas can be appropriately formed and the oxidant can be introduced at an appropriate position, and the gasification gas and the oxidant are preferably used. In addition, a high reforming rate can be achieved by sufficiently stirring.

又、図1、図6〜図8に示す如く、上記のタール改質炉31を備えるガス化設備1であって、原料からガス化ガスを取り出してタール改質炉31に供給する流動層ガス化炉2と、該流動層ガス化炉2で生じたチャーと流動媒体を供給してチャーの燃焼により流動媒体を加熱する流動層燃焼炉3と、流動層燃焼炉3から導出される排ガスから流動媒体を分離して流動層ガス化炉2に供給する分離器4とを備えると、第一例と同様に、ガス化ガスを好適に取り出すと共に、ガス化ガスを適切に処理することができる。   Moreover, as shown in FIGS. 1 and 6 to 8, the gasification facility 1 includes the above-described tar reforming furnace 31, and a fluidized bed gas for extracting the gasification gas from the raw material and supplying the gas reforming gas to the tar reforming furnace 31. From a gasification furnace 2, a fluidized bed combustion furnace 3 for supplying char and a fluidized medium generated in the fluidized bed gasification furnace 2 and heating the fluidized medium by combustion of char, and an exhaust gas derived from the fluidized bed combustion furnace 3 When the separator 4 is provided that separates the fluidized medium and supplies it to the fluidized bed gasification furnace 2, the gasification gas can be suitably taken out and the gasification gas can be appropriately processed, as in the first example. .

尚、本発明は、上述の実施例に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。   In addition, this invention is not limited to the above-mentioned Example, Of course, a various change can be added in the range which does not deviate from the summary of this invention.

1 ガス化設備
2 流動層ガス化炉
3 流動層燃焼炉
4 分離器
11 タール改質炉
19 炉本体
21 ガス化ガス噴射部
22 酸化剤噴射部
23 内周側の噴射流路
24 外周側の噴射流路
29 開閉手段
30 制御部
31 タール改質炉
32 炉本体
34 ガス化ガス噴射部
35 酸化剤噴射部
36 内周側の噴射流路
37 外周側の噴射流路
38 中間の噴射流路
42 開閉手段
46 制御部
DESCRIPTION OF SYMBOLS 1 Gasification equipment 2 Fluidized bed gasification furnace 3 Fluidized bed combustion furnace 4 Separator 11 Tar reforming furnace 19 Furnace body 21 Gasification gas injection part 22 Oxidant injection part 23 Inner peripheral side injection flow path 24 Outer peripheral side injection Channel 29 Opening / closing means 30 Control unit 31 Tar reforming furnace 32 Furnace main body 34 Gasified gas injection unit 35 Oxidant injection unit 36 Inner peripheral injection channel 37 Outer peripheral injection channel 38 Intermediate injection channel 42 Opening / closing Means 46 Controller

Claims (6)

炉本体内にガス化ガスと酸化剤を噴射してガス化ガスのタールを改質するタール改質炉であって、
前記炉本体の上部で環状の周方向に沿って形成する複数の噴射流路を、内周側と外周側に配置し、内周側の噴射流路を、環状の径方向外側に向かって斜め下方に傾斜させると共に、外周側の噴射流路を、環状の径方向内側に向かって斜め下方に傾斜させ、
前記内周側の噴射流路と前記外周側の噴射流路には、ガス化ガス又は酸化剤の少なくとも一方が導入され、平面視で前記炉本体内に互い違いの噴射方向を生じ、旋回しつつ下方へ向かう渦を形成するように構成されたことを特徴とするタール改質炉。
A tar reforming furnace that reforms gasified gas tar by injecting gasified gas and oxidant into the furnace body,
A plurality of injection flow paths formed along the annular circumferential direction at the upper part of the furnace body are arranged on the inner peripheral side and the outer peripheral side, and the inner peripheral injection flow paths are inclined toward the annular radial outer side. While inclining downward, the outer peripheral injection flow path is inclined obliquely downward toward the annular radial inner side,
At least one of a gasified gas or an oxidant is introduced into the inner peripheral injection flow path and the outer peripheral injection flow path, causing alternate injection directions in the furnace body in a plan view, and turning A tar reforming furnace configured to form a downward vortex.
前記内周側の噴射流路と前記外周側の噴射流路を同心に配置し、前記内周側の噴射流路にガス化ガスを導入すると共に、前記外周側の噴射流路に酸化剤を導入するように構成したことを特徴とする請求項1に記載のタール改質炉。   The inner peripheral injection passage and the outer peripheral injection passage are arranged concentrically to introduce gasified gas into the inner peripheral injection passage, and an oxidant is introduced into the outer peripheral injection passage. The tar reforming furnace according to claim 1, wherein the tar reforming furnace is configured to be introduced. 前記内周側の噴射流路と前記外周側の噴射流路を同心に配置し、前記内周側の噴射流路と前記外周側の噴射流路にガス化ガスを導入するように構成し、更に前記内周側の噴射流路と前記外周側の噴射流路の間に、下方へ向かう中間の噴射流路を配置し、中間の噴射流路に酸化剤を導入するように構成したことを特徴とする請求項1に記載のタール改質炉。   The inner peripheral injection channel and the outer peripheral injection channel are arranged concentrically, and configured to introduce gasified gas into the inner peripheral injection channel and the outer peripheral injection channel, Further, an intermediate injection flow path is disposed between the inner peripheral injection flow path and the outer peripheral injection flow path, and an oxidant is introduced into the intermediate injection flow path. The tar reforming furnace according to claim 1, wherein the tar reforming furnace is characterized in that: 噴射流路を開閉する開閉手段と、該開閉手段を制御する制御部とを備えたことを特徴とする請求項1〜3のいずれか一項に記載のタール改質炉。   The tar reforming furnace according to any one of claims 1 to 3, further comprising an opening / closing means for opening and closing the injection flow path and a control unit for controlling the opening / closing means. 前記内周側の噴射流路及び前記外周側の噴射流路を、鉛直方向に対して30°以上60°以下で傾斜させたことを特徴とする請求項1〜4のいずれか一項に記載のタール改質炉。   The said inner peripheral side injection flow path and the said outer peripheral side injection flow path were made to incline at 30 degrees or more and 60 degrees or less with respect to the perpendicular direction. Tar reforming furnace. 請求項1〜5のいずれか一項に記載のタール改質炉を備えるガス化設備であって、原料からガス化ガスを取り出してタール改質炉に供給する流動層ガス化炉と、該流動層ガス化炉で生じたチャーと流動媒体を供給してチャーの燃焼により流動媒体を加熱する流動層燃焼炉と、該流動層燃焼炉から導出される排ガスから流動媒体を分離して前記流動層ガス化炉に供給する分離器とを備えたことを特徴とするガス化設備。   A gasification facility comprising the tar reforming furnace according to any one of claims 1 to 5, wherein a fluidized bed gasification furnace that takes out the gasification gas from a raw material and supplies the gasification gas to the tar reforming furnace, and the flow A fluidized bed combustion furnace for supplying char and a fluidized medium generated in a bed gasification furnace and heating the fluidized medium by combustion of the char; and the fluidized bed by separating the fluidized medium from the exhaust gas derived from the fluidized bed combustion furnace. A gasification facility comprising a separator for supplying to a gasification furnace.
JP2014025173A 2014-02-13 2014-02-13 Tar reforming furnace and its gasification equipment Expired - Fee Related JP6229526B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014025173A JP6229526B2 (en) 2014-02-13 2014-02-13 Tar reforming furnace and its gasification equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014025173A JP6229526B2 (en) 2014-02-13 2014-02-13 Tar reforming furnace and its gasification equipment

Publications (2)

Publication Number Publication Date
JP2015151434A true JP2015151434A (en) 2015-08-24
JP6229526B2 JP6229526B2 (en) 2017-11-15

Family

ID=53894054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014025173A Expired - Fee Related JP6229526B2 (en) 2014-02-13 2014-02-13 Tar reforming furnace and its gasification equipment

Country Status (1)

Country Link
JP (1) JP6229526B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54500042A (en) * 1977-11-08 1979-10-25
JP2003013072A (en) * 2001-07-04 2003-01-15 Chiyoda Corp Method for producing synthetic gas from lower hydrocarbon gas and apparatus therefor
JP2005060533A (en) * 2003-08-12 2005-03-10 Chugai Ro Co Ltd Device for modifying fuel gas in biomass gasification system
JP2009298974A (en) * 2008-06-17 2009-12-24 Ihi Corp Method and apparatus for reforming gasified gas
JP2010070734A (en) * 2008-09-22 2010-04-02 Mitsui Eng & Shipbuild Co Ltd Reformer for pyrolysis gas

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54500042A (en) * 1977-11-08 1979-10-25
JP2003013072A (en) * 2001-07-04 2003-01-15 Chiyoda Corp Method for producing synthetic gas from lower hydrocarbon gas and apparatus therefor
JP2005060533A (en) * 2003-08-12 2005-03-10 Chugai Ro Co Ltd Device for modifying fuel gas in biomass gasification system
JP2009298974A (en) * 2008-06-17 2009-12-24 Ihi Corp Method and apparatus for reforming gasified gas
JP2010070734A (en) * 2008-09-22 2010-04-02 Mitsui Eng & Shipbuild Co Ltd Reformer for pyrolysis gas

Also Published As

Publication number Publication date
JP6229526B2 (en) 2017-11-15

Similar Documents

Publication Publication Date Title
US8277736B2 (en) Fluidized bed reactor system
US8807054B2 (en) System for converting fuel materials
JP5166556B2 (en) Oxycombustion fluidized bed reactor and method of operating such a reactor
JPS5922991A (en) Manufacture of mixed gas and burner therefor
CN104726138B (en) Syngas cooler
RU2761331C2 (en) Burner and method for producing synthesis gas
JP5256802B2 (en) Gasification furnace structure of gasification equipment
WO2009153948A1 (en) Process and equipment for reforming gasification gas
CN106675600A (en) Coal gasification apparatus and coal gasification method for rich hydrogen by adopting coal gasification apparatus
KR20110065962A (en) Top feeding dual swirling gasifier
CN108410517B (en) Gasification quench system
JP6229526B2 (en) Tar reforming furnace and its gasification equipment
JP2015059159A (en) Apparatus for reforming tar in gasified-gas
CN101618303A (en) A process and a reactor for oxidation of a hydrocarbon
JPWO2008111127A1 (en) Fluidized bed gasification facility
CN105733686B (en) Ring type collision type gasification furnace
CN106433792B (en) Gasification nozzle and gasification reactor
JP2008208260A (en) Fuel gasification apparatus
EP2707325B1 (en) Process for producing synthesis gas
TWI717123B (en) Air distributor for use in a fluidized bed
CN212425968U (en) Novel impinging stream solid organic matter gasification device
CN107880942A (en) A kind of gasification furnace and gasification system
CN207243833U (en) It is vortexed separate type low-carbon coal-fired gasification device for producing hydrogen
US20210198588A1 (en) Plasma-assisted method and system for treating raw syngas comprising tars
JP6693345B2 (en) Tar reformer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170919

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171002

R151 Written notification of patent or utility model registration

Ref document number: 6229526

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees