JP2015150521A - Exhaust gas purification method and system - Google Patents

Exhaust gas purification method and system Download PDF

Info

Publication number
JP2015150521A
JP2015150521A JP2014027344A JP2014027344A JP2015150521A JP 2015150521 A JP2015150521 A JP 2015150521A JP 2014027344 A JP2014027344 A JP 2014027344A JP 2014027344 A JP2014027344 A JP 2014027344A JP 2015150521 A JP2015150521 A JP 2015150521A
Authority
JP
Japan
Prior art keywords
waste gas
water
oxygen
nitric acid
gas purification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014027344A
Other languages
Japanese (ja)
Inventor
泰弘 加藤
Yasuhiro Kato
泰弘 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2014027344A priority Critical patent/JP2015150521A/en
Publication of JP2015150521A publication Critical patent/JP2015150521A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Treating Waste Gases (AREA)
  • Gas Separation By Absorption (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a purification method and a system, which can reduce emission of NO contained in NOx.SOLUTION: The exhaust gas purification system 11 includes: a purification cylinder 3 that has a forced mixer 19 for mixing oxygen and/or air with an exhaust gas containing NOx and an underwater foam maker 35 foaming a nitric acid gas mixed with oxygen underwater to cause the water to absorb the gas and obtaining a nitric acid aqueous solution.

Description

本発明は、硝酸性ガスを含む廃ガスの浄化方法及び装置に関し、詳しくは、硝酸性窒素酸化物(NOx)を含む廃ガスの浄化方法及び装置に関する。   The present invention relates to a purification method and apparatus for waste gas containing nitrate gas, and more particularly, to a purification method and apparatus for waste gas containing nitrate nitrogen oxide (NOx).

有価、有用金属の回収のために小規模製錬精製においては、硝酸が溶解に用いられるが、そこでは、硝酸性ガスと呼ばれるNOxを含むガスが発生する。以下の説明において、硝酸性ガスをNOxと略記する。   In small-scale smelting and refining for the recovery of valuable and useful metals, nitric acid is used for dissolution, where a gas containing NOx called nitrate gas is generated. In the following description, nitrate gas is abbreviated as NOx.

また、「都市鉱山」ともいわれる電子機器、部品からの、再利用可能な金属の回収事業においても、発生するNOxは、大気汚染、温室効果、オゾン層破壊、健康被害への危惧が問題となっている。   In addition, even in the business of recovering reusable metals from electronic devices and parts, also known as “urban mines,” the generated NOx has become a concern for air pollution, greenhouse effect, ozone layer destruction, and health hazards. ing.

更に、発電所、各種工場、自動車から排出される排気ガスにも、NOxが含まれている。   Furthermore, NOx is also contained in exhaust gas discharged from power plants, various factories, and automobiles.

以下の説明では、有価、有用金属や再生可能な金属の回収の際に発生するNOxや発電所等からの排気ガスもまとめて、NOxを含む廃ガスと称するものとする。このようなNOxには、一酸化窒素(NO)と二酸化窒素(NO)の混合物が多く、他の窒素酸化物も含まれている。なお、廃ガスには、さらに、PM2.5及び花粉等も含まれている。 In the following description, NOx generated when recovering valuable, useful metals and renewable metals and exhaust gas from a power plant are collectively referred to as waste gas containing NOx. Such NOx is often a mixture of nitric oxide (NO) and nitrogen dioxide (NO 2 ), and also contains other nitrogen oxides. In addition, PM2.5, pollen, etc. are further contained in waste gas.

NOxを含む廃ガスは、廃ガスを浄化するための廃ガス浄化装置において薬品や触媒を利用して窒素ガス(N)にした後、大気中に放出されている。 Waste gas containing NOx is released into the atmosphere after being converted into nitrogen gas (N 2 ) using a chemical or a catalyst in a waste gas purification device for purifying the waste gas.

NOxを含む廃ガスを浄化する廃ガス浄化装置または廃ガス浄化方法には、次の特許文献1乃至3に示されるものがある。   Examples of the waste gas purification device or the waste gas purification method for purifying waste gas containing NOx include those shown in the following Patent Documents 1 to 3.

特許文献1の装置は、一酸化炭素(CO)とNOxとをアンモニア(NH)還元法を用いて、N等に脱硝するためのアンモニア排ガス浄化法をおこなうもので、さらに、そのための触媒も開示している。 The apparatus of Patent Document 1 performs an ammonia exhaust gas purification method for denitrating carbon monoxide (CO) and NOx to N 2 or the like using an ammonia (NH 3 ) reduction method, and further a catalyst therefor Also disclosed.

特許文献2は、排出ガスの清浄化とともに窒素酸化物類、炭化水素類及び一酸化炭素の濃度を制御する方法を開示している。より詳しくは、特許文献2による排出ガスの浄化方法は、2種類の触媒を用いて、NOxを一酸化炭素(CO)で還元し、一方、残存するCOを二酸化炭素(炭酸ガス;CO)に酸化することによって行われる。 Patent Document 2 discloses a method for controlling the concentrations of nitrogen oxides, hydrocarbons, and carbon monoxide together with purification of exhaust gas. More specifically, the exhaust gas purification method according to Patent Document 2 uses two types of catalysts to reduce NOx with carbon monoxide (CO), while the remaining CO is converted to carbon dioxide (carbon dioxide; CO 2 ). This is done by oxidizing.

さらに、特許文献3は、特殊な触媒作用を有する担体材料を用いてNOxを炭化水素の存在下で触媒還元して、Nを生成する廃ガスの浄化を行う装置が開示されている。 Further, Patent Document 3 discloses an apparatus for purifying waste gas that generates N 2 by catalytic reduction of NOx in the presence of hydrocarbons using a carrier material having a special catalytic action.

一方、特許文献4には、中空の塔内に活性炭のベッドを配置し、NOxを活性炭のベッドの上方から導入するとともに、塔内の上方から水又は弱酸性の水溶液(硝酸水溶液)を噴霧し、NOをNOに酸化するとともに、NOを水に吸収させて、硝酸水溶液として回収する方法が提案されている。 On the other hand, in Patent Document 4, an activated carbon bed is arranged in a hollow tower, NOx is introduced from above the activated carbon bed, and water or a weakly acidic aqueous solution (nitric acid aqueous solution) is sprayed from above the tower. , as well as oxidize NO to NO 2, the NO 2 is absorbed in water, a method for recovering has been proposed as a nitrate aqueous solution.

特開平10−5591号公報JP-A-10-5591 特表2004−508158号公報JP-T-2004-508158 特開平10−28842号公報JP-A-10-28842 特公平1−17734号公報Japanese Patent Publication No. 1-17734

しかしながら、上記特許文献1乃至3に記載された廃ガス浄化方法や装置は、いずれもNOxをNに還元して浄化している。この浄化の結果、Nが排出される。排出されるNはいずれも多少なり一酸化窒素(NO)を含んでいる。このため、NOは大気中で自然酸化されて、NOが生じてしまうので、NOxの廃ガス浄化装置としては完全なものとは言えなかった。 However, all of the waste gas purification methods and apparatuses described in Patent Documents 1 to 3 reduce NOx to N 2 for purification. As a result of this purification, N 2 is discharged. All of the discharged N 2 contains some nitric oxide (NO). For this reason, NO is naturally oxidized in the atmosphere and NO 2 is generated, so it cannot be said that the NOx waste gas purification device is perfect.

また、特許文献1乃至3においては、気相状態で、触媒に接触させる気相反応が主である。仮に、液相反応を行うにしても、NOxの内で、一酸化窒素(NO)を生じる。NOは最も水に溶解し難いため、単に、水中を通すという操作では、一酸化窒素(NO)は除去されない。   Moreover, in patent documents 1 thru | or 3, the gas phase reaction made to contact a catalyst in a gaseous phase state is main. Even if a liquid phase reaction is performed, nitric oxide (NO) is generated in NOx. Since NO hardly dissolves in water, nitric oxide (NO) is not removed simply by passing water.

さらに、特許文献1乃至3に開示された廃ガス浄化方法や装置では、NOx等を還元する高価な触媒を用いるために浄化コストの点でも問題があった。   Furthermore, the waste gas purification methods and apparatuses disclosed in Patent Documents 1 to 3 have a problem in terms of purification costs because they use expensive catalysts that reduce NOx and the like.

一方、特許文献4に開示されたNOxの回収方法では、廃ガス中のNOは水に不溶性であるとともに、NOよりも比重が小さいために、塔内の上方に集まることになる。このため、塔内の活性炭のベッドよりも上方空間内にNOが残存する。また、活性炭は、有機物や一酸化炭素(CO)を吸着するが、水、NOは吸着しない。このため、活性炭のベッドの表面ではNOからNOへの酸化反応が起こりにくい。従って、特許文献4に記載された装置は、NOを硝酸水溶液として回収するための効率が良好でなく、不向きである。 On the other hand, in the NOx recovery method disclosed in Patent Document 4, NO in the waste gas is insoluble in water and has a lower specific gravity than NO 2, so that it collects in the upper part of the tower. For this reason, NO remains in the space above the activated carbon bed in the tower. Activated carbon adsorbs organic matter and carbon monoxide (CO), but does not adsorb water and NO. For this reason, the oxidation reaction from NO to NO 2 hardly occurs on the surface of the bed of activated carbon. Therefore, the apparatus described in Patent Document 4 is not suitable because the efficiency for recovering NO as a nitric acid aqueous solution is not good.

なお、廃ガス中には、大気中のPM2.5及び花粉等も含まれる。これらを除去するには、濾過布を用いるが、濾過布を透過する場合が多く、PM2.5及び花粉等は除去できないのが現状である。   The waste gas includes PM2.5 and pollen in the atmosphere. In order to remove these, a filter cloth is used. However, in many cases, PM2.5 and pollen cannot be removed because the filter cloth often passes through the filter cloth.

そこで、本発明の技術的課題は、NOの排出を低減できる硝酸性ガスを含む廃ガス浄化方法及び装置を提供することにある。   Therefore, a technical problem of the present invention is to provide a method and apparatus for purifying waste gas containing nitrate gas that can reduce NO emissions.

本発明の一態様によれば、NOxを含む廃ガスに酸素及び/又は空気を強制的に混合し、前記酸素及び/又は空気を混合した廃ガスを得る混合工程と、前記酸素及び/又は空気を混合した廃ガスを水中に発泡させることにより水に吸収させて硝酸水溶液を得る水中発泡工程とを有することを特徴とする廃ガス浄化方法が得られる。   According to one aspect of the present invention, oxygen and / or air is forcibly mixed with waste gas containing NOx to obtain a waste gas obtained by mixing the oxygen and / or air, and the oxygen and / or air. And a submerged foaming step in which a nitric acid aqueous solution is obtained by causing the waste gas mixed with water to be foamed into water to be absorbed in water.

また、本発明のもう一つの態様によれば、NOxを含む廃ガスと酸素及び/又は空気を強制的に混合する強制混合器と、前記酸素及び/又は空気と混合した廃ガスを水中に発泡させることにより、水に吸収させて硝酸水溶液を得る水中発泡器とを備えた浄化筒を有することを特徴とする廃ガス浄化装置が得られる。   According to another aspect of the present invention, a forced mixer for forcibly mixing waste gas containing NOx and oxygen and / or air, and foaming the waste gas mixed with oxygen and / or air into water. By doing so, a waste gas purification device having a purification cylinder provided with an underwater foamer that is absorbed in water to obtain an aqueous nitric acid solution is obtained.

本発明に係る浄化方法及び装置は、廃ガスを浄化する際におけるNOの排出を低減できる。   The purification method and apparatus according to the present invention can reduce NO emissions when purifying waste gas.

本発明の実施の形態による浄化システム11の全体構成を示す概略断面図である。It is a schematic sectional drawing which shows the whole structure of the purification system 11 by embodiment of this invention. 図1の浄化筒3を示す概略部分断面図である。FIG. 2 is a schematic partial cross-sectional view showing a purification cylinder 3 in FIG. 1.

以下、本発明の実施の形態について図面を参照しながら説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は本発明の実施の形態による浄化システム11の全体構成を示す概略断面図である。図2は図1の浄化筒3を示す概略部分断面図である。   FIG. 1 is a schematic sectional view showing an overall configuration of a purification system 11 according to an embodiment of the present invention. FIG. 2 is a schematic partial sectional view showing the purification cylinder 3 of FIG.

図1に示された浄化システム11は、浄化装置9と、活性炭容器30内に活性炭29を収納した気体清浄装置5と、濾過布33を有する濾過装置7を備えている。   The purification system 11 shown in FIG. 1 includes a purification device 9, a gas purification device 5 in which activated carbon 29 is stored in an activated carbon container 30, and a filtration device 7 having a filter cloth 33.

浄化装置9は水槽1と、水槽1内の水2に浸された複数の浄化筒3とを有している。浄化筒3は下端が開口されているので、水槽内の水4と浄化筒3内の水2は、連絡するとともに、ほぼ同じ高さの水面を有している。   The purification device 9 has a water tank 1 and a plurality of purification cylinders 3 immersed in water 2 in the water tank 1. Since the lower end of the purification cylinder 3 is opened, the water 4 in the water tank and the water 2 in the purification cylinder 3 communicate with each other and have a water surface having substantially the same height.

図2に示されているように、浄化筒3は、浄化容器13と、浄化容器13内の上端寄りに配置された水噴霧器41と、浄化容器13内の下端側に配置された発泡用の細孔を備えた水中発泡器35と、水中発泡器35の直上に配置された発泡拡散板37と、水噴霧器41と発泡拡散板37との間に配置された多表面樹脂部39とを有している。水噴霧器41は外部から水を供給する水供給配管23に接続されている。また、浄化容器13の外には、酸素強制混合器19が設けられている。   As shown in FIG. 2, the purification cylinder 3 includes a purification container 13, a water sprayer 41 disposed near the upper end in the purification container 13, and a foaming foam disposed on the lower end side in the purification container 13. It has an underwater foaming device 35 having pores, a foam diffusion plate 37 disposed immediately above the underwater foaming device 35, and a multi-surface resin portion 39 disposed between the water sprayer 41 and the foam diffusion plate 37. doing. The water sprayer 41 is connected to a water supply pipe 23 that supplies water from the outside. In addition, an oxygen forced mixer 19 is provided outside the purification container 13.

空気又は酸素(O)16は、配管17を介して、酸素強制混合器19に供給される。一方、廃ガス15は廃ガス配管18を介して、酸素強制混合器19に供給される。 Air or oxygen (O 2 ) 16 is supplied to an oxygen forced mixer 19 via a pipe 17. On the other hand, the waste gas 15 is supplied to the oxygen forced mixer 19 via the waste gas pipe 18.

酸素強制混合器19に供給された空気又は酸素(O)16及び廃ガス15は、強制的に混合され、酸素混合ガスとして、水中発泡器35に、配管21を介して供給される。強制的に空気又は酸素(O)16と混合された廃ガス15の酸素混合ガスは、水中発泡器35の細孔から水2中に発泡される。発泡した空気又は酸素(O)16及び廃ガス15の酸素混合ガスの泡36は、水中発泡器35の直上に配置された穴明板よりなる発泡拡散板37によって、発泡した泡36をさらに細分化した泡38とし、水との接触を増加させる。これによって、強制的に空気又は酸素(O)16と混合された廃ガス15中のNOは、水2に吸収される。 The air or oxygen (O 2 ) 16 and the waste gas 15 supplied to the oxygen forced mixer 19 are forcibly mixed and supplied to the underwater foamer 35 via the pipe 21 as an oxygen mixed gas. The oxygen mixed gas of the waste gas 15 that is forcibly mixed with air or oxygen (O 2 ) 16 is foamed into the water 2 from the pores of the underwater foamer 35. The foamed air or oxygen (O 2 ) 16 and the oxygen mixed gas foam 36 of the waste gas 15 are further converted into a foamed foam 36 by a foam diffusion plate 37 made of a perforated plate disposed immediately above the underwater foamer 35. A finely divided bubble 38 is formed to increase contact with water. Thereby, NO 2 in the waste gas 15 forcedly mixed with air or oxygen (O 2 ) 16 is absorbed by the water 2.

多表面樹脂部39は、表面において混合ガスの泡38と水との相互接触面積をさらに増加させるために、充填された多孔質のポリ塩化ビニール製の多表面の樹脂を有している。   The multi-surface resin part 39 has a multi-surface resin made of porous polyvinyl chloride filled in order to further increase the mutual contact area between the mixed gas bubbles 38 and water on the surface.

一方、多表面樹脂部39の上方に配置された水噴霧器41から多表面樹脂部39に水40が噴霧される。   On the other hand, water 40 is sprayed onto the multi-surface resin part 39 from the water sprayer 41 disposed above the multi-surface resin part 39.

再び、図1を参照すると、水槽1の水4と、浄化筒3内の水2とは、浄化筒3の下端の開口を介して、連絡している。従って、水2と水4とは常に混合されている。   Referring again to FIG. 1, the water 4 in the water tank 1 and the water 2 in the purification cylinder 3 communicate with each other through an opening at the lower end of the purification cylinder 3. Therefore, the water 2 and the water 4 are always mixed.

水槽1の水4の気体成分は、液体成分(硝酸水溶液)と分離されて、配管25を介して清浄容器5に送られる。清浄容器5において、分離された気体成分は活性炭29の層を通過して、有機物,PM2.5や一酸化炭素COなどが除去されて、排気口27から排気28として、大気中に放出される。   The gas component of the water 4 in the water tank 1 is separated from the liquid component (nitric acid aqueous solution) and sent to the clean container 5 through the pipe 25. In the clean container 5, the separated gas components pass through the layer of activated carbon 29, organic matter, PM2.5, carbon monoxide CO, and the like are removed, and are discharged into the atmosphere as exhaust 28 from the exhaust port 27. .

一方、水槽1中の水4の液体成分である硝酸水溶液は、配管31を介して濾過装置7に投入され、濾過布33を通過して、硝酸水溶液の排水43として回収される。   On the other hand, the aqueous nitric acid solution, which is a liquid component of the water 4 in the water tank 1, is introduced into the filtration device 7 through the pipe 31, passes through the filter cloth 33, and is collected as the wastewater 43 of the aqueous nitric acid solution.

次に、図1及び図2を参照して、本発明の実施の形態による浄化システムの動作について説明する。   Next, with reference to FIG.1 and FIG.2, operation | movement of the purification system by embodiment of this invention is demonstrated.

図1及び図2において、まず、(A)点において、NOxを含む廃ガスは、2〜3倍の空気あるいは、酸素と酸素強制混合器15で強制的に混合される。なお、酸素混合量は、多ければ多いほどよいが、酸素混合量に換算して、3m/分以上が好ましく、3m/分〜30m/分の範囲がより好ましい。ここで、(A)点では、廃ガス中の大部分の低原子価の窒素の酸化物NOは、下記式(1a)で示すように、酸素と反応して4価以上の窒素酸化物(NO)まで酸化される。ここで、NOとN(NOの二量体)とは、式(1b)に示すように、常温においては、平衡状態にある。 In FIG. 1 and FIG. 2, first, at point (A), the waste gas containing NOx is forcibly mixed by air or oxygen forcible mixer 15 by 2 to 3 times. The oxygen mixing amount is preferably as much as possible, but is preferably 3 m 3 / min or more, more preferably in the range of 3 m 3 / min to 30 m 3 / min in terms of the oxygen mixing amount. Here, at the point (A), most of the low-valence nitrogen oxides NO in the waste gas react with oxygen as shown by the following formula (1a) to produce a tetravalent or higher nitrogen oxide ( It is oxidized to NO 2 ). Here, NO 2 and N 2 O 4 (a dimer of NO 2 ) are in an equilibrium state at room temperature, as shown in Formula (1b).

Figure 2015150521
Figure 2015150521

次に、空気又は酸素(O)16と強制的に混合された廃ガス15の酸素混合ガスは、配管21を介して、水中発泡器35に送られ、水中発泡器35の細孔から、水2中に符号36で示すように発泡する。発泡36は、水中発泡器35の直上に配置された穴明板よりなる発泡拡散板37によって、符号38に示すように微細化して、水2との接触を増加させる。 Next, the oxygen mixed gas of the waste gas 15 forcibly mixed with air or oxygen (O 2 ) 16 is sent to the underwater foamer 35 through the pipe 21, and from the pores of the underwater foamer 35, Foam in water 2 as indicated by reference numeral 36. The foam 36 is refined by a foam diffusion plate 37 made of a perforated plate disposed immediately above the underwater foaming device 35 to increase contact with the water 2 as indicated by reference numeral 38.

さらに、この微細化された泡38は、泡拡散板37の上部に配置された多表面積樹脂39によって、酸素混合ガスと水2の相互接触が増加される。多表面積樹脂39には、上方から水噴霧器41によって、水40が噴霧される。ここで、多表面樹脂層39の表面では、以下の式(2)、(3)、及び(4)の反応が生じる。   Further, the finely divided bubbles 38 are increased in mutual contact between the oxygen mixed gas and the water 2 by the multi-surface area resin 39 disposed on the upper part of the bubble diffusion plate 37. Water 40 is sprayed onto the multi-surface area resin 39 by a water sprayer 41 from above. Here, on the surface of the multi-surface resin layer 39, reactions of the following formulas (2), (3), and (4) occur.

Figure 2015150521
Figure 2015150521
Figure 2015150521
Figure 2015150521
Figure 2015150521
Figure 2015150521

なお、(B)点には、水2中から発生したNOもしくは酸素16を強制混合した廃ガス15中の未反応のNOが存在する。未反応のNOは、式(1a)又は、式(1b)に示すように、液面に浮上する泡によって供給された酸素によって、酸化されてNOとなり、水噴霧器41から噴霧された水40や水蒸気に接触する。この結果、上記式(4)に示すように、NOは水2に溶解(加水分解)して、硝酸水溶液を生成する。 At point (B), NO generated from the water 2 or unreacted NO in the waste gas 15 forcibly mixed with the oxygen 16 exists. Unreacted NO is oxidized into NO 2 by oxygen supplied by bubbles floating on the liquid surface, as shown in the formula (1a) or (1b), and the water 40 sprayed from the water sprayer 41 Contact with water vapor. As a result, as shown in the above formula (4), NO 2 is dissolved (hydrolyzed) in water 2 to generate an aqueous nitric acid solution.

また、未反応のNOの一部は、空間内の酸素(O)と水2,40もしくは水蒸気と接触することにより、直接、上記式(2)乃至式(3)に示すように、水に溶解(加水分解)し、亜硝酸を生じて、水2中に硝酸を生成する。 Further, a part of the unreacted NO comes into contact with oxygen (O 2 ) in the space and water 2, 40 or water vapor, so that as shown in the above formulas (2) to (3), Dissolved (hydrolyzed) to produce nitrous acid, and nitric acid is produced in water 2.

図示された例では、浄化筒3以外の水槽1内の水4の上部にも、(C)点で示される空間がある。この空間(C)の下方に貯えられた水4中に、NOが残存する場合にも、上記空間(C)に移動するので、水4中には、残らない。なお、上記空間(C)内の微小量のNOは、上記浄化筒と同様な反応によって、水4中に硝酸水溶液を生じる。   In the illustrated example, there is also a space indicated by a point (C) in the upper part of the water 4 in the water tank 1 other than the purification cylinder 3. Even when NO remains in the water 4 stored below the space (C), it moves to the space (C) and therefore does not remain in the water 4. Note that a minute amount of NO in the space (C) generates an aqueous nitric acid solution in the water 4 by a reaction similar to that in the purification cylinder.

水槽1内の水4の気体成分は、容器30内部に活性炭層29を含む気体浄化装置5を介して排気28として排気される。なお、水4中の気体成分として含まれる有機物,PM2.5や一酸化炭素(CO)は、活性炭層に吸収されて、排気28中には含まれない。   The gas component of the water 4 in the water tank 1 is exhausted as the exhaust 28 via the gas purification device 5 including the activated carbon layer 29 inside the container 30. Note that organic matter, PM2.5, and carbon monoxide (CO) contained as gas components in the water 4 are absorbed by the activated carbon layer and are not contained in the exhaust 28.

一方、水槽1中の水4の液体成分は、硝酸水溶液であり、濾過布33を介して濾過され、硝酸水溶液よりなる排水43として取り出される。   On the other hand, the liquid component of the water 4 in the water tank 1 is a nitric acid aqueous solution, which is filtered through the filter cloth 33 and taken out as drainage 43 made of the nitric acid aqueous solution.

以下に実施例を説明するが、本発明はこれらに限定されるものではない。   Examples will be described below, but the present invention is not limited thereto.

(実施例1)
図1で示すように、廃ガス浄化装置9を用い、約80cmに水を満たした水槽1に、図2に示す洗浄塔3を2本立てて、清浄容器5,濾過装置7にそれぞれ、接続して以下の実験を行った。
Example 1
As shown in FIG. 1, a waste gas purification device 9 is used, and two washing towers 3 shown in FIG. 2 are set up in a water tank 1 filled with water at about 80 cm and connected to a clean container 5 and a filtration device 7, respectively. The following experiment was conducted.

図1及び図2に示す酸素強制混合器19の酸素混合量を3m/分として、15分及び60分経過した後、図1に示す各点(A)乃至(D)のNO濃度を測定した。その結果を下記表1に示す。 The oxygen concentration of the oxygen forced mixer 19 shown in FIG. 1 and FIG. 2 is 3 m 3 / min, and after 15 minutes and 60 minutes have elapsed, the NO concentration at each point (A) to (D) shown in FIG. 1 is measured. did. The results are shown in Table 1 below.

Figure 2015150521
Figure 2015150521

上記表1に示すように、稼働時間が15分から60分に増加するにつれて、(B)点では、NO濃度はそれぞれ、250ppmから100ppmと減少しているが、(C)点では、いずれの稼働時間においても、環境省のガス専焼ボイラーの排出基準値(60ppm〜100ppm)以下を下回る20ppmとなっている。(D)の排気中では、いずれの稼働時間でも1ppm未満となっている。   As shown in Table 1, as the operation time increases from 15 minutes to 60 minutes, the NO concentration decreases from 250 ppm to 100 ppm at point (B), but at point (C), any operation Also in time, it is 20 ppm which is below the emission standard value (60 ppm to 100 ppm) of the gas-fired boiler of the Ministry of the Environment. In the exhaust of (D), it is less than 1 ppm at any operating time.

(実施例2)
次に、酸素混合量を10m/分、30m/分にした以外は、実施例1と同様に、図1に示す(A)乃至(D)点のNO濃度を測定した。
その結果を下記表2に示す。
(Example 2)
Next, the NO concentrations at points (A) to (D) shown in FIG. 1 were measured in the same manner as in Example 1 except that the oxygen mixing amount was 10 m 3 / min and 30 m 3 / min.
The results are shown in Table 2 below.

Figure 2015150521
Figure 2015150521

上記表2に示すように、10m/分、30m/分の酸素混合量が増加するにつれて、(B)点では、NO濃度はそれぞれ、250ppmから100ppmと減少しているが、(C)点では、いずれの酸素混合量においても、環境省のガス専焼ボイラーの排出基準値(60ppm〜100ppm)以下を下回る20ppmとなっている。(D)の排気中では、いずれの酸素混合量稼働時間でも1ppm未満となっている。 As shown in Table 2 above, as the oxygen mixing amount increases at 10 m 3 / min and 30 m 3 / min, the NO concentration at point (B) decreases from 250 ppm to 100 ppm, respectively (C) In any respect, in any oxygen mixing amount, it is 20 ppm which is below the emission standard value (60 ppm to 100 ppm) or less of the gas-fired boiler of the Ministry of the Environment. In the exhaust of (D), the oxygen mixed amount operating time is less than 1 ppm.

以上説明したように、本発明においては、有価、有用金属の回収のために小規模製錬精製においては、硝酸が溶解に用いられるが、そこで発生する硝酸性ガスを水のみで浄化することで、簡単かつNOを大気中に出さずに硝酸水溶液として放出可能となる。   As described above, in the present invention, nitric acid is used for dissolution in small-scale smelting and refining for the recovery of valuable and useful metals, but the nitrate gas generated there is purified only with water. It is easy and can be released as an aqueous nitric acid solution without releasing NO into the atmosphere.

また、「都市鉱山」ともいわれる電子機器、部品からの、再利用可能な金属の回収事業においても、NOを放出せず、大気汚染、温室効果、オゾン層破壊、健康被害への危惧なしに容易な回収が可能になる。   Moreover, even in the business of recovering reusable metals from electronic devices and parts, which are also called “urban mines”, NO is not released and it is easy without fear of air pollution, greenhouse effect, ozone layer destruction, and health damage. Recovery becomes possible.

なお、本発明において、回収した硝酸水は再利用またはアルカリ性薬品等で中和、排水が可能である。   In the present invention, the recovered nitrate water can be reused or neutralized and drained with an alkaline chemical or the like.

さらに、本発明によれば、空気中の浮遊粒子状物質(PM2.5及びスギ花粉等しい)は水中発泡とシャワー浄化で、水中に取り込まれ、濾過して除去することができる。   Furthermore, according to the present invention, airborne particulate matter (equivalent to PM2.5 and cedar pollen) can be taken into water and filtered and removed by underwater foaming and shower purification.

以上の説明の通り、本発明によれば、NOxを含む廃ガスを浄化する廃ガス浄化装置に最適である。   As described above, according to the present invention, the present invention is most suitable for a waste gas purification device that purifies waste gas containing NOx.

1 水槽
2,4 水
3 浄化筒
5 気体清浄装置
7 濾過装置
9 浄化装置
11 浄化システム
13 浄化容器
15 廃ガス
16 酸素(O
17 配管
18 廃ガス配管
19 酸素強制混合器
21 配管
23 水供給配管
25 配管
27 排気口
28 排気
30 活性炭容器
31 配管
33 濾過布
35 水中発泡器
37 発泡拡散板
39 多表面樹脂部
40 噴霧水
41 水噴霧器
43 排水
DESCRIPTION OF SYMBOLS 1 Water tank 2,4 Water 3 Purifying cylinder 5 Gas purifier 7 Filtration apparatus 9 Purifying apparatus 11 Purifying system 13 Purifying container 15 Waste gas 16 Oxygen (O 2 )
17 Piping 18 Waste Gas Piping 19 Oxygen Forced Mixer 21 Piping 23 Water Supply Piping 25 Piping 27 Exhaust Port 28 Exhaust 30 Activated Carbon Container 31 Piping 33 Filter Cloth 35 Submerged Foamer 37 Foam Diffuser 39 Multi-Surface Resin Portion 40 Spray Water 41 Water Sprayer 43 Drainage

Claims (10)

NOxを含む廃ガスに酸素及び/又は空気を強制的に混合した廃ガスを得る混合工程と、前記酸素又は空気を混合した廃ガスを水中に発泡して水に吸収させて硝酸水溶液を得る水中発泡工程とを有することを特徴とする廃ガス浄化方法。   A mixing step for obtaining a waste gas in which oxygen and / or air is forcibly mixed with a waste gas containing NOx, and a water for obtaining a nitric acid aqueous solution by foaming the waste gas mixed with oxygen or air into water and absorbing it into water. A waste gas purification method comprising: a foaming step. 請求項1に記載の廃ガス浄化方法において、前記水中発泡工程は、さらに、発泡微細化拡散板を用いて発泡が行われることを特徴とする廃ガス浄化方法。   2. The waste gas purification method according to claim 1, wherein the underwater foaming step further includes foaming using a foamed fine diffusion plate. 請求項1又は2に記載の廃ガス浄化方法において、前記硝酸水溶液中の気体成分を活性炭層を通過させて放出されることを特徴とする廃ガス浄化方法。   The waste gas purification method according to claim 1 or 2, wherein the gaseous component in the aqueous nitric acid solution is released through the activated carbon layer. 請求項1乃至3の内のいずれか一項に記載の廃ガス浄化方法において、前記水中発泡工程は、前記酸素又は空気を混合した廃ガス又は前記硝酸水溶液中の一酸化窒素(NO)を酸化し、水に吸収させて硝酸水溶液を生成する工程を含むことを特徴とする廃ガス浄化方法。   The waste gas purification method according to any one of claims 1 to 3, wherein the underwater foaming step oxidizes the waste gas mixed with oxygen or air or nitric oxide (NO) in the aqueous nitric acid solution. And a method for purifying a waste gas, comprising the step of generating a nitric acid aqueous solution by absorbing it in water. 請求項1乃至4の内のいずれか一項に記載の廃ガス浄化方法において、前記酸素混合工程は、酸素混合量に換算して、3m/分以上であることを特徴とする廃ガス浄化装置。 The waste gas purification method according to any one of claims 1 to 4, wherein the oxygen mixing step is 3 m 3 / min or more in terms of an oxygen mixing amount. apparatus. NOxを含む廃ガスに酸素及び/又は空気を強制的に混合する強制混合器と、前記酸素及び/又は空気を混合した廃ガスを水中に発泡して、水に吸収させて硝酸水溶液を得る水中発泡器とを備えた浄化筒を有することを特徴とする廃ガス浄化装置。   A forced mixer that forcibly mixes oxygen and / or air with waste gas containing NOx, and water that foams the waste gas mixed with oxygen and / or air into water and absorbs it in water to obtain an aqueous nitric acid solution. A waste gas purification device comprising a purification cylinder provided with a foamer. 請求項6に記載の廃ガス浄化装置において、前記浄化筒の前記水中発泡器の直上に設置された発泡微細化拡散板を有することを特徴とする廃ガス浄化装置。   The waste gas purification apparatus according to claim 6, further comprising a foam refined diffusion plate installed immediately above the underwater foamer of the purification cylinder. 請求項6又は7に記載の廃ガス浄化装置において、さらに、活性炭層を有する清浄容器を備え、前記清浄容器は、前記硝酸水溶液の気体成分を前記活性炭層通過させて排気として放出することを特徴とする排ガス浄化装置。   The waste gas purification apparatus according to claim 6 or 7, further comprising a clean container having an activated carbon layer, wherein the clean container discharges a gaseous component of the nitric acid aqueous solution through the activated carbon layer and discharges it as exhaust gas. Exhaust gas purification device. 請求項6乃至8の内のいずれか一項に記載の排ガス浄化装置において、前記浄化筒は、前記酸素又は空気を混合した廃ガス又は前記硝酸水溶液中の一酸化窒素(NO)を酸化し、水に吸収させ硝酸水溶液を生成することを含むことを特徴とする廃ガス浄化装置。   The exhaust gas purification apparatus according to any one of claims 6 to 8, wherein the purification cylinder oxidizes nitrogen monoxide (NO) in the waste gas mixed with the oxygen or air or the nitric acid aqueous solution, A waste gas purifier comprising absorbing water to produce an aqueous nitric acid solution. 請求項6乃至9に記載の廃ガス浄化装置において、前記酸素強制混合器は、酸素混合量に換算して、3m/分以上で強制混合することを特徴とする廃ガス浄化装置。 10. The waste gas purification apparatus according to claim 6, wherein the oxygen forced mixer is forcibly mixed at 3 m 3 / min or more in terms of an oxygen mixing amount.
JP2014027344A 2014-02-17 2014-02-17 Exhaust gas purification method and system Pending JP2015150521A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014027344A JP2015150521A (en) 2014-02-17 2014-02-17 Exhaust gas purification method and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014027344A JP2015150521A (en) 2014-02-17 2014-02-17 Exhaust gas purification method and system

Publications (1)

Publication Number Publication Date
JP2015150521A true JP2015150521A (en) 2015-08-24

Family

ID=53893340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014027344A Pending JP2015150521A (en) 2014-02-17 2014-02-17 Exhaust gas purification method and system

Country Status (1)

Country Link
JP (1) JP2015150521A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020511757A (en) * 2017-03-15 2020-04-16 ユミコア Nitrate process for producing transition metal hydroxide precursors
CN112957891A (en) * 2021-04-16 2021-06-15 中国海洋石油集团有限公司 Recycling treatment method for nitrogen oxide waste gas in noble metal purification process
WO2021153597A1 (en) * 2020-01-31 2021-08-05 有限会社バブルタンク Gas dissolver
JP2022093006A (en) * 2020-12-11 2022-06-23 株式会社オメガ Exhaust gas purification mechanism and heat treatment device of wastes

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5118260A (en) * 1974-05-17 1976-02-13 Mitsubishi Heavy Ind Ltd NENSHOHAIGASUYORICHITSU SOSANKABUTSU O JOKYOSURU HOHO
JPS5658523A (en) * 1979-09-29 1981-05-21 Hoechst Ag Method of absorbing gas containing nitrogen oxide
JPS6386827U (en) * 1986-11-27 1988-06-06
JPH07294398A (en) * 1994-04-27 1995-11-10 Nec Corp Impinger
JP2007021499A (en) * 2006-10-23 2007-02-01 Nishimatsu Constr Co Ltd Removal method of nitrogen oxide and removal apparatus of nitrogen oxide
JP2012016322A (en) * 2010-07-09 2012-01-26 National Institute Of Advanced Industrial Science & Technology Carbon dioxide feeder to horticultural facility, by pressure swing method utilizing carbon dioxide in flue gas
JP2014189471A (en) * 2013-03-28 2014-10-06 Sumitomo Seika Chem Co Ltd Apparatus for recovering nitrogen monoxide gas

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5118260A (en) * 1974-05-17 1976-02-13 Mitsubishi Heavy Ind Ltd NENSHOHAIGASUYORICHITSU SOSANKABUTSU O JOKYOSURU HOHO
JPS5658523A (en) * 1979-09-29 1981-05-21 Hoechst Ag Method of absorbing gas containing nitrogen oxide
JPS6386827U (en) * 1986-11-27 1988-06-06
JPH07294398A (en) * 1994-04-27 1995-11-10 Nec Corp Impinger
JP2007021499A (en) * 2006-10-23 2007-02-01 Nishimatsu Constr Co Ltd Removal method of nitrogen oxide and removal apparatus of nitrogen oxide
JP2012016322A (en) * 2010-07-09 2012-01-26 National Institute Of Advanced Industrial Science & Technology Carbon dioxide feeder to horticultural facility, by pressure swing method utilizing carbon dioxide in flue gas
JP2014189471A (en) * 2013-03-28 2014-10-06 Sumitomo Seika Chem Co Ltd Apparatus for recovering nitrogen monoxide gas

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020511757A (en) * 2017-03-15 2020-04-16 ユミコア Nitrate process for producing transition metal hydroxide precursors
US11401167B2 (en) 2017-03-15 2022-08-02 Umicore Nitrate process for manufacturing transition metal hydroxide precursors
WO2021153597A1 (en) * 2020-01-31 2021-08-05 有限会社バブルタンク Gas dissolver
JP2021122757A (en) * 2020-01-31 2021-08-30 有限会社バブルタンク Gas dissolving device
JP2022093006A (en) * 2020-12-11 2022-06-23 株式会社オメガ Exhaust gas purification mechanism and heat treatment device of wastes
JP7365322B2 (en) 2020-12-11 2023-10-19 株式会社オメガ Exhaust gas purification mechanism and waste heat treatment equipment
CN112957891A (en) * 2021-04-16 2021-06-15 中国海洋石油集团有限公司 Recycling treatment method for nitrogen oxide waste gas in noble metal purification process

Similar Documents

Publication Publication Date Title
CN103230733B (en) The device of a kind of liquid phase catalytic oxidation flue gas desulfurization and denitrification integration and technique
Li et al. Recent advances in the chemical oxidation of gaseous volatile organic compounds (VOCs) in liquid phase
JP4350081B2 (en) Exhaust gas treatment method and apparatus
JP5070100B2 (en) Desulfurization decarburization equipment
Owusu et al. Sonochemical removal of nitric oxide from flue gases
CN205517264U (en) Energy -concerving and environment -protective SOx/NOx control demercuration device
JP2015150521A (en) Exhaust gas purification method and system
CN102343212A (en) Denitration process combining co-oxidation of ozone and hydrogen peroxide with wet absorption
JP2005528209A (en) Method for reducing NOx in waste gas streams using chlorine dioxide
JP2010036148A (en) Removal system for volatile organic compound by gas absorption tower
WO2008134613A1 (en) Process and system for removing hydrogen sulfide and mercaptans in ammonia-based desulfurization systems
Guo et al. Absorption of NO from simulated flue gas by using NaClO 2/(NH 4) 2 CO 3 solutions in a stirred tank reactor
CN102580509A (en) Two-level absorption desulfuration denitration demercuration particulate matter 2.5 (PM2.5) removal washing tower
CN105498480A (en) Ultraviolet radiation enhancement based method and device for simultaneous desulfurization, denitrification and particulate removal of pypocholoride
KR20090062058A (en) Foul smell decreasing system using ozone-oxidants
JPH07116650A (en) Separation and treatment of gaseous ammonia from high concentrated ammonia-containing water
KR102046269B1 (en) Purification processing method of toxic substance containing liquid and toxic substance containing liquid for performing this
JP2015058430A (en) Method and system for seawater foam control
CN106166438A (en) A kind of method and device of photodissociation chlorine aqueous solution induced radical removing hydrogen sulfide
CN202036917U (en) Integrated equipment for desulfurization, denitration and demetalization of flue gas
CN211987967U (en) Sintering flue gas desulfurization and denitrification system
JP2015062894A (en) Method and apparatus for catalyzing seawater aeration basins
CN105664673B (en) A kind of coal chemical industry exhaust gas denitration and reusing sewage coupling processing technique
JP4431753B2 (en) Method and apparatus for purifying nitrogen oxide-containing air
CN205550034U (en) Wet process chemical oxidation waste gas pollution control and treatment device

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20160119

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170726

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180207